
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Noncommutative localization in algebraic L-theory

Citation for published version:
Ranicki, A 2009, 'Noncommutative localization in algebraic L-theory' Advances in Mathematics, vol. 220, no.
3, pp. 894-912. DOI: 10.1016/j.aim.2008.10.003

Digital Object Identifier (DOI):
10.1016/j.aim.2008.10.003

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Advances in Mathematics

Publisher Rights Statement:
The final publication is available at ScienceDirect via http://dx.doi.org/10.1016/j.aim.2008.10.003

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28962091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.aim.2008.10.003
https://www.research.ed.ac.uk/portal/en/publications/noncommutative-localization-in-algebraic-ltheory(eb34a2bb-f9f9-4b54-95b1-818c0a37aad1).html


ar
X

iv
:0

81
0.

27
61

v1
  [

m
at

h.
A

T
] 

 1
5 

O
ct

 2
00

8

NONCOMMUTATIVE LOCALIZATION IN ALGEBRAIC L-THEORY

ANDREW RANICKI

Abstract. Given a noncommutative (Cohn) localization A → σ
−1

A which is injec-

tive and stably flat we obtain a lifting theorem for induced f.g. projective σ
−1

A-module

chain complexes and localization exact sequences in algebraic L-theory, matching the

algebraic K-theory localization exact sequence of Neeman-Ranicki [3] and Neeman [2].

Contents

Introduction 1

1. Lifting chain complexes 3

2. Algebraic L-theory 9

References 18

Introduction

The series of papers [3], [2], studied the algebraic K-theory of the noncommutative

(Cohn) localization σ−1A of a ring A inverting a collection σ of morphisms of f.g. pro-

jective left A-modules. By definition, σ−1A is stably flat if

TorA
i (σ−1A,σ−1A) = 0 (i ≥ 1) .

An (A,σ)-module is an A-module T which admits a f.g. projective A-module resolution

0 −→ P
s

// Q −→ T −→ 0

with s : σ−1P → σ−1Q an isomorphism of the induced σ−1A-modules. For A −→ σ−1A

which is injective and stably flat we obtained an algebraic K-theory localization exact

sequence

· · · → Kn(A)→ Kn(σ−1A)→ Kn−1(H(A,σ)) → Kn−1(A)→ . . .

with H(A,σ) the exact category of (A,σ)-modules.

Let C be a bounded σ−1A-module chain complex such that each Ci = σ−1Pi is induced

from a f.g. projective A-module Pi. The chain complex lifting problem is to decide if C is

chain equivalent to σ−1D for a bounded chain complex D of f.g. projective A-modules.

The problem has a trivial affirmative solution for a commutative or Ore localization, by

Key words and phrases. noncommutative localization, chain complexes, L-theory.
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2 ANDREW RANICKI

the clearing of denominators, when C is actually isomorphic to σ−1D. In general, it is not

possible to lift chain complexes: the injective noncommutative localizations A → σ−1A

which are not stably flat constructed in Neeman, Ranicki and Schofield [4, Remark 2.13]

provide examples of induced f.g. projective σ−1A-module chain complexes of dimensions

> 3 which cannot be lifted.

In §1 we solve the chain complex lifting problem in the injective stably flat case,

obtaining the following results (Theorems 1.4,1.5) :

Theorem 0.1. For a stably flat injective noncommutative localization A→ σ−1A every

bounded chain complex C of induced f.g. projective σ−1A-modules is chain equivalent to

σ−1D for a bounded chain complex D of f.g. projective A-modules. Moreover, if C is

n-dimensional

C : · · · → 0→ Cn → Cn−1 → · · · → C1 → C0 → 0→ . . .

then D can be chosen to be n-dimensional. ✷

In §2 we consider the algebraic L-theory of a noncommutative localization, obtaining

the following results (Theorems 2.4, 2.5, 2.9) :

Theorem 0.2. Let A −→ σ−1A be a noncommutative localization of a ring with involu-

tion A, such that σ is invariant under the involution.

(i) There is a localization exact sequence of quadratic L-groups

. . . // Ln(A) // LI
n(σ−1A)

∂
// Ln(A,σ) // Ln−1(A) // . . .

with I = im(K0(A) −→ K0(σ
−1A)), and Ln(A,σ) the cobordism group of σ−1A-contractible

(n− 1)-dimensional quadratic Poincaré complexes over A.

(ii) If σ−1A is stably flat over A there is a localization exact sequence of symmetric

L-groups

. . . // Ln(A) // Ln
I (σ−1A)

∂
// Ln(A,σ) // Ln−1(A) // . . .

with Ln(A,σ) the cobordism group of σ−1A-contractible (n − 1)-dimensional symmetric

Poincaré complexes over A.

(iii) If A −→ σ−1A is injective then Ln(A,σ) (resp. Ln(A,σ)) is the cobordism group of

n-dimensional symmetric (resp. quadratic) Poincaré complexes of (A,σ)-modules. ✷

The L-theory exact sequences of Theorem 0.2 for an injective Ore localization A −→

σ−1A (which is flat and hence stably flat) were obtained in Ranicki [5]. The quadratic

L-theory exact sequence of 0.2 (i) for arbitrary injective A −→ σ−1A was obtained by

Vogel [8], [9]. The symmetric L-theory exact sequence of 0.2 (ii) is new.

We refer to [6, 7] for some of the applications of the algebraic L-theory of noncommu-

tative localizations to topology.
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Amnon Neeman used to be a coauthor of the paper, but decided to withdraw in May

2007.

