2,905 research outputs found

    The Flexible Group Spatial Keyword Query

    Full text link
    We present a new class of service for location based social networks, called the Flexible Group Spatial Keyword Query, which enables a group of users to collectively find a point of interest (POI) that optimizes an aggregate cost function combining both spatial distances and keyword similarities. In addition, our query service allows users to consider the tradeoffs between obtaining a sub-optimal solution for the entire group and obtaining an optimimized solution but only for a subgroup. We propose algorithms to process three variants of the query: (i) the group nearest neighbor with keywords query, which finds a POI that optimizes the aggregate cost function for the whole group of size n, (ii) the subgroup nearest neighbor with keywords query, which finds the optimal subgroup and a POI that optimizes the aggregate cost function for a given subgroup size m (m <= n), and (iii) the multiple subgroup nearest neighbor with keywords query, which finds optimal subgroups and corresponding POIs for each of the subgroup sizes in the range [m, n]. We design query processing algorithms based on branch-and-bound and best-first paradigms. Finally, we provide theoretical bounds and conduct extensive experiments with two real datasets which verify the effectiveness and efficiency of the proposed algorithms.Comment: 12 page

    Efficient Spatial Keyword Search in Trajectory Databases

    Full text link
    An increasing amount of trajectory data is being annotated with text descriptions to better capture the semantics associated with locations. The fusion of spatial locations and text descriptions in trajectories engenders a new type of top-kk queries that take into account both aspects. Each trajectory in consideration consists of a sequence of geo-spatial locations associated with text descriptions. Given a user location λ\lambda and a keyword set ψ\psi, a top-kk query returns kk trajectories whose text descriptions cover the keywords ψ\psi and that have the shortest match distance. To the best of our knowledge, previous research on querying trajectory databases has focused on trajectory data without any text description, and no existing work has studied such kind of top-kk queries on trajectories. This paper proposes one novel method for efficiently computing top-kk trajectories. The method is developed based on a new hybrid index, cell-keyword conscious B+^+-tree, denoted by \cellbtree, which enables us to exploit both text relevance and location proximity to facilitate efficient and effective query processing. The results of our extensive empirical studies with an implementation of the proposed algorithms on BerkeleyDB demonstrate that our proposed methods are capable of achieving excellent performance and good scalability.Comment: 12 page

    EAGLE—A Scalable Query Processing Engine for Linked Sensor Data

    Get PDF
    Recently, many approaches have been proposed to manage sensor data using semantic web technologies for effective heterogeneous data integration. However, our empirical observations revealed that these solutions primarily focused on semantic relationships and unfortunately paid less attention to spatio–temporal correlations. Most semantic approaches do not have spatio–temporal support. Some of them have attempted to provide full spatio–temporal support, but have poor performance for complex spatio–temporal aggregate queries. In addition, while the volume of sensor data is rapidly growing, the challenge of querying and managing the massive volumes of data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a spatio–temporal query engine for querying sensor data based on the linked data model. The ultimate goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL with a set of new query operators in order to support spatio–temporal computing in the linked sensor data context.EC/H2020/732679/EU/ACTivating InnoVative IoT smart living environments for AGEing well/ACTIVAGEEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion

    Efficient top K temporal spatial keyword search

    Get PDF
    Massive amount of data that are geo-tagged and associated with text information are being generated at an unprecedented scale in many emerging applications such as location based services and social networks. Due to their importance, a large body of work has focused on efficiently computing various spatial keyword queries. In this paper, we study the top-k temporal spatial keyword query which considers three important constraints during the search including time, spatial proximity and textual relevance. A novel index structure, namely SSG-tree, to efficiently insert/delete spatio-temporal web objects with high rates. Base on SSG-tree an efficient algorithm is developed to support top-k temporal spatial keyword query. We show via extensive experimentation with real spatial databases that our method has increased performance over alternate techniques

    Geo-Social Group Queries with Minimum Acquaintance Constraint

    Full text link
    The prosperity of location-based social networking services enables geo-social group queries for group-based activity planning and marketing. This paper proposes a new family of geo-social group queries with minimum acquaintance constraint (GSGQs), which are more appealing than existing geo-social group queries in terms of producing a cohesive group that guarantees the worst-case acquaintance level. GSGQs, also specified with various spatial constraints, are more complex than conventional spatial queries; particularly, those with a strict kkNN spatial constraint are proved to be NP-hard. For efficient processing of general GSGQ queries on large location-based social networks, we devise two social-aware index structures, namely SaR-tree and SaR*-tree. The latter features a novel clustering technique that considers both spatial and social factors. Based on SaR-tree and SaR*-tree, efficient algorithms are developed to process various GSGQs. Extensive experiments on real-world Gowalla and Dianping datasets show that our proposed methods substantially outperform the baseline algorithms based on R-tree.Comment: This is the preprint version that is accepted by the Very Large Data Bases Journa
    corecore