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Abstract

In a collaborative society, sharing information is advantageous
for each individual as well as for the whole community. Max-
imizing the number of agent-to-agent interactions per time
becomes an appealing behavior due to fast information spread-
ing that maximizes the overall amount of shared information.
However, if malicious agents are part of society, then the risk
of interacting with one of them increases with an increas-
ing number of interactions. In this paper, we investigate the
roles of interaction rates and times (aka edge life) in artificial
societies of simulated robot swarms. We adapt their social
networks to form proper trust sub-networks and to contain
attackers. Instead of sophisticated algorithms to build and
administrate trust networks, we focus on simple control algo-
rithms that locally adapt interaction times by changing only
the robots’ motion patterns. We successfully validate these
algorithms in collective decision-making showing improved
time to convergence and energy-efficient motion patterns, be-
sides impeding the spread of undesired opinions.

Introduction

Human societies are built upon social networks that
form the infrastructure for sharing information, such as
ideas (Leskovec et al., 2009; Orellana-Rodriguez and Keane,
2018), product innovations (Leskovec et al., 2007; Zhong
et al., 2018), and political movements (Polletta and Jasper,
2001). The network metaphor suggests a discrete and static
property (edge/no edge), however, agent-to-agent interac-
tions have certainly different intensities and durations. Spe-
cific characteristics of these agent-to-agent interactions in-
fluence global phenomena, such as consensus formation in
collective decision-making processes or the spread of an epi-
demic (Keeling and Rohani, 2011; Heesterbeek et al., 2015).

The interactions of an individual are key to understand in-
formation spreading processes in its neighborhood. They can
significantly influence its opinions and define its information
spreading capability. Local neighborhoods are relevant, as
shown for example by Christakis and Fowler (2007) who
report that your chances of being obese are probabilistically
characterized by your social network. In turn, obesity as a
global feature of society can also be analyzed based on the
social interactions among individuals.

Furthermore, dynamic individual interactions drive the
emergence of communities (Hess et al., 2016). In general,
social systems have features that develop on different time
scales ranging from micro-seconds to years. Spreading in-
formation travels magnitudes faster than the speed of change
of the underlying network topology. Hence, in simplified
models the topology can be approximated by static net-
works (Krings et al., 2012). Models representing interaction
times may, however, prove to be more powerful to study the
spread of information.

Here, we study the dynamics of information spreading in
large societies as observed in artificial and natural collective
systems. We focus on the timescales of topology dynam-
ics (i.e., community formation) and their impact on global
features. As key parameter of our study we choose the aver-
age and distribution of agent-to-agent interaction times. As
interaction time we define the uninterrupted time spent by
two agents in mutual communication range. The distribution
of the interaction time is also known as edge life distribu-
tion (Yang et al., 2013). Our main inspiration comes from
Meier (1962) who reports the importance of decreased inter-
action times in modern cities Khaluf (2017). We study two
complementary agent behaviors that either (a) share a desir-
able piece of information or (b) trap an undesired piece of
information. In natural systems, such as collective decision-
making in ants (Pratt et al., 2002), trust is virtually taken for
granted and spreading of information maximized. However,
ants tweak their social network when they need to fight an
epidemic (Stroeymeyt et al., 2018). In artificial systems, such
as collective decision-making in swarm robots (Khaluf et al.,
2018; Hamann et al., 2014; Valentini et al., 2016; Rausch
et al., 2018), sharing of information is to be maximized and
in many studies trust is also virtually taken for granted. Only
few works on decentralized error detection focus on identify-
ing and excluding damaged robots (Lau et al., 201 1; Tarapore
et al., 2015). In our study, we assume that not all information
is useful but possibly harmful. We extend the current state
of the art in collective decision-making of artificial societies
by considering how to deal with undesired information. The
focus is on how to modulate agent-to-agent interaction times
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to either boost or impede spread of information.

