9 research outputs found

    Sleeping Beauties Cited in Patents: Is there also a Dormitory of Inventions?

    Get PDF
    A Sleeping Beauty in Science is a publication that goes unnoticed (sleeps) for a long time and then, almost suddenly, attracts a lot of attention (is awakened by a prince). In our foregoing study we found that roughly half of the Sleeping Beauties are application-oriented and thus are potential Sleeping Innovations. In this paper we investigate a new topic: Sleeping Beauties that are cited in patents. In this way we explore the existence of a dormitory of inventions. We find that patent citation may occur before or after the awakening and that the depth of the sleep, i.e., citation rate during the sleeping period, is no predictor for later scientific or technological impact of the Sleeping Beauty. Inventor-author self-citations occur only in a small minority of the Sleeping Beauties that are cited in patents, but other types of inventor-author links occur more frequently. We analyze whether they deal with new topics by measuring the time-dependent evolution in the entire scientific literature of the number of papers related to both the precisely defined topics as well as the broader research theme of the Sleeping Beauty during and after the sleeping time. We focus on the awakening by analyzing the first group of papers that cites the Sleeping Beauty. Next, we create concept maps of the topic-related and the citing papers for a time period immediately following the awakening and for the most recent period. Finally, we make an extensive assessment of the cited and citing relations of the Sleeping Beauty. We find that tunable co-citation analysis is a powerful tool to discover the prince and other important application-oriented work directly related to the Sleeping Beauty, for instance papers written by authors who cite Sleeping Beauties in both the patents of which they are the inventors, as well as in their scientific papers.Comment: 30 pages, 17 figure

    RBX: The new X-band SAR system from INTA

    Full text link
    Revista oficial de la Asociación Española de Teledetección[EN] This paper describes the characteristics and the first results of the RBX system, the new airborne Synthetic Aperture Radar developed at Spanish National Institute of Aerospace Technology. The new system supports submetric resolution with interferometric and polarimetric capabilities. The system architecture has been designed taking into account an easy upgrade ability and the quality of the acquired data, including multiple internal calibration loops.[ES] Este artículo describe las características y los primeros resultados del sistema RBX, nuevo radar de apertura sintética aerotransportado que ha sido desarrollado en el Instituto Nacional de Técnica Aeroespacial. El nuevo sistema soporta resoluciones submétricas con capacidades interferométricas y polarimétricas. La arquitectura del sistema se ha diseñado teniendo en cuenta la facilidad de incorporar mejoras y la calidad de los datos adquiridos, incluyendo múltiples lazos de calibración interna.Larrañaga, J. R., De Porras Bernácer, R., Del Castillo, J., Gimeno, N., Aguilar, P., Baquero, A. M., . . . Sánchez, S. (2014). RBX: The new X-band SAR system from INTA. [RBX: El nuevo radar SAR en banda X del INTA] Revista De Teledeteccion, (41), 89-96. doi:10.4995/raet.2014.2285SWORD899641G. Bonin, P. Dreuillet. 2008. The new ONERA airborne SAR system SETHI. EUSAR, Dresden, Germany.Rodriguez, M. G. (2008). Design of a Coherent Generation and Acquisition System at 1,2GHz. 2008 4th Southern Conference on Programmable Logic. doi:10.1109/spl.2008.4547745Gonzalez Bonilla, M. J., Gomez Miguel, B., Cuerda Muñoz, J. M., Larrañaga Sudupe, J. R., Garcia Rodriguez, M., 2009. INTASAR program. Proceedings IGARSSHORN, RALF; NOTTENSTEINER, ANTON; SCHEIBER, ROLF. 2008. F-SAR – DLR's advanced airborne SAR system onboard DO228. Proceedings EUSARMoreira, A., & Yonghong Huang. (1994). Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Transactions on Geoscience and Remote Sensing, 32(5), 1029-1040. doi:10.1109/36.31289

    Sleeping beauties cited in patents: is there also a dormitory of inventions?

