51,153 research outputs found

    Epistemic and Ontic Quantum Realities

    Get PDF
    Quantum theory has provoked intense discussions about its interpretation since its pioneer days. One of the few scientists who have been continuously engaged in this development from both physical and philosophical perspectives is Carl Friedrich von Weizsaecker. The questions he posed were and are inspiring for many, including the authors of this contribution. Weizsaecker developed Bohr's view of quantum theory as a theory of knowledge. We show that such an epistemic perspective can be consistently complemented by Einstein's ontically oriented position

    A group-theoretic approach to formalizing bootstrapping problems

    Get PDF
    The bootstrapping problem consists in designing agents that learn a model of themselves and the world, and utilize it to achieve useful tasks. It is different from other learning problems as the agent starts with uninterpreted observations and commands, and with minimal prior information about the world. In this paper, we give a mathematical formalization of this aspect of the problem. We argue that the vague constraint of having "no prior information" can be recast as a precise algebraic condition on the agent: that its behavior is invariant to particular classes of nuisances on the world, which we show can be well represented by actions of groups (diffeomorphisms, permutations, linear transformations) on observations and commands. We then introduce the class of bilinear gradient dynamics sensors (BGDS) as a candidate for learning generic robotic sensorimotor cascades. We show how framing the problem as rejection of group nuisances allows a compact and modular analysis of typical preprocessing stages, such as learning the topology of the sensors. We demonstrate learning and using such models on real-world range-finder and camera data from publicly available datasets

    Inequivalent coherent state representations in group field theory

    Full text link
    In this paper we propose an algebraic formulation of group field theory and consider non-Fock representations based on coherent states. We show that we can construct representations with infinite number of degrees of freedom on compact base manifolds. We also show that these representations break translation symmetry. Since such representations can be regarded as quantum gravitational systems with an infinite number of fundamental pre-geometric building blocks, they may be more suitable for the description of effective geometrical phases of the theory

    Stability of quaternionic linear systems

    Get PDF
    The main goal of this paper is to characterize stability and bounded-input-bounded-output (BIBO)-stability of quaternionic dynamical systems. After defining the quaternion skew-field, algebraic properties of quaternionic polynomials such as divisibility and coprimeness are investigated. Having established these results, the Smith and the Smith-McMillan forms of quaternionic matrices are introduced and studied. Finally, all the tools that were developed are used to analyze stability of quaternionic linear systems in a behavioral framework

    State maps for linear systems

    No full text
    Modeling of physical systems consists of writing the equations describing a phenomenon and yields as a result a set of differential-algebraic equations. As such, state-space models are not a natural starting point for modeling, while they have utmost importance in the simulation and control phase. The paper addresses the problem of computing state variables for systems of linear differential-algebraic equations of various forms. The point of view from which the problem is considered is the behavioral one, as put forward in [J. C. Willems, Automatica J. IFAC, 22 (1986), pp. 561–580; DynamicsReported,2(1989),pp.171–269;IEEETrans.Automat.Control,36(1991),pp. 259–294]

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661
    corecore