We investigate our hypothesis using an artificial collective
system, a simulated robot swarm (Hamann, 2018b), that has a
dynamic topology. By using a collective robot system we re-
strict ourselves to local links of directly interacting neighbors.
This spatial restriction allows us to draw relations to models
of human networks for different spatial densities (e.g., urban
vs. rural). Furthermore, simulated robot swarms serve here
as systems that are easy to track and to engineer. We tune the
interaction dynamics of the swarm (e.g., interaction times) to
achieve desired collective behaviors, such as a decision con-
sensus in collective decision-making. We examine the role
of interaction times in a symmetry-breaking problem, that
is, agents need to select between two options of equal qual-
ity. Two parameters are important to optimize: (1) degree of
coherence, the percentage of robots that finally agree on the
same option, in the best case consensus (100% agreement)
and (2) time to convergence, the time to achieve a stable
degree of coherence. The time to converge is particularly
important in the symmetry-breaking type of decision-making,
because both options are of the same quality, hence, further
gathering of information is wasted time and cannot increase
the accuracy of the decision. As commonly assumed in col-
lective decision-making scenarios, we have an instantaneous
exchange of information (opinions) between neighboring
agents. We analyze the role of the interaction time under
two modes (1) offline tuning of interaction times by adapting
the population density externally (Khaluf et al., 2017), and
(2) active tuning of interaction times by a set of proposed
algorithms that exploit robot motion patterns to modulate
the distribution of the agent-to-agent interaction times. The
physical interaction time was highlighted as a key parameter
in the emergence of collective motion behaviors by Stark
et al. (2008).

Approach to modulate interaction times

We use a homogeneous swarm of N simulated robots.
Robots wander randomly in their arena and while moving
they interact with their local neighborhood that is defined
based on their communication range. All robots within com-
munication range are neighbors and interactions are mutual.
Therefore, the robot control algorithm influences the distribu-
tion of agent-to-agent interaction times but also the spatial
distribution of robot density. (number of robots per area).

We consider a symmetry-breaking problem (Hamann et al.,
2012). A binary collective decision-making problem with
options A and B of the same quality. The robot swarm is
asked to achieve a consensus on either one of them. This is
a well-studied problem known from different fields, such as
physics, biology, opinion dynamics, and others.

1

Study setups
Our study consists of the following experiment setups:
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A - interaction time as a function of population density:
In preliminary experiments, we measure and analyze the
dependency of agent-to-agent interaction time changes on
swarm density. We explore possibilities of tweaking interac-
tion times offline by choosing proper swarm densities.

B - boosting spread of desired information in a decision-
making system with majority rule: We apply the major-
ity rule in a symmetry-braking scenario, the spreading infor-
mation is the robots’ opinions, that are in this case desired to
spread widely. We define two sets of experiments here. First,
we use offline tuning of interaction times (i.e., swarm den-
sity). Second, we validate our control algorithm to actively
tune interaction times in order to achieve a system with an
enhanced well-mixed property (i.e., closer to the ideal of a
well-mixed system where the chance of any agent to interact
with any other agent is equal). We modify the robot motion
to improve the diffusion of robots. The result are decreased
agent-to-agent interaction times and an increased chance of
encountering more neighbors, that increase a robot’s opinion
sample. Well-mixed populations are advantageous in collec-
tive decision-making. However, once consensus is reached
the robots may not need to continue their costly motion pat-
tern. We propose an energy-aware algorithm that creates
a global self-awareness of the degree of coherence in the
swarm. Each robot samples opinions of its neighborhood
and measure the degree of coherence. In the case of high
coherence over a long-enough period, robots slow down until
they stop and preserve their current neighborhood as it is not
necessary for the decision-making process to move further.

C - impeding spread of undesired information in a
decision-making system with majority rule:  We con-
sider a heterogeneous swarm with two sub-populations. One
sub-population uses the majority rule as above. The other
sub-population is assumed to be malicious. They contradict
the majority in their neighborhood and adopt the opposite
opinion. In the literature they are called contrarians (Gam-
baro and Crokidakis, 2017; Khalil and Toral, 2019; Hamann,
2018a). First, we show that contrarians reduce coherence.
Second, we show how our proposed control algorithm can
tune interaction times with contrarians and contain them.
Their influence is then limited and the degree of coherence
is increased. We highlight that extending agent-to-agent in-
teraction times can be of a significant benefit in this setup.
This is in contrast to standard setups in collective decision-
making where short interaction times are preferred because
they improve the mixing and spread of opinions.

