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Abstract

The modernising and retrofitting of older buildings has created a drive to install

building management systems (BMS) aimed to assist building managers pave the

way towards smarter energy use, improve maintenance and increase occupants

comfort inside a building. BMS is a computerised control system that controls

and monitors a building’s equipment, services such as lighting, ventilation, power

systems, fire and security systems, etc. Buildings are becoming more and more

complex environments and energy consumption has globally increased to 40% in

the past decades. Still, there is no generalised solution or standardisation method

available to maintain and handle a building’s energy consumption. Thus this

research aims to discover an intelligent solution for the building’s electrical and

mechanical units that consume the most power. Indeed, remote control and mon-

itoring of Heating, Ventilation and Air-Conditioning (HVAC) units based on the

received information through the thousands of sensors and actuators, is a crucial

task in BMS. Thus, it is a foremost task to identify faulty units automatically to

optimise running and energy usage. Therefore, a comprehensive analysis on HVAC

data and the development of computational intelligent methods for automatic fault

detection and diagnosis is been presented here for a period of July 2015 to October

2015 on a real commercial building in London. This study mainly investigated one

of the HVAC sub-units namely Fan-coil unit’s terminal unit (TU). It comprises

of the three stages: data collection, pre-processing, and machine learning. Fur-

ther to the aspects of machine learning algorithms for TU behaviour identification

by employing unsupervised, supervised, and semi-supervised learning algorithms

and their combination was employed to make an automatic intelligent solution for

building services. The accuracy of these employed algorithms have been measured

in both training and testing phases, results compared with different suitable al-

gorithms, and validated through statistical measures. This research provides an

intelligent solution for the real time prediction through the development of an ef-

fective automatic fault detection and diagnosis system creating a smarter way to

handle the BMS data for energy optimisation.
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Chapter 1

Introduction

“Arise, awake, and stop not until

the goal is achieved.”

-Swami Vivekananda

Buildings are becoming increasingly complex energy consuming systems, compris-

ing several elements such as heating, ventilation, and air-conditioning (HVAC)

systems, lighting systems, security systems, fire alarms, lifts, elevators, closed-

circuit television, and so on. Thus, new buildings are being created with, whilst

older buildings are being retrofitted with building management systems (BMS),

also known as building automation systems (BAS). The BMS is a computerized

control system that controls and monitors building services, plants, components,

devices such as sensors, actuators, valves, dampers, motors, pump, fans, etc. BMS

is defined as “an IT-based solution that extends the capabilities of sensing, con-

trol, and automation hardware to direct automated and/or manual improvements

to system operations utilizing the data from multiple streams [3]. It is a rapidly

growing market with BMS revenues for hardware, software and services projected

to rise from today’s $2.7 billion worldwide to $12.8 billion by 2025 [4]. Thus,

3



4 Chapter 1 Introduction

monitoring building energy, financial reward, and concern for the environment has

been the focus in recent years.

1.1 Benefits and Pitfalls of BMS

Ideally, a BMS assists building managers to understand how their building is

functioning and permits managers to control and adjust the system to optimize

performance. A BMS collects data, can help to visualize it, generate reports, cre-

ate alarms when system failures occur. The BMS aims to manage several units

and their energy demands in an effective way, leading to good quality, informed

decision making, improved performance, and a reduction of energy wastage. A

BMS primarily facilitates good control of individual room temperature, effective

and remote monitoring of building units, targeting energy consumption, improve

plant reliability and life, maintain occupant comforts, computerized scheduling,

effective responses to HVAC-related complaints and provides useful information

related to these assistances. However, due to the manual involvement or inex-

perienced technicians, it can lead to negating effective performance monitoring

of BMS resulting in delayed on forgotten actions taken not been carried out on

broken units, leading to deteriorating equipment, discomfort, energy wastage, etc.

Thus, efficient and effective monitoring of BMS data is a pivotal research area.

Recent research has found that building sectors account for 40% of global energy

consumption [5]. Additionally, in residential and commercial buildings, HVAC

systems alone are responsible for approximately 39% - 41% of the total building

energy consumption [5]. Therefore, the HVAC is an important, as well as complex

system comprising several units such as air handling unit (AHU), variable air

volume (VAV), chiller, boiler, fan coil unit (FCU) and so on. Commercial buildings

generally have one or two major units i.e., a chiller or boiler but will have hundreds

to thousands of small units i.e. fan coil units (depending on the size of building)
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Figure 1.1: The overlapping relationship diagram of the building’s terminal
unit within BMS.

have fitted inside the building. Thus, if a single small unit is not working properly,

it can affect the entire plant tremendously. To accommodate the BMS research

need, this thesis has concentrated on a small but important unit: fan-coil unit’s

terminal unit (TU). Figure 1.1 shows the overlapping relationship from terminal

unit to BMS. What is demonstrated is that the TU is part of the FCU, FCU is

within the HVAC and the HVAC is part of the BMS. The description of these

units is described in the next sections.

1.2 HVAC system

A building’s HVAC system is integrated with three key functions: heating, ven-

tilation and air-conditioning to deliver thermal comfort and provide satisfactory

indoor air quality within acceptable installation, action, maintenance costs, and

maintains the overall building’s heating and cooling performance. HVAC systems

are connected to the BMS and comprise several sub-systems such as a fan coil unit

(FCU), air-handling unit (AHU), variable air volume (VAV), boiler, chiller, etc,
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which interact with each other. Figure 1.2, displays the overall process flow from

data collection through a platform from different building components to the final

feedback generation (detailed in Chapter 3). Henceforth, this work investigated

and analysed the behaviour of a specific HVAC sub-unit detailed next.

FCU

AHU

VAV

Chiller

Boiler Research
and innovation

Cloud serverData acquisition
device

BMS

Feedback signal

HVAC  units

Figure 1.2: The general architecture of BMS system and the relation with
HVAC units.

1.3 Fan coil unit’s terminal unit

A fan coil unit is a specific sub-component or sub-unit of a HVAC system found in

residential, commercial, and industrial buildings. A FCU consists of a heating coil,

cooling coil and a fan or a damper. It is normally ceiling-mounted and controlled

by local thermostats. Depending upon the individual room’s thermostats the

return air temperature may either recirculate internal air or introduce fresh air

along with re-circulated air and discharge fresh air to the room. A typical FCU

schematic is shown in Figure 1.3. Generally, inside a building, a central chiller

and boiler plant distributes cold water to all the cooling coils and hot water to

all the heating coils. If the environment becomes too warm (based on the set
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point temperature or upon user preferred temperature requests inside a building),

the thermostat senses the rise of temperature and signals the chilled water valve

to flow, with cold water then passed through the cooling coil and the cool air

being blown by the fan. If the room temperature becomes too cold (depending

on the local set point or a user preferred temperature setting), the heating coil

starts working in the same way and blows the hot air until the room temperature

reaches the desired level or set-point.

Figure 1.3: A schematic diagram of fan coil unit.

The FCU is an air terminal unit, and such units are popular in larger buildings.

The overall heating and/or cooling air inside the rooms is distributed by the TU.

Thus, the TU is responsible for the final delivery of comfort inside a built envi-

ronment with obvious implications for energy consumption. Here, the research

aims to analyse the behaviour of FCU’s TU and it is represented as TU and some-

times also used interchangeably with FCU throughout the thesis. This research

has closely involved a building management company “Demand Logic (DL) Ltd.”,

who informed the researcher of the research problem from a buildings engineer’s

perspective and engaged on determining the efficiencies of the results. Overall cre-

ating an building engineers insight into the advantage of applied machine learning

outcomes in real life scenarios.



8 Chapter 1 Introduction

1.3.1 Terminal unit’s parameters

The TU data gathers important information related to a building’s behaviour. A

single TU consists of various data streams also known as data parameters which

are considered for this study. There are five parameters: control temperature,

set-point, deadband, heating power, cooling power, and enable signal are the most

significant to represents a single TU behaviours. Thus, these data streams have

been collected by a sensor device (discussed in Chapter 3) implemented by the

company (the research partner) “Demand Logic”. The definitions of these param-

eters are as follows:

• Control temperature [◦C] is measured at a fixed time interval (10 min) by

each TU or in some cases a zone space temperature is used. These are

generally measured by local thermostats/ sensors in the room.

• Set point temperature [◦C] is the desired or target control temperature of the

unit which is set by the operator or the administrator based on the current

demand or depending upon the weather.

• Deadband is the control temperature band or range within the process that

permits a range within which the system tries to keep the requested tem-

perature and creates two separate output ranges of heating and cooling set

point.

• Heating and cooling valve or damper actuator control and feedback signals,

which provides the corresponding power demand.

• Enabled signal to indicate the hours of operation of a unit.

A single poorly controlled TU can be responsible for significant energy wastage

and occupant discomfort. For example, a defective unit can signal a false heat-

ing demand to the boiler, causing the ancillary equipment to activate and begin
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distributing hot water causing rooms to overheat. In the following subsection, pos-

sible TU issues are explained which display different abnormal behaviour (where

the deviation is found between the set-point and measured value of variables)

defined as ‘fault’.

1.3.2 Terminal unit’s issues

There are a number of potential issues that can be identified from TU data analysis.

Various behavioural metrics such as saturation, on-ness and hunting have been

studied for different TUs to identify the prevailing issues.

(a) Saturation can be defined as the proportion of time over a day that the valve

or damper is open to its maximum. Thus the higher the value, the longer a

heating or cooling valve (or damper) is open.

(b) On-ness can be defined as the proportion of time that a terminal unit has any

heating or cooling demand over a 24-hour period (i.e. any time that demand

is greater than 0%). Simply the period something is on.

(c) Hunting is calculated using the set point (mentioned above), control temper-

ature and is a measure of how much this fluctuates over a day.

Even though a TU is considered a “simple device” there can be a multitude of issues

that lead to faulty or abnormal behaviour and require expert building engineering

knowledge through visualisation, experience, guess work, etc. to identify and

conclude the cause of each one of these issues. Through experience some of the

recognized possible causes that can result in faulty or abnormal behaviours are

listed below:

(a) Poor control- Typically, this can happen due to too narrow dead bands bound-

aries being set and/or over aggressive proportional, integral and derivative
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(PID) control. This can result in the TU frequently switching between heat-

ing and cooling.

(b) Poor sensor location- The temperature sensor could be located at a wrong po-

sition. For an instance, in close proximity to heating and/or cooling elements

(e.g. back of a drinks cabinet).

(c) Varying set point- The set point may be varied too frequently, typically due to

occupant discomfort (e.g. user is changing set point for personal preference).

(d) Out of hours operation- A unit may be found to operate out of hours because it

has simply been forgotten (manually operated and left it on) or the operational

time schedule is incorrect.

(e) Incorrect TU sizing for actual demand- It can happen that the load is under-

estimated and a bigger unit should have been installed. This is found more

often in cooling than heating mode.

(f) TU unable to receive adequate flow or upstream temperatures- The flow tem-

perature from the boiler or chiller is not sufficiently high or low to condition

the space, sometimes due to over-ambitious temperature compensation.

(g) Stuck-open valve- Often indicated by a saturation value of 1, it could mean

the valve was fully open over a 24-hour period.

(h) Competition from nearby TUs- A TU is trying to heat the space but an ad-

jacent TU near or in the same space, is trying to cool the same area. This is

generally found where there is poor hierarchical control over a branch of TUs.

(i) Localised effects- This can be caused either due to high solar gains or TU

placed very close to energy-consumption equipment with high internal gains,

like an old lighting fixture or photocopier.
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(j) Unachievable set point- Sometimes it can happen that a user adjusts the set-

point temperature to maximum or minimum value that is simply unachievable

for that environment.

An example of faulty or abnormal and normal or non-faulty TU behaviour in terms

of their control temperature is shown in Figure 1.4. It can be seen that the normal

or non-faulty pattern is quite stable whereas the faulty one is volatile in nature.

The graph of control temperature has been shown for a whole day (17th July 2015)

for one faulty and one non-faulty TU. The x-axis represents the time staring with

midnight to 11 pm on that specified day with a time interval of 10 minutes. The

y-axis represent the specific room temperature in a room of a particular building

(detailed in the case study Section 3.3).
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Figure 1.4: An example control temperature of faulty and non-faulty TU on
a specific day.

Equipment failure and performance degradation of such units in commercial build-

ings often goes unnoticed until it causes an impact on occupant comfort, triggers

an equipment-level alarm, deteriorates equipment life, all resulting in excessive

energy consumption. Therefore, early detection of an unexpected behaviour and

subsequent best practice on remedies can assist with these mentioned issues. All

of which are currently monitored manually by expert building engineers or service
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providers, who managed the BMS. Thus, monitoring TU performance to auto-

identify unusual behaviour is the focus of this thesis.

1.4 Fault detection and diagnosis

Fault detection and diagnostics (FDD) is a process to identify anomalous be-

haviour in the performance of any BMS equipment i.e. terminal unit (TU). Fault

detection aims to recognize a problem that has occurred even if the cause is un-

known and fault diagnosis to indicate the causes of these problems, to the point

where corrective action can be taken. Here, the FDD study began by analysing

TU performance to recognise process problems, e.g. temperature, flows, pressures,

level, power, control signals, etc. Specifically, it is an examination of a TU, which

is not working desirably and unable to maintain the comfortable room tempera-

ture. Technically it can be said that even though the demand response (power)

is high still the control strategy (temperature) is poor and as a result demands

excess power, deteriorates equipment life and impacts occupant comfort.