1. Lifting chain complexes

If A −→ σ−1A is a stably flat localization, we know from [3, Theorem 0.4, Propo-

sition 4.5 and Theorem 3.7] that the functor T i : Dperf(A)
Rc

−→ Dperf(σ−1A) is just an

idempotent completion; it is fully faithful and all objects in Dperf(σ−1A) are, up to iso-

morphisms, direct summands of objects in the image of T i. A fairly easy consequence of

this is the following. Let C ∈ Dperf(σ−1A) be the complex

0 −→ σ−1Cm −→ σ−1Cm+1 −→ · · · −→ σ−1Cn−1 −→ σ−1Cn −→ 0,

with Ci all finitely generated, projective A–modules. Then there is complexX ∈ Dperf(A)

with C ≃ {σ−1A}L⊗AX. That is, C is homotopy equivalent to the tensor product with

σ−1A of a perfect complex over the ring A. In Section 1 we prove this (Theorem 1.4),

and then refine the result to show that X may be chosen to be a complex of the form

0 −→ Xm −→ Xm+1 −→ · · · −→ Xn−1 −→ Xn −→ 0 .

(Proof in Theorem 1.5).

Remark 1.1. The proof of Theorem 1.4 relies on the following fact about triangulated

categories. Suppose A is a full, triangulated subcategory of a triangulated category B,

and suppose all objects in B are direct summands of objects of A. An object X ∈ B

belongs to A ⊂ B if and only if [X] ∈ K0(B) lies in the image of K0(A) −→ K0(B).

This fact may be found, for example, in [1, Proposition 4.5.11], but for the reader’s

convenience its proof is included here in Lemma 1.2 and Proposition 1.3.

✷

We begin by reminding the reader of some basic facts about Grothendieck groups. For

any additive category A we define Kadd
0 (A) to be the Grothendieck group of the split

exact category A. This means that the short exact sequences in A are precisely the split

sequences. It is well known that every element of Kadd
0 (A) can be expressed as

[X]− [Y ]

for X and Y objects of A. The expressions [X]− [Y ] and [X ′]− [Y ′] are equal in Kadd
0 (A)

if and only if there exists an object P ∈ A and an isomorphism

X ⊕ Y ′ ⊕ P = X ′ ⊕ Y ⊕ P.

If A happens to be a triangulated category, then K0(A) means the quotient of Kadd
0 (A)

by a subgroup we will denote T (A). The subgroup T (A) is defined as the group generated

by all

[X]− [Y ] + [Z],



4 ANDREW RANICKI

where there exists a distinguished triangle in A

X −−−−→ Y −−−−→ Z −−−−→ ΣX.

We prove:

Lemma 1.2. Suppose B is a triangulated category. Let A be a full, triangulated subcat-

egory of B. Assume further that every object of B is a direct summand of an object in

A ⊂ B.

Then the map f : Kadd
0 (A) −→ Kadd

0 (B) induces a surjection T (A) −→ T (B). In

symbols: f
(
T (A)

)
= T (B).

Proof. Let [X]− [Y ] + [Z] be a generator of T (B) ⊂ Kadd
0 (B). We need to show it lies in

the image of T (A) ⊂ Kadd
0 (A). Suppose therefore that

X −−−−→ Y −−−−→ Z −−−−→ ΣX

is a distinguished triangle in B. Because every object of B is a direct summand of an

object in A, we can choose objects C and D with

X ⊕ C, Z ⊕D

both lying in A. But then we have a two distinguished triangles in B

X −−−−→ Y −−−−→ Z −−−−→ ΣX

C −−−−→ C ⊕D −−−−→ D
0

−−−−→ ΣC

and their direct sum is a distinguished triangle

X ⊕ C −−−−→ Y ⊕ C ⊕D −−−−→ Z ⊕D −−−−→ Σ(X ⊕ C).

Two of the objects lie in A. Since the subcategory A ⊂ B is full and triangulated, the

entire distinguished triangle lies in A. Thus

[X ⊕ C]− [Y ⊕ C ⊕D] + [Z ⊕D] = [X]− [Y ] + [Z]

lies in the image of T (A). �

The next proposition is well-known; again, the proof is included for the convenience

of the reader.

Proposition 1.3. Let the hypotheses be as in Lemma 1.2. That is, suppose B is a

triangulated category. Let A be a full, triangulated subcategory of B. Assume further

that every object of B is a direct summand of an object in A ⊂ B.

If X is an object of B and [X] lies in the image of the natural map f : K0(A) −→

K0(B), then X ∈ A.

Proof. If we consider [X] as an element of Kadd
0 (B), then saying that its image in K0(B)

lies in the image of K0(A) −→ K0(B) is equivalent to saying that, modulo T (B), [X] lies

in the image of Kadd
0 (A). That is,

[X] ∈ T (B) + f
(
Kadd

0 (A)
)
⊂ Kadd

0 (B).
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By Lemma 1.2 we have that f
(
T (A)

)
= T (B). Thus

T (B) + f
(
Kadd

0 (A)
)

= f
(
T (A)

)
+ f

(
Kadd

0 (A)
)

= f
(
Kadd

0 (A)
)
.

That means there exist objects C and D in A ⊂ B and an identity in Kadd
0 (B)

[X] = [C]− [D].

There must therefore be an object P ∈ B and an isomorphism

X ⊕D ⊕ P ≃ C ⊕ P.

But P is an object of B, hence a direct summand of an object of A. There is an object

P ′ ∈ B with P ⊕ P ′ ∈ A. We have an isomorphism

X ⊕D ⊕ P ⊕ P ′ ≃ C ⊕ P ⊕ P ′.

Putting D′ = D⊕P ⊕P and C ′ = C⊕P ⊕P ′ we have objects C ′,D′ in A, and a (split)

distinguished triangle

D′ −−−−→ C ′ −−−−→ X −−−−→ ΣD′.