Motion control algorithms

In the following we describe the different robot control algo-
rithms that we use to modify the motion behaviors of robots
that, in turn, changes their interaction times.
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Algorithm 1: Standard robot control algorithm for col-
lective decision-making using the majority rule.

Algorithm 2: Well-mixed robot control algorithm for
faster opinion sampling in collective decision-making.

1 select initial opinion (uniform (A, B));
while not(end of experiment) do
broadcast own opinion;
if Pry; < Pr. then
‘ switch opinion spontaneously;

else

collect neighbors’ opinions;

if # neighbors is even then

| keep opinion;

10 else
1 L adapt majority opinion;

e ® N R W N

12 diffuse with obstacle avoidance;

Robots move in a gas-like diffusion as they move away
from areas of high robot density to spaces of low density. This
motion mechanism serves as both, obstacle avoidance and
exploration. In each simulation step, a robot collects vectors
from its proximity sensors> consisting of relative distance
and relative angle. A summed vector is used as indicator
towards areas of low density (potential field method). If no
other robots are detected, robots move in a straight line.

Following the standard control algorithm (Alg. 1), collec-
tive decision-making is implemented by the majority rule. We
keep this decision algorithm unchanged for all experiments—
since we focus exclusively on motion patterns and their in-
teraction times. A robot collects the opinions of its neigh-
borhood and switches to (or keeps) the opinion of the major-
ity. We add a probabilistic element by spontaneous opinion
switching with probability Pr. = 0.1 (otherwise majority
rule with probability 1 — Pr. = 0.9). Spontaneous switching
helps to preserve the system’s possibility to explore even
when consensus is achieved. The decision-making process
is continuous as it is active while the robots move around
randomly, see Alg. 1.

We propose an algorithm to provoke a more mixed sys-
tem by modifying the robot motion behavior. The idea is
to increase the average number of neighbors and to reduce
interaction times. Note that any opinion exchange requires a
minimal time to transmit information. We assume this mini-
mal time to be one discrete time step in our experiments (i.e.,
instantaneous opinion exchange). We call this variant the
‘well-mixed algorithm,” see Alg. 2. A robot attempts to move
away from its neighbors, once there can be no relevant infor-
mation exchange anymore (i.e., homogeneous neighborhood).
A robot computes a repulsive velocity vector using relative
distances and angles to its neighbors. A robot is attracted
by neighbors with opposing opinion. Hence, all robots try

2 . ..
the simulated Footbot uses 24 proximity sensors

1 select initial opinion (uniform (4,B)) ;

2 while not(end of experiment) do

3 broadcast own opinion;

4 if Pry, < Pr. then

5 ‘ switch opinion spontaneously;

6 else

7 collect neighbors’ opinions;

8 if # neighbors is even then

9 | keep opinion;

10 else

1 L adapt majority opinion;

12 if Ndiﬁ‘ > 1 then

13 for i=1,7 < Nyydo

14 x = sensor(i).value * cos(sensor(i).angle);
15 y = sensor(i).value * sin(sensor(i).angle);
16 V.X = V.X + X;

17 VYy=Vy+Y;

18 Qattract = atan2(v.y, v.x);

19 compute linear speed from uayrace;

20 else if all neighbors with same opinion then

21 for i=1,i < Nall do

2 x = sensor(i).value * cos(sensor(i).angle);
23 y = sensor(i).value * sin(sensor(i).angle);
24 V.X = V.X + X;

25 VYy=Vy+Yy;

26 Qrepulse = atan2(v.y, v.x);

27 compute linear speed from cuepulse;

28 else

29 L diffuse with obstacle avoidance;

to maximize interaction between robots of different opin-
ion. On the one hand, robots maximize their dissemination
effect by approaching and convincing minorities of robots
with opposing opinion. On the other hand, robots maximize
chances to be convinced of the opposite by their exposure
to robots of opposing opinion. The algorithm pushes robots
from one neighborhood to another avoiding to waste time in
homogeneous sub-populations. As mentioned above, once
consensus is reached robots don’t need to maintain a certain
motion pattern for opinion mixture. In fact, that is a waste of
energy. We propose Alg. 3 as the ‘energy-aware’ algorithm.
Robots exchange opinions in their local neighborhood over
time and use their collected sample to decide when they can
stop their specific motion pattern.