For example, poor temperature control and unachievable set points due to narrow

dead band settings (e.g. the heating and cooling set-point is set between 20o

C - 21o C and whenever the room temperature goes beyond any of these limits

it demands respective heating or cooling power depends on the rise or down)

results in TU behaviour termed ‘hunting’. In an office if the TU is left on beyond

working hours this is a type of scheduling error results in unnecessary electricity

use with additional power demands needed to maintain the room temperature even

at night when workers are gone home. Room location is also a factor for abnormal

behaviour (e.g. 17o C ambient temperature requests in a room that has continuous

sunshine exposure, or is settled at 26o C ambient temperature in a summer day

where the sensor is fixed near to a cooler room). All these situations can make

FDD complex. Thus, it’s obvious that there can still be a multitude of issues
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leading to ‘faulty’ TU behaviour that require expert building engineer knowledge

to identify each one of these issues as they occur or identify that malfunctions

observed are the summation of individual faults.

The manual TU data investigation and fault-finding process is complex, time con-

suming, requires expert knowledge, expensive and can lead to losing a grip on

problems within a building. Hence bringing automation and intelligence to this

process using data mining and machine learning approaches could be an ideal

solution. The large amount of data is the most powerful component and pro-

vides a foundation towards appropriate decision making. Thus, automation in the

fault detection and diagnosis study relies heavily on input from sensors or derived

measures of performance and defined as automatic fault detection and diagnosis

(AFDD). The term FDD and AFDD has been used interchangeably throughout

the thesis.

1.5 Machine learning approaches

Machine learning (ML) is an evolution of artificial intelligence (AI). ML provides

the intelligence to machines to “learn” how to perform a specific set of tasks

by processing data. For example, the scheduling services in BMS are generally

handled by a control engineer or by building operators. The building scheduling

has been based on some previous available data to make scheduling decisions

automatic such as temperature, power demand, occupancy, and holidays/work

week hours, and so on. This could be done by an experienced professional and

can also be executed automatically, but no matter how efficiently it would be

made, any human’s ability is limited by the volume of data they can process to

keep on top of issues. Whereas, machines can process millions of data points

from thousands of sources. Therefore, machines with suitable algorithms have the

potential to automatically discover devices which are ‘misbehaving’ and making



14 Chapter 1 Introduction

excessive demands on the major plants within a building and not possible to make

decisions based on the complex data by humans.

1.6 Objectives of the thesis

Remote observation and fault identification makes an excellent contribution to

successful BMS in terms of creating future augmentable systems for automatic

problem solving. This approach effectively leads to the empowerment of building

managers who are not always experienced in systems within the buildings they

manage. Remote problem identification and tracking can not only lead to energy

wastage reduction, but also provides further benefits such as increased operational

cost savings and a greater appreciation and understanding of human-building in-

teraction for future smart city applications and future building developments. In

the multi-level and multiple areas of building research, many researchers have con-

tributed research findings/thoughts to solve fault finding issues for different units

which could lead to reduction of energy wastage. Real BMS data automatic fault

identification is difficult due to the complex nature of the data. This generally in-

volves an expert building engineers knowledge to interpret the detected faults of a

unit. It is found from recent development of automatic fault detection and diagno-

sis literature that machine learning is effective in identifying faults automatically,

however, it requires historic data and appropriate method to learn accordingly [5].

Though, there is no standard yet available for energy management in buildings

research.

This PhD research being carried out as a part of a match funded PhD project in

collaboration with Demand Logic and London South Bank University. Here, the

use of machine learning to highly applied topics focuses specifically on remote anal-

ysis of real BMS data from buildings in London, UK. A novel data-driven feature
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extraction method is proposed to represent the high dimensional data into a mean-

ingful low dimensional data steams. The feature extraction method is performed

by discovering events augmenting the proportional integral derivative (PID) con-

troller response curve. Subsequently, the machine learning method is carried out to

classify the ‘faulty’ and ‘non-faulty’ TU behaviour to assist building managers for

fast diagnosis of issues in buildings. The investigation began by analysing historic

data from a small but important on pivotal HVAC sub-component i.e. the ter-

minal unit. The algorithm concentrates on data-driven based approaches, which

could eventually classify faults from the different units (fan coil unit, variable air

volume, air handling unit, chiller, boiler, etc.) regardless of faults. Thus, it can

be used not only to detect and diagnose equipment failures, but also to provide

significant energy savings and well-being impact through preemptive maintenance,

behaviour analysis and predictive building identification.

1.7 Thesis contribution

This thesis involves access to real world data and collaboration with building en-

gineers. A rigorous study on the data parameters, subsequent analysis, feature

extraction, for faulty and non-faulty patterns of individual units is ensured. Theo-

retical development of the methodology for detection and diagnosis, investigation

on how to classify faults automatically and perform predictive analysis on build-

ing data is all performed are presented. ML based methods have been employed

to identify faults automatically and predict future scenarios to anticipate faults

in real time. The entire process has been performed incorporating three learning

stages as follows:

(a) Unsupervised learning

(b) Supervised learning
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(c) Semi-supervised learning

In an unsupervised learning system, the data is unlabelled and unclassified, where

the corresponding output is unknown. The machine must infer the relevance of

the data, since BMS routinely uses complex data to establish system settings.

Unsupervised learning investigates hidden structures in unlabelled data, leading

to one of the most difficult tasks in ML theory. Therefore, a clustering algorithm

has been performed on the HVAC data to identify distinct types of group of

patterns. Thereafter these groups have been used to create pseudo labels on the

historical data set for supervised learning. For supervised machine learning, all the

data elements in the model need to be labelled, so the machine has instructions

on how to classify the data. Thereafter, the semi-supervised learning method

has been employed, which can make use of small amount of labelled data with a

large amount of unlabelled data and automate the whole AFDD process. It falls

between unsupervised and supervised learning. The purpose of using this is to

make as much use of the available historic data and employ labelling processes

to reduce the computational complexity by the labelling process once instead of

labelling new data every time, making it suitable for real-time processing.

1.7.1 Thesis related publications

1. M. Dey, S. P. Rana, S. Dudley. ”Smart building creation in large scale

HVAC environments through automated fault detection and diagnosis”, Fu-

ture Generation Computer Systems, Elsevier, 2018. (Impact factor-5.768)

2. M. Dey, S. P. Rana, S. Dudley. ”Semi-Supervised Learning Techniques for

Automated Fault Detection and Diagnosis of HVAC Systems”, 30th IEEE

International Conference on Tools with Artificial Intelligence (ICTAI-2018),

Volos, Greece, 2018.
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3. M. Dey, M. Gupta, S. P. Rana, M. Turkey, S. Dudley. ”A PID Inspired

Feature Extraction for HVAC Terminal Units” , IEEE conference on sus-

tainablity and technology (SusTech), Phoenix, AZ, USA, 2017.

4. M. Dey, M. Gupta, M. Turkey, S. Dudley. ”Unsupervised Learning Tech-

niques for HVAC Terminal Unit Behaviour Analysis”, IEEE International

Conference on Smart City Innovations (SCI’17), San Francisco, USA, 2017.

5. “Human-Building Interaction Employing Neural Network for HVAC TU’s

Energy Optimisation: A Case Study Based Approach”, Building and Envi-

ronment, Elsevier, (In preparation).

1.8 Thesis outline

The thesis is arranged as follows: The report begins with a literature review on the

field of fault detection and diagnosis for HVAC systems, recent advancements and

different strategy based approaches are presented in Chapter 2. A detailed descrip-

tion of the system architecture and terminal unit data collection, potential terminal

unit issues, the developed big data framework, and the case studies are presented

in Chapter 3. Following TU data collection, a new feature extraction method is

proposed in Chapter 4. A proportional-integral-derivative based event discovery

process has been developed to illustrate the theory of feature extraction method

is provided in this chapter. Subsequently, unsupervised learning (UL) algorithms

are employed on the extracted featured data and explained in Chapter 5. Three

different algorithms have been explored and compared with all obtained results via

statistical measures. Also, a radar graph based visualization method of faulty and

non-fault patterns have been displayed to provide the effectiveness of the feature

extraction along with the clustering for categorization of the distinct patterns and

for labelling all the TU data. Further, supervised learning (SL) has been performed
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on these labelled TU data to identify the specific faults and TU data classification

has been presented in Chapter 6. Three types of classification algorithm have in-

vestigated, compared, and validated through well-established statistical measures

for TU fault identification for a case study. Thereafter, semi-supervised learning

(SSL) algorithm has been performed which is a class of machine learning tech-

nique which makes use of a small amount of labelled data with a large amount

of unlabelled data and is demonstrated in Chapter 7. As in real life scenarios,

ever increasing building data processing is highly complex, thus, SSL is employed

here to make maximum use of the small amount of labelled training data and to

deal with the huge levels of unlabelled TU data to test the building performance.

This method was eventually able to predict faults in real-time through learning

from the small amount of historical data. The algorithm performance has been

validated through the statistical t-test and p-value measurements. Finally the

main contribution of this thesis are summarized in Chapter 8. Some concluding

remarks of this research and future research directions for this BMS research are

also presented.



Chapter 2

Background

“Learn everything that is good

from others but bring it in, and in

your own way absorb it; do not

become others.”

-Swami Vivekananda

2.1 Introduction

Successful fault detection and diagnosis in buildings is a crucial area and a global

problem in the field of energy management [6]. Worldwide, these energy related

problems are becoming more prominent in the building sector as more complex

building needs arise [7]. Although, huge interest and trust is applied to a building

management system (BMS) there are no global specific standards or certificates

available for energy management in BMS. Recently, the International Organization

for Standardization (ISO) 50001:2018 began to integrate a framework of require-

ments for organizations to develop policies for more efficient energy usage but it

is not obligatory to enforce or follow [8]. Building’s energy systems are compli-

cated and are affected by different factors such as building modelling structure,

19
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outside weather conditions, occupant behaviour and so on. All of these factors

have an impact on the different building components i.e. heating, ventilation and

air-conditioning (HVAC) systems. Global research focuses on energy modelling for

different HVAC systems to develop control strategies that would primarily result

in an overall reduction of a building’s energy consumption.

Although in building environments energy usage is accountable for the building

space, lighting system, water heating, HVAC systems etc., it is found that most of

the building’s energy is consumed by the HVAC system [9]. Figure 2.1 summarises,

via a pie chart, a commercial building’s global energy consumption strategy, where

it is noticed that approximately 41% energy is consumed by HVAC system [10, 11].

Thus, if the HVAC is under-performing this is where the greatest losses or gains can

be found. From the literature it is also found that there are several opportunities

to increase energy efficiency in newly constructed buildings which can decrease

electricity consumption between 20% and 50% by including proper design in the

room space, HVAC (20% - 60%), lighting (20% - 50%), water heating (20% -

70%), refrigeration (20% - 70%) and others (e.g., office based equipment and smart

controls, 10% - 20%) [12].

Several developed fault finding approaches in various HVAC units have been dis-

cussed including engineering models, statistical models, machine learning models

leading to energy restoration and diminishing environmental impact [13, 14]. In

this chapter, FDD research over the past two decades is reviewed and presented. It

provides an overall scenario for the already developed FDD methods and finds new

research space in this domain. This study began by focusing on related review work

by researchers in [15, 16, 17]. These state-of-the-art articles have demonstrated

the important aspects of HVAC system throughout the UK, and worldwide and

how it is responsible for energy consumption, corresponding carbon emission, and

also different aspects of energy saving methods in the built environment.
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Figure 2.1: Overall percentage of energy consumption in commercial buildings
by the different building’s component.

2.2 Classification of FDD methods

Fault detection and diagnostic processes have evolved, with notable advancements

made in terms of data mining and machine learning techniques. Dynamic research

and exploration in this field began in the 1980s [18, 19], however from the begin-

ning, practical limitations like scalability and complexity of HVAC systems that

have made FDD extremely challenging. According to the literature, FDD can be

categorized into several groups depending on their application. In [20], FDD has

been classified into three categories after studying around 90 FDD articles prior

to 2005, these are: quantitative model based, qualitative model based, and history

process based approaches. However, with the on-going advancement of FDD re-

search, other developed methods were proposed later and further categorized FDD

into another three groups: analytical based methods, knowledge based methods,

and data-driven based methods [14]. One recent review article has been published

on the FDD classification in building system by Kim et. al. [10]. Here the authors

have reviewed around 200 FDD articles and provide very useful information on

new research trends. It has been shown that around 62% of research have been
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published on history process, 26% for qualitative model based and 12% on quanti-

tative models. Process history based approaches are derived from measured data

obtained from a certain process over a period and fundamental knowledge is de-

rived from it. Further, FDD has been sub-grouped into several categories based on

the underlying process to solve it. By thoroughly analysing these recent classifica-

tion approache here FDD is categorised into three groups: (1) quantitative model

based, (2) rule based, (3) process history based. Further, this process history based

is subdivided into two categories : (1) knowledge based, and (2) data-driven based

(shown in Figure 2.2) depending on the current research requirement.

FDD
Methods

Quantitative
Model Based

Rule Based

Data-Driven
Based

Knowledge
Based

Detailed Physical
Model

Simplified
Physical Model

IF-then

Limits and
Alarms

First
Principles

Expert
System

Pattern
Classification

Casual
Analysis

Statistical
Approach

Feature
Extraction

Machine
Learning

Process History
Based

Figure 2.2: Classification scheme for fault detection methods.

In Figure 2.2, a data-driven based process is highlighted with red dashed block
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and has been employed in this thesis. The requirement of prior knowledge, to-

gether with complex modelling processes and heavy computational load, imposes

severe constraints on the application of the model-based and rule-based methods.

Comparatively, the data-driven methods are affordable since the models normally

depend on the available information of the data-patterns. Various data mining

techniques have been employed as data-driven methods for FDD studies [21, 22].

These categories are summarized as below.

2.2.1 Quantitative model based methods

Quantitative model-based methods use a mathematical model of a system or plant

to achieve analytical redundancy to identify faults and their causes. The theory

behind the system is to build each component to simulate the static and dynamic

behaviour of the system. These model-based approaches must be validated, and

accuracy checked using normal or “non-faulty” and abnormal or “faulty” data

before any real application can be made. Model based approaches for building

systems can be broadly divided into two types [20, 10]: detailed physical models,

and simplified physical models shown in Figure 2.2.