Since A ⊂ B is triangulated we conclude that X ∈ A. �

The relevance of these results to our work here is

Theorem 1.4. Let A −→ σ−1A be a stably flat localization of rings. Suppose we are

given a perfect complex C over σ−1A. Suppose further that C ∈ Dperf(σ−1A) is of the

form

0 −→ σ−1Cm −→ σ−1Cm+1 −→ · · · −→ σ−1Cn−1 −→ σ−1Cn −→ 0

where each Ci is a finitely generated, projective A–module. Then C is homotopy equiva-

lent to {σ−1A}L⊗AX, for some X ∈ Dperf(A).

Proof. The localization is stably flat. By [3, Theorem 0.4] the functor T : Tc −→

Dperf(σ−1A) is an equivalence of categories. By [3, Proposition 4.5 and Theorem 3.7]

we also know that the functor i : Dperf(A)
Rc

−→ Tc is fully faithful, and that every object

in Tc is isomorphic to a direct summand of an object in the image of i. Next we apply

Proposition 1.3, with B = Dperf(σ−1A) and A the full subcategory containing all objects

isomorphic to T i(x), for any x ∈ Dperf(A)
Rc

.

Now C is an object of Dperf(σ−1A), and in K0

(
Dperf(σ−1A)

)
we have an identity

[C] =
∞∑

ℓ=−∞

(−1)ℓ[σ−1Cℓ]

with

[σ−1Cℓ] = [{σ−1A} ⊗A C
ℓ] = [T iCℓ]
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certainly lying in the image of the map

K0(T i) : K0

(
Dperf(A)

Rc

)
−−−−→ K0

(
Dperf(σ−1A)

)
.

Proposition 1.3 therefore tells us that C is isomorphic to an object in the image of the

functor T i. There exists a perfect complex X ∈ Dperf(A) and a homotopy equivalence

C ≃ {σ−1A}L⊗AX. �

The problem with Theorem 1.4 is that it gives us no bound on the length of the

complex X with {σ−1A}L⊗AX ≃ C. We really want to know

Theorem 1.5. Let A −→ σ−1A be a stably flat localization of rings. Suppose C ∈

Dperf(σ−1A) is the complex

0 −→ σ−1Cm −→ σ−1Cm+1 −→ · · · −→ σ−1Cn−1 −→ σ−1Cn −→ 0.

Then the complex X ∈ Dperf(A) with C ≃ {σ−1A}L⊗AX, whose existence is guaranteed

by Theorem 1.4, may be chosen to be a complex

0 −→ Xm −→ Xm+1 −→ · · · −→ Xn−1 −→ Xn −→ 0 .

If m = n this is easy. For m < n we need to prove something. Our proof will appeal to

the results of [3, Section 4]. We remind the reader that this was the section which dealt

with the subcategories K[m,n] of complexes in Rc vanishing outside the range [m,n].

First we need a lemma.

Lemma 1.6. Let M and N be any finitely generated projective A–modules. We may view

M and N as objects in the derived category Dperf(A), concentrated in degree 0. Then

any map in Tc(πM,πN) can be represented as π(α)−1π(β), for some α, β morphisms in

Dperf(A) as below

M
β

−−−−→ Y
α

←−−−− N .
The map α : N −→ Y fits in a triangle

X −−−−→ N
α

−−−−→ Y −−−−→ ΣX

and X may be chosen to lie in K[0, 1].

Proof. By [3, Proposition 4.5 and Theorem 3.7] we know that the map

i :
Dperf(A)

Rc
−−−−→ Tc

is fully faithful. Therefore

T
c(πM,πN) =

Dperf(A)

Rc
(M,N).

That is, any map πM −→ πN can be written as π(α)−1π(β), for some α, β morphisms

in Dperf(A) as below

M
β

−−−−→ Y
α

←−−−− N .
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The map α : N −→ Y fits in a triangle

X −−−−→ N
α

−−−−→ Y
β

−−−−→ ΣX

and X may be chosen to lie in Rc. What is not clear is that we may choose X in

K[0, 1] ⊂ Rc.

The easy observation is that we may certainly modify our choice of X to lie in K ⊂ Rc.

This follows from [2, Lemma 4.5], which tells us that for any choice of X as above there

exists an X ′ with X⊕X ′ isomorphic to an object in K. We have a distinguished triangle

X ⊕X ′ −−−−→ N

0

@

α

0

1

A

−−−−−→ Y ⊕ ΣX ′ β⊕1
−−−−→ Σ(X ⊕X ′)

and a diagram

M

0

@

β

0

1

A

−−−−−→ Y ⊕ ΣX ′

0

@

α

0

1

A

←−−−−− N ,
and replacing our original choices by these we may assume X ∈ K. Now we have to

shorten X.

By [2, Lemma 4.7], there exists a triangle in Rc

X ′ −−−−→ X −−−−→ X ′′ −−−−→ ΣX ′

with X ′ ∈ K[1,∞) and X ′′ ∈ K(−∞, 1]. The composite X ′ −→ X −→ N is a map from

X ′ ∈ K[1,∞) to N ∈ S≤0, which must vanish. Hence we have that X −→ N factors as

X −→ X ′′ −→ N . We complete to a morphism of triangles

X −−−−→ N
α

−−−−→ Y −−−−→ ΣX
y 1

y γ

y
y

X ′′ −−−−→ N
γα
−−−−→ Y ′′ −−−−→ ΣX ′′

and another representative of our morphism is the diagram

M
γβ
−−−−→ Y ′′ γα

←−−−− N

We may, on replacing Y by Y ′′, assume X ∈ K(−∞, 1].

Applying [2, Lemma 4.7] again, we have that any X ∈ K(−∞, 1] admits a triangle

X ′ −−−−→ X −−−−→ X ′′ −−−−→ ΣX ′
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with X ′ ∈ K[0, 1] and X ′′ ∈ K(−∞, 0]. Form the octahedron

X ′ −−−−→ N
α′

−−−−→ Y ′ −−−−→ ΣX ′

y 1

y γ

y
y

X −−−−→ N
α

−−−−→ Y −−−−→ ΣX
y

y

ΣX ′′ 1
−−−−→ ΣX ′′

The composite M −→ Y −→ ΣX ′′ is a map from the projective module M , viewed as

a complex concentrated in degree 0, to ΣX ′′ ∈ K(∞,−1]. This composite must vanish.