Finally, we propose a robot control algorithm, that tries to
contain contrarians in collective decision-making (see Alg. 4)
called ‘impeding algorithm’. We have two sub-populations:
(1) the standard individuals executing the majority rule (as



Algorithm 3: Robot control algorithm for adaptive inter-
action time based on individual awareness of coherence
degree in collective decision-making.

1 while not(end of experiment) do
Apply decision making using Alg. 1;
fori=1,i < Nneighbors do
if opinion(i)=A then
‘ #Neighbors_A=#Neighbors_A+1;
else if opinion(i)=B then
| #Neighbors B=#Neighbors B+1;

N U R W N

8 Neighbors_Composition=|#Neighbors_A-
#Neighbors_B|/size_local_neighborhood;

9 if simulation_timer % §_t then

10 compute mean fineighborhood Of
Neighbors_Composition;

1 if Mneighborhood = 1 then

12 L start slowing down by d_s at each time step;

13 reset Neighbors_Composition;

14 diffuse with obstacle avoidance at the updated speed;

described in Alg. 1), (2) the contrarians that always adopt the
minority opinion of the neighborhood. Our goal is to limit
the effect of contrarians by containing them. Following the
impeding algorithm, we modify the motion of standard robots
who are neighbors of contrarians. Neighbors of a contrarian
(who may already be affected by its opinion) try to increase
their interaction time with it to prevent contact with other
robots. When standard robots find a contrarian, they encircle
it in rough analogy to immune systems (see footnote 3).

Results

We validate our algorithms by running physics-based simu-
lations using the ARGoS simulator (Pinciroli et al., 2012).
We set an arena of 6 x 8 m? and test swarm sizes N €
{50,100, 200, 300, 400, 500} in a symmetry-breaking col-
lective decision task. Each experiment run is repeated 30
times independently with 2000 time steps each. Tab. 1 gives
the parameter values of both the robot and control algorithms.

A - interaction times as function of swarm density

We study the relation between agent-to-agent interaction
times and swarm densities (robots per area). Knowledge
of this relation can be used to modulate interaction times
offline by setting appropriate swarm densities. Due to lim-
ited space, increased swarm densities may cause cascades
of collision avoidance actions, where robots take longer to
leave their neighborhoods. In Fig. 1a, we show the average
interaction times over swarm size. We keep the area constant,

Algorithm 4: Impeding robot control algorithm to con-
tain contrarians in collective decision-making.

o

while not(end of experiment) do

2 broadcast own opinion;

3 if Pry < Pr. then

4 ‘ switch opinion spontaneously;

5 else

6 collect neighbors’ opinions;

7 if # neighbors is even then

8 | keep opinion;

9 else if (#neighbors odd) & (not contrarian)
then

10 ‘ adapt majority opinion;

1 else if (#neighbors odd) & (contrarian) then

12 L adapt minority opinion;

13 if #contrarian neighbors > 0 then

14 for i=1, i < Neontrarian d0

15 x = sensor(i).value * cos(sensor(i).angle);

16 y = sensor(i).value * sin(sensor(i).angle);

17 V.X = V.X + X;

18 VYy=Vy+Yy;

19 Qlattract_to_contrarian — atanz(v-y, ’U.JZ);

20 compute linear speed from Quagract_to_contrarian’

7 else

2 L diffuse with obstacle avoidance;

Table 1: Parameters used in the simulation.

