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Stability of Quaternionic Linear Systems

Ricardo Pereira and Paolo Vettori

Abstract— The main goal of this paper is to characterize stability and
BIBO-stability of quaternionic dynamical systems. After defining the
quaternion skew-field, algebraic properties of quaternionic polynomials
such as divisibility and coprimeness are investigated. Having established
these results, the Smith and the Smith-McMillan forms of quaternionic
matrices are introduced and studied. Finally, all the tools that were
developed are used to analyze stability of quaternionic linear systems in
a behavioral framework.

Index Terms— Stability, Quaternions, Behaviors

I. INTRODUCTION)

This paper deals with stability, which is a very common issue in
many areas of applied mathematics. In particular, for input/output
dynamical control systems, it will focus on BIBO (bounded input-
bounded output) stability which is especially important for control
systems in the presence of disturbances: roughly speaking, it ensures
that small perturbations in the control do not cause diverging errors
in the output.

The systems which are here considered take values in the quater-
nion skew-field H, that was discovered by Sir Rowan Hamilton
in 1843. These hypercomplex numbers may be favorably used to
describe phenomena occurring in areas such as electromagnetism and
quantum physics [1] by means of a compact notation that leads to a
higher efficiency in computational terms [2].

In particular, they are a powerful tool in the description of rotations.
Indeed, by identifying R? with a subset of H, the expression qug ™
represents the rotation of a vector v € R* by an angle and
about a direction that are specified by ¢ € H (see, e.g., [3]). It
is not uncommon to find situations, especially in robotics, where
the rotation of a rigid body depends on time, and this dynamics
is advantageously written in terms of quaternionic differential or
difference equations. The effort to control the rotation dynamics
motivates the study of these equations from a system theoretic point
of view (see, for instance, [4]).

In general, a dynamical system ®
represented by four units intercon- T
nected as in Fig. 1 presents a
“quaternionic symmetry” [5] and
can be modeled by differential
equations with quaternionic coeffi-
cients. Such a system is a general-
ization of the twin-lift problem [6].
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Fig. 1.  Dynamical system
with quaternionic symmetry

In the context of quantum mechanics, a possible quaternionic
formulation of the Schrodinger equation has been proposed since the
sixties as well as experiments to check the existence of quaternionic
potentials (see, for instance, [7]). This theory leads to differential
equations with quaternionic coefficients [8] which are the subject of
this paper.

Here, the behavioral approach to dynamical systems is adopted,
which was introduced by J. C. Willems in the eighties [9]. It
essentially consists in extracting all the knowledge about a dynamical
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system from the set of admissible trajectories, called behavior. In this
context, state-space models or input/output structures are not to be
considered to be present in a first instance but rather identified later
from the analysis of the system behavior.

Within this framework, usual techniques to check stability are
based on determinants of polynomial matrices. Since there is not a
unique definition of determinant for quaternionic polynomial matri-
ces, another characterization, which uses Smith and Smith-McMillan
forms of matrices, will be generalized to the quaternionic case. To do
this, many new algebraic tools have to be introduced. In particular,
quaternionic polynomials will be thoroughly investigated along with
their properties regarding divisibility and coprimeness.

Original results are stated, which concern the relation between a
quaternionic polynomial or rational matrix and its complex adjoint.

The structure of the paper is the following. After introducing
quaternions and quaternionic polynomials in Section II, quaternionic
behaviors are defined in Section III. Then, in Section IV, the prop-
erties of quaternionic Smith and Smith-McMillan forms are studied.
Finally, Section V deals with the characterization of stability and
BIBO-stability of quaternionic dynamical systems.