The map β : M −→ Y therefore factors as M
β′

−→ Y ′ γ
−→ Y , and our morphism in Tc

has a representative

M
β′

−−−−→ Y ′ α′

←−−−− N
so that in the triangle

X ′ −−−−→ N
α′

−−−−→ Y ′ −−−−→ ΣX ′

X ′ may be chosen to lie in K[0, 1]. �

Now we are ready for

Proof of Theorem 1.5. We are given a complex C ∈ Dperf(σ−1A) of the form

0 −→ σ−1Cm −→ σ−1Cm+1 −→ · · · −→ σ−1Cn−1 −→ σ−1Cn −→ 0.

To eliminate the trivial case, assume m ≤ n + 1. Shifting, we may assume m = 0 and

n ≥ 1. Theorem 1.4 guarantees that C is homotopy equivalent to {σ−1A}L⊗AD, with

D ∈ Dperf(A). But D need not be supported on the interval [0, n]. We need to show how

to shorten D. Assume therefore that D is supported on [−1, n]. We will show how to

replace D by a complex supported on [0, n]. Shortening a complex supported on [0, n+1]

is dual, and we leave it to the reader.

We may suppose therefore that D ∈ Dperf(A) is the complex

· · · −−−−→ 0 −−−−→ D−1 −−−−→ D0 −−−−→ · · · −−−−→ Dn −−−−→ 0 −−−−→ · · ·

and that there is a homotopy equivalence of σ−1D with a shorter complex, that is a

commutative diagram

−−−−→ 0 −−−−→ σ−1D−1 ∂
−−−−→ σ−1D0 −−−−→ · · · −−−−→ σ−1Dn −−−−→ 0 −−−−→

y
y

y
y

y

−−−−→ 0 −−−−→ 0 −−−−→ σ−1C0 −−−−→ · · · −−−−→ σ−1Cn −−−−→ 0 −−−−→
y

y
y

y
y

−−−−→ 0 −−−−→ σ−1D−1 ∂
−−−−→ σ−1D0 −−−−→ · · · −−−−→ σ−1Dn −−−−→ 0 −−−−→
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so that the composite is homotopic to the identity. In particular, there is a map d :

σ−1D0 −→ σ−1D−1 so that d∂ : σ−1D−1 −→ σ−1D−1 is the identity.

By [2, Proposition 3.1] the map d : σ−1D0 −→ σ−1D−1 lifts uniquely to a map

d′ : πD0 −→ πD−1. By Lemma 1.6 the map d′ can be represented as π(α)−1π(β), where

α and β are, respectively, the chain maps

−−−−→ 0 −−−−→ 0 −−−−→ D−1 −−−−→ 0 −−−−→
y

y
y

y

−−−−→ 0 −−−−→ X
r

−−−−→ Y −−−−→ 0 −−−−→
and

−−−−→ 0 −−−−→ 0 −−−−→ D0 −−−−→ 0 −−−−→
y

y g

y
y

−−−−→ 0 −−−−→ X
r

−−−−→ Y −−−−→ 0 −−−−→
The fact that σ−1α is an equivalence tells us that the map σ−1r : σ−1X −→ σ−1Y

is injective, with cokernel σ−1D−1. The fact that α−1β agrees with d′ means that the

composite

σ−1D0 σ−1g
−−−−→ σ−1Y −−−−→ Coker(σ−1r)

is just the map d : σ−1D0 −→ σ−1D−1. Let X be the chain complex

−−−−→ 0 −−−−→ D0 ⊕X

0

@

∂ 0

g r

1

A

−−−−−−→ D1 ⊕ Y −−−−→ · · · −−−−→ Dn −−−−→ 0 −−−−→

Let f : X −→ D be the natural map of chain complexes

−→ 0 −−−−→ 0 −−−−→ D0 ⊕X

0

@

∂ 0

g r

1

A

−−−−−−→ D1 ⊕ Y −−−−→ · · · −−−−→ Dn −→ 0 −→
y π

1

y
yπ

1

y

−→ 0 −−−−→ D−1 −−−−→ D0 −−−−→
∂

D1 −−−−→ · · · −−−−→ Dn −→ 0 −→

where the vertical maps labelled π1 are the projections to the first factor of the direct

sum. The map σ−1f is easily seen to be homotopy equivalence. Thus σ−1X is homotopy

equivalent to σ−1D ∼= C. ✷

2. Algebraic L-theory

An involution on a ring A is an anti-automorphism

A −→ A ; r 7→ r .

The involution is used to regard a left A-module M as a right A-module by

M ×A −→M ; (x, r) 7→ rx .
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The dual of a (left) A-module M is the A-module

M∗ = HomA(M,A) , A×M∗ −→M∗ ; (r, f) 7→ (x 7→ f(x)r) .

The dual of an A-module morphism s : P −→ Q is the A-module morphism

s∗ : Q∗ −→ P ∗ ; f 7→ (x 7→ f(s(x))) .

If M is f.g. projective then so is M∗, and

M −→M∗∗ ; x 7→ (f 7→ f(x))

is an isomorphism which is used to identify M∗∗ = M .

Hypothesis 2.1. In this section, we assume that

(i) A is a ring with involution,

(ii) the duals of morphisms s : P −→ Q in σ are morphisms s∗ : Q∗ −→ P ∗ in σ,

(iii) ǫ ∈ A is a central unit such that ǫ = ǫ−1 (e.g. ǫ = ±1).

