185 research outputs found

    Ground Profile Recovery from Aerial 3D LiDAR-based Maps

    Get PDF
    The paper presents the study and implementation of the ground detection methodology with filtration and removal of forest points from LiDAR-based 3D point cloud using the Cloth Simulation Filtering (CSF) algorithm. The methodology allows to recover a terrestrial relief and create a landscape map of a forestry region. As the proof-of-concept, we provided the outdoor flight experiment, launching a hexacopter under a mixed forestry region with sharp ground changes nearby Innopolis city (Russia), which demonstrated the encouraging results for both ground detection and methodology robustness.Comment: 8 pages, FRUCT-2019 conferenc

    Ground Profile Recovery from Aerial 3D LiDAR-based Maps

    Get PDF
    The paper presents the study and implementation of the ground detection methodology with filtration and removal of forest points from LiDAR-based 3D point cloud using the Cloth Simulation Filtering (CSF) algorithm. The methodology allows to recover a terrestrial relief and create a landscape map of a forestry region. As the proof-of-concept, we provided the outdoor ?ight experiment, launching a hexacopter under a mixed forestry region with sharp ground changes nearby Innopolis city (Russia), which demonstrated the encouraging results for both ground detection and methodology robustness

    LiDAR REMOTE SENSING FOR FORESTRY APPLICATIONS

    Get PDF

    Automated forest inventory: analysis of high-density airborne LiDAR point clouds with 3D deep learning

    Full text link
    Detailed forest inventories are critical for sustainable and flexible management of forest resources, to conserve various ecosystem services. Modern airborne laser scanners deliver high-density point clouds with great potential for fine-scale forest inventory and analysis, but automatically partitioning those point clouds into meaningful entities like individual trees or tree components remains a challenge. The present study aims to fill this gap and introduces a deep learning framework, termed ForAINet, that is able to perform such a segmentation across diverse forest types and geographic regions. From the segmented data, we then derive relevant biophysical parameters of individual trees as well as stands. The system has been tested on FOR-Instance, a dataset of point clouds that have been acquired in five different countries using surveying drones. The segmentation back-end achieves over 85% F-score for individual trees, respectively over 73% mean IoU across five semantic categories: ground, low vegetation, stems, live branches and dead branches. Building on the segmentation results our pipeline then densely calculates biophysical features of each individual tree (height, crown diameter, crown volume, DBH, and location) and properties per stand (digital terrain model and stand density). Especially crown-related features are in most cases retrieved with high accuracy, whereas the estimates for DBH and location are less reliable, due to the airborne scanning setup

    Multiscale forest health mapping: the potential of air- and space-borne remote sensing sensors

    Full text link
    Forest health decline triggered by extensive periods of drought and high temperatures is increasingly common across Australia. In this respect remote sensing technology may help with understanding and managing forest health decline by providing information on a scale that field-based studies cannot match. In this thesis I explore the potential of air- and space-borne remote sensing in characterizing and monitoring forest health expressed in terms of tree dieback at multiple scales. I conducted my experiments in the largest river red gum forest in the world, located in the south-east of Australia that has experienced episodes of severe dieback over the past six decades. First, I propose a new algorithm that utilizes high point density airborne laser scans (ALS) for delineating individual trees with complex shapes, such as eucalypts, in Chapter 2. My algorithm was able to accurately delineate up to 68% of trees depending on forest and ALS point density. Second, I investigate the utility of ALS and imaging spectroscopy in classifying forest health at the individual tree level and diagnosing potential causes of forest health decline, in Chapter 3. According to my results the health of individual trees can be classified with an overall accuracy of 81% and a kappa score of 0.66, while infrequently flooded areas were most susceptible to tree health decline. Finally, I assess how low point density ALS, Synthetic Aperture Radar and multispectral satellite imagery can estimate forest health at the plot level, in Chapter 4. My findings demonstrate that individual tree health could be scaled up to the plot level with substantial level of accuracy (R2 of up to 0.64). Overall, my results provide a robust and peer-reviewed methodology that utilizes air- and space-borne remote sensing to accurately classify forest health at multiple scales. Moreover, the forest health map produced as a result of my research will potentially enable forest managers to perform demographic reporting on forest dynamics, diagnose ecological processes linked to forest health, and prioritize areas for forest health promotion and conservation of biodiversity

    Height of successional vegetation indicates moment of agricultural land abandonment