II. QUATERNIONS
A. Quaternionic skew field

The set H = {a + bi + ¢j + dk : a,b,c,d € R}, where the imag-
inary units i, j and k commute with real numbers and satisfy
i = jk = —kj, j = ki = —ik and k = ij = —ji, is
an associative but noncommutative division algebra over R called
quaternionic skew field. Given n = a + bi + ¢j + dk € H, its real
part is Ren = a, its conjugate is 7 = a — bi — cj — dk, and its
norm is |n| = /nm = va? + b2 + ¢ + d?. The usual Euclidean
norm is used for vectors. The complex field C is identified with
{a+bi:abeR} CH.

Being a multiplicative group, quaternions can be partitioned into
conjugacy classes [v] = {ava™' : 0 # o € H}. Two quaternions
n,v € H are conjugated if [n] = [v] (or n € [v]). Note that U € [v],
as a consequence of the following theorem (see [10]).

Theorem 2.1: Given two quaternions 1, v € H, n € [v] if and only
if Ren = Rev and |n| = |v|. Thus, [A\]NC # 0, VA € H.

B. Quaternionic polynomials

The set of quaternionic polynomials is defined by

N
H[s] = {p(s) = szsl, p€H, N € N} .
1=0

Sum and product of polynomials are defined as in the commutative
case with the additional rule (as™) (bs™) = abs™™, as if the inde-
terminate commuted with constant values. To simplify the notation,
we omit the indeterminate and write p € H[s] instead of p(s), if no
ambiguity arises.

Conjugacy is extended to quaternionic polynomials by linearity
and by the rule as™ = as", Va € H. As a consequence, pg = ¢p
for every p,q € H[s] (see [11]).

The relation between degree, zeros and factors of polynomials
in H[s] is not straightforward. We recall here some basic facts
and address the interested reader to [12, §16] for a more detailed
exposition.

Zeros of polynomials are only related to right factors: A € H is
a zero of p € HJs] if p(\) = 0 or, equivalently, if s — X is a right
divisor of p. A pair (p, q) € H][s]? is zero coprime (or right coprime)
if p and ¢ do not have common zeros. The degree of right factors of p
whose unique zero is A can vary from 1 to a maximum value ux(p),
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which is the multiplicity of A as a zero of p. As usual, ux(p) = 0
when p(A) # 0. Furthermore, if p(A) = 0, for every g € HJs] there
exists v € [\] which is a zero of pgq.

Every real irreducible monic polynomial is the minimal polynomial
of a conjugacy class [A] and is denoted by ;y) € R[s]. So, by
definition, 5 (v) = 0 if and only if v € [A]. If A € R then
Yp(s) = s — A, otherwise Ypyy(s) = (s — A)(s — A) = §°
2Re )\ + |A]? (cfr. Theorem 2.1). Moreover, if p(\) = p(v) =
with [v] = [A] but v # X, then p is a multiple of ¥py).

Example 2.2: The polynomial vy, (s) = 5% +1 has infinitely many
zeros, A € [¢], all with multiplicity one. Conversely, both (s—j)(s—1)
and (s — k)(s —4) have a unique zero, A\ = 4, with multiplicity two.

0,

C. Quaternionic rational functions

Since the polynomial ring HJs] is both a right and a left Ore
ring [13], the field of left and right fractions of H[s] can be prop-
erly defined. In this paper, only left quaternionic rational functions
are used: H(s) = {p~'q: p,q € H[s], p# 0}. For the sake of
simplicity, the fraction form is used to indicate elements of H(s):

In the fraction 4, only common left divisors of p and ¢ can be
simplified and so the fraction is irreducible if and only if (p, q) are
left coprime, i.e., if p and ¢ only have trivial (constant) common left
divisors.

D. Quaternionic matrices

As usual, HY*"[s] and H?*"(s) denote the sets of g X n poly-
nomial and rational matrices, respectively. The notion of left (right)
coprimeness is defined as in the commutative case: (P, Q) are left
(right) coprime matrices if and only if every common left (right)
common factor of P and @ is unimodular, i.e., admits a polynomial
inverse.