The noncommutative localization σ−1A is then also a ring with involution, with ǫ ∈ σ−1A

a central unit such that ǫ = ǫ−1. ✷

We review briefly the chain complex construction of the f.g. projective ǫ-quadratic

L-groups L∗(A, ǫ) and the ǫ-symmetric L-groups L∗(A, ǫ). Given an A-module chain

complex C let the generator T ∈ Z2 act on the Z-module chain complex C ⊗A C by the

ǫ-transposition duality

Tǫ : Cp ⊗A Cq −→ Cq ⊗A Cp : x⊗ y 7→ (−1)pqǫy ⊗ x .

Let W be the standard free Z[Z2]-module resolution of Z

W : . . . −→ Z[Z2]
1−T
−−−→ Z[Z2]

1+T
−−−→ Z[Z2]

1−T
−−−→ Z[Z2] .

The ǫ-symmetric (resp. ǫ-quadratic) Q-groups of C are the Z2-hypercohomology (resp.

Z2-hyperhomology) groups of C ⊗A C

Qn(C, ǫ) = Hn(Z2;C ⊗A C) = Hn(HomZ[Z2](W,C ⊗A C)) ,

Qn(C, ǫ) = Hn(Z2;C ⊗A C) = Hn(W ⊗Z[Z2] (C ⊗A C)) .

The Q-groups are chain homotopy invariants of C. There are defined forgetful maps

1 + Tǫ : Qn(C, ǫ) −→ Qn(C, ǫ) ; ψ 7→ (1 + Tǫ)ψ ,

Qn(C, ǫ) −→ Hn(C ⊗A C) ; φ 7→ φ0 .

For f.g. projective C the function

C ⊗A C −→ HomA(C∗, C) ; x⊗ y 7→ (f 7→ f(x)y)

is an isomorphism of Z[Z2]-module chain complexes, with T ∈ Z2 acting on HomA(C∗, C)

by θ 7→ ǫθ∗. The element φ0 ∈ Hn(C ⊗A C) = Hn(HomA(C∗, C)) is a chain homotopy

class of A-module chain maps φ0 : Cn−∗ −→ C.
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An n-dimensional ǫ-symmetric complex over A (C,φ) is a bounded f.g. projective

A-module chain complex C together with an element φ ∈ Qn(C, ǫ). The complex (C,φ)

is Poincaré if the A-module chain map φ0 : Cn−∗ −→ C is a chain equivalence.

Example 2.2. A 0-dimensional ǫ-symmetric Poincaré complex (C,φ) over A is essen-

tially the same as a nonsingular ǫ-symmetric form (M,λ) over (A,σ), with M = (C0)
∗ a

f.g. projective A-module and

λ = φ0 : M ×M −→ A

a sesquilinear pairing such that the adjoint

M −→M∗ ; x 7→ (y 7→ λ(x, y))

is an A-module isomorphism.

✷

See pp. 210–211 of [6] for the notion of an ǫ-symmetric (Poincaré) pair. The boundary

of an n-dimensional ǫ-symmetric complex (C,φ) is the (n − 1)-dimensional ǫ-symmetric

Poincaré complex

∂(C,φ) = (∂C, ∂φ)

with ∂C = C(φ0 : Cn−∗ −→ C)∗+1 and ∂φ as defined on p. 218 of [6]. The n-dimensional

ǫ-symmetric L-group Ln(A, ǫ) is the cobordism group of n-dimensional ǫ-symmetric

Poincaré complexes (C,φ) over A with C n-dimensional. In particular, L0(A, ǫ) is the

Witt group of nonsingular ǫ-symmetric forms over A.

An n-dimensional ǫ-symmetric complex (C,φ) over A is σ−1A-Poincaré if the σ−1A-

module chain map σ−1φ0 : σ−1Cn−∗ −→ σ−1C is a chain equivalence, in which case

σ−1(C,φ) is an n-dimensional ǫ-symmetric Poincaré complex over σ−1A.

The n-dimensional ǫ-symmetric Γ-group Γn(A −→ σ−1A, ǫ) is the cobordism group of

n-dimensional ǫ-symmetric σ−1A-Poincaré complexes (C,φ) over A such that σ−1C is

chain equivalent to an n-dimensional induced f.g. projective σ−1A-module chain com-

plex. The n-dimensional ǫ-symmetric L-group Ln(A,σ, ǫ) is the cobordism group of

(n− 1)-dimensional ǫ-symmetric Poincaré complexes over A (C,φ) such that C is σ−1A-

contractible, i.e. σ−1C ≃ 0.

Similarly in the ǫ-quadratic case, with groups Ln(A, ǫ), Γn(A −→ σ−1A, ǫ), Ln(A,σ, ǫ).

The ǫ-quadratic L- and Γ-groups are 4-periodic

Ln(A, ǫ) = Ln+2(A,−ǫ) = Ln+4(A, ǫ) ,

Γn(A −→ σ−1A, ǫ) = Γn+2(A −→ σ−1A,−ǫ) = Γn+4(A −→ σ−1A, ǫ) ,

Ln(A,σ, ǫ) = Ln+2(A,σ,−ǫ) = Ln+4(A,σ, ǫ) .
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Proposition 2.3. For any ring with involution A and noncommutative localization σ−1A

there is defined a localization exact sequence of ǫ-symmetric L-groups

. . . // Ln(A, ǫ) // Γn(A −→ σ−1A, ǫ)
∂

// Ln(A,σ, ǫ) // Ln−1(A, ǫ) // . . . .

Similarly in the ǫ-quadratic case, with an exact sequence

. . . // Ln(A, ǫ) // Γn(A −→ σ−1A, ǫ)
∂

// Ln(A,σ, ǫ) // Ln−1(A, ǫ) // . . . .

