71 research outputs found

    Autonomous vehicle guidance in unknown environments

    Get PDF
    Gaining from significant advances in their performance granted by technological evolution, Autonomous Vehicles are rapidly increasing the number of fields of possible and effective applications. From operations in hostile, dangerous environments (military use in removing unexploded projectiles, survey of nuclear power and chemical industrial plants following accidents) to repetitive 24h tasks (border surveillance), from power-multipliers helping in production to less exotic commercial application in household activities (cleaning robots as consumer electronics products), the combination of autonomy and motion offers nowadays impressive options. In fact, an autonomous vehicle can be completed by a number of sensors, actuators, devices making it able to exploit a quite large number of tasks. However, in order to successfully attain these results, the vehicle should be capable to navigate its path in different, sometimes unknown environments. This is the goal of this dissertation: to analyze and - mainly - to propose a suitable solution for the guidance of autonomous vehicles. The frame in which this research takes its steps is the activity carried on at the Guidance and Navigation Lab of Sapienza – Università di Roma, hosted at the School of Aerospace Engineering. Indeed, the solution proposed has an intrinsic, while not limiting, bias towards possible space applications, that will become obvious in some of the following content. A second bias dictated by the Guidance and Navigation Lab activities is represented by the choice of a sample platform. In fact, it would be difficult to perform a meaningful study keeping it a very general level, independent on the characteristics of the targeted kind of vehicle: it is easy to see from the rough list of applications cited above that these characteristics are extremely varied. The Lab hosted – even before the beginning of this thesis activity – a simple, home-designed and manufactured model of a small, yet performing enough autonomous vehicle, called RAGNO (standing for Rover for Autonomous Guidance Navigation and Observation): it was an obvious choice to select that rover as the reference platform to identify solutions for guidance, and to use it, cooperating to its improvement, for the test activities which should be considered as mandatory in this kind of thesis work to validate the suggested approaches. The draft of the thesis includes four main chapters, plus introduction, final remarks and future perspectives, and the list of references. The first chapter (“Autonomous Guidance Exploiting Stereoscopic Vision”) investigates in detail the technique which has been deemed as the most interesting for small vehicles. The current availability of low cost, high performance cameras suggests the adoption of the stereoscopic vision as a quite effective technique, also capable to making available to remote crew a view of the scenario quite similar to the one humans would have. Several advanced image analysis techniques have been investigated for the extraction of the features from left- and right-eye images, with SURF and BRISK algorithm being selected as the most promising one. In short, SURF is a blob detector with an associated descriptor of 64 elements, where the generic feature is extracted by applying sequential box filters to the surrounding area. The features are then localized in the point of the image where the determinant of the Hessian matrix H(x,y) is maximum. The descriptor vector is than determined by calculating the Haar wavelet response in a sampling pattern centered in the feature. BRISK is instead a corner detector with an associated binary descriptor of 512 bit. The generic feature is identified as the brightest point in a sampling circular area of N pixels while the descriptor vector is calculated by computing the brightness gradient of each of the N(N-1)/2 pairs of sampling points. Once left and right features have been extracted, their descriptors are compared in order to determine the corresponding pairs. The matching criterion consists in seeking for the two descriptors for which their relative distance (Euclidean norm for SURF, Hamming distance for BRISK) is minimum. The matching process is computationally expensive: to reduce the required time the thesis successfully explored the theory of the epipolar geometry, based on the geometric constraint existing between the left and right projection of the scene point P, and indeed limiting the space to be searched. Overall, the selected techniques require between 200 and 300 ms on a 2.4GHz clock CPU for the feature extraction and matching in a single (left+right) capture, making it a feasible solution for slow motion vehicles. Once matching phase has been finalized, a disparity map can be prepared highlighting the position of the identified objects, and by means of a triangulation (the baseline between the two cameras is known, the size of the targeted object is measured in pixels in both images) the position and distance of the obstacles can be obtained. The second chapter (“A Vehicle Prototype and its Guidance System”) is devoted to the implementation of the stereoscopic vision onboard a small test vehicle, which is the previously cited RAGNO rover. Indeed, a description of the vehicle – the chassis, the propulsion system with four electric motors empowering the wheels, the good roadside performance attainable, the commanding options – either fully autonomous, partly autonomous with remote monitoring, or fully remotely controlled via TCP/IP on mobile networks - is included first, with a focus on different sensors that, depending on the scenario, can integrate the stereoscopic vision system. The intelligence-side of guidance subsystem, exploiting the navigation information provided by the camera, is then detailed. Two guidance techniques have been studied and implemented to identify the optimal trajectory in a field with scattered obstacles: the artificial potential guidance, based on the Lyapunov approach, and the A-star algorithm, looking for the minimum of a cost function built on graphs joining the cells of a mesh over-imposed to the scenario. Performance of the two techniques are assessed for two specific test-cases, and the possibility of unstable behavior of the artificial potential guidance, bouncing among local minima, has been highlighted. Overall, A-star guidance is the suggested solution in terms of time, cost and reliability. Notice that, withstanding the noise affecting information from sensors, an estimation process based on Kalman filtering has been also included in the process to improve the smoothness of the targeted trajectory. The third chapter (“Examples of Possible Missions and Applications”) reports two experimental campaigns adopting RAGNO for the detection of dangerous gases. In the first one, the rover accommodates a specific sensor, and autonomously moves in open fields, avoiding possible obstacles, to exploit measurements at given time intervals. The same configuration for RAGNO is also used in the second campaign: this time, however, the path of the rover is autonomously computed on the basis of the way points communicated by a drone which is flying above the area of measurements and identifies possible targets of interest. The fourth chapter (“Guidance of Fleet of Autonomous Vehicles ”) stresses this successful idea of fleet of vehicles, and numerically investigates by algorithms purposely written in Matlab the performance of a simple swarm of two rovers exploring an unknown scenario, pretending – as an example - to represent a case of planetary surface exploration. The awareness of the surrounding environment is dictated by the characteristics of the sensors accommodated onboard, which have been assumed on the basis of the experience gained with the material of previous chapter. Moreover, the communication issues that would likely affect real world cases are included in the scheme by the possibility to model the comm link, and by running the simulation in a multi-task configuration where the two rovers are assigned to two different computer processes, each of them having a different TCP/IP address with a behavior actually depending on the flow of information received form the other explorer. Even if at a simulation-level only, it is deemed that such a final step collects different aspects investigated during the PhD period, with feasible sensors’ characteristics (obviously focusing on stereoscopic vision), guidance technique, coordination among autonomous agents and possible interesting application cases