In [23], a detailed physical model was analysed for vapor compression systems.

The experimental study is based on actuators such as the variable speed compres-

sor, variable displacement compressor, and electronic expansion valves of vapor

compression systems. In this FDD study of vapor compression systems, the use of

complicated moving boundary model had been explored. A linear model had been

used to discover the sensitivity of the outputs to fault situations of refrigerant

leakages, evaporator frosting, and compressor valve leakages. Also, the detailed

physical models are obtained using explicit information of the physical connection

that controls the behaviour of any system as explained in [24, 25]. Another de-

tailed physical model-based fault diagnosis system is proposed in [26] to control
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system behaviour in an online manner. Cooling coil faults and leakage in thermal

space were detected, but unknown or new faults have been defined when the differ-

ence between the observed output and state of the HVAC system exceeds a chosen

threshold. Conversely, simplified physical model-based approaches are simple in

terms of mathematical modelling. For modelling, they employ ordinary differ-

ential and algebraic equations rather than employing more complex (i.e. partial

differential) approaches and simplified physical model is also less computationally

heavy. Simplified physical models for temperature control in variable air volume

using a feed forward controller was proposed in [27, 28]. Here, a model has been

enlarged for real time HVAC applications and shows the ability to control signals

according to the system design, but if a large number of issues exist while exam-

ining the cause and effect in the system, then performance deteriorated. Several

researchers have proposed a non-complex or simplified model which reduces the

computational cost of the system.

Shaw et. al. [29], proposed a hybrid model by modifying the simplified physical

model for electric load monitoring to reduce system computational cost. In [30] a

first-principles based model functionality with expert rule was proposed to handle

fault detection in air handling units and results compared with the Gray-box elec-

trical power model. Gray-box is a hybrid approach where constants of an equation

of physical models are learned from the data. It was found in this article that the

compared models have some limitation in unmodeled phenomena results reducing

sensitivity towards robust fault finding. Wu and Sun [31, 32] improved the perfor-

mance of a real time fault detection and diagnostics system using physics-based

auto-regressive moving average model. The parameter estimation and multi-stage

regression models have been combined here and were successfully able to predict

room temperature in office buildings. Another hybrid model to detect faults for

air handling unit was proposed in [33]. Here, the technique was developed by

combining statistical residual evaluation and fractal correlation dimension (FCD)
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algorithms to detect small bias faults especially under noisy conditions and to

identify a small variation of the curve fractal characteristic. This method has

been experimented on the simulated data obtained from the TRNSYS simulation

platform successfully. Further, support vector regression (SVR) is developed for a

model prediction to obtain fault-free references. This technique is limited to de-

tect six fixed biases of the supply air temperature sensor under three different load

conditions. A model based multi-input multi-output (MIMO) control of HVAC

systems has been presented in [34]. This modelling approach is considered the ‘dry

effect’ due to residual condensation after a dehumidification period which had not

been examined earlier was demonstrated by simulation also for a real system and

found performance improved over their previous approach in [35].

2.2.2 Rule based methods

Rule-based perspective for fault detection and diagnosis is appropriate when prior

expert knowledge is available about the system in large scale buildings [36] to draw

a conclusion. The technical information of a system can be applied using specified

rules towards making assumptions about the said unit. The rule based approach

can be handled in three ways, (a) system with partial knowledge by framing IF-

THEN rules, (b) limit and alarms by directly involving measurement from raw

sensor data, and (c) first principles that are implemented in a tree structure. Schein

et. al., [37] developed a FDD system for operational control with partial or limited

knowledge by setting up IF-THEN rules for an air handling unit. Manufacturers

have effectively verified this concept for real time building applications [38, 39].

Schein and Bush [40] expanded the concept by proposing hierarchical rules for

FDD. The limits and alarms approach is mainly used as rule-based AFDD model

to avoid or highlight potential damage in any system [41, 42, 43]. This method,

commonly supported by building automation systems, relies on comparing raw

outputs that are measured via sensors directly that have expected values, but the
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limits for an AFDD system must be defined. Another rule-based solution has been

developed via data mining techniques for energy efficiency by the authors in [44].

Here, the authors proposed a set of energy efficiency indicators to detect anomalies.

Data mining systems have been developed via knowledge extracted from building

sensors to create a set of rules that has been used to make a decision to detect

anomalies in smart buildings. In [45], a transient pattern analysis based FDD tool

has been proposed for a variable air volume system. This model uses temporary

data from five calculated inputs (outdoor and indoor air temperature, damper

position, supply air-temperature, pressure). Here an online fault diagnosis tool

has been developed. The transient trends in calculated variables while the start-up

is compared to the baseline from the regular start-up. Since operating conditions

affect the baseline response, it must be normalized before a comparison is made. A

first principles-based prototype is generated to detect sensor, economizer damper,

and damper actuator faults in an AHU. Then rules which were derived from first-

principles are applied to the economizer, cooling coil, and fan duct system. The

estimation from the first-principles are used to create (if–then) rules that are

assessed by a skilled system using knowledge about the actual process. Generally,

a steady-state procedure is employed to filter out transient data, as the first-

principles method relies on steady-state operating environments [46, 47].

2.2.3 Process history based methods

A process history based approach is an effective and intelligent ways of analyzing

large scale data by identifying recurring patterns and discovering the hidden knowl-

edge from the historical data towards the automatic fault detection and diagnosis

purpose. Due to the recent advancements this method has been further classified

into two sub categories: knowledge based and data-driven based, described below.
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2.2.3.1 Knowledge based methods

Knowledge-based methods in FDD systems consist of observation, analysis and

knowledge discovery from the large data available in smart buildings. The knowl-

edge based methods are further subdivided into three different types: casual anal-

ysis, pattern classification, and expert systems. Signed Directed Graph (SDG) has

been proposed for casual analysis by using the fault symptoms without first prin-

ciple [48], to minimize engineering effects and to make the fault diagnosis system

simple. Capozzoli et. al. [49], implemented artificial neural networks and basic

ensembling methods (ANN-BEM) combined with the peak detection method to

detect the abnormal condition as outlier conditions of a cluster of buildings. ANNs

have characterized a “fault free” hypothesis and a high value represents an anoma-

lous consumption correctly. Detection of evident outliers is performed by coupling

the classification and regression tree (CART) algorithm and generalized extreme

studentized deviate (GESD) algorithm, which tests for outliers in a univariate

data set and approximately follows a normal distribution. Results show the ad-

vantage of this data analysis approach in automatic fault detection by minimizing

false alarms. Yu et. al. [50] established a four-component framework comprising

data mining methods. In addition, they proposed data analysis process, which

begins with problem specification to knowledge understanding. Another frame-

work has been developed by the authors [51] which primarily includes four phases:

exploration of data, partitioning, discovering the knowledge, and post mining. To

resolve the knowledge deficiency of the data, machine learning methods such as the

Hidden Markov Model (HMM) [52], Kernel Machines (KM) [53] are applied, where

knowledge is automatically extracted from data. Pattern classification algorithms

are used to build non-linear correlations between data patterns and fault classes in

the absence of clear model structures. Some well-known pattern recognition based

methods are Bayes Classifier [54], Artificial Neural Networks (ANN) [53, 55], Sup-

port Vector Machine (SVM) Classifier [56], Fuzzy Logic [57] are combined the
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rules to identify faults in building. The major aspect of building research and

their challenges in terms of discovering the knowledge from the rapidly growing

data is studied in [58].

2.2.3.2 Data-driven based methods

The advancement of data-driven approaches for BMS has become increasingly im-

portant in the era of big data research. ML techniques have increased in popularity

in forecasting the system behaviour due to their advantages in capturing nonlin-

ear and complicated relationships. However, it is a major challenge for building

professionals to totally understand the inference mechanism, learn and put trust

into such predictions, as the models developed are typically highly complex and

have low interpretability. Thus, a method has been proposed to describe and as-

sess data-driven building energy performance models [59]. It can assist building

engineers to know the inference mechanism towards prediction. A new metric,

i.e., trust, is proposed as an alternative approach other than conventional accu-

racy metrics to evaluate model performance on actual building operational data.

Conversely, data-driven based methods had built relationships between data pat-

terns and faulty classes of a system [60]. These methods extract the key data

components and transform the dimension of the whole data. Then, these key

components are used instead of the whole dataset for FDD. This approach is fit

for modern HVAC systems employed in commercial buildings. Primarily, data-

driven has been categoriesed into three approaches: statistical, feature extraction,

and machine learning based approaches. Wavelet transformation and short-time

Fourier analysis based data-driven FDD procedures are developed [61]. A fusion

approach using wavelet transformation and principle component analysis (PCA) is

proposed for data-driven fault diagnose of the HVAC air handling unit [62]. It de-

tects faults in large systems using a dimensionality reduction technique that maps
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the data to a lower interested space. In practice, this FDD methodology is appro-

priate for fault detection instead of fault diagnosis. To resolve these constraints,

integrated or hybrid procedures are considered for efficient FDD applications in

large buildings [63]. Magoules et. al. [21], developed an artificial neural network

(ANN) model based on the recursive deterministic perceptron (RDP) ANN to

implement FDD at an entire building level. They proposed a new fault diagnos-

tic procedure for detecting and ranking faulty equipment in the order of fault

risk. A recent article [64] has developed a method based on stochastic model

predictive control (SMPC) and provides a promising solution to complex control

problems under uncertain disturbances. In this paper, a SMPC approach is pro-

posed by actively learning a data-driven uncertainty set from the available data

by ML methods. Along with the energy optimization method, understanding

the occupant’s behavior in buildings for improving the energy efficiency has been

developed in [65]. A methodology has been developed for classifying occupant ac-

tivity patterns from plug load sensor data through a case study of an open-office

building in San Francisco, USA. A data-driven approach had been combined with

physics-based method for forecasting and managing building’s cooling and heating

system [66]. A statistical approach using generalized Cochran-Orcutt estimation

was employed to adjust a linear model for signal data to forecast building’s to-

tal energy consumption. This forecast technique was then adopted and combined

with a model predictive control (MPC) framework to manage heating and cooling

set points based on the generated data from the EnergyPlus model. However, this

method is limited by a fixed dataset for a few hours of data and needs to adapt

appropriately for new and longer data periods [66].
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2.3 Conclusion

From the above literature review it can be seen that the BMS domain research for

fault detection and diagnosis of HVAC system is extremely challenging and vast.

The above mentioned published approaches are mostly restricted to identify spe-

cific fault types (e.g., fan failure, stuck valve). Also, most of the research has been

performed on model generated data and not experimented on real building data.

Most real data research has been found by the American Society of Heating, Re-

frigerating and Air-Conditioning Engineers (ASHRAE). In addition, most of the

FDD methods were developed to solve problems related to specific large units such

as, chillers, boilers, air handling units (AHUs), and variable air volume (VAV), but

none of them focus on small units i.e. fan-coil unit’s TU, even though these small

units also have huge impact on the building’s energy consumption. There is no

standardized method present to deal with building energy consumption related

to faults, therefore, many energy related problems are left undetected or ignored

due to the diverse complex energy systems and uncertain occupant behavioural

effects on different building. Additionally, the large number of sensors installed

in a building for data gathering keep on processing data in real-time basis, but

the location of these sensors are not accurately provided. So manual monitoring

and detection of specific fault types are not ideal solutions for performing AFDD

efficiently. The building automation system or BMS is trying to solve this core

problem and BMS data analysis is novel in that context. Primarily, data under-

standing is the most important phase to gain insights into the whole system and

provide potentially helpful information for further actions. HVAC system consists

of several units (AHU, VAV, chiller, boiler, FCU etc.), where each of them are

different in nature from each other in terms of physical structure as well as work-

ing principles. Thus, controlling and monitoring every unit immediately while the

faults occur with a solitary manual method is burdensome for the building experts

or the service provider who maintain BMS of a building.
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In this thesis, the holistic analysis of a HVAC system highlights a range of common

faults in small equipment, i.e. the FCU’s terminal unit. It is one of the most

challenging units to deal with as these small units are in their thousands in a

building and if one of them is not working desirably it could have negative effects

on the main plant. Also, they can go unnoticed and bring major impact on energy

consumption with such a high number of installations. In fact, characterising

terminal unit behaviour using real data has not been given much attention in the

current research since they are so plentiful, drawing the attention of this study.

Major concern of this investigation is to provide an intelligent and general solution

for the building operation and maintenance to deal with any type of faults in this

terminal unit.





Chapter 3

System architecture and case

studies

“The world is the great

gymnasium where we come to

make ourselves strong.”

-Swami Vivekananda

3.1 Introduction

Large commercial buildings have more complex energy or power demands and

could save on losses if the HVAC unit’s or any other heavy units are monitored

continuously. In a building infrastructure, BMS collects the data from the different

physical systems via sensors. BMS provides information related to HVAC units (as

well as other units) and the behaviour is mentioned by an expert building engineer

or the system provider over time. With human involvement faulty behaviour

monitoring of each units can be sometimes ignored or ‘best practice not followed’

for long time periods that causes significant energy losses. Therefore integration

33
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of resilient intelligence in the built system can help in making an effective building

fault detection automation system [67].

In this chapter, the framework for the FDD building system will be explained.

Here, the framework is built by a two stage system: (1) the BMS data collection

platform previously developed by the company (Demand Logic Ltd.), (2) the key

feature extraction of the BMS data and integration with machine learning tech-

niques from real buildings, the PhD work. Combining these two aspects of the

BMS study reveals a successful approach in building automation systems, which

aims to embed human-like intelligence in this field. The description of the pro-

posed framework for data accumulation is explained, which involves data gathering

from the company provided by a dedicated cloud database and the typical big data

processing set-up for performing this experiment. Furthermore, the details of two

case studies along with a reference floor plan are included later this chapter.