Proof. The relative group of Ln(A, ǫ) −→ Γn(A −→ σ−1A, ǫ) is the cobordism group

of n-dimensional ǫ-symmetric σ−1A-Poincaré pairs over A (f : C −→ D, (δφ, φ)) with

(C,φ) Poincaré. The effect of algebraic surgery on (C,φ) using this pair is a cobordant

(n − 1)-dimensional ǫ-symmetric Poincaré complex (C ′, φ′) with C ′ σ−1A-contractible.

The function (f : C −→ D, (δφ, φ)) 7→ (C ′, φ′) defines an isomorphism between the

relative group and Ln(A,σ, ǫ). �

Define

I = im(K0(A) −→ K0(σ
−1A)) ,

the subgroup of K0(σ
−1A) consisting of the projective classes of the f.g. projective

σ−1A-modules induced from f.g. projective A-modules. By definition, Ln
I (σ−1A, ǫ) is

the cobordism group of n-dimensional ǫ-symmetric Poincaré complexes over σ−1A (B, θ)

such that [B] ∈ I. There are evident morphisms of Γ- and L-groups

σ−1Γ∗ : Γn(A −→ σ−1A, ǫ) −→ Ln
I (σ−1A, ǫ) ; (C,φ) 7→ σ−1(C,φ) ,

σ−1Γ∗ : Γn(A −→ σ−1A, ǫ) −→ LI
n(σ−1A, ǫ) ; (C,ψ) 7→ σ−1(C,ψ) .

In general, the morphisms σ−1Γ∗, σ−1Γ∗ need not be isomorphisms, since a bounded f.g.

projective σ−1A-module chain complex D with [D] ∈ I need not be chain equivalent to

σ−1C for a bounded f.g. projective A-module chain complex C.

It was proved in Chapter 3 of Ranicki [5] that if A −→ σ−1A is an injective Ore localiza-

tion then the morphisms σ−1Q∗, σ−1Q∗, σ
−1Γ∗, σ−1Γ∗ are isomorphisms, so that there

are defined localization exact sequences for both the ǫ-symmetric and the ǫ-quadratic

L-groups

. . . // Ln(A, ǫ) // Ln
I (σ−1A, ǫ)

∂
// Ln(A,σ, ǫ) // Ln−1(A, ǫ) // . . . ,

. . . // Ln(A, ǫ) // LI
n(σ−1A, ǫ)

∂
// Ln(A,σ, ǫ) // Ln−1(A, ǫ) // . . . .

Special cases of these sequences were obtained by Milnor-Husemoller, Karoubi, Pardon,

Smith, Carlsson-Milgram.

Let Gπ : D(A)→ D(A) be the functor of Proposition 6.1 of [3], with D(A) the derived

category of A. For any bounded f.g. projective A-module chain complex C the natural

A-module chain map

lim
−→

(B,β)

B = Gπ(C) −→ σ−1C
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induces morphisms

σ−1Q∗ : lim
−→

(B,β)

Qn(B, ǫ) = Qn(Gπ(C), ǫ) −→ Qn(σ−1C, ǫ) ,

σ−1Q∗ : lim
−→

(B,β)

Qn(B, ǫ) = Qn(Gπ(C), ǫ) −→ Qn(σ−1C, ǫ)

with the direct limits taken over all the bounded f.g. projective A-module chain com-

plexes B with a chain map β : C −→ B such that σ−1β : σ−1C −→ σ−1B is a σ−1A-

module chain equivalence. The natural projection D ⊗A D −→ D ⊗σ−1A D is an iso-

morphism for any bounded f.g. projective σ−1A-module chain complex D (since this is

already the case for D = σ−1A), so the Q-groups of σ−1C are the same whether σ−1C

is regarded as an A-module or σ−1A-module chain complex.

Theorem 2.4. (Vogel [9], Theorem 8.4) For any ring with involution A and noncom-

mutative localization σ−1A the morphisms

σ−1Γ∗ : Γn(A −→ σ−1A, ǫ) −→ LI
n(σ−1A, ǫ) ; (C,ψ) 7→ σ−1(C,ψ)

are isomorphisms, and there is a localization exact sequence of ǫ-quadratic L-groups

. . . // Ln(A, ǫ) // LI
n(σ−1A, ǫ)

∂
// Ln(A,σ, ǫ) // Ln−1(A, ǫ) // . . . .

Proof. By algebraic surgery below the middle dimension it suffices to consider only the

special cases n = 0, 1. In effect, it was proved in [9] that σ−1Q∗ is an isomorphism for 0-

and 1-dimensional C. �

It was claimed in Proposition 25.4 of Ranicki [6] that σ−1Γ∗ is also an isomorphism,

assuming (incorrectly) that the chain complex lifting problem can always be solved.

However, we do have :

Theorem 2.5. If σ−1A is a noncommutative localization of a ring with involution A

which is stably flat over A, there is a localization exact sequence of ǫ-symmetric L-groups

. . . // Ln(A, ǫ) // Ln
I (σ−1A, ǫ)

∂
// Ln(A,σ, ǫ) // Ln−1(A, ǫ) // . . . .

Proof. For any bounded f.g. projective A-module chain complex C the natural A-module

chain map Gπ(C) −→ σ−1C induces isomorphisms in homology

H∗(Gπ(C)) ∼= H∗(σ
−1C) .

Thus the natural Z[Z2]-module chain map

Gπ(C)⊗A Gπ(C) −→ σ−1C ⊗A σ
−1C = σ−1C ⊗σ−1A σ

−1C

induces isomorphisms of ǫ-symmetric Q-groups

σ−1Q∗ : lim
−→

(B,β)

Qn(B, ǫ) −→ Qn(σ−1C, ǫ)
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(and also isomorphisms σ−1Q∗ of ǫ-quadratic Q-groups). By Theorem 0.1 every n-

dimensional induced f.g. projective σ−1A-module chain complex D is chain equivalent

to σ−1C for an n-dimensional f.g. projective A-module chain complex C, with

Qn(D, ǫ) = Qn(σ−1C, ǫ) = lim
−→

(B,β)

Qn(B, ǫ) .