Parameter ‘ Value
Robot parameters
Type Footbot
Proximity sensor range 7o 0.1 m
Range-and-bearing sensor range 7,4 1.0m
Maximum moving speed 5
Algorithms parameters

Alg. 1

Pr, \ 0.1
Alg. 3

ot 30s
] 0.01 =

hence, increased swarm size means increased swarm density.
Average interaction times and their standard deviation in-
crease super-linearly with increasing swarm size. In Fig. 1b,
we show average interaction times as a function of average
distance between robots. The values are averaged over all
robots and 30 independent runs each. In full correspondence
to Fig. 1a, we observe a decrease of interaction times with
increased robot-to-robot distance.
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Figure 1: The average interaction times as a function of (a) the
population size/density. (b) The average distance between robots
for different densities. Error bars give the standard deviation over
independent 30 runs.
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Figure 2: Comparison well-mixed to standard algorithm. The aver-
age of (a) interaction times and (b) neighborhood size is computed
as a function of the swarm size/density. Error bars give the standard
deviation over 30 runs.

B - boosting spread of desired information

In this set of experiments, robots use the majority rule as
decision mechanism (Alg. 1) with a probability of Pr. = 0.1
for spontaneous option switching. This implements an explo-
ration behavior to keep the swarm adaptive. First, we exploit
only the robots’ (gas-like) diffusion mechanism that we used
above to generate the interaction time (Fig. 1). Second, we
validate our well-mixed algorithm.

In Fig. 2a we compare the interaction times for a swarm
controlled by the well-mixed algorithm to a swarm controlled
by the standard algorithm. Especially for large swarms (e.g.,
N =400 and N = 500), we notice a significant reduction of
interaction times using the well-mixed algorithm. In Fig. 2b
we compare the resulting average neighborhood sizes. There
is a trend to reduced neighborhood sizes using the well-mixed
algorithm, specifically for medium swarm sizes (e.g., N =
200 and N = 300). For large neighborhood sizes (e.g.,
N =400 and N = 500) both algorithms approach saturated
neighborhood sizes of ~ 48 robots. This is the limit due to
densely packed clusters of robots.

In Fig. 3a, we compare the well-mixed to the standard
algorithm in terms of time to convergence. We define time
to convergence using a threshold as the first passage time to
(absorbing) states of more than 90% majority. In our compar-
ison, we notice that with increasing swarm size, robots spend
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Figure 3: (a) The time the swarm takes to converge to an equilibrium,
(b) the degree of coherence reached by the swarm. Both computed
over the different population densities, and under both algorithms
(i) standard, and (ii) well-mixed.

more time to avoid obstacles and they cover less distance.
Due to the high density, swarm-wide connectivity is highly
probable resulting in large connected components. The time
to propagate opinions is reduced compared to sparse densities
when robots need to move around in ‘empty space’ to con-
nect to new neighborhoods. The result is a decreasing time
to convergence with increasing swarm size. Our proposed
well-mixed algorithm reduces the time to convergence signifi-
cantly compared to the standard algorithm. The improvement
(reduction of time to converge) reaches a maximum of 78%
in the case of medium density (/N = 200 robots), and a mini-
mum of 43% in the case of dense swarms (/N = 500 robots).
Best improvements are achieved for medium swarm sizes
(100 < N < 300). With increasing density (e.g., N = 500)
robots cannot move anymore and hence no further improve-
ment is possible.

We use the degree of coherence as a second method to
measure performance. In Fig. 3b, we compare the degree of
coherence for both algorithms (i.e., the standard and the well-
mixed). For high densities (N > 400) coherence doesn’t dif-
fer between the two algorithms because the swarms are fully
connected. Similarly for sparse swarms (N = 50), robots
mix well following the standard algorithm due to sparsely
populated space. For low density (/N = 50) the well-mixed
algorithm is even detrimental to coherence but it converges
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Figure 4: Results for the energy-efficient Alg. 3 for different swarm
sizes, (a) average lifetime of a neighborhood (sub-population of the
swarm), (b) commitment to the two opinions over time.

faster. This is because, in sparse swarms the well-mixed
algorithm maximizes robot diffusion, that decreases robot
interactions compared to the standard algorithm. The well-
mixed algorithm enables the degree of coherence in medium
densities (100 < N < 300) to reach one asymptotically—
i.e., full consensus. The improvement is between 9% and
18% compared to the standard approach.