Any matrix A € H*"(s) may be uniquely written as A = A; +
Asj, where A1, Ay € C9*"(s). Thus an injective homomorphism
of real algebras: H9*™(s) — C29%2"(s) can be defined such that

A As
—Ay Al

The matrix A is called the complex adjoint matrix of A. In
general, any complex matrix with the structure (1) is said to be

a complex adjoint matrix. A bijective R-linear map: H*"(s) —
C?9%"(s) may be as well defined by

AHAcz[ (1)

A A = [_%J : )

This is an isometry of the vector spaces HY and C29, ie., ||v|| =
||’UC , Yo € HY.

E. Further results on divisibility

We write plg if p € H[s] is both a right and a left divisor of
g € H[s]. A stronger divisibility property, that will be now defined
and characterized (see also [14]), is essential to the construction of
the Smith and Smith-McMillan forms.

Definition 2.3: p € H][s] is a total divisor of g € H][s], denoted by
pllg, if p is both a left and a right divisor of every multiple of g.

In [11] an equivalent definition is given and it is proved that p|q if
and only if there exist z € R[s| such that p|z and x|q. This will be
stated in a more compact way in Proposition 2.6 with the following
notation.

Definition 2.4: Given p € H[s], p. € R[s] is the greatest monic
real factor of p and p* € R[s] is the least monic real multiple of p.
We also denote by p, € H]s| the polynomial such that p = pepo.

Remark 2.5: If p is monic, then p* = pp, = pPepoD,.

Proposition 2.6: If p,q € H]s|, p|lq¢ < plge < p*|¢e < p°|q.

More properties of the polynomials p., p°®, and p, are stated in
the following propositions.

Proposition 2.7: Given two quaternionic polynomials p, g € HJs],

D (pg), = Peqe = (pq)° =p*q* < (Do, qo) are left coprime;

2) pq € R[s] < Py = ¢o.

Proof: 1) The first two conditions are easily proved to be
equivalent to (pogo), = 1, and so we only show that this one is
equivalent to left coprimeness of (p,, qo). If p, and go have a non-
trivial left common factor, say x, then poq. is a multiple of the real
factor Zx, which proves one implication.

On the other hand, suppose that 1[5}|pogo. By definition, A ¢ R
and if by contradiction po(v) # 0 for any v € [A] then it would be
111[ Al |qo, which is impossible by definition of g.. Therefore, p, = ax
with (s) = s — v for some v € [A] and a € H[s]. By the division
algorithm, there exist y € H[s] and n € H such that g, = yz + 7
and therefore pogo = axTY + poh] = aFY\] + Poll. SO, Y |PoT
which is possible if and only if n = 0. Therefore, x is a common
left factor of p, and q,.

2) The implication ‘<’ is trivial. Now, let « be the greatest monic
left common factor of p, and ¢o such that p, = xza and ¢o = xb
where (a,b) are left coprime. By the first part, (@b), = 1 and so
pq = (pq), = (PeGTqaxb), = paTqaz, i.., a = b = 1, and the
result follows. |

Corollary 2.8: If p and g are monic quaternionic polynomials such
that pg € R[s], then pg = gp = p.q* = p*..

Let us now define u3(p) = max{u.(p) : v € [A]}.

Proposition 2.9: For any p € H[s] and v € [A], uX(p) = p (p°).

Proof: The fact is trivial if A € R. If it is not, suppose, without
loss of generality, that p is monic and let u = p3(p). By definition
of u®, p has a right factor v such that vy = 1/)&] which can be
decomposed as v = «f3 where p, = aaa@ and p, = b, for some
a € R[s] and b € H]s]. Note that a and b cannot have zeros in [A].
By Remark 2.5, p* = acabBBb = abbafSBa = ab&/}[‘;\], and so

1o (p*) = po (abbipfy)) = pw (7)) = p for any v € [A]. L

III. QUATERNIONIC BEHAVIORS

Following [15] (which contains a much more detailed exposition
of the concepts that are here just outlined), a behavior B is a set of
functions, called trajectories, having the same domain T, called time
set, and the same codomain W, i.e, BC W' = {w: T — W}.

