4,461 research outputs found

    Deconfinement transition and dimensional cross-over in the 3D gauge Ising model

    Get PDF
    We present a high precision Monte Carlo study of the finite temperature Z2Z_2 gauge theory in 2+1 dimensions. The duality with the 3D Ising spin model allows us to use powerful cluster algorithms for the simulations. For temporal extensions up to Nt=16N_t=16 we obtain the inverse critical temperature with a statistical accuracy comparable with the most accurate results for the bulk phase transition of the 3D Ising model. We discuss the predictions of T. W. Capehart and M.E. Fisher for the dimensional crossover from 2 to 3 dimensions. Our precise data for the critical exponents and critical amplitudes confirm the Svetitsky-Yaffe conjecture. We find deviations from Olesen's prediction for the critical temperature of about 20%.Comment: latex file of 21 pages plus 1 ps figure. Minor corrections in the figure. Text unchange

    Local-To-Global Agreement Expansion via the Variance Method

    Get PDF
    Agreement expansion is concerned with set systems for which local assignments to the sets with almost perfect pairwise consistency (i.e., most overlapping pairs of sets agree on their intersections) implies the existence of a global assignment to the ground set (from which the sets are defined) that agrees with most of the local assignments. It is currently known that if a set system forms a two-sided or a partite high dimensional expander then agreement expansion is implied. However, it was not known whether agreement expansion can be implied for one-sided high dimensional expanders. In this work we show that agreement expansion can be deduced for one-sided high dimensional expanders assuming that all the vertices\u27 links (i.e., the neighborhoods of the vertices) are agreement expanders. Thus, for one-sided high dimensional expander, an agreement expansion of the large complicated complex can be deduced from agreement expansion of its small simple links. Using our result, we settle the open question whether the well studied Ramanujan complexes are agreement expanders. These complexes are neither partite nor two-sided high dimensional expanders. However, they are one-sided high dimensional expanders for which their links are partite and hence are agreement expanders. Thus, our result implies that Ramanujan complexes are agreement expanders, answering affirmatively the aforementioned open question. The local-to-global agreement expansion that we prove is based on the variance method that we develop. We show that for a high dimensional expander, if we define a function on its top faces and consider its local averages over the links then the variance of these local averages is much smaller than the global variance of the original function. This decreasing in the variance enables us to construct one global agreement function that ties together all local agreement functions

    Modelling default and likelihood reasoning as probabilistic

    Get PDF
    A probabilistic analysis of plausible reasoning about defaults and about likelihood is presented. 'Likely' and 'by default' are in fact treated as duals in the same sense as 'possibility' and 'necessity'. To model these four forms probabilistically, a logic QDP and its quantitative counterpart DP are derived that allow qualitative and corresponding quantitative reasoning. Consistency and consequence results for subsets of the logics are given that require at most a quadratic number of satisfiability tests in the underlying propositional logic. The quantitative logic shows how to track the propagation error inherent in these reasoning forms. The methodology and sound framework of the system highlights their approximate nature, the dualities, and the need for complementary reasoning about relevance

    Computational Scattering Models for Elastic and Electromagnetic Waves in Particulate Media

    Get PDF
    Numerical models were developed to simulate the propagation of elastic and electromagnetic waves in an arbitrary, dense dispersion of spherical particles. The scattering interactions were modeled with vector multipole fields using pure-orbital vector spherical harmonics, and solved using the full vector form of the boundary conditions. Multiple scattering was simulated by translating the scattered wave fields from one particle to another with the use of translational addition theorems, summing the multiple-scattering contributions, and recalculating the scattering in an iterative fashion to a convergent solution. The addition theorems were rederived in this work using an integral method, and were shown to be numerically equivalent to previously published theorems. Both ordered and disordered collections of up to 5,000 spherical particles were used to demonstrate the ability of the scattering models to predict the spatial and frequency distributions of the transmitted waves. The results of the models show they are qualitatively correct for many particle configurations and material properties, displaying predictable phenomena such as refractive focusing, mode conversion, and photonic band gaps. However, the elastic wave models failed to converge for specific frequency regions, possibly due to resonance effects. Additionally, comparison of the multiple-scattering simulations with those using only single-particle scattering showed the multiple-scattering computations are quantitatively inaccurate. The inaccuracies arise from nonconvergence of the translational addition theorems, introducing errors into the translated fields, which minimize the multiple-scattering contributions and bias the field amplitudes towards single-scattering contributions. The addition theorems are shown to converge very slowly, and to exhibit plateaus in convergence behavior that can lead to false indications of convergence. The theory and algorithms developed for the models are broad-based, and can accommodate a variety of structures, compositions, and wave modes. The generality of the approach also lends itself to the modeling of static fields and currents. Suggestions are presented for improving and implementing the models, including extension to nonspherical particles, efficiency improvements for the algorithms, and specific applications in a variety of fields

    Safe abstractions of data encodings in formal security protocol models

    Get PDF
    When using formal methods, security protocols are usually modeled at a high level of abstraction. In particular, data encoding and decoding transformations are often abstracted away. However, if no assumptions at all are made on the behavior of such transformations, they could trivially lead to security faults, for example leaking secrets or breaking freshness by collapsing nonces into constants. In order to address this issue, this paper formally states sufficient conditions, checkable on sequential code, such that if an abstract protocol model is secure under a Dolev-Yao adversary, then a refined model, which takes into account a wide class of possible implementations of the encoding/decoding operations, is implied to be secure too under the same adversary model. The paper also indicates possible exploitations of this result in the context of methods based on formal model extraction from implementation code and of methods based on automated code generation from formally verified model

    Computational predictions of energy materials using density functional theory

    Get PDF
    In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery

    Communication Complexity and Secure Function Evaluation

    Full text link
    We suggest two new methodologies for the design of efficient secure protocols, that differ with respect to their underlying computational models. In one methodology we utilize the communication complexity tree (or branching for f and transform it into a secure protocol. In other words, "any function f that can be computed using communication complexity c can be can be computed securely using communication complexity that is polynomial in c and a security parameter". The second methodology uses the circuit computing f, enhanced with look-up tables as its underlying computational model. It is possible to simulate any RAM machine in this model with polylogarithmic blowup. Hence it is possible to start with a computation of f on a RAM machine and transform it into a secure protocol. We show many applications of these new methodologies resulting in protocols efficient either in communication or in computation. In particular, we exemplify a protocol for the "millionaires problem", where two participants want to compare their values but reveal no other information. Our protocol is more efficient than previously known ones in either communication or computation
    • …
    corecore