    Get PDF
    One of the major land use and land cover changes in Europe is agricultural land abandonment (ALA) that particularly affects marginal mountain areas. Accurate mapping of ALA patterns and timing is important for understanding its determinants and the environmental and socio-economic consequences. In highly fragmented agricultural landscapes with small-scale farming, subtle land use changes following ALA can be detected with high resolution remotely sensed data, and successional vegetation height is a possible indicator of ALA timing. The main aim of this study was to determine the relationship between successional vegetation height and the timing of agricultural land abandonment in the Budzów community in the Polish Carpathians. Areas of vegetation succession were vectorized on 1977, 1997, and 2009 orthophotomaps, enabling the distinguishing of vegetation encroaching on abandoned fields before and after 1997. Vegetation height in 2012-2014 was determined from digital surface and terrain models that were derived from airborne laser scanning data. The median heights of successional vegetation that started development before and after 1997 were different (6.9 m and 3.2 m, respectively). No significant correlations between successional vegetation height and elevation, slope, aspect, and proximity to forest were found. Thus, the timing of agricultural land abandonment is the most important factor influencing vegetation height, whereas environmental characteristics on this scale of investigation may be neglected

    Laserkeilaus puutason biomassan, puutavaralajien sekä laatutiedon ennustamisessa

    Get PDF
    The precise knowledge of forest structural attributes play an essential role in decision-making, forest management procedure planning and in wood supply chain optimization. Laser scanning (LS) is one of the most promising remote sensing techniques, which can be used to estimate forest attributes at all levels, from single trees to global applications. The main objectives of the present thesis were to develop LS-based methodologies for mapping and measuring single trees. More specifically, new high-density LS-based models and methodologies were developed for the prediction of aboveground biomass (AGB), logging recovery, stem curve and external tree quality estimation. Multisource remote sensing methodologies were additionally introduced for the detailed next generation forest-inventory process. Substudies I and II concentrated on developing LS-based biomass models. Total AGB was estimated with the relative root mean squared errors (RMSE%) of 12.9% and 11.9% for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H.Karst.), respectively using terrestrial LS (TLS) -derived predictors in multiple regression modelling. TLS-based AGB models significantly improved the estimation accuracy of AGB components compared to state-of-the-art allometric biomass models. Airborne LS (ALS) resulted in slightly higher RMSE% values of 26.3% and 36.8% for Scots pine and Norway spruce compared to results obtained with TLS. The goal of substudies III and IV was to predict timber assortment and tree quality information using high-density LS data. Sawlog volumes were estimated with RMSE% of 17.5% and 16.8% with TLS and a combination of TLS and ALS, respectively. Results in IV showed that trees could be successfully classified in different quality classes based on TLS-measured attributes with accuracies between 76.4% and 83.6% depending on the amount of quality classes. Substudies V and VI presented new automatic processing tools for TLS data and a multisource approach for the more detailed prediction of diameter distribution. Automatic processing of TLS data was demonstrated to be effective and accurate and could be utilized to make future TLS measurements more efficient. Accuracies of ~1 cm were achieved using the automatic stem curve procedure. The multisource single-tree inventory approach combined accurate treemaps produced automatically from the TLS data, and ALS individual tree detection technique. Results from diverse forest conditions were promising, resulting in diameter prediction accuracies between 1.4 cm and 4.7 cm depending on tree density and main tree species. Each substudy (I VI) presented new methods and results for single-tree AGB modelling, external tree quality classification, automatic stem reconstruction and multisource approaches.Yksityiskohtainen metsävaratieto on merkittävässä roolissa metsänomistajien päätöksenteon, metsänhoidon suunnittelun sekä puunhankintaketjun optimoinnin tukena. Laserkeilaus on yksi lupaavimmista kaukokartoitustekniikoista, jolla on mahdollista ennustaa metsävaratietoa yksittäisen puun tasolta laajoihin alueisiin. Väitöskirjatyön päätavoitteina oli kehittää laserkeilauspohjaisia menetelmiä yksittäisten puiden kartoitukseen ja mittaukseen. Osajulkaisuissa I ja II selvitettiin laserkeilausmenetelmien tarkkuutta puutason biomassaositteiden mallinnuksessa. Kokonaisbiomassan mallinnustarkkuus maastolaserkeilaukseen perustuen oli männylle 12,9 % ja kuuselle 11,9 %. Maastolaserkeilauksen hyödyntäminen biomassan mallintamisessa tarkensi erityisesti latvusbiomassan mallinnustarkkuutta verrattuna läpimittaan ja pituuteen perustuviin biomassamalleihin. Lentolaserkeilauksen tarkkuudet olivat hieman heikompia verrattuna maastolaserkeilaukseen. Kokonaisbiomassan tarkkuudet olivat männylle 26,3 % ja kuuselle 36,8 %. Osajulkaisuissa III ja IV tavoitteena oli ennustaa puutavaralajikohtaisia tilavuuksia sekä laatutietoa maastolaserkeilauksen ja lentolaserkeilauksen avulla. Tukkipuun tilavuuden ennustetarkkuudet olivat maastolaserkeilausta käytettäessä 17,5 % ja maasto- ja lentolaserkeilauksen yhdistelmää käytettäessä 16,8 %. Puuston laatu on erittäin tärkeä tekijä metsikköä arvioitaessa. Maastolaserkeilauksen avulla yksittäiset puut luokiteltiin puunhankinnan kannalta tärkeisiin laatuluokkiin 76,4 % 83,6 % tarkkuudella. Osajulkaisuissa V ja VI tavoitteena oli kehittää uusia automaattisia menetelmiä maastolaserkeilausaineiston käsittelyyn, sekä monilähdemenetelmiä läpimittajakauman ennustamiseen. Automaattisten menetelmien avulla maastolaserkeilausaineiston käsittelyä on mahdollista tehostaa ja jopa tarkentaa manuaaliseen aineiston käsittelyyn verrattuna. Osajulkaisussa V runkokäyrän mittaustarkkuus oli automaattista aineistonkäsittelymenetelmää käytettäessä ~ 1 cm. Osajulkaisussa VI hyödynnettiin monilähdemenetelmää, jossa tarvittu puukartta mitattiin automaattisesti maastolaserkeilausaineistosta ja läpimittajakaumat ennustettiin maasto- ja lentolaserkeilausaineistojen avulla. Läpimitan ennustetarkkuus oli 1,4 cm ja 4,7 cm välillä puustoltaan hyvin vaihtelevissa metsiköissä. Väitöskirjatyön osajulkaisuissa kehitetyt menetelmät ja esitetyt tulokset osoittivat laserkeilausmenetelmien olevan varteenotettava vaihtoehto yksittäisten puiden kartoitukselle ja mittaamiselle tulevaisuudessa