In this paper, behaviors are solution sets of linear systems of
quaternionic difference or differential equations. In other words, we
will deal with discrete-time systems, where T = Z and

N
B= {w : Z — H" such that »  Ryw(t+1) =0,Vt € Z} , 3)
=M

and with continuous-time systems, where T = R and

N
B= {w :R — H" such that »  Riw'”(t) = 0,vt € R} L@
=0

The systems are time-invariant, i.e., R; € HY*™ are constant
matrices, and in the continuous case, where w® is the I-th order
derivative of w, trajectories are supposed to be sufficiently smooth,
otherwise equations have to be intended in a distributional sense
(see [16]).

It is possible to treat discrete and continuous linear systems in a
unified fashion by means of polynomial operators. Define, in the
discrete-time case, the backward shift operator by (c7w)(t) =
w(t + 7), for any ¢,7 € Z. Then the condition defining B in (3)



is Y, Rw(t +1) = XN, Ric'w(t) = R(o)w = 0, where
R(s) = 3 ,, Ris' € H?*"[B1] is a quaternionic Laurent polyno-
mial matrix (i.e., a polynomial with both positive and negative powers
of s) acting on w as a linear difference operator.

For the sake of simplicity we will suppose, without loss of
generality, that R € H9*"[s]. Indeed, by definition (3), w € B if
and only if 7w € B, ie., R(oc)o"w = 0, for any ¢t € Z. So, if
we take 7 = —M, the behavior B can be equivalently defined by
R(s)s™™, which is a polynomial matrix (see also [11, Corollary
3.12]).

Analogously, if R(s) = Y., Ris' € H*"[s], the condi-
tion in (4) can be written in the operator form R (&%) w(t) =
YN Ridiw(t) =o0.

Eventually, both in the discrete and in the continuous case, the
behavior is the kernel of the operator R, B = ker R, where R(c) is
a difference operator when T = Z and R(%) is a differential operator
when T = R. The polynomial matrix R(s) is a kernel representation
of B. Note that different representations may give rise to the same
behavior. In particular ker R = ker UR for any unimodular matrix
U [11].

Example 3.1: Consider the equations (o — a)"w(t) = 0 and
(4 —a)" w(t) = 0 where v € H. Their solutions are the kernel
of operators represented by the polynomial p(s) = (s — «)™. It is
not difficult to check that the solutions are, as in the commutative
case, w(t) = t'alq and w(t) = t'e*'q, respectively, for every
l=0,...,n—1 and ¢ € H. However, in this case, the position
of the constant ¢ cannot be changed due to noncommutativity.

The representation of a behavior as a kernel is very general but
sometimes it is possible and desirable to use other representations as,
for instance, input/output (i/0) representations.

To introduce the class of i/0 systems in a proper way, we need the
following preliminary definition.

Definition 3.2: Let B C {[¥]: T — HP*™}. Then w is an input
variable and y is an output variable of B if

1) w is free in B: Vu € (H™)", 3y € (H?)" such that [¥] € B;

2) once u is fixed, no component of y is free in {y : [¥] € B}.
The notation Bj, is used to denote behaviors which satisfy Defini-
tion 3.2. In general, B is an i/o behavior if the components of its
trajectories w can be partitioned into input and output variables, i.e.,
a permutation of coordinates transforms it into a behavior Bi.

A partition of any kernel representation R = [P — Q] of Bis is
naturally induced, which is made explicit by the i/o representation

Bio={[4]: T —H" : Py=Qu}. 5)

As we will show in Proposition 4.2, we may assume that P is full
row rank. Therefore, since condition 2 of Definition 3.2 is equivalent
to saying that P has full column rank, in the following we only
consider i/o representations (5) where P is invertible over the field
of rational matrices.

