166,343 research outputs found

    Domain Walls in MQCD and Monge-Ampere Equation

    Full text link
    We study Witten's proposal that a domain wall exists in M-theory fivebrane version of QCD (MQCD) and that it can be represented as a supersymmetric three-cycle in G_2 holonomy manifold. It is shown that equations defining the U(1) invariant domain wall for SU(2) group can be reduced to the Monge-Ampere equation. A proof of an algebraic formula of Kaplunovsky, Sonnenschein and Yankielowicz is presented. The formal solution of equations for domain wall is constructed.Comment: Latex, 18 pages, section 4.2 modified, typos correcte

    Numerics of boundary-domain integral and integro-differential equations for BVP with variable coefficient in 3D

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the links below - Copyright @ 2013 Springer-VerlagA numerical implementation of the direct boundary-domain integral and integro-differential equations, BDIDEs, for treatment of the Dirichlet problem for a scalar elliptic PDE with variable coefficient in a three-dimensional domain is discussed. The mesh-based discretisation of the BDIEs with tetrahedron domain elements in conjunction with collocation method leads to a system of linear algebraic equations (discretised BDIE). The involved fully populated matrices are approximated by means of the H-Matrix/adaptive cross approximation technique. Convergence of the method is investigated.This study is partially supported by the EPSRC grant EP/H020497/1:"Mathematical Analysis of Localised-Boundary-Domain Integral Equations for Variable-Coefficients Boundary Value Problems"

    Iterative methods for elliptic finite element equations on general meshes

    Get PDF
    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included

    A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods

    Get PDF
    We present here a domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by a discontinuous Galerkin method. In order to allow the treatment of irregularly shaped geometries, the discontinuous Galerkin method is formulated on unstructured tetrahedral meshes. The domain decomposition strategy takes the form of a Schwarz-type algorithm where a continuity condition on the incoming characteristic variables is imposed at the interfaces between neighboring subdomains. A multifrontal sparse direct solver is used at the subdomain level. The resulting domain decomposition strategy can be viewed as a hybrid iterative/direct solution method for the large, sparse and complex coefficients algebraic system resulting from the discretization of the time-harmonic Maxwell equations by a discontinuous Galerkin method

    Isogeometric Simulation and Shape Optimization with Applications to Electrical Machines

    Get PDF
    Future e-mobility calls for efficient electrical machines. For different areas of operation, these machines have to satisfy certain desired properties that often depend on their design. Here we investigate the use of multipatch Isogeometric Analysis (IgA) for the simulation and shape optimization of the electrical machines. In order to get fast simulation and optimization results, we use non-overlapping domain decomposition (DD) methods to solve the large systems of algebraic equations arising from the IgA discretization of underlying partial differential equations. The DD is naturally related to the multipatch representation of the computational domain, and provides the framework for the parallelization of the DD solvers
    corecore