It follows that the morphisms of ǫ-symmetric Γ- and L-groups

σ−1Γ∗ : Γn(A −→ σ−1A, ǫ) −→ Ln
I (σ−1A, ǫ) ; (C,φ) 7→ σ−1(C,φ)

are also isomorphisms, and the localization exact sequence is given by Proposition 2.3.

�

Hypothesis 2.6. For the remainder of this section, we assume Hypothesis 2.1 and also

that A −→ σ−1A is an injection. ✷

As in Proposition 2.2 of [2] it follows that all the morphisms in σ are injections.

We shall now generalize the results of Ranicki [5] and Vogel [8] to prove that under

Hypotheses 2.1,2.6 the relative L-groups L∗(A,σ, ǫ), L∗(A,σ, ǫ) in the L-theory localiza-

tion exact sequences are the L-groups of H(A,σ) with respect to the following duality

involution.

Define the torsion dual of an (A,σ)-module M to be the (A,σ)-module

M̂ = Ext1A(M,A) ,

using the involution on A to define the left A-module structure. If M has f.g. projective

A-module resolution

0 −→ P1
s
−→ P0 −→M −→ 0

with s ∈ σ the torsion dual M̂ has the dual f.g. projective A-module resolution

0 −→ P ∗
0

s∗
−→ P ∗

1 −→M̂−→ 0

with s∗ ∈ σ.

Proposition 2.7. Let M = coker(s : P1 −→ P0), N = coker(t : Q1 −→ Q0) be (A,σ)-

modules.

(i) The adjoint of the pairing

M ×M̂−→ σ−1A/A ; (g ∈ P0, f ∈ P
∗
1 ) 7→ fs−1g

defines a natural A-module isomorphism

M̂−→ HomA(M,σ−1A/A) ; f 7→ (g 7→ fs−1g) .

(ii) The natural A-module morphism

M −→M̂̂ ; x 7→ (f 7→ f(x))
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is an isomorphism.

(iii) There are natural identifications

M ⊗A N = TorA
0 (M,N) = Ext1A(M ,̂N) = H0(P ⊗A Q) ,

HomA(M ,̂N) = TorA
1 (M,N) = Ext0A(M ,̂N) = H1(P ⊗A Q) .

The functions
M ⊗A N −→ N ⊗A M ; x⊗ y 7→ y ⊗ x ,

HomA(M ,̂N) −→ HomA(N ,̂M) ; f 7→ f̂
determine transposition isomorphisms

T : TorA
i (M,N) −→ TorA

i (N,M) (i = 0, 1) .

(iv) For any finite subset V = {v1, v2, . . . , vk} ⊂M ⊗A N there exists an exact sequence

of (A,σ)-modules

0 −→ N −→ L −→ ⊕kM̂−→ 0

such that V ⊂ ker(M ⊗A N −→M ⊗A L).

Proof. (i) Apply the snake lemma to the morphism of short exact sequences

0 // HomA(P0, A) //

s∗

��

HomA(P0, σ
−1A) //

s∗1
��

HomA(P0, σ
−1A/A) //

s∗2
��

0

0 // HomA(P1, A) // HomA(P1, σ
−1A) // HomA(P1, σ

−1A/A) // 0

with s∗ injective, s∗1 an isomorphism and s∗2 surjective, to verify that the A-module

morphism

M̂ = coker(s∗) −→ HomA(M,σ−1A/A) = ker(s∗2)

is an isomorphism.

(ii) Immediate from the identification

s∗∗ = s : (P0)
∗∗ = P0 −→ (P1)

∗∗ = P1 .

(iii) Exercise for the reader.

(iv) Lift each vi ∈M ⊗A N to an element

vi ∈ P0 ⊗A Q0 = HomA(P ∗
0 , Q0) (1 ≤ i ≤ k) .

The A-module morphism defined by

u =





s∗ 0 0 . . . 0

0 s∗ 0 . . . 0

0 0 s∗ . . . 0
...

...
...

. . .
...

v1 v2 v3 . . . t




: U1 = (⊕kP

∗
0 )⊕Q1 −→ U0 = (⊕kP

∗
1 )⊕Q0
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is in σ, so that L = coker(u) is an (A,σ)-module with a f.g. projective A-module

resolution

0 −→ U1
u
−→ U0 −→ L −→ 0 .

The short exact sequence of 1-dimensional f.g. projective A-module chain complexes

0 −→ Q −→ U −→ ⊕kP
1−∗ −→ 0

is a resolution of a short exact sequence of (A,σ)-modules

0 −→ N −→ L −→ ⊕kM̂−→ 0 .

The first morphism in the exact sequence

TorA
1 (M,⊕kM )̂ −→M ⊗A N −→M ⊗A L −→M ⊗A (⊕kM )̂ −→ 0

sends 1i ∈ TorA
1 (M,⊕kM )̂ = ⊕kHomA(M ,̂M )̂ to vi ∈ ker(M ⊗A N −→M ⊗A L). �

Given an (A,σ)-module chain complex C define the ǫ-symmetric (resp. ǫ-quadratic)

torsion Q-groups of C to be the Z2-hypercohomology (resp. Z2-hyperhomology) groups

of the ǫ-transposition involution Tǫ = ǫT on the Z-module chain complex TorA
1 (C,C) =

HomA(C ,̂C)

Qn
tor(C, ǫ) = Hn(Z2; TorA

1 (C,C)) = Hn(HomZ[Z2](W,TorA
1 (C,C))) ,

Qtor
n (C, ǫ) = Hn(Z2; TorA

1 (C,C)) = Hn(W ⊗Z[Z2] (TorA
1 (C,C))) .