Remark 3.3: If P is invertible then (5) is an i/o behavior, indepen-
dently of Q. Indeed, P is an surjective operator, as in the commutative
case, and therefore freeness of wu, i.e., condition 1 of Definition 3.2,
is guaranteed.

We will only deal with proper systems, i.e., we also assume that
the transfer matrix P~1Q of the behavior (5) is a proper rational
matrix [9].

Definition 3.4: A dynamical system defined by the equation

Py = Qu, ©)

where P € HP*P[s] and Q € HP*™[s], is a (proper) quaternionic
i/o system, with behavior By, defined by equation (5), if P admits a
rational inverse and its transfer matrix P~'Q € HP*™(s) is proper.

IV. QUATERNIONIC SMITH AND SMITH-MCMILLAN FORMS

In this section we define and characterize the Smith and Smith-
McMillan forms of quaternionic polynomial and rational matrices.

The notation diag (a1, ..., a,) denotes a matrix (an;) with suit-
able size, not necessarily square, such that ap; = ap it h =1 =
1,...,n and ap; = 0 otherwise.

The Smith form has been already studied in [14]. The following
theorem states its defining properties, using our notation.

Theorem 4.1: Let R € H*"[s]. Then there exist unimodular
quaternionic polynomial matrices U and V' such that

URV = diag (v1,...,7) € H"[s], @)

where r is the rank of R, v, are monic and 7;|v:4+1 for any [.
Matrix (7) is a quaternionic Smith form of R. Unlike the real or
complex case, it is not unique. Uniqueness can be stated in some
cases, see [17].

As an application, we use now the Smith form to prove the
existence of a representation of an i/o behavior which is minimal
in the number of rows.

Proposition 4.2: If u is free in By,, defined as in (5), then there
exist P, with full row rank, and Q such that [¥] € By, < Py = Qu.

Proof: Let R = [P —(Q)] and S be a full row rank matrix
such that URV = [§] is a Smith form of R. Then R = SV ! has
full row rank and ker R = ker [lg] = kerUR = ker R = By,. By
partitioning suitably R = [P —(Q)], the claim is proved if P is full
row rank. Let a € H**"[s] and suppose that aP = 0. For every u
we can write 0 = a]sy = aQu and so aQ = 0. Thus aR = 0, hence
a = 0, which concludes the proof. |

We are now in a position to define the Smith-McMillan form of
quaternionic rational matrices.

Theorem 4.3: Let R € H9*"(s) with rank r. Then there exist
unimodular polynomial matrices U and V such that

a r gxn
wl"“’wr)eH (5), ®)

where ¢; and 1; are monic polynomials that satisfy the following
conditions for any I:

« the fraction ;—‘ is irreducible, i.e., (e, 1) are left coprime;

o €illertr and g [

The matrix (8) is a quaternionic Smith-McMillan form of R and
is not unique.

Proof: Let d € R[s|, monic, be such that M = dR € HI*"[s]
is a polynomial matrix (for instance, let d be the least common real
multiple of the denominators of the entries of R). By Theorem 4.1
there exist a quaternionic Smith form of M, diag (v1,...,7r), and
unimodular polynomial matrices U and V' such that

URV = diag <

URV = Ud"*MV = d"*UMV = diag (% o %) ,
since d, being a real polynomial, commutes with U. Therefore, by
eliminating the common left factors of the fractions, we obtain the
matrix (8) with irreducible fractions. We only have to show that the
numerators and the denominators verify the required properties.