    Variability of wood properties using airborne and terrestrial laser scanning

    Get PDF
    Information on wood properties is crucial in estimating wood quality and forest biomass and thus developing the precision and sustainability of forest management and use. However, wood properties are highly variable between and within trees due to the complexity of wood formation. Therefore, tree-specific field references and spatially transferable models are required to capture the variability of wood quality and forest biomass at multiple scales, entailing high-resolution terrestrial and aerial remote sensing methods. Here, we aimed at identifying select tree traits that indicate wood properties (i.e. wood quality indicators) with a combination of terrestrial laser scanning (TLS) and airborne laser scanning (ALS) in an examination of 27 even-aged, managed Scots pine (Pinus sylvestris L.) stands in southern Finland. We derived the wood quality indicators from tree models sampled systematically from TLS data and built prediction models with respect to individual crown features delineated from ALS data. The models were incapable of predicting explicit branching parameters (height of the lowest dead branch R2 = 0.25, maximum branch diameter R2 = 0.03) but were suited to predicting stem and crown dimensions from stand, tree, and competition factors (diameter at breast height and sawlog volume R2 = 0.5, and live crown base height R2 = 0.4). We were able to identify the effect of canopy closure on crown longevity and stem growth, which are pivotal to the variability of several wood properties in managed forests. We discussed how the fusions of high-resolution remote sensing methods may be used to enhance sustainable management and use of natural resources in the changing environment.Peer reviewe

