This is the post-print version of the article. The official published version can be accessed from the links below - Copyright @ 2013 Springer-VerlagA numerical implementation of the direct boundary-domain integral and integro-differential equations, BDIDEs, for treatment of the Dirichlet problem for a scalar elliptic PDE with variable coefficient in a three-dimensional domain is discussed. The mesh-based discretisation of the BDIEs with tetrahedron domain elements in conjunction with collocation method leads to a system of linear algebraic equations (discretised BDIE). The involved fully populated matrices are approximated by means of the H-Matrix/adaptive cross approximation technique. Convergence of the method is investigated.This study is partially supported by the EPSRC grant EP/H020497/1:"Mathematical Analysis of Localised-Boundary-Domain Integral Equations for Variable-Coefficients
Boundary Value Problems"