Let oy € HJs] be the common left factor of +; and of d. Then we
can write v; = ay€; and d = ;. By Proposition 2.7.2, we obtain
Y1, = aq, and so, since (e;,1);) are left coprime, v = (aue)® =
ajel by Proposition 2.7.1. Since v;||vi+1, from Proposition 2.6 it
follows that ;41 = 773 for some 3 € H]s] and, by Corollary 2.8,
d = ajy,. Therefore,

Y1 _ lelB _€B _ a1

d o, Y, Y
Note that in the last passage simplifications can only occur between 3
and v, since (€], v1,) are coprime. This clearly shows that €] €41




and that ¥;41],, i.e., that the required conditions are satisfied, by
Proposition 2.6. u

Remark 4.4: In (8), (e, 1) may not be zero coprime. For exam-
ple, J(S 1 is a Smith-McMillan form. Actually, j(s — ) and (s — )
are left ¢ coprlme but are not zero coprime.

In [11], the special structure of the complex Smith form of any
complex adjoint matrix has been investigated, leading to the following
statement.

Theorem 4.5: 1f diag (y1,...,7r) € H9*"[s] is a quaternionic
Smith form of R € H?*"[s], then the complex Smith form of its
complex adjoint R® is diag (y1,,71, - -, Vre, o) € R29%27[g],

In general, if 61|07 - - - |d,|d;. and the polynomials are all monic,

767“76:‘) e

diag (41,61, - .. 2972

]

is the complex Smith form of a complex adjoint matrix if and only

if, for any [, the polynomials &, and §; are real and have the same

real zeros with equal multiplicities, i.e., ux(d;) = px(5;), YA € R.
An analogous property can be stated for Smith-McMillan forms.
Theorem 4.6: 1If R € H?*"™(s) has quaternionic Smith-McMillan

form (8), then the complex Smith-McMillan form of R¢ is

. €1, €1 €re € 2gx2n
dlag( T )ERQ s). ©)
I ¢1. w’l‘ wr. ( )
If 64161 ---10-|6;., w£|wr| Jwﬂwl, the polynomials are all

. . o
monic and the fractions Flz and — are irreducible for every I, then

/ /
d1ag<01, 91,,.. GL i) e(CQgX?n(s), (10)
w1 wp Wy Wi

is a complex Smith-McMillan form of a complex adjoint matrix if
and only if it is real and, for every I, pux(6;) = ux(60;) and py(w;) =
ur(wy), VA € R.

Proof: With the notation used in the proof of Theorem 4.3, let
E’L = s;;ll = 2 where diag (v1,...,7) is a quaternionic Smith
form and d a real monic polynomial. By Proposition 2.7 it follows
that 77 = oj¢; and that v;, = «;.€, and, by Corollary 2.8, that
d = ajy, = ;. This proves the first statement and the “only
if” implication of the second one.

On the other hand, let d € R[s] be the least common multi-
ple of the denominators w;, w; of (10) and define d;,d; by the
relations djw; = djw; = d for any [ = 1,...,n. It follows
that px(d;) = pa(dy) for any A € R and so the same condition
holds true for §; = d;6; and §; = d;0; too. By Theorem 4.5,
diag (81,61, . .., 0r,60) € R29%2"[4] is the complex Smith form of
Me¢, for some M € HI*"[s], and therefore (10) is the complex
Smith-McMillan form of the complex adjoint matrix of d"'M. ®

V. STABILITY OF QUATERNIONIC SYSTEMS

In this section different concepts of stability are analyzed. Simple
and asymptotic stability for a generic behavior are defined and
characterized first. Then, BIBO-stability of i/o systems is investigated.

Definition 5.1: A linear dynamical system with behavior B is
stable if for every w € B, ||w(¢)|| is bounded for all ¢ > 0. If,
in addition, lim w(t) = 0, the behavior is asymprotically stable.

t—+4oo

Remark 5.2: A stable system cannot contain free variables and
therefore it only admits full column rank kernel representations.

The characterization of an (asymptotically) stable real behavior
B = ker R has been given in terms of determinants of minors of
R (see for instance [16, Theorem 7.2.2]). Unfortunately, there is not
a unique definition of such a determinant in the noncommutative
case. Therefore, an alternative characterization, based on Smith and
Smith-McMillan forms, will be here extended to the quaternionic

case. Before, we introduce the necessary terminology and preliminary
results.

