87,338 research outputs found

    Noncommutative localization in algebraic LL-theory

    Get PDF
    Given a noncommutative (Cohn) localization Aσ1AA \to \sigma^{-1}A which is injective and stably flat we obtain a lifting theorem for induced f.g. projective σ1A\sigma^{-1}A-module chain complexes and localization exact sequences in algebraic LL-theory, matching the algebraic KK-theory localization exact sequence of Neeman and Ranicki.Comment: to appear in Advances in Mathematic

    Anomaly Matching Conditions and the Moduli Space of Supersymmetric Gauge Theories

    Get PDF
    The structure of the moduli space of N=1 supersymmetric gauge theories is analyzed from an algebraic geometric viewpoint. The connection between the fundamental fields of the ultraviolet theory, and the gauge invariant composite fields of the infrared theory is explained in detail. The results are then used to prove an anomaly matching theorem. The theorem is used to study anomaly matching for supersymmetric QCD, and can explain all the known anomaly matching results for this case.Comment: 28 pages revtex, amssym

    MatchPy: A Pattern Matching Library

    Full text link
    Pattern matching is a powerful tool for symbolic computations, based on the well-defined theory of term rewriting systems. Application domains include algebraic expressions, abstract syntax trees, and XML and JSON data. Unfortunately, no lightweight implementation of pattern matching as general and flexible as Mathematica exists for Python Mathics,MacroPy,patterns,PyPatt. Therefore, we created the open source module MatchPy which offers similar pattern matching functionality in Python using a novel algorithm which finds matches for large pattern sets more efficiently by exploiting similarities between patterns.Comment: arXiv admin note: substantial text overlap with arXiv:1710.0007

    The Algebraic Intersection Type Unification Problem

    Full text link
    The algebraic intersection type unification problem is an important component in proof search related to several natural decision problems in intersection type systems. It is unknown and remains open whether the algebraic intersection type unification problem is decidable. We give the first nontrivial lower bound for the problem by showing (our main result) that it is exponential time hard. Furthermore, we show that this holds even under rank 1 solutions (substitutions whose codomains are restricted to contain rank 1 types). In addition, we provide a fixed-parameter intractability result for intersection type matching (one-sided unification), which is known to be NP-complete. We place the algebraic intersection type unification problem in the context of unification theory. The equational theory of intersection types can be presented as an algebraic theory with an ACI (associative, commutative, and idempotent) operator (intersection type) combined with distributivity properties with respect to a second operator (function type). Although the problem is algebraically natural and interesting, it appears to occupy a hitherto unstudied place in the theory of unification, and our investigation of the problem suggests that new methods are required to understand the problem. Thus, for the lower bound proof, we were not able to reduce from known results in ACI-unification theory and use game-theoretic methods for two-player tiling games

    The asymptotic induced matching number of hypergraphs: balanced binary strings

    Get PDF
    We compute the asymptotic induced matching number of the kk-partite kk-uniform hypergraphs whose edges are the kk-bit strings of Hamming weight k/2k/2, for any large enough even number kk. Our lower bound relies on the higher-order extension of the well-known Coppersmith-Winograd method from algebraic complexity theory, which was proven by Christandl, Vrana and Zuiddam. Our result is motivated by the study of the power of this method as well as of the power of the Strassen support functionals (which provide upper bounds on the asymptotic induced matching number), and the connections to questions in tensor theory, quantum information theory and theoretical computer science. Phrased in the language of tensors, as a direct consequence of our result, we determine the asymptotic subrank of any tensor with support given by the aforementioned hypergraphs. In the context of quantum information theory, our result amounts to an asymptotically optimal kk-party stochastic local operations and classical communication (slocc) protocol for the problem of distilling GHZ-type entanglement from a subfamily of Dicke-type entanglement

    A J-Spectral Factorization Approach to ℋ∞ Control

    Get PDF
    Necessary and sufficient conditions for the existence of suboptimal solutions to the standard model matching problem associated with ℋ∞ control, are derived using J-spectral factorization theory. The existence of solutions to the model matching problem is shown to be equivalent to the existence of solutions to two coupled J-spectral factorization problems, with the second factor providing a parametrization of all solutions to the model matching problem. The existence of the J-spectral factors is then shown to be equivalent to the existence of nonnegative definite, stabilizing solutions to two indefinite algebraic Riccati equations, allowing a state-space formula for a linear fractional representation of all controllers to be given. A virtue of the approach is that a very general class of problems may be tackled within a conceptually simple framework, and no additional auxiliary Riccati equations are required