3.2 Proposed framework

The proposed automatic fault detection and diagnosis (AFDD) framework of the

entire system is shown in Figure 3.1. This displays step wise development of the

system architecture such as data storage, retrieval, analysis, visualization, and

support for decision making. Initially, the building data is transferred to a cloud

internet through a secured gateway from all of the equipment on the dedicated

BMS network. This provides the pivotal information with time data and making

it available for pre-processing. The data is first understood i.e., where it comes

from, what are the parameters associated, dates and times, etc., and the pre-

processes required to incorporate machine learning for different unit’s behaviour

identification. Then, an automated analysis of exceptional behaviours has been

made by the machine learning algorithm so that individual pieces of equipment
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can be singled out for attention. These exceptions are raised as notification actions

to the building manager to investigate further in details.

Figure 3.1: A framework of the system architecture in this experiment.

3.2.1 Data retrieval process

The data acquisition device (DAD), which acts as a gateway to connect an existing

building management system to a secure internet service, is already installed in

the buildings under test and is shown in 3.2. The connection can be completed in a

single site visit which will take no more than 3 hours in total by the Demand Logic

(DL) team. Once this connection is established the remaining set-up is completed

remotely again by the DL team. Demand Logic Ltd. is a BMS service provider

for several buildings in London and is the partner company for this match funded

PhD project. This data gathering process is completed within 24-48 hours and

it creates a virtual asset model of all of the equipment on the BMS network and

every single data point as BMS data. The BMS data is then extracted via a single
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embedded PC connected to the BMS network as a network node (thus the device

needs to be given an address on the network, the detail of this depends on the

type of BMS). Currently a PC Engine 2D13 ALIX embedded PC is used by the

company. The embedded PC is also connected to the internet using either the

buildings existing Internet connection or through a mobile network router.

Figure 3.2: Data acquisition device (DAD): a company made device for build-
ing’s data collection.

3.2.1.1 Data collection process

For the data collection an embedded PC (2D13 ALIX) contains implant software

that is used as follows:

1. Obtain a map of the BMS network. This includes all the:

• Local Area Networks (LANs) on a BMS network (a BMS network is

more accurately called inter-networks and consists of multiple LANs).

• Devices on a LAN (a single device may relate to one or many pieces of

building services equipment).

• Data points on a device. These can be binary or analogue control

signals, feedback signals or settings.



Chapter 3 System architecture and case studies 37

For each of the LANs, devices and data point the text label and numerical

ID is obtained.

2. Polling the values of the data points (typically at intervals of 30 minutes data

point type and, by inference, how frequently values are likely to change. For

example: the control and feedback signals are polled more frequently while

the settings are polled less frequently).

3. Store/buffer the data if the internet connection is lost.

4. Securely send the data to the company connected Cassandra cloud servers.

It has been developed so that a single hardware device can acquire large volumes

of data without impeding the operation of the existing BMS. In largest single

properties approximately 180,000-200,000 data points are collected every ten min-

utes. That’s seven billion data values a year on the performance of each of these

buildings without affecting the automated control of these buildings. This data

collection process is carried out as a part of DL’s commercial engagement and the

data stored in their secured cloud database. These data are then accessed and

any subsequent data analysis and machine learning research has taken place in

the University lab for this proposed work and is explained in further subsections.

3.2.2 Typical lab set up for parallel processing

The implementation and performance of the proposed method (data analysis and

machine learning) rely on the processing architecture in place and is shown in

Figure 3.3. The architecture for this work is built for real-time streaming and

distributed computing for the large amount of data processing in parallel. To do

this, the processing architecture comprises Apache Spark [68], which is an open-

source cluster computing framework that enables the scalability and fault tolerance

of Map Reduce (programming model for handling huge and unstructured data in
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parallel) using resilient distributed data-sets (RDDs). A RDD is a group of objects

partitioned through a set of machines that can be reconstructed if partition is lost.

Spark in memory runs up to 100 times faster for certain applications by allowing

user programs to load data into a clustered memory and querying repeatedly. It is

highly suitable for machine learning algorithms [69, 70]. Spark requires a cluster

manager and a distributed storage system. Here Spark version 2.0 is used with 5

CPU core of 8GB memory each is set-up by one master and four workers and the

connection of the distributed storage with the Apache Cassandra interface. The

experiments have been performed using 64-bit Java version 8. By using this set-up

the computational time become four times faster than normal processing.

Master

Worker 1

Worker 2

Worker 3

Worker 4

Figure 3.3: Set-up of parallel processing architecture.



Chapter 3 System architecture and case studies 39

3.2.2.1 Data characteristics

The BMS data used follows the characteristics of ”4V ” [71], i.e., volume, variety,

velocity, and value which reflects the big data characteristics in nature. All these

pre-defined characteristics which are related to these BMS data explained below:

Data Volume: The data is continuously generated and increasing in volume. In

this experiment, more than 50 million data points are considered.

Data Variety: The data type is not traditionally structured in nature, but on

standard wise mixed of structured, semi- structured, and unstructured for-

mats. There are six types of data are included such as, time stamp, voltage,

temperature, binary signal on and off. This complete set of different at-

tributes make a composite structure which needs a complex processing logic

to handle the aggregation.

Data Velocity: The speed of the data flow is very fast. The massive and con-

tinuous data is stored in a Cassandra cloud from the source device (here,

DAD). Approximately one million data points are gathered every day for a

single building, which help in making valuable decisions that provide strate-

gic advantages after handling the data velocity.

Data Value: These data are as valuable as the building outcomes. It provides

awareness of the behaviour of TUs, which increase the potential to imple-

ment and improve fault analysis, decision making capabilities and measure

faulty equipment for diagnosis and energy saving possibilities. Therefore,

this determine the ultimate value of the collected data.

As mentioned in Chapter 1, six different parameters (set point, dead band, control

temperature, enabled, heating effort, cooling effort) are specifically selected for

this work. Based on these parameters the demand and the control strategies are
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varied and deal with the real time TU issues as mentioned in Section 1.3. The

buildings under test raw data comprises information such as, time stamp, voltage,

temperature, valve opening percentage, etc. To process these real data there are

several problems as, would be expected in real environments, different sampling

rates for different attributes, variable arrival time, missing values for intermediate

time stamps, etc. Therefore, the TUs with the missing data are filtered and linearly

interpolated to re-sample data at regular ten minute time intervals throughout this

investigation process. This approach can be used in other settings.

3.3 Case studies

The case study is based on two large commercial buildings in central London,

U.K. The investigation began with TU data collection for fan coil units (FCU)

from these real buildings over a specific period from July 2015 to July 2018. Ini-

tial experiments started with one building’s historic data from the year of 2015

and the entire experimental study has been based on these data by visualizing

the characteristics and discovering patterns. Data from 2016 to 2018 period has

been employed to perform further experiments such as, seasonal analysis and fault

prediction. A floor plan for all FCUs distribution across the first floor is displays

in Figure 3.4 to show the actual floor-wise FCUs positions that are pointed by a

blue box in the figure.

3.3.1 Case study-1

The building for case study-1 was built in 1960 (London), which was renovated

later in 2009. It covers 149,000 sq. ft. for offices and 8,000 sq. ft. for retail

space. This building has seventeen (17) floors with seven hundred and thirty

one (731) terminal units distributed across the different floors. The floor plan



Chapter 3 System architecture and case studies 41

FCU

Figure 3.4: Floor plan for all FCU’s distribution across first floor- for case
study-1.

drawing of this building is observed closely to understand relationships between

HVAC TUs, rooms, spaces, and other physical features at one level of a structure.

There are 44 FCUs fitted in a floor area. In this building out of 731, 723 TUs

are operating normally and most of them are well maintained thus it is considered

as a well operating building. Therefore, this research has began by investigating

the behaviour of the TU of this building. Initial testing started from the year of

2015’s data after 17th July and continued till July of the year of 2018’s data. The

2015’s data has been investigated thoroughly and used for the training and testing

purpose. Thereafter, all the 3 year data have been used to classify TU behaviour
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and to perform real time prediction. In addition to this case study, to investigate

the robustness of the AFDD system, another building has been taken into account

and is described subsequently.

3.3.2 Case study-2

This building comprises of seven floors and all together five hundred and sixteen

(516) TUs across the different floors. Each floor plan comprises HVAC TUs, rooms,

spaces, and other physical features. This building’s units are comparatively bad

behaving to case study-1. Approximately, 490 TUs are operating properly among

all TUs. Thus, this building is chosen as the second case study to identify different

TU behavioural patterns. The TUs of this building have been used for automatic

fault detection and diagnosis and seasonal analysis for semi-supervised learning.

This test has been performed to validate the robustness of the proposed methods

for different buildings. The experiment, for this case study began from 1st of

January 2018 until 31st July 2018. The details of the chosen data for the specific

experiment is tabulated in Table 3.1

Table 3.1: Building’s data details for both the case studies

Buildings
Total
TUs

Operating
TUs

Period
from

Period
to

Experiments

Case study-1 731 723 17/07/2015 31/07/2018
Unsupervised,

Supervised, and
Semi-supervised

Case study-2 516 490 01/01/2018 31/07/2018 Semi-supervised

3.4 Conclusion

The chapter provides a summary and appreciation of the system architecture and

data collection provision. The architecture provides a stable baseline into which
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incoming data can be pre-processed, managed and the effectiveness of the ma-

chine learning methods monitored. The details of the data gathering have been

provided by the company using DAD through a specific gateway is elaborated.

The characteristics of these collected data has been explained. Although the work

is conducted on two specific case studies over a given time, initial experiments

began by investigating the daily data of 17th July 2015 and then progresses to

week, month, and yearly data over a period of three years. From this date the

data has been gathered, analysed, tested and considered as historic/old data to

learn the pattern via ML models for fault identification in this thesis. Thereafter,

details of the proposed feature extraction of these collected HVAC terminal unit

data is presented in the next chapter.





Chapter 4

Proposed feature extraction

“Take up one idea, make that one

idea your life, think of it, dream of

it, let the brain, muscles, nerves,

every part of your body be full of

that idea, and just leave every

other idea alone. This is the way

to success.”

-Swami Vivekananda

4.1 Introduction

Building data - the key challenges associated with a building’s ‘big data’ is how to

condense the information contained therein to be suitable for modelling without

incurring notable information loss. In the real world, data is coming from hetero-

geneous sources and are subjective, hence not fit for purpose, thus interpretation

of data knowledge is difficult. To deal with the data deluge and make the best pos-

sible use of the available data, building researchers look to the ever increasing data

45
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volumes on trends thus rolling micro-scale management of the data. Improvement

and informed strategies require multi-disciplinary approaches in order to use the

best of building research fields to implement real-world problems.

In this chapter, the current explosion of data volume, recording and attributing,

has initiated the expansion of many big data platforms along with parallel data

analytic procedures and machine intelligence techniques. The quality of the raw

data is not always appropriate in form due to the lack of collaboration, standards,

etc. (e.g. data are not always in the correct format, missing values, and so on).

This happens due to the manual installation process in buildings, which can cause

significant complication when dealing with fault identification of associate units.

So, the data produced in whatever form is pivotal to the whole system. Conversely,

huge datasets might produce worsening performance in data analytic understand-

ing. Thus, this has pushed towards data dimensionality reduction procedures, and

unfortunately not always with better results [72]. The presence of time series ter-

minal unit (TU) data increases computational costs due to the explosion in input

dimensionality (potentially hundreds or thousands of samples instead of a single

value) and makes it difficult to interpret and exploit knowledge in their current

format. Thus, in this work a milestone was to reduce the dimension of the datasets

to represent the data. For this purpose, a novel feature extraction method is em-

phasised [73] to transform the data into a lower dimensional space in a unique way.

The whole process is developed by sets of application-dependent features; such a

process is also known as feature engineering. This process is mandatory to min-

imize computational overhead of the system and is the intermediate step in this

thesis, to create an effective machine learning model for the proposed automatic

fault detection and diagnosis (AFDD) study explained below.
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4.2 Proposed feature extraction method

An ‘intelligent’ feature extraction method [73] is proposed to deal with the avail-

able high dimensional terminal unit (TU) data. It is an ‘attribute reduction pro-

cess’, which projects datasets of higher dimension into a smaller number of dimen-

sions intended to be informative, non-redundant, facilitating subsequent learning

and for improved on automation. This data-driven feature extraction method is

accomplished based on the six TU parameters: control temperature, set point,

deadband, heating effort, cooling effort, and enable signal have previously been

described in Section 1.3.1. These time series data is collected at 10 minutes in-

terval throughout a day by a secured gateway (described in 3.2.1). The proposed

feature extraction method has been employed by considering three different events

from the area under the control temperature and the corresponding power curves

of a single TU data. The events are divided into three different stages based on

their flow during a whole day (24hrs) described as follows:

1. Event discovery stage

2. Event area calculation stage

3. Event aggregation stage

4.2.1 Event discovery stage

Event discovery is inspired by the proportional integral derivative (PID) controller

response curve [74] as shown in Figure 4.1. PID is a combination of proportional,

integral and derivative control, with the combined operation of these three con-

trollers provides control strategy for the output of the process plant. A PID

controller manipulates the process variables such as pressure, speed, temperature,
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flow, etc. and is a control loop feedback mechanism to accurately control the pro-

cess, remove oscillations and increase efficiency. It is extensively used in industrial

control systems to regulate the process variables. Proportional or P-controller

gives a controller output that is proportional to current error. Integral or I-control

integrates the error over a period until the error reaches to null. With derivative

or D-control the error changes rate with respect to time and can react once the

set-point has changed.