Consider first the stability regions Sz = {q¢ € H : |g| < 1} and
Sk = {qg € H: Req < 0}, which extend to the quaternionic case the
usual complex stability regions used for discrete and, respectively, for
continuous-time real systems. These regions are conjugacy-invariant,
i.e., they satisfy the condition A € St = [A\] C Sr, both for T = Z
and for T = R, as stated by Theorem 2.1.

The notion of stable polynomial is generalized as follows, where S
denotes the closure of S and, by definition of multiplicity, px(p) > 0
< p(A) =0.

Definition 5.3: When dealing with a system having time-set T,
p € His] is

o asymptotically stable in X C H if, for any A € X, ux(p) >0 =

A€ St

o stable in X C H if, for any A € X, pa(p) >0 = A€ Sy and

pa(p)>1 = \eSr.

In what follows we do not specify X when X = H.

Lemma 5.4: The polynomial p € H]s] is (asymptotically) stable
if and only if p°® is (asymptotically) stable in C.

Proof: First, let us prove that if S is a conjugacy-invariant
region, (pa(p) >1 = A e S) & (uilp) >1 = A€ S). To
show “=", suppose that 3 (p) > I. Then, by definition, Jv such
that A € [v] and u. (p) > [ and so, by hypothesis, v € S. Hence, by
conjugacy-invariance, A € S. As for “<”, note that u3 (p) > ux(p).
Thus, if px(p) > I then p3(p) >l and so A € S.

Finally, by Theorem 2.1 there always exists v € [A\] N C and, by
Proposition 2.9, u3(p) = pw(p®). The result then follows since we
showed that in Definition 5.3 every condition about p with A € H

can be equivalently written in terms of p* with A € C. |

Theorem 5.5: If I' = diag (v1,...,7r) is a quaternionic Smith
form of a kernel representation of the behavior B, this is (asymptot-
ically) stable if and only if v, is (asymptotically) stable.

Proof: By extending map (2) to sequences, we define the
complex adjoint behavior

- {w‘c Lwe B} where w(t) = (w(t))C, ¥t € T.  (11)

Since the transformation in an isometry, stability of B is equivalent
to stability of BC. Moreover, in [11] it is proved that if B = ker R
and so B® = ker R® which, by Theorem 4.5, has highest degree
invariant polynomial ~;. By the properties of Smith forms, the
stability criterion provided by [16, Thm. 7.2.2] says that B is
(asymptotically) stable if and only if ~, is (asymptotically) stable
in C. The result is then a consequence of Lemma 5.4. |

In the analysis of i/o systems, the most widely used concept
is called BIBO (bounded input-bounded output) stability and is so
defined.

Definition 5.6: An i/o behavior (5) is BIBO-stable if it does not
contain trajectories with bounded input and unbounded output, i.e.,

[2] € B and [[ul|oc < 00 = [[ylloc < 00,

where ||u||coc = sup{||u(t)|| : t € T,t > 0}.

Remark 5.7: A state-space model is BIBO-stable in classical
systems theory if bounded inputs generate bounded outputs when
the initial state is zero. Clearly, if such a model is BIBO-stable in
the behavioral sense, it is BIBO-stable in the classical sense. The
reciprocal fact is not true.

Example 5.8: Consider the discrete-time i/0 system
(0 —2)y = (0 — 2)u. (12)

The realization of the system given by

ocr = 2x
Yy = xT+u



easily shows that z(t) = 2°x(0) and therefore, if z(0) =0, y = u.
In the classical sense the system is BIBO-stable.

However, let Bj, be the i/o behavior of (12). The trajectories u = 0,
bounded, and y(t) = 2°, unbounded, satisfy (12). Then [¥] € Bio,
which is not BIBO-stable from a behavioral point of view.

To generalize the situation evidenced by the latter example, con-
sider an i/o quaternionic system with representation (5), and define

Bi/(,:{[g}:’JI‘HH”m : Py:@u}, (13)
where P = LP has full rank, Q = LQ, and (137 Q) are left coprime.

