16 research outputs found

    Enhanced User Grouping and Power Allocation for Hybrid mmWave MIMO-NOMA Systems

    Get PDF
    Non-orthogonal multiple access (NOMA) and millimeter wave (mmWave) are two key enabling technologies for the fifth-generation (5G) mobile networks and beyond. In this paper, we consider uplink communications with a hybrid beamforming structure and focus on improving the spectral efficiency (SE) and energy efficiency (EE) of mmWave multiple-input multiple-output (MIMO)-NOMA systems with enhanced user grouping and power allocation. It is noted that the optimization of the SE/EE is a challenging task due to the non-linear programming nature of the corresponding problem involving user grouping, beam selection, and power allocation. Our idea is to decompose the overall optimization problem into a mixed integer problem comprised of user grouping and beam selection only, followed by a continuous problem involving power allocation and digital beamforming design. Exploiting the directionality property of mmWave channels, we first propose a novel initial agglomerative nesting (AGNES) based user grouping algorithm by taking advantage of the channel correlations. To avoid the prohibitively high complexity of the brute-force search approach and to address the overlapping beam problem, we propose two suboptimal low-complexity user grouping and beam selection schemes, the two-stage direct AGNES (D-AGNES) scheme and the joint successive AGNES (S-AGNES) scheme. We also introduce the quadratic transform (QT) to recast the non-convex power allocation optimization problem into a convex one subject to a minimum required data rate of each user. The continuous problem is solved by iteratively optimizing the power and the digital beamforming. Extensive simulation results have shown that our proposed mmWave-NOMA design outperforms the conventional orthogonal multiple access (OMA) scenario and the state-of-art NOMA schemes

    ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ํ™˜๊ฒฝ์—์„œ ๋‚ฎ์€ ๋ณต์žก๋„์˜ ๋‹ค์ค‘ ์‚ฌ์šฉ์ž ์‹ ํ˜ธ์ „์†ก์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ์ด์šฉํ™˜.Advanced wireless communication systems may employ massive multi-input multi-output (m-MIMO) techniques for performance improvement. A base station equipped with an m-MIMO configuration can serve a large number of users by means of beamforming. The m-MIMO channel becomes asymptotically orthogonal to each other as the number of antennas increases to infinity. In this case, we may optimally transmit signal by means of maximum ratio transmission (MRT) with affordable implementation complexity. However, the MRT may suffer from inter-user interference in practical m-MIMO environments mainly due to the presence of insufficient channel orthogonality. The use of zero-forcing beamforming can be a practical choice in m-MIMO environments since it can easily null out inter-user interference. However, it may require huge computational complexity for the generation of beam weight. Moreover, it may suffer from performance loss associated with the interference nulling, referred to transmission performance loss (TPL). The TPL may become serious when the number of users increases or the channel correlation increases in spatial domain. In this dissertation, we consider complexity-reduced multi-user signal transmission in m-MIMO environments. We determine the beam weight to maximize the signal-to-leakage plus noise ratio (SLNR) instead of signal-to-interference plus noise ratio (SINR). We determine the beam direction assuming combined use of MRT and partial ZF that partially nulls out interference. For further reduction of computational complexity, we determine the beam weight based on the approximated SLNR. We consider complexity-reduced ZF beamforming that generates the beam weight in a group-wise manner. We partition users into a number of groups so that users in each group experience low TPL. We approximately estimate the TPL for further reduction of computational complexity. Finally, we determine the beam weight for each user group based on the approximated TPL.์ฐจ์„ธ๋Œ€ ๋ฌด์„  ํ†ต์‹  ์‹œ์Šคํ…œ์—์„œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ (massive MIMO) ๊ธฐ์ˆ ๋“ค์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋Œ€๊ทœ๋ชจ ์•ˆํ…Œ๋‚˜๋ฅผ ๊ฐ€์ง„ ๊ธฐ์ง€๊ตญ์€ ๋งŽ์€ ์ˆ˜์˜ ์‚ฌ์šฉ์ž๋“ค์„ ๋น”ํฌ๋ฐ (beamforming)์œผ๋กœ ์„œ๋น„์Šคํ•ด์ค„ ์ˆ˜ ์žˆ๋‹ค. ์•ˆํ…Œ๋‚˜ ์ˆ˜๊ฐ€ ๋ฌดํ•œํžˆ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ์„œ ์ฑ„๋„์€ ์ ๊ทผ์ ์œผ๋กœ ์„œ๋กœ ์ง๊ต (orthogonal)ํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฝ์šฐ, ๋‚ฎ์€ ์‹ค์žฅ ๋ณต์žก๋„๋ฅผ ๊ฐ€์ง€๋Š” ์ตœ๋Œ€ ๋น„ ์ „์†ก (maximum ratio transmission)์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์‹ ํ˜ธ์ „์†ก์„ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ํ˜„์‹ค์ ์ธ ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ํ™˜๊ฒฝ์—์„œ๋Š” ์ฑ„๋„ ์ง๊ต์„ฑ์ด ์ถฉ๋ถ„ํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ตœ๋Œ€ ๋น„ ์ „์†ก์€ ๊ฐ„์„ญ์— ์˜ํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๊ฒช์„ ์ˆ˜ ์žˆ๋‹ค. ์ œ๋กœ-ํฌ์‹ฑ (zero-forcing) ๋น”ํฌ๋ฐ์€ ๊ฐ„์„ญ์„ ์‰ฝ๊ฒŒ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ํ™˜๊ฒฝ์—์„œ ํ˜„์‹ค์ ์ธ ์„ ํƒ์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ œ๋กœ-ํฌ์‹ฑ์€ ๋น” ๊ฐ€์ค‘์น˜ (beam weight) ์ƒ์„ฑ์œผ๋กœ ์ธํ•ด ๋†’์€ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ์š”๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ œ๋กœ-ํฌ์‹ฑ์€ ๊ฐ„์„ญ ์ œ๊ฑฐ์— ๋Œ€ํ•œ ๋Œ€๊ฐ€๋กœ ์‹ฌ๊ฐํ•œ ์„ฑ๋Šฅ ์ €ํ•˜ (์ฆ‰, transmission performance loss; TPL)๋ฅผ ๊ฒช์„ ์ˆ˜ ์žˆ๋‹ค. TPL์€ ์‚ฌ์šฉ์ž ์ˆ˜๊ฐ€ ๋งŽ๊ฑฐ๋‚˜ ์ฑ„๋„์˜ ๊ณต๊ฐ„ ์ƒ๊ด€๋„๊ฐ€ ํด ๋•Œ ๋” ์‹ฌ๊ฐํ•ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜ ํ™˜๊ฒฝ์—์„œ ๋‚ฎ์€ ๋ณต์žก๋„์˜ ๋‹ค์ค‘ ์‚ฌ์šฉ์ž ์‹ ํ˜ธ์ „์†ก์„ ๊ณ ๋ คํ•œ๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ์‹ ํ˜ธ-๋Œ€-๊ฐ„์„ญ ๋ฐ ์žก์Œ ๋น„ (signal-to-interference plus noise ratio) ๋Œ€์‹  ์‹ ํ˜ธ-๋Œ€-์œ ์ถœ ๋ฐ ์žก์Œ ๋น„ (signal-to-leakage plus noise ratio)๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ์ตœ๋Œ€ ๋น„ ์ „์†ก๊ณผ ๊ฐ„์„ญ์„ ์„ ํƒ์ ์œผ๋กœ ์ œ๊ฑฐํ•˜๋Š” ๋ถ€๋ถ„ ์ œ๋กœ-ํฌ์‹ฑ (partial zero-forcing)์˜ ์‚ฌ์šฉ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋น” ๋ฐฉํ–ฅ์„ ๊ฒฐ์ •ํ•œ๋‹ค. ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ๋” ๊ฐ์†Œ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ, ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ๊ทผ์‚ฌํ™”๋œ ์‹ ํ˜ธ-๋Œ€-์œ ์ถœ ๋ฐ ์žก์Œ๋น„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ๊ทธ๋ฃน ๊ธฐ๋ฐ˜์œผ๋กœ ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋‚ฎ์€ ๋ณต์žก๋„์˜ ์ œ๋กœ-ํฌ์‹ฑ ๋น”ํฌ๋ฐ ์ „์†ก์„ ๊ณ ๋ คํ•œ๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ์‚ฌ์šฉ์ž๋“ค์ด ๋‚ฎ์€ TPL์„ ๊ฐ–๋„๋ก ์‚ฌ์šฉ์ž๋“ค์„ ๋‹ค์ˆ˜์˜ ๊ทธ๋ฃน์œผ๋กœ ๋ถ„๋ฆฌ์‹œํ‚จ๋‹ค. ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ๋” ๊ฐ์†Œ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ, ์ œ์•ˆ ๊ธฐ๋ฒ•์€ TPL์„ ๊ทผ์‚ฌ์ ์œผ๋กœ ์ถ”์ •ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ๊ทผ์‚ฌํ™”๋œ TPL์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ˜•์„ฑ๋œ ๊ฐ ์‚ฌ์šฉ์ž ๊ทธ๋ฃน์— ๋Œ€ํ•˜์—ฌ ๋น” ๊ฐ€์ค‘์น˜๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค.Chapter 1. Introduction 1 Chapter 2. System model 10 Chapter 3. Complexity-reduced multi-user signal transmission 15 3.1. Previous works 15 3.2. Proposed scheme 24 3.3. Performance evaluation 47 Chapter 4. User grouping-based ZF transmission 57 4.1. Spatially correlated channel 57 4.2. Previous works 59 4.3. Proposed scheme 66 4.4. Performance evaluation 87 Chapter 5. Conclusions and further research issues 94 Appendix 97 A. Proof of Lemma 3-4 97 B. Proof of Lemma 3-5 100 C. Proof of strict quasi-concavity of SLNR_(k) 101 References 103 Korean Abstract 115Docto