A typical step response curve following a controller responds to a set point alter-

ation is shown in 4.1. The curve rises within a given period from 10% to 90% of the

final steady state value in a time known as the rise time. The percent Overshoot

is the amount that the process variable overshoots the final value, expressed as a

fraction of the final value. The settling time is the time required to settle within

a certain percentage (commonly 5%) of the final value. The steady-state error is

the ultimate difference between the process variable and set point. Dead time is

a delay between when a process variable changes, and when that change can be

observed. For instance, if a temperature sensor is placed far away from a cold

water fluid inlet valve, it will not measure a change in temperature immediately

if the valve is opened or closed. Dead time can also be caused by a system or an

output actuator that is slow to respond to the control command, for instance, a

valve that is slow to open or close, can cause dead time. A common source of dead

time in HVAC systems is the delay caused by the fluid flow through pipes. PID

controllers minimize the error over time by adjusting a control variable and hence

produces output that is applicable to plant control devices.

Based on the response curve shown in Figure 4.1, the pre-processed data streams

retrieved from an individual TU are divided into different events in an event dis-

covery stage. In this stage, the events are selected from control temperature and

corresponding power effort data streams. Inside a building, when the heating and
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Transient
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Steady State Error
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Dead
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Overshoot

Figure 4.1: PID controller response curve.

cooling units are started during normal operational hours, the temperature be-

gins to change depending upon the environmental request. Therefore, two types

of events, heating event and cooling event are selected depending on the corre-

sponding power demand at that time instance. Based on the control temperature

variations with respect to the set point value, the data stream is divided further

into four different stages: event start, response delay, goal achieved, and event

end, which happen in a single day. A single day TU’s event discovery stages are

divided into four stages are described below and displays in Figure 4.2.

1. Event start (ES) : An event start is assumed to happen when the BMS is

first switched on a particular day (enabled signal gets switched on) and the

time instant when the temperature starts to change.

2. Response delay (RD) : It has been mentioned previously that due to the pro-

cess variable delay during the dead time, the temperature starts to respond

only after a certain delay from the previous point when the BMS is switched

on and this event is termed as response delay. This is essentially the time
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spent by the TU during dead time as shown in Figure 4.1. The delay is an-

ticipated when the temperature starts to respond only after a certain delay

from the previous point after enabling BMS.

3. Goal achieved (GA) : A goal achieved event is assumed to happen when the

control temperature reaches the desired set point. GA can be considered as

the time instant when the process variable reaches the steady state, or final

value. This is essentially the time spent by the TU during rise time as shown

in Figure 4.1.

4. Event end (EE) : Once the control temperature reaches the set point, it may

either continue to be within the dead band till it exceeds the dead band, and

an event end is supposed to happen at that time instant. This is essentially

the time spent by the TU in the steady state and there could be a percentage

overshoot above the final set point value as shown in Figure 4.1.

Figure 4.2: Event discovery process of one day TU.
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In Figure 4.2, pink colour indicates the heating power demand and blue colour

indicate cooling power demand for both the control temperature (in degree centi-

grade) and associated power demands (in kilowatt) of a whole day (for 24 hrs).

The different events are also indicated by arrow in the control temperature graph

and for power the dotted lines are drawn to show different events. In this stage

four events have been discovered to represent the temperature as well as power

variation throughout the day for both heating and cooling activity.

4.2.2 Event area calculation stage

After discovering the appropriate heating and cooling events, the estimated area

under the temperature and power curve for each event has been calculated. Subject

to the event type area calculations are carried out respectively for both heating

(H) and cooling (C) events. In effect, six areas (three from temperature and three

from power curve) for each heating event and similarly, six areas for each cooling

event are calculated. Altogether twelve different areas are derived from all the

daily TU data.

The area (AE) beneath the curve f(x) at every time interval ∆x is given as:

AE =
n∑
i=0

f(xi)∆x (4.1)

In a heating event, the area calculations for temperature are indicated byAH1 to AH3

and for power indicated by AH4 to AH6 . Likewise for a cooling event, the area cal-

culations for temperature are indicated by AC1 to AC3 and for power are indicated

by AC4 to AC6 . After these areas have been computed, they are normalized to ob-

tain the final feature values as FH1 to FH6 and FC1 to FC6 as denoted by Equations

(4.2) to (4.5).

The area calculations for a heating events are shown as:
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FH1 =
AH1

TH1

, FH2 =
AH2

TH1

, FH3 =
AH3

TH2

where, TH1 = max(AH1 + AH2)

and, TH2 = max(AH3)

(4.2)

FH4 =
AH4

PH1

, FH5 =
AH5

PH1

, FH6 =
AH6

PH2

where, PH1 = max(AH4 + AH5)

and, PH2 = max(AH6)

(4.3)

The area calculations for a cooling events are shown as:

FC1 =
AC1

TC1

, FC2 =
AC2

TC1

, FC3 =
AC3

TC2

where, TC1 = max(AC1 + AC2)

and, TC2 = max(AC3)

(4.4)

FC4 =
AC4

PC1

, FC5 =
AC5

PC1

, FC6 =
AC6

PC2

where, PC1 = max(AC4 + AC5)

and, PC2 = max(AC6)

(4.5)

4.2.3 Event aggregation stage

Multiple heating and cooling events can occur during a single day therefore, all

the events of a given type must be aggregated to represent the averaged values.
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Thus, the next step in the feature extraction process is event aggregation. The

final aggregated features can be shown as:

FHk
=

1

n

n∑
i=1

(FHki
) (4.6)

FCk
=

1

n

n∑
i=1

(FCki
) (4.7)

In Equations (4.6) and (4.7), k denotes the number of events and n denotes total

number of occurrences for each event in both the heating and cooling event type.

Thus, a single day TU data can be represented using twelve features for both

the heating and cooling events. This stage will create the final feature vector for

machine learning application to identify different fault from the TU data.

4.3 Event-wise feature mapping

The proposed feature extraction algorithm (presented in Equations (4.2)-(4.5))

aims to reduce, measure, and build derived values from these initial datasets and

is intended to be informative and non-redundant, aiming to facilitate subsequent

learning and generalization steps. The raw TU data for the control temperature

and power altogether contains two hundred eighty eight values to represent a

single TU, is now transformed into twelve-dimensional (FC1 to FC6 and FH1

to FH6) value to represents the same TU in 24 hours. The visualization of these

multivariate features in a form of 2-dimensional chart for a single TU are illustrated

by radar chart or graph in Figure 4.3.

This radar graph shown in Figure 4.3 is a circular display with twelve different

quantitative axes. Each axis represents a feature which signifies the fluctuation of
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Figure 4.3: Description of radar graph.

the temperature and power. The centre of the radar is zero valued and the edge

point is with maximum value of one as all the feature value has been normalized

between 0-1. The feature values are plotted along each axis which forms a unique

shape to represent a TU performance on a daily basis.

The proposed feature extraction algorithm (described in Section 4.2) generates a

feature vector of 12 numeric values which exhibit the cooling and heating char-

acteristics of a TU. Thus, the radar is indicated with two colours defines two

different parts, first six blue coloured axes (FC1 to FC6) are represent cooling

events and next six axes (FH1 to FH6) are represent heating events including the

temperature and corresponding power variation. The first axes of each type of

event, FC1 and FH1 indicate the temperature state from the event start (ES) to

response delay (RD) are calculation. FC2 and FH2 indicate the time of response

through the calculated area from response delay (RD) to goal achieve (GA). FC3

and FH3 describe the event end after control temperature reaches the specific

set-point by calculating the area within the goal achieve (GA) to event end (EE)

stages. Similarly, FC4 to FC6 and FH4 to FH6 represent the power demand for

corresponding temperature change by the TU data.

Hence, it is to be further observed that greater areas under GA to EE area (AH3
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and AC3) represent a “well behaved” TU, because this implies that the TU achieves

the set point (goal) and spends more time within the dead band (desired range

between heating and cooling set point). Whereas the area under ES to RD (AH1

and AC1) and RD to GA (AH2 and AC2) is larger denotes that the temperature

is not within the dead band or takes a long time to reach the set point represent

a “badly behaved” TU. Also, the more area for power effort indicates the more

power consumption which signifies a “badly behaved” TU as well as shown in

Figure 4.2.

4.4 Conclusion

This chapter has described the proposed feature extraction process to represent

the huge volume of building data to discover the valuable information/knowledge

within it without any distinguished information loss. This is an intermediate and

pivotal step in the proposed data driven automatic fault detection and diagnosis

research. Machine learning techniques often suffer from the curse of dimension-

ality problem; thus, it is difficult for end users to find appropriate patterns that

can define system behaviour. This feature extraction/feature engineering method

provided here gives an intelligent method to represents terminal units and their

correlation with associated temperature and power demands.

The novel feature extraction method is supported by a proportional integral deriva-

tive (PID) controller response curve to discover events from the terminal unit (TU)

data on a day. Twelve features have been extracted from a daily TU data. Among

them, six features represent cooling and the remaining six features represent heat-

ing events. The detailed theory has been presented to provide an understanding

of this feature extraction and how these new features have been mapped with

TU behaviour through radar representation. These new TU features are further

employed for clustering and classification purpose to identify distinct faulty and
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non-faulty TU patterns for a building at a given time. The details of the imple-

mented methods and experimental results are explained in the following chapters.



Chapter 5

Unsupervised learning

“You are the creator of your own

destiny”

-Swami Vivekananda

5.1 Introduction

The scheduling and maintenance of HVAC units are generally controlled by the

building engineer and/or building’s service provider, thus there is always a lack

due to manual processing while monitoring the unit’s behaviour. Such limitations

could be handled efficiently and quickly by adopting appropriate machine learning

(ML) techniques. A HVAC Unit’s fault can occur any time of the day and in

any form during their operation without any prior information. Also, the causes

and sources of the occurring faults are unknown, making fault identification more

difficult. Unsupervised machine learning is suitable in this type of building’s fault

identification scenario. However, prior to that the data must be correctly pre-

processed in an appropriate format to apply ML techniques. Hence, the new

derived features (described in the previous chapter) from the HVAC terminal unit

57
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data are fed into the ML model to perform fault detection. As the labels/ prior

knowledge of the TU’s characteristics are unavailable, unsupervised learning has

been employed to mine the data patterns automatically and to understand the

distinct TU behaviours.

This chapter describes the unsupervised learning or clustering techniques using the

new extracted featured data to understand distinct TU data patterns. The most

appropriate clustering method has been investigated and employed to develop an

automated fault detection and diagnosis tool for use with HVAC terminal unit.

An experimental analysis has been made on the outcomes of each clusters in terms

of faulty and non-faulty characterization. A comparative analysis and statistical

validation have been performed to check the robustness of the employed methods

towards the faulty and non-faulty TU behaviour identification.

5.2 Different types of clustering approaches

Due to the unavailability of prior information about the TU data involved in this

investigation, an unsupervised learning methodology is employed to discover a set

of TU behaviours. This unsupervised learning or clustering algorithm learns to

interpret data patterns from the input data without any label information [1].

Clustering similar groups types of data into the same cluster and dissimilar data

into another without knowing any physical information about the data.

Several algorithms have been proposed and developed to perform unsupervised

learning tasks and are primarily categorized into four different types, shown as a

taxonomy in Figure 5.1. These are: partitioning based, hierarchical based, grid

based, and density based [75]. Partitioning clustering divides n number of objects

in a database into k partitions, where each partition is represented as a cluster [76].

K-means, K-medoid, fuzzy C-means, etc. algorithms fall under this partition based
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category [76]. Hierarchical clustering involves creating clusters that have a pre-

determined ordering from top to bottom. Two types of approaches:divisive and

agglomerative are such examples [76, 77]. In grid-based clustering, the data space

is quantized into finite number of cells which form the grid structure and perform

clustering on the grids. The density based clustering locates regions (neighbor-

hoods) of high density that are separated from one another by regions of low

density [77]. These stated clustering algorithms are suitable for specific tasks

which depends on the dataset. Also, different ordering can create totally different

clustering results, as to the cluster number generation and also within the clusters

itself. However the correctness of the clustering algorithms is effectively relies on

the data distribution.

Partitioning

Clustering

Density-BasedGrid-BasedHierarchical

K-means
K-medoids
X-means
Fuzzy C-means

Agglomerative
Divisive

Density-based connectivity
Density functions

Figure 5.1: Basic categorization of unsupervised learning techniques [1].

Here, a clustering algorithm is employed to characterise and categorise distinct

TU behavioural patterns. The number of clusters are not known a priori in this

experiment. In fact, new groups are forming as the algorithm evolves, thus making

it difficult to discover appropriate clusters that represent the whole TU dataset.

Hence, this investigation began by exploring X-means clustering algorithm as it is

comprises two steps: Bayesian information criterion and k-means algorithm. This

helps to first identify the optimal number of cluster selection for the dataset and
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then cluster them based on the proximity measure by k-means. Further, results

are compared with hierarchical and k-medoid algorithms and validated through

the statistical model discussed in the result analysis section.

5.3 Proposed clustering methods

The proposed AFDD method has been performed in four consecutive stages with

a flow chart presented in Figure 5.2. Initial work began by collecting the historical

TU data from the company provided cloud database (described in Section 3.2.1).

Thereafter, a feature extraction method has been developed and performed on the

raw TU data (described in Section 4.2). Subsequently, extracted new featured data

have been used to perform clustering for faulty TU and non-faulty TU behaviour

identification [78].

Historical
Buildings
Data

Data Collection
from

Cloud Database

Feature
Extraction

Clustering Behaviour
Analysis

Fault Detection
and

Diagnosis

Figure 5.2: Steps involved in proposed unsupervised learning techniques.