    Get PDF
    A ‘Sleeping Beauty in Science’ is a publication that goes unnoticed (‘sleeps’) for a long time and then, almost suddenly, attracts a lot of attention (‘is awakened by a prince’). In our foregoing study we found that roughly half of the Sleeping Beauties are application-oriented and thus are potential Sleeping Innovations. In this paper we investigate a new topic: Sleeping Beauties that are cited in patents. In this way we explore the existence of a dormitory of inventions. To our knowledge this is the first study of this kind. We investigate the time lag between publication of the Sleeping Beauty and the first citation by a patent. We find that patent citation may occur before or after the awakening and that the depth of the sleep, i.e., citation rate during the sleeping period, is no predictor for later scientific or technological impact of the Sleeping Beauty. A surprising finding is that Sleeping Beauties are significantly more cited in patents than ‘normal’ papers. Inventor–author self-citations relations occur only in a small minority of the Sleeping Beauties that are cited in patents, but other types of inventor–author links occur more frequently. We develop an approach in different steps to explore the cognitive environment of Sleeping Beauties cited in patents. First, we analyze whether they deal with new topics by measuring the time-dependent evolution in the entire scientific literature of the number of papers related to both the precisely defined topics as well as the broader research theme of the Sleeping Beauty during and after the sleeping time. Second, we focus on the awakening by analyzing the first group of papers that cites the Sleeping Beauty. Third, we create concept maps of the topic-related and the citing papers for a time period immediately following the awakening and for the most recent period. Finally, we make an extensive assessment of the cited and citing relations of the Sleeping Beauty. We find that tunable co-citation analysis is a powerful tool to discover the prince(s) and other important application-oriented work directly related to the Sleeping Beauty, for instance papers written by authors who cite Sleeping Beauties in both the patents of which they are the inventors, as well as in their scientific papers. Merit, Expertise and Measuremen

    On the Capabilities of the Italian Airborne FMCW AXIS InSAR System

    Get PDF
    Airborne Synthetic Aperture Radar (SAR) systems are gaining increasing interest within the remote sensing community due to their operational flexibility and observation capabilities. Among these systems, those exploiting the Frequency-Modulated Continuous-Wave (FMCW) technology are compact, lightweight, and comparatively low cost. For these reasons, they are becoming very attractive, since they can be easily mounted onboard ever-smaller and highly flexible aerial platforms, like helicopters or unmanned aerial vehicles (UAVs). In this work, we present the imaging and topographic capabilities of a novel Italian airborne SAR system developed in the frame of cooperation between a public research institute (IREA-CNR) and a private company (Elettra Microwave S.r.l.). The system, which is named AXIS (standing for Airborne X-band Interferometric SAR), is based on FMCW technology and is equipped with a single-pass interferometric layout. In the work we first provide a description of the AXIS system. Then, we describe the acquisition campaign carried out in April 2018, just after the system completion. Finally, we perform an analysis of the radar data acquired during the campaign, by presenting a quantitative assessment of the quality of the SLC (Single Look Complex) SAR images and the interferometric products achievable through the system. The overall analysis aims at providing first reference values for future research and operational activities that will be conducted with this sensor

    Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing

    Get PDF
    Synthetic Aperture Radar (SAR) imagery is a very useful resource for the civilian remote sensing community and for the military. This however presumes that images are focused. There are several possible sources for defocusing effects. For airborne SAR, motion measurement errors is the main cause. A defocused image may be compensated by way of autofocus, estimating and correcting erroneous phase components. Standard autofocus strategies are implemented as a separate stage after the image formation (stand-alone autofocus), neglecting the geometrical aspect. In addition, phase errors are usually assumed to be space invariant and confined to one dimension. The call for relaxed requirements on inertial measurement systems contradicts these criteria, as it may introduce space variant phase errors in two dimensions, i.e. residual space variant Range Cell Migration (RCM). This has motivated the development of a new autofocus approach. The technique, termed the Factorized Geometrical Autofocus (FGA) algorithm, is in principle a Fast Factorized Back-Projection (FFBP) realization with a number of adjustable (geometry) parameters for each factorization step. By altering the aperture in the time domain, it is possible to correct an arbitrary, inaccurate geometry. This in turn indicates that the FGA algorithm has the capacity to compensate for residual space variant RCM. In appended papers the performance of the algorithm is demonstrated for geometrically constrained autofocus problems. Results for simulated and real (Coherent All RAdio BAnd System II (CARABAS II)) Ultra WideBand (UWB) data sets are presented. Resolution and Peak to SideLobe Ratio (PSLR) values for (point/point-like) targets in FGA and reference images are similar within a few percents and tenths of a dB. As an example: the resolution of a trihedral reflector in a reference image and in an FGA image respectively, was measured to approximately 3.36 m/3.44 m in azimuth, and to 2.38 m/2.40 m in slant range; the PSLR was in addition measured to about 6.8 dB/6.6 dB. The advantage of a geometrical autofocus approach is clarified further by comparing the FGA algorithm to a standard strategy, in this case the Phase Gradient Algorithm (PGA)