    Data-driven remote fault detection and diagnosis of HVAC terminal units using machine learning techniques

    Get PDF
    The modernising and retrofitting of older buildings has created a drive to install building management systems (BMS) aimed to assist building managers pave the way towards smarter energy use, improve maintenance and increase occupants comfort inside a building. BMS is a computerised control system that controls and monitors a buildingโ€™s equipment, services such as lighting, ventilation, power systems, fire and security systems, etc. Buildings are becoming more and more complex environments and energy consumption has globally increased to 40% in the past decades. Still, there is no generalised solution or standardisation method available to maintain and handle a buildingโ€™s energy consumption. Thus this research aims to discover an intelligent solution for the buildingโ€™s electrical and mechanical units that consume the most power. Indeed, remote control and monitoring of Heating, Ventilation and Air-Conditioning (HVAC) units based on the received information through the thousands of sensors and actuators, is a crucial task in BMS. Thus, it is a foremost task to identify faulty units automatically to optimise running and energy usage. Therefore, a comprehensive analysis on HVAC data and the development of computational intelligent methods for automatic fault detection and diagnosis is been presented here for a period of July 2015 to October 2015 on a real commercial building in London. This study mainly investigated one of the HVAC sub-units namely Fan-coil unitโ€™s terminal unit (TU). It comprises of the three stages: data collection, pre-processing, and machine learning. Further to the aspects of machine learning algorithms for TU behaviour identification by employing unsupervised, supervised, and semi-supervised learning algorithms and their combination was employed to make an automatic intelligent solution for building services. The accuracy of these employed algorithms have been measured in both training and testing phases, results compared with different suitable algorithms, and validated through statistical measures. This research provides an intelligent solution for the real time prediction through the development of an effective automatic fault detection and diagnosis system creating a smarter way to handle the BMS data for energy optimisation

    Benefits and limits of machine learning for the implicit coordination on SON functions