Lemma 5.9: The behavior By, is BIBO-stable if and only if Biso
is BIBO-stable and ker L is stable.

Proof: “Only if”. Since Byo C By, also By, is BIBO-stable. If
by contradiction ker L is unstable, there exists z unbounded such that
Lz = 0. Since P is surjective, there exists y, necessarily unbounded,
such that z = Py and [¥] € Byo, because Py = LPy = Lz = 0.

“If”. If [¥] € By, then Py — Qu € ker L which is stable. Thus,
]5y = Qu + v for some v bounded. By a standard argument [18],
(]5, Q) are left coprime matrices and therefore satisfy a Bézout
equation, i.e., there exist polynomial matrices S and 7" such that
PS = QT + I By applying these operators to v and subtracting
the resulting equation from the previous one, we get I:’(y — Sv) =

Q(u—Tw). If u is bounded, so is u — T'v and, by BIBO-stability of
B, also y — Sv and, consequently, y. |

Using the results obtained so far, we can now characterize BIBO-
stable quaternionic systems.

Theorem 5.10: Let Bi, be the quaternionic i/o behavior (5) and

. . €1 €p
diag (v1,...,7p) and diag <1/J1,4“7wp>
be a quaternionic Smith form of [P — @] and a quaternionic Smith-
McMillan form of PilQ, respectively. Then By, is BIBO-stable if
and only if +, is stable and ) is asymptotically stable.

Proof:  Define @i/o, 13, Q, and L as in (13) and @;C,O as
in (11). Notice that this is an i/o behavior which, after a suitable
permutation of its variables, has kernel representation [15C —QC}, ie.,
transfer matrix (P°)~'Q° = (P~'Q)° = (P~'Q)°. Therefore, by
Theorem 4.6, Lemma 5.4, and by [16, §7.6], the equivalent behaviors
Biw and B, are BIBO-stable if and only if 11 is asymptotically
stable. By Lemma 5.9, the statement is proved if we show that ker L
is stable if and only if -, is stable.

Being left prime, the Smith form of [P — Q] is [I 0] (see [11,
Theorem 5.3]). So, if [S 0] is a Smith form of [P — @], there are
unimodular matrices U, V, U, and V such that [S 0] = U[P —
QIV =UL[P —Q|V =ULU '[I 0]V~'V. Let [X Y], with X
square, be the first p rows of V=V, Then

[S0]=ULU'[X Y].

From this, we obtain that 0 = ULU'Y. However, L has full rank,
and so Y = 0. It follows that V"'V is block triangular, hence X
(block on its diagonal) must be unimodular. Now, from (14), S =
ULU~'X is a Smith form of L and this, by Theorem 5.5, concludes
the proof. |

Remark 5.11: By its definition, BIBO-stability in the classical
sense only considers the i/o relation (i.e., the transfer matrix P~ Q),
thus ignoring the internal behavior of the state. Therefore, in the
notation of Theorem 5.10, it is equivalent to asymptotic stability of

Y1

(14)

VI. CONCLUSIONS

In this paper, stability properties of linear quaternionic continuous
and discrete-time dynamical systems have been defined and charac-

terized within the behavioral framework using algebraic properties of
their kernel representations.

After investigating quaternionic polynomials, Smith and Smith-
McMillan forms of matrices were defined and important properties
stated. It was then proved that stability or BIBO-stability of a
quaternionic behavior can be checked by looking at the zeros of
polynomials which appear in a Smith form of its kernel representation
or in a Smith-McMillan form of its transfer matrix.

The difference in the definition and in the characterization of
BIBO-stability for classical state-space models and for general be-
haviors has been stressed. To our knowledge, the characterization of
BIBO-stability in the behavioral sense, which holds mutatis mutandis
for complex and real systems too, is new in the literature.
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