2,484 research outputs found

    Aggregated Sparse Attention for Steering Angle Prediction

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.In this paper, we apply the attention mechanism to autonomous driving for steering angle prediction. We propose the first model, applying the recently introduced sparse attention mechanism to visual domain, as well as the aggregated extension for this model. We show the improvement of the proposed method, comparing to no attention as well as to different types of attention.This work was supported by the EPSRC project DEVA EP/N035399/1

    Aggregated Sparse Attention for Steering Angle Prediction

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.In this paper, we apply the attention mechanism to autonomous driving for steering angle prediction. We propose the first model, applying the recently introduced sparse attention mechanism to visual domain, as well as the aggregated extension for this model. We show the improvement of the proposed method, comparing to no attention as well as to different types of attention.This work was supported by the EPSRC project DEVA EP/N035399/1

    PhoneMD: Learning to Diagnose Parkinson's Disease from Smartphone Data

    Full text link
    Parkinson's disease is a neurodegenerative disease that can affect a person's movement, speech, dexterity, and cognition. Clinicians primarily diagnose Parkinson's disease by performing a clinical assessment of symptoms. However, misdiagnoses are common. One factor that contributes to misdiagnoses is that the symptoms of Parkinson's disease may not be prominent at the time the clinical assessment is performed. Here, we present a machine-learning approach towards distinguishing between people with and without Parkinson's disease using long-term data from smartphone-based walking, voice, tapping and memory tests. We demonstrate that our attentive deep-learning models achieve significant improvements in predictive performance over strong baselines (area under the receiver operating characteristic curve = 0.85) in data from a cohort of 1853 participants. We also show that our models identify meaningful features in the input data. Our results confirm that smartphone data collected over extended periods of time could in the future potentially be used as a digital biomarker for the diagnosis of Parkinson's disease.Comment: AAAI Conference on Artificial Intelligence 201

    Modulating interaction times in an artificial society of robots

    Get PDF
    In a collaborative society, sharing information is advantageous for each individual as well as for the whole community. Maximizing the number of agent-to-agent interactions per time becomes an appealing behavior due to fast information spreading that maximizes the overall amount of shared information. However, if malicious agents are part of society, then the risk of interacting with one of them increases with an increasing number of interactions. In this paper, we investigate the roles of interaction rates and times (aka edge life) in artificial societies of simulated robot swarms. We adapt their social networks to form proper trust sub-networks and to contain attackers. Instead of sophisticated algorithms to build and administrate trust networks, we focus on simple control algorithms that locally adapt interaction times by changing only the robots' motion patterns. We successfully validate these algorithms in collective decision-making showing improved time to convergence and energy-efficient motion patterns, besides impeding the spread of undesired opinions

    Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy

    Get PDF
    Autonomous vehicles are becoming central for the future of mobility, supported by advances in deep learning techniques. The performance of aself-driving system is highly dependent on the quality of the perception task. Developments in sensor technologies have led to an increased availability of 3D scanners such as LiDAR, allowing for a more accurate representation of the vehicle's surroundings, leading to safer systems. The rapid development and consequent rise of research studies around self-driving systems since early 2010, resulted in a tremendous increase in the number and novelty of object detection methods. After the first wave of works that essentially tried to expand known techniques from object detection in images, more recently there has been a notable development in newer and more adapted to LiDAR data works. This paper addresses the existing literature on object detection using LiDAR data within the scope of self-driving and brings a systematic way for analysing it. Unlike general object detection surveys, we will focus on point-cloud data, which presents specific challenges, notably its high-dimensional and sparse nature. This work introduces a common object detection pipeline and taxonomy to facilitate a thorough comparison between different techniques and, departing from it, this work will critically examine the representation of data (critical for complexity reduction), feature extraction and finally the object detection models. A comparison between performance results of the different models is included, alongside with some future research challenges.This work is supported by European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project n. 037902; Funding Reference: POCI-01-0247-FEDER-037902]

    Spatial Scattering Modulation With Multipath Component Aggregation

    Get PDF
    In this paper, a multipath component aggregation (MCA) mechanism is introduced for spatial scattering modulation (SSM) to overcome the limitation in conventional SSM that the transmit antenna array steers the beam to a single multipath (MP) component at each instance. In the proposed MCA-SSM system, information bits are divided into two streams. One is mapped to an amplitude-phase-modulation (APM) constellation symbol, and the other is mapped to a beam vector symbol which steers multiple beams to selected strongest MP components via an MCA matrix. In comparison with the conventional SSM system, the proposed MCA-SSM enhances the bit error performance by avoiding both low receiving power due to steering the beam to a single weak MP component and inter-MP interference due to MP components with close values of angle of arrival (AoA) or angle of departure (AoD). For the proposed MCA-SSM, a union upper bound (UUB) on the average bit error probability (ABEP) with any MCA matrix is analytically derived and validated via Monte Carlo simulations. Based on the UUB, the MCA matrix is analytically optimized to minimize the ABEP of the MCA-SSM. Finally, numerical experiments are carried out, which show that the proposed MCA-SSM system remarkably outperforms the state-of-the-art SSM system in terms of ABEP under a typical indoor environment

    LiDAR aided simulation pipeline for wireless communication in vehicular traffic scenarios

    Get PDF
    Abstract. Integrated Sensing and Communication (ISAC) is a modern technology under development for Sixth Generation (6G) systems. This thesis focuses on creating a simulation pipeline for dynamic vehicular traffic scenarios and a novel approach to reducing wireless communication overhead with a Light Detection and Ranging (LiDAR) based system. The simulation pipeline can be used to generate data sets for numerous problems. Additionally, the developed error model for vehicle detection algorithms can be used to identify LiDAR performance with respect to different parameters like LiDAR height, range, and laser point density. LiDAR behavior on traffic environment is provided as part of the results in this study. A periodic beam index map is developed by capturing antenna azimuth and elevation angles, which denote maximum Reference Signal Receive Power (RSRP) for a simulated receiver grid on the road and classifying areas using Support Vector Machine (SVM) algorithm to reduce the number of Synchronization Signal Blocks (SSBs) that are needed to be sent in Vehicle to Infrastructure (V2I) communication. This approach effectively reduces the wireless communication overhead in V2I communication
    • …
    corecore