5.3.1 X-means clustering

Extended K-Means (X-means) [79] clustering is employed on the extracted TU

features (obtained from the Equations (4.6) and (4.7)). This clustering is used to

avoid the limitation of conventional K-means clustering, which aims to automat-

ically determine the number of clusters based on Bayesian information criterion

(BIC) scores. Initially, the whole dataset is considered as a single cluster and

the BIC score is calculated using Equation (5.2). Based on the BIC score, the

optimal cluster number for that particular data set is chosen for clustering. The
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conventional K-means algorithm is then performed by varying cluster seed value.

The following X-means steps are as follows:

Improve-params (k-means)- K-means is evaluated by the seed value of the

cluster number. The objective function used for this work is shown as,

J =
k∑
j=1

n∑
i=1

||X(j)
i − µj||2 (5.1)

Where, ||X(j)
i −µj||2 is the Euclidean distance measure between a data point X

(j)
i

and the cluster centre µj. It is an indicator of the distance of the n number of

data points from their respective cluster centres. The main idea is to define K

centroids, one for each cluster. Each data point is assigned to the group that has

the closest centroid. After all the data points are assigned, the positions of the K

centroids are recalculated. The above steps are reiterated until the centroids no

longer move.

Improve-structure (BIC)- In this stage, the BIC score is calculated based the

clustering outcomes. Maximum likelihood (the parameter estimation in a given

observation) of the current clusters is used to determine the BIC score. Centroids

are further broken down based on the BIC score in order to discover improved

fitting of the data. The BIC is computed here using,

BICscore = −2 log(L) +K log(n)

where, L = P (x | θ,M)

(5.2)

Where, L is the maximum value of the likelihood function of the model M . The

other parameters, x, θ, n, and K denote the observed data, the parameter of
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the model, total number of data points and the number of free parameter to be

estimated respectively.

K>Kmax- Once the centroid (k) is determined and K-means is performed, Kmax

is then selected, and all centroids are tested. As the lower BIC score is always

preferred for better fitness of the data, the BIC score is then compared between

K and Kmax. If the current model has a better score, then the split is considered

the best strategy for clustering.

5.3.2 Hierarchical clustering

Hierarchical clustering creates a hierarchy of clusters. It clusters the dataset by

measuring linkage criteria between the sets or the groups of observations. It is

a function to measure the pairwise distances between the observations in each

set [80, 81]. There are mainly three types of linkage used: complete linkage define

as,

maxd(a, b) : a ∈ A, b ∈ B (5.3)

The single linkage define as,

mind(a, b) : a ∈ A, b ∈ B (5.4)

The average linkage define as,

1

|A|.|B|
∑
a∈A

∑
b∈B

d(a, b) (5.5)
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Where, a and b is the object which is belongs to the set of A and B. It generally

falls into two types: agglomerative and divisive.

Agglomerative- It is a bottom up process where each object in the dataset is

assumed as a separate cluster and subsequently merged based on the similarity

between them. Likewise it moves up the hierarchy until it forms distinct clusters.

Divisive- It is a top down process where all the objects in the dataset are con-

sidered as one cluster and splits are performed based on the dissimilarity found

between the each objects. This process done recursively and move down the hier-

archy. Hierarchical clustering represented by a dendrogram.

5.3.3 K-medoid clustering

Similar to k-means, k-medoids is a partitioning based clustering algorithm. It is

also known as Partitioning Around Medoids (PAM) [82]. In summary, it clusters

the dataset of n objects into k number of clusters by assuming k is known a priori

from the BIC. It partitions the data set based on the distance based function. K-

means attempts to minimize the total squared error, while k-medoids minimizes

the sum of dissimilarities between points labeled to be in a cluster and a point

designated as the center of that cluster. This method is generally more robust to

noise and outliers as compared to k-means because it minimizes a sum of general

pairwise dissimilarities instead of a sum of squared Euclidean distances and defined

as,

||a− b||2 =

√∑
i

(ai − bi)2 (5.6)

Where, a and b is the two different data point in the data set and i is the total no

of data.
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5.3.4 Clustering internal evaluation

Clustering is an unsupervised technique to group data sets into some specific

meaningful areas but the knowledge is not being provided externally to evaluate

the grouping technique. For example, a buildings TU data have been divided

into two groups instead of knowing which groups refers to what characteristics.

Therefore, to know how well the data is being separated, the compactness within

each group must be measured. If the compactness value is high then it is assumed

that the clustering is successful and the data points belonging to each cluster

are similar in nature. If the compactness value is low then the clustering needs

further investigation. Thus, in statistic a validation method is present to evaluate

the effectiveness of an unsupervised learning technique where the external known

class labels are not available. This is called internal validation criteria. This

process measures the degree of intra-cluster cohesion and inter-cluster separation.

In this thesis, the evaluation of the clustering technique have been performed by

using two criterion: Davies-Bouldin (DB) and Silhouette (SI) .

• Davies-Bouldin index- The Davies-Bouldin index is defined as

DB =
1

k

k∑
i=1

maxj 6=i
δi + δj

∆i,j

(5.7)

Where, ∆i,j is the clusters distance ratio for the ith and jth data point within

to between cluster. ∂i and ∂j is the average distance between each point in

the cluster from the centroid of that ith cluster and the average distance

between each point in the jth cluster and the centroid of the jth cluster [83].

• Silhouette index- The silhouette indexing [84] is a measure of the similarity

of each point with other points in its own cluster, when compared to points

in other clusters. The silhouette value is defined as
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SI =
1

nk

∑
i∈k

bi − ai
max(ai,bi)

(5.8)

Here ai is the average distance from the ith point to the other points in the

same cluster, and bi is the minimum average distance from the ith point to

points in a different cluster.

The silhouette value ranges from -1 to +1. A high value indicates that i is well-

matched to its own cluster. The clustering solution is considered appropriate if

most points have a high silhouette value. Whereas, a low DB value consider the

clustering solution is appropriate.

5.4 Clustering result analysis

After employing the above clustering methods, it is experimentally found that due

to data uncertainty, the hierarchical clustering and K-medoid are unable to repre-

sent the whole TU data into meaningful groups. Hence, BIC is being performed as

a part of X-means clustering on the TU featured data and found the optimal score

is achieved in six numbers to represent these TU data. Thus, all three clustering

methods have been performed by considering six clusters as standard to represent

these buildings data from the chosen case study (described in Section 3.3). Thus,

the experimental analysis has been performed by considering the X-means as a

baseline method and further two methods have been compared and validated to

support the positiveness of this investigation.

5.4.1 Experimental data details

The experiments were conducted on four types of data volumes: daily, weekly,

monthly and randomly selected data from the months of July 2015 to October
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2015. The analysis has been performed on the historical data of case study-

1 to reveal hidden patterns through the X-means clustering. Day analysis was

performed on 17th July 2015 TUs, week analysis performed from 17th July to 23rd

July for 5 working days (excluding weekend) and month analysis done for 22 days

since weekends have not been included in the analysis. The random analysis was

conducted on the randomly selected TUs from July 2015 to October 2015. TU

data details are given in Table 5.1.

Table 5.1: Experimental data details

No of Days
Total number
of TUs

Operating
TUs

Description

1 Day 731 723 17th July, 2015

1 Week, (5 days) 3655 3615
17th to 23rd July 2015
(except 18th and 19th)

1 Month, (21 Days) 15351 15178
17th July to 14th August 2015
(except weekends)

3 Months, (71 Days) 39088 38591
17th July to 23rd October 2015
(except weekends)

5.4.2 Clusters analysis via radar representation

The analysis began with one day TU data and then moved to experiment on more

days (tabulated in Table 5.1). The optimum number of clusters have been chosen

based on the BIC criterion [79] determined to perform the clustering. Initially

the data must be partitioned into at least two groups, where one group represents

faulty and the other signifies non-faulty. Then BIC scores have been calculated

for the whole dataset, the two groups separately and then the scores between

them compared. This process continues until the current partition achieves better

scores than the previous splitting. It has been found that the best BIC score was

obtained with ‘six’ number of clusters. Thus, six is considered as the ideal number

of partitions to represent the different TU patterns and to perform the clustering

experiments. The validation of cluster compactness has then been determined
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statistically, where the cluster numbers have been varied from two to ten for all

the methods used for comparison and is explained at the end of this section.

The X-means clustering algorithm was tested on approximately forty thousand

TUs for case study-1 over a period of four months (July to October) in 2015 as

tabulated in Table 5.1. These experiments began looking at daily data and then

further conducted on weekly, monthly, and randomly selected data and results are

described in subsections below.

5.4.2.1 Terminal unit analysis for a day

On a day altogether seven hundred twenty three (723) TU’s behavioural patterns

are captured into six clusters. These TUs distinct behaviour visualization has been

displayed via six different radar graphs in Figure 5.3. It has been observed from the

radar graph that mostly TUs, which are grouped in same cluster depicts similar

behavioural pattern. In each radar the nearest TU data point from each cluster

centroid is plotted in the below radar graphs (Figure 5.3) to make an assumption

about the individual group or cluster operation.

Figure 5.3 shows six different cluster radar that represent six different types of

TU behaviour in terms of temperature and power variations inside the building

of case study-1 over a 24hr period. The heating trends are represented by pink

colour and cooling by blue colour. It is found from the radar that the heating

trend is captured in cluster-3 and cooling trends are captured in the rest of the

clusters (cluster-0, 1, 2, 4, and 5). TUs belonging to cluster-0 achieve their set

point and the feature values lie in third axis (FC3) of the radar. It illustrates that

the calculated feature area for that TU is within the goal achieved (GA) to event

end (EE) events for the temperature curve. Therefore these TUs which are in

cluster-01 exert little power effort and stay within their dead band as described in

Section 4.2. Cluster-1 represent TUs whose features falls in the third axis (FC3),
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Figure 5.3: (a) - (f) Six radars to represent different types of TU behaviour
for a day.

indicating GA to EE state as well but, those TUs required average power (e.g.,

values are in FC6 axis) to reach their set point. Thus, TUs belong to cluster-1

use more power than the TUs are in the cluster-0. The TUs of cluster-2 behave

similar to cluster-1 but these TUs demand higher power levels to reach the set

point within the buildings operational hours. TUs of cluster-3 capture the area

under response delay (RD) to GA (FC5) is large for both the temperature and

power curves, which depicts more heating power is required, and still the set point

is not achieved by the TU during the working hours. The feature values of cluster-

4 fit in first axis (FC1) implies longer time requirement to increase the control

temperature of those units. Thus, area under the event start (ES) to RD state for

both the temperature and power curves that the TUs take longer and are unable

to achieve the required set points. In case of cluster-5, both the temperature and
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power curve areas lie under the RD to GA events. This depicts that though the

power demands is high still the control temperature unable to reach the set point

or unable to achieve the goal. This exhibits ‘badly behaving’ TU patterns. By

this approach, all the TU behaviours are represented and categorised as faulty or

non-faulty patterns.

Table 5.2: Discovered cluster pattern description of daily TUs
Cluster
Number

Description of Clustering Pattern

C-0
TUs that show both heating and cooling characteristics. The desired
control temperature is achieved with low power effort,
and is done in normal building operating hours.

C-1
These are cooling TUs where the control temperature is achieved
within the desired band with medium or average power effort.

C-2
Cooling TUs where control temperature is achieved but with a
high-power effort.

C-3
TUs showing control temperature hunting patterns along with medium
to high power effort and continuation of this pattern outside operational hours.

C-4
TUs where the control temperature does not achieve the desired set point
(out by up to 5 degree C) with high power effort.

C-5
TUs where the control temperature does not achieve the desired set point
(out by up to 10 degree C) with high power effort.

After performing the X-Means clustering for daily TU data, it is partitioned into

six different groups based on their properties. These clusters revealed six distinct

patterns to represent the behaviour of daily TUs of the case study-1. The distinct

TU behaviours that are obtained from clustering results are inferred in Table 5.2.

The aim of this clustering algorithm is to determine specific TU behaviours. It

can provide an insight into the TU characteristics without any prior knowledge to

identify faulty and non-faulty trends. Each cluster is labelled as C-0, C-1, C-2,

C-3, C-4, and C-5. This labels are then use to classify the TUs for automatic fault

detection and diagnosis purposes.
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5.4.2.2 Terminal unit analysis for week, month, and randomly selected

data

Following these, further experiments were conducted on the TUs for week, month,

and randomly selected data over a specific period (mentioned in Table 5.1) to

investigate the feasibility, and robustness of the proposed clustering method. Fig-

ure 5.4 shows the cluster analysis of TU behaviours during week days, Figure 5.5

for a month, and Figure 5.6 for randomly selected TUs. Repeated TU behaviour

is found during the clustering experiment on weekly, monthly, and randomly se-

lected data. TUs of cluster-0 of Figure 5.3, cluster-0 of Figure 5.4, and cluster-3

of Figure 5.5 are found to have similar heating and cooling trends, where the goal

or desired temperature is achieved with very low power demand. Likewise, the

TUs of cluster-1 of Figure 5.3, cluster-2 of Figure 5.4, cluster-0 of Figure 5.5, and

cluster-0 of Figure 5.6 follow similar trends where the set-point is achieved with

average power effort. In the case of TUs from cluster-2 of Figure 5.3, cluster-5 of

Figure 5.4, and cluster-2 of Figure 5.6 higher power effort are needed to reach the

goal or specific set-point. The hunting behaviour of TUs is found with high power

consumption during operational and out of operational hours in cluster-3 of Fig-

ure 5.3, cluster-1 of Figure 5.4, cluster-1 of Figure 5.5, and cluster-3 of Figure 5.6.