    Workshop on Advanced Technologies for Planetary Instruments, part 1

    Get PDF
    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    Get PDF
    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity

    Heterogeneous Robot Swarm – Hardware Design and Implementation

    Get PDF
    Swarm robotics is one the most fascinating, new research areas in the field of robotics, and one of it's grand challenge is the design of swarm robots that are both heterogeneous and self-sufficient. This can be crucial for robots exposed to environments that are unstructured or not easily accessible for a human operator, such as a collapsed building, the deep sea, or the surface of another planet. In Swarm robotics; self-assembly, self-reconfigurability and self-replication are among the most important characteristics as they can add extra capabilities and functionality to the robots besides the robustness, flexibility and scalability. Developing a swarm robot system with heterogeneity and larger behavioral repertoire is addressed in this work. This project is a comprehensive study of the hardware architecture of the homogeneous robot swarm and several problems related to the important aspects of robot's hardware, such as: sensory units, communication among the modules, and hardware components. Most of the hardware platforms used in the swarm robot system are homogeneous and use centralized control architecture for task completion. The hardware architecture is designed and implemented for UB heterogeneous robot swarm with both decentralized and centralized control, depending on the task requirement. Each robot in the UB heterogeneous swarm is equipped with different sensors, actuators, microcontroller and communication modules, which makes them distinct from each other from a hardware point of view. The methodology provides detailed guidelines in designing and implementing the hardware architecture of the heterogeneous UB robot swarm with plug and play approach. We divided the design module into three main categories - sensory modules, locomotion and manipulation, communication and control. We conjecture that the hardware architecture of heterogeneous swarm robots implemented in this work is the most sophisticated and modular design to date