    Get PDF
    Bedingt durch die Einfรผhrung neuer Netzfunktionen in den Mobilfunknetzen der nรคchsten Generation, z. B. Slicing oder Mehrantennensysteme, sowie durch die Koexistenz mehrerer Funkzugangstechnologien, werden die Optimierungsaufgaben รคuรŸerst komplex und erhรถhen die OPEX (OPerational EXpenditures). Um den Nutzern Dienste mit wettbewerbsfรคhiger Dienstgรผte (QoS) zu bieten und gleichzeitig die Betriebskosten niedrig zu halten, wurde von den Standardisierungsgremien das Konzept des selbstorganisierenden Netzes (SON) eingefรผhrt, um das Netzmanagement um eine Automatisierungsebene zu erweitern. Es wurden dafรผr mehrere SON-Funktionen (SFs) vorgeschlagen, um einen bestimmten Netzbereich, wie Abdeckung oder Kapazitรคt, zu optimieren. Bei dem konventionellen Entwurf der SFs wurde jede Funktion als Regler mit geschlossenem Regelkreis konzipiert, der ein lokales Ziel durch die Einstellung bestimmter Netzwerkparameter optimiert. Die Beziehung zwischen mehreren SFs wurde dabei jedoch bis zu einem gewissen Grad vernachlรคssigt. Daher treten viele widersprรผchliche Szenarien auf, wenn mehrere SFs in einem mobilen Netzwerk instanziiert werden. Solche widersprรผchlichen Funktionen in den Netzen verschlechtern die QoS der Benutzer und beeintrรคchtigen die Signalisierungsressourcen im Netz. Es wird daher erwartet, dass eine existierende Koordinierungsschicht (die auch eine Entitรคt im Netz sein kรถnnte) die Konflikte zwischen SFs lรถsen kann. Da diese Funktionen jedoch eng miteinander verknรผpft sind, ist es schwierig, ihre Interaktionen und Abhรคngigkeiten in einer abgeschlossenen Form zu modellieren. Daher wird maschinelles Lernen vorgeschlagen, um eine gemeinsame Optimierung eines globalen Leistungsindikators (Key Performance Indicator, KPI) so voranzubringen, dass die komplizierten Beziehungen zwischen den Funktionen verborgen bleiben. Wir nennen diesen Ansatz: implizite Koordination. Im ersten Teil dieser Arbeit schlagen wir eine zentralisierte, implizite und auf maschinellem Lernen basierende Koordination vor und wenden sie auf die Koordination zweier etablierter SFs an: Mobility Robustness Optimization (MRO) und Mobility Load Balancing (MLB). AnschlieรŸend gestalten wir die Lรถsung dateneffizienter (d. h. wir erreichen die gleiche Modellleistung mit weniger Trainingsdaten), indem wir eine geschlossene Modellierung einbetten, um einen Teil des optimalen Parametersatzes zu finden. Wir nennen dies einen "hybriden Ansatz". Mit dem hybriden Ansatz untersuchen wir den Konflikt zwischen MLB und Coverage and Capacity Optimization (CCO) Funktionen. Dann wenden wir ihn auf die Koordinierung zwischen MLB, Inter-Cell Interference Coordination (ICIC) und Energy Savings (ES) Funktionen an. SchlieรŸlich stellen wir eine Mรถglichkeit vor, MRO formal in den hybriden Ansatz einzubeziehen, und zeigen, wie der Rahmen erweitert werden kann, um anspruchsvolle Netzwerkszenarien wie Ultra-Reliable Low Latency Communications (URLLC) abzudecken.Due to the introduction of new network functionalities in next-generation mobile networks, e.g., slicing or multi-antenna systems, as well as the coexistence of multiple radio access technologies, the optimization tasks become extremely complex, increasing the OPEX (OPerational EXpenditures). In order to provide services to the users with competitive Quality of Service (QoS) while keeping low operational costs, the Self-Organizing Network (SON) concept was introduced by the standardization bodies to add an automation layer to the network management. Thus, multiple SON functions (SFs) were proposed to optimize a specific network domain, like coverage or capacity. The conventional design of SFs conceived each function as a closed-loop controller optimizing a local objective by tuning specific network parameters. However, the relationship among multiple SFs was neglected to some extent. Therefore, many conflicting scenarios appear when multiple SFs are instantiated in a mobile network. Having conflicting functions in the networks deteriorates the usersโ€™ QoS and affects the signaling resources in the network. Thus, it is expected to have a coordination layer (which could also be an entity in the network), conciliating the conflicts between SFs. Nevertheless, due to interleaved linkage among those functions, it is complex to model their interactions and dependencies in a closed form. Thus, machine learning is proposed to drive a joint optimization of a global Key Performance Indicator (KPI), hiding the intricate relationships between functions. We call this approach: implicit coordination. In the first part of this thesis, we propose a centralized, fully-implicit coordination approach based on machine learning (ML), and apply it to the coordination of two well-established SFs: Mobility Robustness Optimization (MRO) and Mobility Load Balancing (MLB). We find that this approach can be applied as long as the coordination problem is decomposed into three functional planes: controllable, environmental, and utility planes. However, the fully-implicit coordination comes at a high cost: it requires a large amount of data to train the ML models. To improve the data efficiency of our approach (i.e., achieving good model performance with less training data), we propose a hybrid approach, which mixes ML with closed-form models. With the hybrid approach, we study the conflict between MLB and Coverage and Capacity Optimization (CCO) functions. Then, we apply it to the coordination among MLB, Inter-Cell Interference Coordination (ICIC), and Energy Savings (ES) functions. With the hybrid approach, we find in one shot, part of the parameter set in an optimal manner, which makes it suitable for dynamic scenarios in which fast response is expected from a centralized coordinator. Finally, we present a manner to formally include MRO in the hybrid approach and show how the framework can be extended to cover challenging network scenarios like Ultra-Reliable Low Latency Communications (URLLC)

    Agglomerative User Clustering and Cluster Scheduling for FDD Massive MIMO Systems

    No full text

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION!!!

    Get PDF
    The full content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition
    corecore