Likewise the daily TU data of cluster-4 of Figure 5.3 is similar to cluster-3 and

cluster-5 of Figure 5.4 and Figure 5.5, where set-point is not achieved but power

is still consumed during out of operational hours. Similar TU behaviours e.g.

cluster-5 of Figure 5.3 is found respectively in cluster-4, cluster-4, and cluster-5

of Figures 5.4, 5.5, and 5.6. It is noted that the patterns found in cluster-2 of

Figure 5.5 and cluster-4 of Figure 5.6 are very similar to each other, where the set-

point is achieved and both captured heating trends. Another two similar heating

patterns of TUs are found in cluster-1 and cluster-3 of Figure 5.6, both achieved

set-point using average to high power effort.
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Figure 5.4: (a) - (f) Six radars to represent different types of TU behaviour
for a week.
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Figure 5.5: (a) - (f) Six radars to represent different types of TU behaviour
for a month.
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Figure 5.6: (a) - (f) Six radars to represent different types of TU behaviour
of randomly selected data from July to October 2015.

It can be concluded after the analysis that six radars reflect similar type of heating

or cooling patterns for each of the daily, weekly, monthly, and randomly selected

TU clustering experiment. The heating or cooling trends may differ depending

on the weather conditions where control temperature varies, but it captures the

specific swing pattern of temperature and power in a cluster every time. Once the

radar visualization experiment has been done for various range of TU data, it has

been further mapped with the actual individual TU operation for that day. This

relationship between the radar representation and the actual TU behaviour are

discussed in detailed now.

5.4.3 Terminal unit’s performance mapping with radar graph

Each radar graph represents an individual type of TU behaviour and each of its

axes represents a separate feature as described earlier. The six cooling features

are represented by (FC1 − FC6) on the right hand side axes of the radar and the
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six heating features are represented by (FH1 − FH6) on the left hand side axes

respectively. Figure 5.7 shows an example of “good” behaving TU in heating

mode as the pink lines are on the third left axis (FH3) this signifies the control

temperature lies within the desired heating and cooling setpoints. Also, the pink

lines are between the fourth (FH5) and fifth (FH6) axes of the radar signifying the

respective medium power demand to maintain that temperature within set the

goal area. This TU example only demand heating power thus the graph shows the

heating power in pink colour.

Figure 5.8 shows another example of a “well-behaved” TU in cooling mode as

the blue lines are on the third right radar axis (FC3) showing that the control

temperature achieves the desired set point by demanding very little amount of

cooling power.

Examples of three well-known but different TU faults: saturation, hunting and

high temperature error patterns are now described. Figures 5.9 and 5.10 show

saturation and high temperature error behaviours indicating that for high pro-

portion of time during the day, the valve or damper is open at a maximum level.

Figure 5.9 shows hunting behaviour and shows how much the control temperature

fluctuates over a day. Further, it can be seen from Figure 5.10 and Figure 5.11 that

the TUs are continue to operate even of out of normal hours displaying further

energy wastage and unnecessary usage.

This behaviour also indicates a high degree of on-ness, that is the proportion of

time that a TU had any heating or cooling demand over a 24-hour period. From

the radar representation in Figure 5.9, it can be be seen that the curve lies on the

second left axes (FH2) of the radar graph indicating that the control temperature

spends more time in the RD event. In the case of Figure 5.10, the curve lies on the

first right axes (FC1) of the radar graph indicating that the control temperature

spends more time in the ES event, whereas for Figure 5.11 the curve mostly lies
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Figure 5.7: A heating example of a “well-behaved” TU. (a) actual temperature
and corresponding power consumption, (b) TU feature representation via radar

graph.

in RD to GA event for both the temperature and power curves. These radar rep-

resentations explain the actual TU behaviour as shown in the top section of each

of the figures. Moreover, all of these TU with high average power also have high

temperature errors that is control temperature deviates highly from the set point,
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Figure 5.8: A cooling example of a “well-behaved” TU. (a) actual temperature
and corresponding power consumption, (b) TU feature representation via radar

graph.

indicating that they need to look after immediately for further investigation and

are not only poorly controlling the temperature, but also consuming a relatively

large amount of energy too.
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Figure 5.9: An example of a “badly-behaved” TU (a) actual temperature
and corresponding power consumption showing heating saturation with high

temperature error, (b) TU feature representation via radar graph.

5.4.4 Outlier analysis

The effect of outliers on clustering is examined here and those TUs, which are far

from their own cluster centroid are investigated. The outlying TU datapoint might

have dissimilar behaviour from the other TUs within that cluster and can affect the
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Figure 5.10: An example of a “badly-behaved” TU (a) actual temperature and
corresponding power consumption showing cooling saturation with on-ness, (b)

TU feature representation via radar graph.

entire clustering outcomes. From the proposed clustering outcomes, three “well-

behaved” and three “badly-behaved” clusters have been found. Therefore, the

aim of this outlier analysis is to discover the suitability of TUs within its cluster.

For example, a TU is in a “well-behaved” cluster, where control temperature and
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Figure 5.11: An example of a “badly-behaved” TU (a) actual temperature
and corresponding power consumption showing heating hunting with on-ness ,

(b) TU feature representation via radar graph.

power demand are always desirable. Though the TU has good temperature control

in it has a higher power demand than others from that cluster. That might affect

the whole cluster nature and would consider as anomalous behaviour for that TU

group. Thus, the distance between each data point from their cluster centroid is
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then measured for all six clusters. As different number of datapoints consist of

different feature values that varies the compactness within clusters. Therefore, this

outlier analysis aims to refine the TU behaviour analysis by identifying those TUs

which are far from their centroid. A threshold is determined to select meaningful

TUs in every cluster and if found beyond threshold can be considered as outlier

to look further. Experimentally, the threshold value is decided from cluster mean

and standard deviation for each cluster separately. Once the distance value of a

data point from the cluster centroid is greater than a measured threshold that is:

(2× standard deviation+mean), then it is considered an outlier behaving TU.

This outlier finding experiment has been executed for daily TUs and the results

are presented in Figure 5.12. The plot displays outliers in each cluster based on

their own measured threshold. The y-axis represents the number of clusters (from

cluster-0 to cluster-5) and the x-axis represents the data points distance from

their centroid. All the dotted points represent the total number of TUs, where the

red dots (to the right) depict the TUs beyond the considered threshold based on

the clusters standard deviation and mean, which represents outliers or anomaly

behaving TUs in that cluster. Although, it is not completely possible to determine

if an outlying point represents a truly faulty or non-faulty TU. But, those are not

exactly similarly behaving TUs to others in that cluster. Furthermore, this outlier

analysis is verified by resident expert building engineers at Demand Logic to ensure

the results are meaningful.

The clustering outcomes further statistically validated and compared against other

algorithm using the Silhouette indexing [84] and Davis Boulding indexing [83]

methods as described in Section 5.3.4.
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Figure 5.12: Cluster wise outlier analysis for daily TU data.

5.4.5 Cluster validation and comparison

This TU pattern discovery process is completely unsupervised as label information

is not available priori. Thus, the internal cluster evaluation criteria are used to

validate the clustering results and assess compactness of those groups as described

in Section 5.3.4. Two statistical criteria: Davies-Bouldin (DB) [83] and Silhouette

Indexing (SI) [84] have been employed here. The proposed X-means results are

compared with other two well-known clustering algorithms: hierarchical clustering

and k-medoids [85] and obtained better performance over other methods. The

validation results is summarized in Figure 5.13. The comparison and validation

result across daily, weekly, monthly and randomly selected TU data are included

here.

Figure 5.13(a) demonstrates the DB indexing results of X-means by varying the
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Figure 5.13: Clustering validation and comparison.

cluster number 2 to 10 and is compared with hierarchical and k-medoids algo-

rithms. As the lowest DB value is preferred, it is seen from the Figure 5.13(a)

that lowest DB value is achieved when the cluster number is six for all the cases of

daily, weekly, monthly, and randomly selected TUs for X-means. Similarly, lower

DB values are found in the hierarchical clustering for all the cases, but values are

higher than X-means. However, the heavy fluctuation of DB values is shown in

the case of k-medoids algorithm. Therefore, the lower value of DB in X-means for
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cluster number 6 shows a better compactness of the clusters than the hierarchi-

cal and k-medoids clustering methods proving the model validation for this TU

clustering process.

Subsequently, Figure 5.13(b) shows the SI indexing results for X-means, hierarchi-

cal and k-medoids algorithms. The clusters with high SI index are well matched

to its own cluster. It is clearly seen in the Figure 5.13(b) that the SI index is high

for X-means on daily, weekly, monthly, and randomly selected TU data, when the

cluster number is six, whereas hierarchical clustering achieved high SI indexing for

cluster number six as well for all cases except the randomly case. Again, in the k-

medoids algorithm, SI values are fluctuating for all the cases, therefore it is hard to

discover specific cluster numbers for the data set and to define their compactness

within clusters. These internal clustering validation results shows that the selected

optimal number of clusters is appropriate and achieved suitable indexing outcomes

consistently for X-means than other clustering algorithms. These clustering results

were further verified with the help of expert building engineers at Demand Logic in

moving the research direction towards the thesis goal of automatic fault detection

and diagnosis tool for buildings.

5.5 Conclusion

In this chapter, a novel feature extraction technique for clustering has been em-

ployed to discover distinct TU behaviours. With the application of an unsuper-

vised learning technique, a number of different cluster patterns have been analysed

and identified that help in the identification of different TU behaviours. These re-

sults were thoroughly analysed to form concrete knowledge and provide an insight

in the direction of different TU behaviour identification. A strong visualisation

with respect to feature extraction and the relation between faulty and non-faulty

TU has been drawn through the radar graph. This could give a clear conception
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of all the possible different behaviours inside the building. To make a robust algo-

rithm this method was repeatedly tested over more periods such as week, month,

and randomly throughout four months including the summer and winter for his-

toric building data. This analysis also validated statistically and manually with

help from expert building engineers.

The motive of the proposed clustering is to identify significant TU patterns where

these distinct clusters are used to classify normal and abnormal TUs. Further the

identified of abnormal TUs will be taken care by the building engineer for resource

optimisation. Subsequently, based on the obtained clustering behaviours, categor-

ical label assignment has been enacted to create an automated TU classification

system explained in the next chapter.





Chapter 6

Supervised learning

“He who struggles is better than

he who never attempts.”

-Swami Vivekananda

6.1 Introduction

Remote and automatic identification of faulty terminal units (TUs) have signif-

icant impact on building services, maintenance and energy consumption [86]. It

needs appropriate information about the TU data from the building expert sys-

tem to support supervised learning method to act efficiently for anomalous activity

recognition. A building’s HVAC terminal unit producing huge amounts of data

and the behaviour of these units are diverse in nature. Therefore, recent machine

learning developments have the potential to learn and predict once the appropriate

data knowledge is available [5]. This has been examined here through a realistic

approach for real building data.

85
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In this chapter, supervised learning (SL) or classification method is considered as

a sequel process for creating the full AFDD system in this thesis. This SL is ap-

plied to classify faulty and non-faulty TUs by the discovered knowledge from the

previous chapter. These behaviour findings have been accomplished in Chapter 5,

employing clustering techniques and six types of behaviour were discovered from

the case study building in London. The behaviour information was then verified by

the expert building engineers and are now used here for TU labelling and recog-

nition purposes. The classification has been performed by training and testing

the algorithm repeatedly to understand the trends. This method can distinguish

faulty TU pattern automatically and alert the building engineering to investigate

the equipment depending on the classification outcomes. In this AFDD research

supervised learning plays a vital role towards early diagnosis of faults, appropri-

ate follow-up and maintenance that leads to improved building performance and

controlling significant energy loss.

6.2 Proposed classification methods

The proposed framework for classification is shown in Figure 6.1. It shows the

work flow of the whole process involved in this chapter, and comprises two stages:

unsupervised and supervised learning. Firstly, the vast data is held in a secure

cloud and further applied feature extraction method, subsequently clustering is

employed to group the similar patterns and dissimilar patterns into other groups

based on their characteristics, as explained in the previous chapter. Here, the

clustering outcomes have been used for data labelling to classify the TU data.

The Multi-class support vector machine (MC-SVM) is used as classification model

for AFDD purpose. In order to find out optimum model selection, another two
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Figure 6.1: Computational steps involved in proposed methodology.

classification algorithms have investigated: K-nearest neighbour (KNN) and multi-

layer perceptron (MLP) for results comparison and validation through precision

and recall are explained below [87].

The experiment has been carried out using Matlab R2016b tool on an Intel(R)

Core(TM) i5 processor@3.30 GHz 130 running Windows 7 Enterprize 64-bit op-

erating system with a 7856-MB NVIDIA Graphics Processing Unit (GPU).



88 Chapter 6 Supervised learning

6.2.1 Multi-class support vector machine

Support vector machine (SVM) is a well-known binary classifier modelled here as

Multi-class support vector machine (MC-SVM) to deal with a greater number of

classes. Thus, the classes are discriminated by a hyperplane as shown in Figure 6.2.

This figure represent a hyperplane as a line in two-dimensional space, which is to

divide the data into two parts. The model learns the hyperplane to create a

good margin, where this separation is larger for both the classes, is assumed the

perfect decision boundary to data partition. This is performed by transforming

the problem with linear algebra known as the kernel function. There are many

kernels developed but specifically used depending on the data distribution. In this

study, two types of kernel functions:liner kernel and quadratic kernel, have been

chosen for examine both the linear and non-linear data types.

Figure 6.2: Decision boundary of support vector machine.

MC-SVM [88, 89, 90] is employed on the extracted TU feature by optimizing the

distance between support vectors (TUs from different groups) defined as,
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min
wm∈H,ξ∈Rl

1

2

k∑
m=1

wTmwm + C
l∑

i=1

ξi

subject to wTyiϕ(xi)− wTt ϕ(xi) ≥ 1− δyi,t − ξi

i = 1, ..., l, t ∈ 1, ..., k

(6.1)

In (6.1) a set of training patterns is denoted by (x1, y1), ..., (xl, yl) of cardinality

l, where xi ∈ Rd and yi ∈ 1, ..., k, w ∈ Rd is the weight vector, C ∈ R+ is the

regularization constant, and ϕ is mapping function which projects training pattern

into a suitable feature space H that allows for nonlinear decision surfaces. The

constraints ξi ≥ 0, i = 1, ..., l, are implicitly indicated in the margin constraints

of (6.1) when t equals yi. The final decision function is defined as,

argmaxmfm(x) = argmaxmw
T
mϕ(x) (6.2)

Whereas in (6.2), δi,j, is the delta (defined as 1 for i = j and as 0 otherwise). In

addition, Equation (6.1) focuses on classification rule (6.2) without any bias terms.