Next, we study situations towards the end of runs when
high coherence is achieved and it gets irrelevant to maintain
a good mixture of opinions. When robots get aware of a
high coherence by local measurements, they reduce their
motion and hence increase their interaction time with their
local neighborhood. We use Alg. 3 that implements this
energy-efficient mechanism for collective decision-making.
In Fig. 4a, we show the average time of how long a certain
neighborhood configuration (a sub-population of the swarm)
is preserved during the simulation. At the beginning of each
simulation the neighborhood changes often (i.e., short life-
times of neighborhood configurations and short interaction
times). These times increase gradually over time as the sys-
tem achieves higher degrees of coherence. Robots slow down
their nominal velocity by 65, = 0.01 at each time step when
observing full consensus in their neighborhood for a time
window of 300 time steps. As a result neighborhood configu-
rations are preserved for longer times until a large majority
of the swarm stops moving and builds stable neighborhoods,
see Fig. 4a. The degree of coherence reached using Alg. 3
is high for all swarm sizes as seen in Fig. 4b. We also notice
that neighborhoods freeze across almost all sizes of popula-
tions after the swarm has reached a high degree of coherence,
except for swarm size N = 50. For this sparse swarm we
would require larger time windows (i.e., > 300 time steps) to
sample enough neighbors and have a more accurate decision
about the degree of coherence reached at the system level.

C - impeding spread of undesired information

Next, we study collective decision-making with sub-
populations of contrarian robots. As mentioned above, con-
trarians observe the current majority in their neighborhood
and then switch to the opinion of the minority. In general,

in collective systems we assume that sharing information is
necessary and useful or at least not harmful. This implies
that maximizing the number of encountered peers is a key
objective. Minimizing the agent-to-agent interaction time or
limiting it to the duration needed to exchange the information
becomes the desired design feature. Nevertheless, in this
setup we consider contrarians, whose influence may harm the
system by preventing it from achieving a consensus. For such
setup, spreading the contrarians’ opinions need to be limited.
In a first set of experiments, we study symmetry-breaking
when a sub-population of contrarians with percentages of 5%,
10%, and 30% is introduced.? All robots use the gas-like dif-
fusion motion to wander in the arena. The majority of robots
(95%, 90%, and 70%) runs Algo. 1 based on the majority
rule while contrarians follow their ‘minority rule.” Fig. Sa-e
shows, respectively, how the swarm loses its capability of
making a decision caused by the contrarian sub-population
for percentages of 10% and 30%.

In a second set of experiments, we tune the interaction
times of the contrarians’ neighbors in order to contain those
and hence limit their influence to the system, see Alg. 4. We
ignore aspects of how to detect and identify contrarians as
this is out of scope of our study. Methods of fault detection
could be applied (Lau et al., 2011; Tarapore et al., 2015).
Here, we assume that robots detect contrarians immediately.
Following our impeding algorithm, when a robot encounters
a contrarian, it slows down to increase its interaction time
with that contrarian. For a neighborhood with more than
one contrarian, the robot computes a summed vector as an
indicator towards containing all contrarians in the neighbor-
hood. As soon as enough neighbours are available, they build
up a cluster around that contrarian and isolate it from the
rest of the swarm. This behavior triggered in the neighbor-
hood of the contrarian restricts its influence by keeping it
in the same neighborhood for long. In Fig. 5a, we show a
swarm with a small sub-population of contrarians (5%) that
have no considerable impact on the capability of the collec-
tive decision-making system to break the symmetry. This
ability is lost when increasing the size of the contrarians
sub-population to 10% and 30% as seen in Figs. 5b and d.
Figs. 5c and e show the system’s improved capability to make
decisions when applying the containing algorithm. Clearly
the swarm performs better for a contrarian population of 10%.
The improvement is minimal, however, for a contrarian popu-
lation of 30%. This is because a large portion of the swarm is
busy forming clusters around contrarians and too few robots
are left for the actual decision-making task.