    The Burning Bush: Linking LiDAR-derived Shrub Architecture to Flammability

    Get PDF
    Light detection and ranging (LiDAR) and terrestrial laser scanning (TLS) sensors are powerful tools for characterizing vegetation structure and for constructing three-dimensional (3D) models of trees, also known as quantitative structural models (QSM). 3D models and structural traits derived from them provide valuable information for biodiversity conservation, forest management, and fire behavior modeling. However, vegetation studies and 3D modeling methodologies often only focus on the forest canopy, with little attention given to understory vegetation. In particular, 3D structural information of shrubs is limited or not included in fire behavior models. Yet, understory vegetation is an important component of forested ecosystems, and has an essential role in determining fire behavior. In this dissertation, I explored the use of TLS data and quantitative structure models to model shrub architecture in three related studies. In the first study, I present a semi-automated methodology for reconstructing architecturally different shrubs from TLS LiDAR. By investigating shrubs with different architectures and point cloud densities, I showed that occlusion, shrub complexity, and shape greatly affect the accuracy of shrub models. In my second study, I assessed the 3D architectural drivers of understory flammability by evaluating the use of architectural metrics derived from the TLS point cloud and 3D reconstructions of the shrubs. I focused on eight species common in the understory of the fire-prone longleaf pine forest ecosystem of the state of Florida, USA. I found a general tendency for each species to be associated with a unique combination of flammability and architectural traits. Novel shrub architectural traits were found to be complementary to the direct use of TLS data and improved flammability predictions. The inherent complexity of shrub architecture and uncertainty in the TLS point cloud make scaling up from an individual shrub to a plot level a challenging task. Therefore, in my third study, I explored the effects of lidar uncertainty on vegetation parameter prediction accuracy. I developed a practical workflow to create synthetic forest stands with varying densities, which were subsequently scanned with simulated terrestrial lidar. This provided data sets quantitatively similar to those created by real-world LiDAR measurements, but with the advantage of exact knowledge of the forest plot parameters, The results showed that the lidar scan location had a large effect on prediction accuracy. Furthermore, occlusion is strongly related to the sampling density and plot complexity. The results of this study illustrate the potential of non-destructive lidar approaches for quantifying shrub architectural traits. TLS, empirical quantitative structural models, and synthetic models provide valuable insights into shrub structure and fire behavior

    Tree Structure Retrieval for Apple Trees from 3D Pointcloud

    Full text link
    3D reconstruction is a challenging problem and has been an important research topic in the areas of remote sensing and computer vision for many years. Existing 3D reconstruction approaches are not suitable for orchard applications due to complicated tree structures. Current tree reconstruction has included models specific to trees of a certain density, but the impact of varying Leaf Area Index(LAI) on model performance has not been studied. To better manage an apple orchard, this thesis proposes methods for evaluating an apple canopy density mapping system as an input for a variable-rate sprayer for both trellis-structured (2D) and standalone (3D) apple orchards using a 2D LiDAR (Light Detection and Ranging). The canopy density mapping system has been validated for robustness and repeatability with multiple scans. The consistency of the whole row during multiple passes has a correlation R^2 = 0.97. The proposed system will help the decision-making in a variable-rate sprayer. To further study the individual tree structure, this thesis proposes a novel and fast approach to reconstruct and analyse 3D trees over a range of Leaf Area Index (LAI) values from LiDAR for morphology analysis for height, branch length and angles of real and simulated apple trees. After using Principal Component Analysis (PCA) to extract the trunk points, an improved Mean Shift algorithm is introduced as Adapted Mean Shift (AMS) to classify different branch clusters and extract the branch nodes. A full evaluation workflow of tree parameters including trunk and branches is introduced for morphology analysis to investigate the accuracy of the approach over different LAI values. Tree height, branch length, and branch angles were analysed and compared to the ground truth for trees with a range of LAI values. When the LAI is smaller than 0.1, the accuracy for height and length is greater than 90\% and the accuracy for the angles is around 80\%. When the LAI is greater than 0.1, the branch accuracy reduces to 40\%. This analysis of tree reconstruction performance concerning LAI values, as well as the combination of efficient and accurate structure reconstruction, opens the possibility of improving orchard management and botanical studies on a large scale. To improve the accuracy of traditional tree structure analysis, a deep learning approach is introduced to pre-process and classify unbalanced, in-homogeneous, and noisy point cloud data. TreeNet is inspired by 3D U-Net, adding classes and median filters to segment trunk, branch, and leave parts. TreeNet outperformed 3D U-Net and SVM in the case of Kappa, Matthews Correlation Coefficient(MCC), and F1-score value in segmentation. The TreeNet-AMS combined method also showed improvement in tree structure analysis than the traditional AMS method mentioned above. Following on from this research, efficient tree structure analysis on tree height, trunk length, branch position, and branch length could be conducted. Knowing the tree morphology is proved to be closely relevant to thinning, spraying and yield, the proposed work will then largely benefit the relevant studies in agriculture and forestry
    corecore