    Bigraphs with sharing

    Get PDF
    Bigraphical Reactive Systems (BRS) were designed by Milner as a universal formalism for modelling systems that evolve in time, locality, co-locality and connectivity. But the underlying model of location (the place graph) is a forest, which means there is no straightforward representation of locations that can overlap or intersect. This occurs in many domains, for example in wireless signalling, social interactions and audio communications. Here, we define bigraphs with sharing, which solves this problem by an extension of the basic formalism: we define the place graph as a directed acyclic graph, thus allowing a natural representation of overlapping or intersecting locations. We give a complete presentation of the theory of bigraphs with sharing, including a categorical semantics, algebraic properties, and several essential procedures for computation: bigraph with sharing matching, a SAT encoding of matching, and checking a fragment of the logic BiLog. We show that matching is an instance of the NP-complete sub-graph isomorphism problem and our approach based on a SAT encoding is also efficient for standard bigraphs. We give an overview of BigraphER (Bigraph Evaluator & Rewriting), an efficient implementation of bigraphs with sharing that provides manipulation, simulation and visualisation. The matching engine is based on the SAT encoding of the matching algorithm. Examples from the 802.11 CSMA/CA RTS/CTS protocol and a network management support system illustrate the applicability of the new theory

    The Rooster and the Syntactic Bracket

    Get PDF
    We propose an extension of pure type systems with an algebraic presentation of inductive and co-inductive type families with proper indices. This type theory supports coercions toward from smaller sorts to bigger sorts via explicit type construction, as well as impredicative sorts. Type families in impredicative sorts are constructed with a bracketing operation. The necessary restrictions of pattern-matching from impredicative sorts to types are confined to the bracketing construct. This type theory gives an alternative presentation to the calculus of inductive constructions on which the Coq proof assistant is an implementation.Comment: To appear in the proceedings of the 19th International Conference on Types for Proofs and Program

    Near-Optimal Complexity Bounds for Fragments of the Skolem Problem

    Get PDF
    Given a linear recurrence sequence (LRS), specified using the initial conditions and the recurrence relation, the Skolem problem asks if zero ever occurs in the infinite sequence generated by the LRS. Despite active research over last few decades, its decidability is known only for a few restricted subclasses, by either restricting the order of the LRS (upto 4) or by restricting the structure of the LRS (e.g., roots of its characteristic polynomial). In this paper, we identify a subclass of LRS of arbitrary order for which the Skolem problem is easy, namely LRS all of whose characteristic roots are (possibly complex) roots of real algebraic numbers, i.e., roots satisfying x^d = r for r real algebraic. We show that for this subclass, the Skolem problem can be solved in NP^RP. As a byproduct, we implicitly obtain effective bounds on the zero set of the LRS for this subclass. While prior works in this area often exploit deep results from algebraic and transcendental number theory to get such effective results, our techniques are primarily algorithmic and use linear algebra and Galois theory. We also complement our upper bounds with a NP lower bound for the Skolem problem via a new direct reduction from 3-CNF-SAT, matching the best known lower bounds

    Induced Matchings and the Algebraic Stability of Persistence Barcodes

    Full text link
    We define a simple, explicit map sending a morphism f:MNf:M \rightarrow N of pointwise finite dimensional persistence modules to a matching between the barcodes of MM and NN. Our main result is that, in a precise sense, the quality of this matching is tightly controlled by the lengths of the longest intervals in the barcodes of kerf\ker f and cokerf\mathop{\mathrm{coker}} f. As an immediate corollary, we obtain a new proof of the algebraic stability of persistence, a fundamental result in the theory of persistent homology. In contrast to previous proofs, ours shows explicitly how a δ\delta-interleaving morphism between two persistence modules induces a δ\delta-matching between the barcodes of the two modules. Our main result also specializes to a structure theorem for submodules and quotients of persistence modules, and yields a novel "single-morphism" characterization of the interleaving relation on persistence modules.Comment: Expanded journal version, to appear in Journal of Computational Geometry. Includes a proof that no definition of induced matching can be fully functorial (Proposition 5.10), and an extension of our single-morphism characterization of the interleaving relation to multidimensional persistence modules (Remark 6.7). Exposition is improved throughout. 11 Figures adde
    corecore