There are defined forgetful maps

1 + Tǫ : Qtor
n (C, ǫ) −→ Qn

tor(C, ǫ) ; ψ 7→ (1 + Tǫ)ψ ,

Qn
tor(C, ǫ) −→ Hn(TorA

1 (C,C)) ; φ 7→ φ0 .

The element φ0 ∈ Hn(TorA
1 (C,C)) is a chain homotopy class of A-module chain maps

φ0 : Cn−̂−→ C.

An n-dimensional ǫ-symmetric complex over (A,σ) (C,φ) is a bounded (A,σ)-module

chain complex C together with an element φ ∈ Qn
tor(C, ǫ). The complex (C,φ) is Poincaré

if the A-module chain maps φ0 : Cn−̂−→ C are chain equivalences.

Example 2.8. A 0-dimensional ǫ-symmetric Poincaré complex (C,φ) over (A,σ) is es-

sentially the same as a nonsingular ǫ-symmetric linking form (M,λ) over (A,σ), with

M = (C0)̂ an (A,σ)-module and

λ = φ0 : M ×M −→ σ−1A/A

a sesquilinear pairing such that the adjoint

M −→M̂ ; x 7→ (y 7→ λ(x, y))

is an A-module isomorphism.

✷
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The n-dimensional torsion ǫ-symmetric L-group Ln
tor(A,σ, ǫ) is the cobordism group of

n-dimensional ǫ-symmetric Poincaré complexes (C,φ) over (A,σ), with C n-dimensional.

In particular, L0
tor(A,σ, ǫ) is the Witt group of nonsingular ǫ-symmetric linking forms

over (A,σ).

Similarly in the ǫ-quadratic case, with torsion L-groups Ltor
n (A,σ, ǫ). The ǫ-quadratic

torsion L-groups are 4-periodic

Ltor
n (A,σ, ǫ) = Ltor

n+2(A,σ,−ǫ) = Ltor
n+4(A,σ, ǫ) .

Theorem 2.9. If A −→ σ−1A is injective the relative L-groups in the localization exact

sequences of Proposition 2.3

. . . // Ln(A, ǫ) // Γn(A −→ σ−1A, ǫ)
∂

// Ln(A,σ, ǫ) // Ln−1(A, ǫ) // . . .

. . . // Ln(A, ǫ) // Γn(A −→ σ−1A, ǫ)
∂

// Ln(A,σ, ǫ) // Ln−1(A, ǫ) // . . .

are the torsion L-groups

L∗(A,σ, ǫ) = L∗
tor(A,σ, ǫ) ,

L∗(A,σ, ǫ) = Ltor
∗ (A,σ, ǫ) .

Proof. For any bounded (A,σ)-module chain complex T there exists a bounded f.g. pro-

jective A-module chain complex C with a homology equivalence C −→ T . Working as

in [8] there is defined a distinguished triangle of Z[Z2]-module chain complexes

ΣTorA
1 (T, T ) −→ C ⊗A C −→ T ⊗A T −→ Σ2TorA

1 (T, T )

with Z2 acting by the ǫ-transposition Tǫ on the Z-module chain complex TorA
1 (T, T ) and

by the (−ǫ)-transpositions T−ǫ on C ⊗A C and T ⊗A T , inducing long exact sequences

. . . // Qn
tor(T, ǫ) // Qn+1(C,−ǫ) // Qn+1(T,−ǫ) // Qn−1

tor (T, ǫ) // . . .

. . . // Qtor
n (T, ǫ) // Qn+1(C,−ǫ) // Qn+1(T,−ǫ) // Qtor

n−1(T, ǫ) // . . . .

Passing to the direct limits over all the bounded (A,σ)-module chain complexes U with

a homology equivalence β : T −→ U use Proposition 2.7 (iv) to obtain

lim
−→
(U,β)

Qn+1(U,−ǫ) = 0 ,

lim
−→
(U,β)

Qn+1(U,−ǫ) = 0

and hence
lim
−→
(U,β)

Qn
tor(U, ǫ) = Qn+1(C,−ǫ) ,

lim
−→
(U,β)

Qtor
n (U, ǫ) = Qn+1(C,−ǫ) .

�
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Remark 2.10. The identification L∗(A,σ, ǫ) = Ltor
∗ (A,σ, ǫ) for noncommutative σ−1A

was first obtained by Vogel [8].

✷

References

[1] Amnon Neeman, Triangulated categories, Annals of Math. Studies, vol. 148, Princeton University

Press (2001)

[2] , Noncommutative localisation in algebraic K-theory II., Advances in Mathematics 213, 785–

819 (2007)

[3] and Andrew Ranicki, Noncommutative localisation in algebraic K-theory I. Geometry and

Topology 8, 1385–1425 (2004)

[4] , and Aidan Schofield, Representations of alegbras as universal localizations, Math.

Proc. Camb. Phil. Soc. 136, 105–117 (2004)

[5] Andrew Ranicki, Exact sequences in the algebraic theory of surgery, Mathematical Notes 26, Prince-

ton (1981)

[6] , High dimensional knot theory, Springer Monograph, Springer (1998)

[7] , Noncommutative localization in topology, Proc. 2002 ICMS conference on Noncommutative

Localization in Algebra and Topology, LMS Lecture Notes 330, CUP, 81–102 (2006)

[8] Pierre Vogel, Localization in algebraic L-theory, Proc. 1979 Siegen Topology Symposium, Lecture

Notes in Mathematics 788, Springer Verlag, 1980, pp. 482–495.

[9] , On the obstruction group in homology surgery, Publ. Math. I.H.E.S. 55 (1982), 165–206.

A.R. : School of Mathematics

University of Edinburgh

James Clerk Maxwell Building

King’s Buildings

Mayfield Road

Edinburgh EH9 3JZ

SCOTLAND, UK

E-mail address: a.ranicki@ed.ac.uk


	Introduction
	1. Lifting chain complexes
	2. Algebraic L-theory
	References