Fig. 6 shows the distributions of interaction times for the
standard and impeding algorithm. For high density (N =
400), the interaction times are similar but for all smaller tested
swarm sizes (N < 400) the impeding algorithm increases
interaction times significantly. We notice a wide interval of

3video online: https://youtu.be/zjklEseERAk


https://youtu.be/zjklEseERAk

0.8 o=
- -
£06 700 vt
= | 200 robot
Eoafs, o0 o
S [WxIhps,
02! et EERlleaetoasn
= EEEely
0
0 500 1000 1500 2000

Time

(a) Standard: 5% contrarians
1 1

=50 robot
100 robot

08 200 oot 08
2] 400 robot 2 =
5 5] st
£ 0.6 g ¥ B £ 06 = 100 robot
= . = = =-=n=%] = 200 robot
£ ol € 300 robot

0.4 0.4 8=
£ EO4 R e, |
8 § R

02 02 -

0 0
0 500 1000 1500 2000 0 500 1000 1500 2000
Time Time

(b) Standard: 10% contrarians (c) Impeding: 10% contrarians
1 1

50 robot 5070001
=100 robot =100 robot
08 500 abet 08 500 ab01
§2] —=— 400 robot 0 —#- 400 robot
806 T o6 - .
6. .
£04 Eoq Aedagg
3 8
0.2 0.2
0 0
0 500 1000 1500 2000 0 500 1000 1500 2000
Time Time

(d) Standard: 30% contrarians (e) Impeding: 30% contrarians

Figure 5: Commitment to the two options over time in the collec-
tive decision-making system using majority-rule (a, b, d) with the
standard algorithm, (c, e) with the impeding algorithm.

interaction times using the impeding algorithm. This is a
clear indicator of the emergence of sub-communities with
long interaction times due to the impeding behavior.

Additionally, we compare the standard with the impeding
algorithm using the histograms of interaction times in Fig. 7,
for different swarm sizes. The histograms clearly indicate a
bimodal distribution for the impeding algorithm (red) corre-
sponding to the two sub-populations of contrarian containers
and freely moving standard robots. For lower swarm den-
sities (N < 200), the left peak of the bimodal distribution,
that represents the median of the interaction times among the
standard robots, overlaps with the peak of the standard algo-
rithm (blue). The right peak is generated by containing and
contrarian robots and indicates higher interaction times. Inter-
estingly, for increasing swarm density, the left peak moves to
the left relative to the blue peak indicating shorter interaction
times than for the standard algorithm (while the median of
the complete bimodal distribution of 595.75 is similar to the
median of the standard algorithm, 581.97). This is the im-
peding algorithm’s effect of increasing free space for motion
of standard robots. Containing robots densely cluster with
contrarians consuming only a small area. This allows the
standard robots (left peak) to move quickly and to experience
shorter interaction times.
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Figure 6: Robot interaction times over swarm size for the standard
and the impeding algorithm. Notice the widely spread interaction
times for the impeding algorithm.

Conclusions

With focus on interaction times, we have shown for the exam-
ple of collective decision-making that time to convergence
can be improved by carefully designing the motion patterns
of robots. The mixture of robots with different opinions can
be increased by minimizing interaction times. Following
the city metaphor, we create a hyperactive metropolis. In
the case of malicious robots (here contrarians), we do not
require sophisticated methods of forming and administrating
trust networks. Instead, we have shown that significantly
increased interaction times with these robots—by exploiting
a simple containing strategy designed based on robot motion
patterns—can isolate them and reduce their undesired influ-
ence. Following the city metaphor, we force contrarians into
unhurried spots (e.g., villages) reducing their ability to spread
information. With the proposed energy-aware approach, we
then regulate interaction times online depending on the level
of coherence achieved by the society. Following the city
metaphor, this may correspond to a weekly rest day when
city life is reduced to a minimum, with the only difference
that here the robots reach global awareness of when to sched-
ule that. In future work we plan to test these algorithms on
real robots.
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