    NASA Capability Roadmaps Executive Summary

    Get PDF
    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps

    System Development of an Unmanned Ground Vehicle and Implementation of an Autonomous Navigation Module in a Mine Environment

    Get PDF
    There are numerous benefits to the insights gained from the exploration and exploitation of underground mines. There are also great risks and challenges involved, such as accidents that have claimed many lives. To avoid these accidents, inspections of the large mines were carried out by the miners, which is not always economically feasible and puts the safety of the inspectors at risk. Despite the progress in the development of robotic systems, autonomous navigation, localization and mapping algorithms, these environments remain particularly demanding for these systems. The successful implementation of the autonomous unmanned system will allow mine workers to autonomously determine the structural integrity of the roof and pillars through the generation of high-fidelity 3D maps. The generation of the maps will allow the miners to rapidly respond to any increasing hazards with proactive measures such as: sending workers to build/rebuild support structure to prevent accidents. The objective of this research is the development, implementation and testing of a robust unmanned ground vehicle (UGV) that will operate in mine environments for extended periods of time. To achieve this, a custom skid-steer four-wheeled UGV is designed to operate in these challenging underground mine environments. To autonomously navigate these environments, the UGV employs the use of a Light Detection and Ranging (LiDAR) and tactical grade inertial measurement unit (IMU) for the localization and mapping through a tightly-coupled LiDAR Inertial Odometry via Smoothing and Mapping framework (LIO-SAM). The autonomous navigation module was implemented based upon the Fast likelihood-based collision avoidance with an extension to human-guided navigation and a terrain traversability analysis framework. In order to successfully operate and generate high-fidelity 3D maps, the system was rigorously tested in different environments and terrain to verify its robustness. To assess the capabilities, several localization, mapping and autonomous navigation missions were carried out in a coal mine environment. These tests allowed for the verification and tuning of the system to be able to successfully autonomously navigate and generate high-fidelity maps

    ORYX 2.0: A Planetary Exploration Mobility Platform

    Get PDF
    This project involved the design, manufacturing, integration, and testing of ORYX 2.0, a modular mobility platform. ORYX 2.0 is a rover designed for operation on rough terrain to facilitate space related technology research and Earth exploration missions. Currently there are no low-cost rovers available to academia or industry, making it difficult to conduct research related to surface exploration. ORYX 2.0 fills this gap by serving as a ruggedized highly mobile research platform with many features aimed at simplifying payload integration. Multiple teleoperated field testing trials on a variety of terrains validated the rover’s ruggedness and ability to operate soundly. Lastly, a deployable pan-tilt camera was designed, built, and tested, as an example payload

    ORYX 2.0: A Planetary Exploration Mobility Platform

    Get PDF
    This project involved the design, manufacturing, integration, and testing of ORYX 2.0, a modular mobility platform. ORYX 2.0 is a rover designed for operation on rough terrain to facilitate space related technology research and Earth exploration missions. Currently there are no low-cost rovers available to academia or industry, making it difficult to conduct research related to surface exploration. ORYX 2.0 fills this gap by serving as a ruggedized highly mobile research platform with many features aimed at simplifying payload integration. Multiple teleoperated field testing trials on a variety of terrains validated the rover\u27s ruggedness and ability to operate soundly. Lastly, a deployable pan-tilt camera was designed, built, and tested, as an example payload

    Advanced technologies for planetary instruments

    Get PDF
    The planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Then the DoD community to informed their counterparts in planetary science about their interests and capabilities, and to described the BMDO technology base, flight programs, and future directions. The working group sessions and the panel discussion synthesized technical and programmatic issues from all the presentations, with a specific goal of assessing the applicability of BMDO technologies to science instrumentation for planetary exploration.edited by J. Appleby.Clementine II: A Double Asteroid Flyby and Impactor Mission / Boain, R.J. -- The APX Spectrometer for Martian Missions / Economou, T. -- Clementine Sensor Processing System / Feldstein, A.A. -- The Ultraviolet Plume Instrument (UVPI) / Horan, D.M. -- New Technologies for UV Detectors / Joseph, C.L
    • …
    corecore