2,339 research outputs found

    Reitinsuunnittelu määrätyssä järjestyksessä tehtäville peltotöille usean työkoneen yhteistyönä

    Get PDF
    Coverage path planning is the task of finding a collision free path that passes over every point of an area or volume of interest. In agriculture, the coverage task is encountered especially in the process of crop cultivation. Several tasks are performed on the field, one after the other, during the cultivation cycle. Cooperation means that multiple agents, in this case vehicles, are working together towards a common goal. Several studies consider the problem where a single task is divided and assigned among the agents. In this thesis, however, the vehicles have different tasks that are sequentially dependent, that is, the first task must be completed before the other. The tasks are performed simultaneously on the same area. The literature review suggests that there is a lack of previous research on this topic. The objective of this thesis was to develop an algorithm to solve the cooperative coverage path planning problem for sequentially dependent tasks. A tool chain that involves Matlab, Simulink and Visual Studio was adapted for the development and testing of the solution. A development and testing architecture was designed including a compatible interface to a simulation and a real-life test environment. Two different algorithms were implemented based on the idea of computing short simultaneous paths at a time and scheduling them in real-time. The results were successfully demonstrated in a real-life test environment with two tractors equipped with a disc cultivator and a seeder. The objective was to sow the test area. The test drives show that with the algorithms that were developed in this thesis it is possible to perform two sequentially dependent agricultural coverage tasks simultaneously on the same area.Kattavassa reitinsuunnittelussa yritetään löytää polku, jonka aikana määritelty ala tai tilavuus tulee käytyä läpi niin että alueen jokainen piste on käsitelty. Maataloudessa tämä tehtävä on merkityksellinen erityisesti peltoviljelyssä. Useita peltotöitä suoritetaan yksi toisensa jälkeen samalla alueella viljelyvuoden aikana. Useissa tutkimuksissa käsitellään yhteistyönä tehtävää reitinsuunnittelua, jossa yksi tehtävä on jaettu osiin ja osat jaetaan useiden tekijöiden kuten robottien kesken. Tässä diplomityössä peltotyökoneilla on kuitenkin omat erilliset tehtävänsä, joilla on määrätty järjestys, eli niiden suorittaminen riippuu työjärjestyksestä. Työkoneet työskentelevät samanaikaisesti samalla alueella. Diplomityössä tehty kirjallisuuskatsaus viittaa siihen, että vastaavaa aihetta ei ole aiemmin tutkittu. Tämän diplomityön tavoitteena on kehittää algoritmi, jolla voidaan toteuttaa reitinsuunnittelu määrätyssä järjestyksessä tehtäville peltotöille usean peltotyökoneen yhteistyönä. Algoritmikehitystä ja testausta varten suunniteltiin yhtenäinen rajapinta, jolla algoritmia voitaisiin testata sekä simulaatiossa että todellisessa testitilanteessa. Algoritmikehityksessä käytettiin työkaluina Matlab, Simulink ja Visual Studio -ohjelmia. Työssä toteutettiin kaksi algoritmia, jotka perustuvat samaan ideaan: suunnitellaan kerrallaan kaksi lyhyttä samanaikaista polkua, jotka ajoitetaan reaaliajassa. Algoritmeja testattiin todellisessa testiympäristössä kahden työkoneen yhteistyönä, kun tavoitteena on kylvää koko testialue. Ensimmäinen työvaihe suoritettiin lautasmuokkaimella ja toinen kylvökoneella. Testiajot osoittavat, että diplomityössä kehitetyillä algoritmeilla voidaan ohjata kahden toisistaan riippuvaisen peltotyön toteutus samanaikaisesti samalla peltoalueella

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Timber harvesting on fragile ground and impacts of uncertainties in the operational costs

    Get PDF
    Forested wetlands with high water tables are sensitive to disruption from harvesting yet support commercially desired tree species like northern white-cedar. Winter harvest was conducted in Maine, USA, to compare operational costs and productivity of cut-to-length harvesting in cedar (fragile soil) and non-cedar stands (mixed wood, sturdy soil), evaluate uncertainties in harvesting costs and influential factors, and forecast time for post-harvest recovery to pre-harvest volumes. Operational costs were calculated using detailed time and motion studies. Operational costs for the cedar stands were higher than non-cedar. Regression models were developed for harvesters, forwarders, and self-loading trucks; number of logs per cycle was a common factor. Sensitivity analysis showed the dependence of operational costs on labor and fuel costs. Forest Vegetation Simulator projections were used to assess harvest sustainability and suggested the time required to regrow harvested merchantable volume is comparable to cutting cycles recommended for similar treatments in the region. Predicted growth rates exceed those reported regionally on similar sites, suggesting additional study of post-harvest response is warranted. Results highlight site constraints on both operational and stand productivity in lowlands and will be useful for timber harvesting decision-making and forest management planning if combined with assessment of residual stand growth response

    A simulation study of cane transport system improvements in the Sezela Mill area.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.The South African sugar industry is of significant local and international importance and covers an area in excess of 450 000 hectares. This area yields approximately 21 million tons of sugarcane per annum which is transported almost exclusively by road, from farms to the sugar mills. The industry is under increasing economic pressures to improve its productivity and competitiveness and sugarcane transport in the sugarcane supply chain has been identified as one area where large improvements and associated cost reductions can be made. This is mainly due to the excess in number of vehicles in the inbound transport system, the high relative cost of transport compared to other production costs in producing sugarcane, and the high fixed costs associated with truck fleet operations. A simulation case study of the transport system was completed in 2005 in the Sezela Mill area in which approximately 2.2 million tons of sugarcane is transported per annum over an average distance of 29 km by approximately 120 independently managed vehicles owned by a wide range of hauliers and individual growers. This amounts to an estimated cost of R58 million per annum. This study investigated the potential savings that could occur as a result of a central fleet control system with integrated vehicle scheduling. A scheduling software package named ASICAM, which resulted in significant savings in the timber industry (Weintraub et al, 1996), was applied within the Sezela region. Results suggested that the number of trucks in the fleet could theoretically be reduced by at least 50%, providing that a central office controls vehicle movements and that all hauliers serve all growers in an equitable fashion. In addition, investigations towards decreasing loading times, decreasing offloading times, changing vehicle speeds and increasing payloads by reducing trailer tare mass showed further reductions in the number of trucks required

    Task Planning on Stochastic Aisle Graphs for Precision Agriculture

    Full text link
    This work addresses task planning under uncertainty for precision agriculture applications whereby task costs are uncertain and the gain of completing a task is proportional to resource consumption (such as water consumption in precision irrigation). The goal is to complete all tasks while prioritizing those that are more urgent, and subject to diverse budget thresholds and stochastic costs for tasks. To describe agriculture-related environments that incorporate stochastic costs to complete tasks, a new Stochastic-Vertex-Cost Aisle Graph (SAG) is introduced. Then, a task allocation algorithm, termed Next-Best-Action Planning (NBA-P), is proposed. NBA-P utilizes the underlying structure enabled by SAG, and tackles the task planning problem by simultaneously determining the optimal tasks to perform and an optimal time to exit (i.e. return to a base station), at run-time. The proposed approach is tested with both simulated data and real-world experimental datasets collected in a commercial vineyard, in both single- and multi-robot scenarios. In all cases, NBA-P outperforms other evaluated methods in terms of return per visited vertex, wasted resources resulting from aborted tasks (i.e. when a budget threshold is exceeded), and total visited vertices.Comment: To appear in Robotics and Automation Letter

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production
    corecore