    Airborne SAR Processing of Highly Squinted Data Using a Chirp Scaling Approach with Integrated Motion Compensation.

    No full text
    This paper proposes a new approach for high resolution airborne SAR data processing, which uses a modified chirp scaling algorithm to accommodate the correction of motion errors, as well as the variations of the Doppler centroid in range and azimuth

    Computational Algorithms for Improved Synthetic Aperture Radar Image Focusing

    Get PDF
    High-resolution radar imaging is an area undergoing rapid technological and scientific development. Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR) are imaging radars with an ever-increasing number of applications for both civilian and military users. The advancements in phased array radar and digital computing technologies move the trend of this technology towards higher spatial resolution and more advanced imaging modalities. Signal processing algorithm development plays a key role in making full use of these technological developments.In SAR and ISAR imaging, the image reconstruction process is based on using the relative motion between the radar and the scene. An important part of the signal processing chain is the estimation and compensation of this relative motion. The increased spatial resolution and number of receive channels cause the approximations used to derive conventional algorithms for image reconstruction and motion compensation to break down. This leads to limited applicability and performance limitations in non-ideal operating conditions.This thesis presents novel research in the areas of data-driven motion compensation and image reconstruction in non-cooperative ISAR and Multichannel Synthetic Aperture Radar (MSAR) imaging. To overcome the limitations of conventional algorithms, this thesis proposes novel algorithms leading to increased estimation performance and image quality. Because a real-time imaging capability is important in many applications, special emphasis is placed on the computational aspects of the algorithms.For non-cooperative ISAR imaging, the thesis proposes improvements to the range alignment, time window selection, autofocus, time-frequency-based image reconstruction and cross-range scaling procedures. These algorithms are combined into a computationally efficient non-cooperative ISAR imaging algorithm based on mathematical optimization. The improvements are experimentally validated to reduce the computational burden and significantly increase the image quality under complex target motion dynamics.Time domain algorithms offer a non-approximated and general way for image reconstruction in both ISAR and MSAR. Previously, their use has been limited by the available computing power. In this thesis, a contrast optimization approach for time domain ISAR imaging is proposed. The algorithm is demonstrated to produce improved imaging performance under the most challenging motion compensation scenarios. The thesis also presents fast time domain algorithms for MSAR. Numerical simulations confirm that the proposed algorithms offer a reasonable compromise between computational speed and image quality metrics

    Technique-Based Exploitation Of Low Grazing Angle SAR Imagery Of Ship Wakes

    Get PDF
    The pursuit of the understanding of the effect a ship has on water is a field of study that is several hundreds of years old, accelerated during the years of the industrial revolution where the efficiency of a ship’s engine and hull determined the utility of the burgeoning globally important sea lines of communication. The dawn of radar sensing and electronic computation have expanding this field of study still further where new ground is still being broken. This thesis looks to address a niche area of synthetic aperture radar imagery of ship wakes, specifically the imaging geometry utilising a low grazing angle, where significant non-linear effects are often dominant in the environment. The nuances of the synthetic aperture radar processing techniques compounded with the low grazing angle geometry to produce unusual artefacts within the imagery. It is the understanding of these artefacts that is central to this thesis. A sub-aperture synthetic aperture radar technique is applied to real data alongside coarse modelling of a ship and its wake before finally developing a full hydrodynamic model for a ship’s wake from first principles. The model is validated through comparison with previously developed work. The analysis shows that the resultant artefacts are a culmination of individual synthetic aperture radar anomalies and the reaction of the radar energy to the ambient sea surface and spike events
    corecore