A non-zero bias term can be simply exhibited by adding an additional feature to

each x. Therefore, different categories of data are classified by solving this decision

function and the results are analysed in the following section. A pseudo code for

the proposed work is presented in the Algorithm 1.

6.2.2 K-nearest neighbor

In the classification study, K-nearest neighbour (KNN) plays a vital role. It is

a simple and effective distance based non-parametric pattern recognition algo-

rithm [91, 92]. KNN select the output class based on the majority voting received

for the pattern. It begins with a random initialized k value (it can be varied as
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Algorithm 1 Pseudo code for proposed AFDD

Require: Temperature and power feature of TUs = {T1, T2, ..., Tn}
1: Fault detection stage:
2: Maximum cluster number = Max
3: K = BIC score for previous model
4: Kmax = BIC score for current model
5: for all Max = 2 to 10 do
6: Assign initial values for means = µ1, µ2, ..., µMax

7: Assign each TU to the cluster which has closest mean
⇐ using the Eq. 5.1

8: Update means
9: Calculate BIC score for current model Kmax

⇐ using the Eq. 5.2
10: if K > Kmax then
11: return Go to line 5
12: else
13: Max is considered as final cluster number & exit loop
14: end if
15: end for
16: Six groups of labelled patterns = {C0, C1, ..., C5} are produced by X −

means
17: Fault diagnosis stage:
18: Train MC−SVM model by 10%, 20%, and 30% data using objective function

19: Make the prediction on rest of TUs

per the experiments). If K = 1, then the case is simply assigned to the class of its

nearest neighbor. Depending on the k values it searches that number of nearest

points and assigns them into the class which the nearest points belong to. K-

nearest neighbors measured by a distance metric or proximity measure. Distance

metric is a function that defines a distance between each pair of elements of a

dataset. The goal is to learn from a similarity function that measures how similar

or related two objects are. Here, four types of distance function are investigated

for the similarity checking purpose.

Euclidean distance is a straight-line distance measure between two points in

Euclidean space [93]. This is the best proximity measure when data is dense or

continuous and presented as,
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dE(p, q) =

√√√√ n∑
i=1

(qi − pi)2 (6.3)

Where, dE is the sum squared distance between two data points of qi and pi from

the whole n number of data points.

Jaccard distance is a measure of how dissimilar two sets are. It is obtained by

subtracting the Jaccard coefficient from 1 [94]. The Jaccard coefficient measures

similarity between finite sample sets, by dividing the difference of the sizes of the

union and the intersection of two sets by the size of the union. Where, dJ is the

coefficient distance between two set of P and Q.

dJ(P,Q) = 1− J(P,Q) =
|P ∪Q| − |P ∩Q|

|P ∪Q|
(6.4)

City-block distance or Manhattan examines the absolute difference between

coordinates of a pair of objects [95]. Where, dC is the absolute difference between

the coordinates of pi and qi from the whole n number of data points.

dC(p, q) = ||p− q||1 =
n∑
i=1

|pi − qi| (6.5)

Minkowski distance measures different orders between two objects with three

variables [93]. Minkowski distance (dM) is typically used with p being 1 or 2, which

correspond to the Manhattan distance and the Euclidean distance, respectively.

In the limiting case of p reaching infinity.

dM(P,Q) = (
n∑
i=1

|pi − qi|x)

1

x
(6.6)
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6.2.3 Multilayer perceptron

A multilayer perceptron (MLP) [2] is a class of feedforward artificial neural net-

work employing a nonlinear activation function. It is able to distinguish data

that are not linearly separable. It generally consists of three layers: input layer,

hidden layer, and the output layer shown in Equation (6.3). MLP generally uses

back-propagation algorithm for calculating the gradient, which needed for weight

adjustment throughout backwards layers in the network to minimize the error

presented as,

y = ϕ(
∑
i=1

wixi + b) (6.7)

It reoccurs until the error will go negligible and finally the model training will be

completed. In the hidden and output layer it uses a non-linear activation function.

It mainly uses the sigmoid function (S(x)) shown as,

S(x) =
1

1 + exp−x
=

expx

expx +1
(6.8)

Where w denotes the vector of weights, x is the vector of inputs, b is the bias and

ϕ is the non-linear activation function.

Backpropagation (BP)- The error (ξ) will back propagate through the each

layer using,

ξ(n) =
1

2

∑
j

e2(n) (6.9)

expj(n) = tj(n)− yi(n) (6.10)
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Figure 6.3: Computational steps involved in multi-layer perceptron. [2]

Where, the error is calculated through the e, which is actually the difference

between the target value (ti) and the produced value (yi) shown in (6.9) and

(6.10).

6.2.4 Classification performance evaluation

After performing classification the obtained results are evaluated through well-

known statistical performance metrics, precision (Pr) and recall (Re) for calculat-

ing the accuracy of the system. Precision calculate the percentage of truly predic-

tive TUs among all the positively detected TUs in the dataset and recall measures

the relevant outcomes which are detected among the total dataset shown as,

Precision =
True Positive

True Positive+ False Positive
(6.11)

Recall =
True Positive

True Positive+ False Negative
(6.12)
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The performance measurement is based on the number of true positive (TP), false

positive (FP), and false negative (FN). TP is the total number of correctly labelled

TUs, whereas FP is the total of incorrectly assigned TUs, and FN is the total of

not labelled as should be belonging to particular classes.

6.3 Classification result analysis

In the result analysis different classification methods have been applied on the TU

data of the building-1 (described is Section 3.3) for daily, weekly, monthly, and

randomly basis. The experimental data have been detailed in the previous chapter

(Scetion 5.4). In this phase, classification has been performed by employing MC-

SVM which is considered a baseline classifier in this pattern classification problem.

Here the dataset is categorized and labelled into six different classes for diagnosing

diverse behaviour of faulty and non-faulty TUs (tabulated in Table 5.2). The MC-

SVM is employed for performing the classification task and for result comparison

KNN and MLP have been investigated and results are included here.

Here, the experiment is conducted by dividing the TU dataset in 10%, 20%, 30%

as training data, and 90%, 80%, 70% respectively as testing data. Where the

observation for each training was also tabulated as number of objects (NOB).

Also, the experiment has began with daily TU data and expand to weekly, monthly,

and randomly selected data between a specific period (from 17th July 2015 to 23rd

October 2015). Statistical validation of performance measured by precision and

recall that are evaluated, recorded, and describes in the following sections.

6.3.1 Distance metric analysis for K-nearest neighbour

K-nearest neighbour (KNN) classification has been performed by measuring the

distance between the test data and the training data using distance function.
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Though Euclidean has been widely use in this field, it is prudent top investi-

gate different distance function which can affect the KNN performance over the

datasets. This experiment is based on four different distance functions including

Euclidean, Jaccard, City-Block, Minkowski are used during KNN classification

individually [93].

The testing has been done on the daily TU data with 10% training set. In addition

the ‘K’ has been varied by 1NN, 3NN, and 5NN. The outcomes are tabulated in the

Table 6.1. It has been compared by calculated the correct rate, error rate, precision

and recall for both the training and the testing data.The experimental results show

that for all the cases Euclidean achieved better performance among other, while

Minkowski shows bad performance compared to other three distance metrics. For

training most of the obtained good results but for training the performance is

noticeable for further consideration. Thus, Euclidean distance has been considered

for further investigation and comparison.

Table 6.1: Distance metric based analysis of KNN for one day TU data with
10% traning data.

Classifiers
Correct Rate Error Rate Recall Precision
Training Testing Training Testing Training Testing Training Testing

1NN-Jacard 1.000 0.547 0.000 0.452 1.000 0.866 0.818 0.666
1NN-Cityblock 1.000 0.656 0.000 0.343 0.723 0.698 1.000 0.680
1NN-Minkowski 1.000 0.522 0.000 0.477 0.839 0.769 1.000 0.673
1NN-Euclidean 1.000 0.898 0.000 0.102 1.000 0.949 1.000 0.873
3NN-Jacard 0.842 0.487 0.158 0.513 0.923 0.789 0.999 0.687
3NN-Cityblock 0.782 0.440 0.218 0.560 0.846 0.695 0.998 0.677
3NN-Minkowski 0.761 0.453 0.239 0.547 0.825 0.752 1.000 0.618
3NN-Euclidean 0.982 0.607 0.018 0.393 1.000 0.961 0.999 0.680
5NN-Jacard 0.998 0.601 0.002 0.399 1.000 0.930 1.000 0.687
5NN-Cityblock 0.999 0.616 0.001 0.384 0.857 0.633 1.000 0.680
5NN-Minkowski 0.993 0.642 0.007 0.358 0.658 0.490 0.686 0.448
5NN-Euclidean 1.000 0.655 0.000 0.445 1.000 0.897 1.000 0.663

6.3.2 MC-SVM results analysis

The obtained results from the baseline method MC-SVM have been analysed here

in terms of statistical validation by precision and recall calculation are evaluated
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and recorded in Table 6.2. The highest precision and recall value obtained from

10% training and 90% testing data (marked in bold) in all the cases using MC-

SVM. This algorithm achieved an excellent performance with 99.3% of precision

in randomly selected data, which signifies a high positive predictive value for all

predicted TUs. Also observed that the performance increased when the training

data volume is being increased. The highest recall 96.3% is achieved in case of

randomly selected data, which directs the relevant prediction of TUs with a very

high accuracy. Thus, experimental result signifies that the algorithm can make

fault predictions about TU behaviour with the help of very few amount (only 10%

is enough) of training data.

Table 6.2: Classification results by MC-SVM.
Observations 10% 20% 30%

Daily
NOB 656 595 536
Precision 0.983 0.982 0.979
Recall 0.921 0.913 0.897

Weekly
NOB 3262 2970 2672
Precision 0.979 0.978 0.977
Recall 0.905 0.902 0.896

Monthly
NOB 12944 11705 10643
Precision 0.988 0.988 0.987
Recall 0.943 0.942 0.938

Randomly
NOB 29744 27002 24339
Precision 0.993 0.992 0.992
Recall 0.965 0.964 0.964

6.3.2.1 Confusion matrix analysis

Confusion matrices are set to concentrate on the type of TUs that are assigned in

wrong category by the algorithm. Four confusion matrices are shown in Figure 6.4.

The matrices are prepared based on the highest accuracy obtained by MC-SVM

(where only 10% training data are used). Each element in this matrix is the

number of test items with true class in row wise and predicted class in column

wise. The correctly classified objects are plotted diagonally (marked in blue color)
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and misclassified objects are marked in light blue. Though the overall performance

of the proposed algorithm is good, still some characteristics of TUs confound the

classifier which causes misidentification. It is clearly seen that the objects of class-1

are misidentified mostly in case of daily (Figure 6.4(a)) and class-2 in case of weekly

(Figure 6.4(b)) analysis. In Figure 6.4(a) and 6.4(b), 6 and (11+7+3+17)=38

objects are misidentified because, the TUs belong to these classes are distinct by

the cooling and heating temperature but similar in nature with respect to power.

In case of monthly and randomly (Figure 6.4(c) and 6.4(d)) data, misclassifications

occurred mostly from class-0, whereas this class holds the good behaving and

distinct TUs with respect to temperature and power consumption. A huge number

of objects belong to this class and numerically the differences between the objects

are very small. Therefore, the classifier is over fitted and overreacted to the slight

fluctuations in the feature values.

6.3.3 Comparison results

Further this experimental result is compared with another two classification meth-

ods, KNN [92] and MLP [2], which are well-established method for classification.

In KNN, as explained earlier it assigns the class number to an object based on the

nearest distance of its neighbours. Here, K is chosen as 1 and 3 and the results are

shown in Table 6.3. Table 6.3 shows the precision and recall outcomes for 1NN

and 3NN with 10%, 20% and 30% training samples. Thus, it is observed from the

result table that 30% training sample is required for 1NN and 3 NN to produce

maximum precision and recall values, except in case of 1NN for daily analysis 20%

training data is needed for high performance. Thus, it is determined that MC-

SVM provides high precision and recall with less number of training data than

KNN classifier.
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n=656 Class 0 Class 1 Class 2 Class 3 Class 4 Class 5
Class 0 33 2 0 0 0 0
Class 1 0 431 0 1 0 0
Class 2 0 2 58 0 0 0
Class 3 0 1 0 51 0 0
Class 4 0 0 4 0 35 0
Class 5 0 1 0 0 0 37

Predicted
A

ct
ua

l

(a) Daily TUs

n=3262 Class 0 Class 1 Class 2 Class 3 Class 4 Class 5
Class 0 176 2 11 1 1 1
Class 1 0 221 7 0 0 1
Class 2 1 2 1929 0 2 0
Class 3 0 0 0 220 0 7
Class 4 2 1 3 0 348 0
Class 5 0 0 17 0 8 301

Predicted

A
ct

ua
l

(b) Weekly TUs

n=12944 Class 0 Class 1 Class 2 Class 3 Class 4 Class 5
Class 0 7550 6 2 7 8 21
Class 1 9 1279 12 3 3 0
Class 2 26 2 811 6 0 0
Class 3 6 1 1 838 2 1
Class 4 4 1 1 2 1079 0
Class 5 6 4 8 7 3 1235

Predicted

A
ct

ua
l

(c ) Monthly TUs

n=29744 Class 0 Class 1 Class 2 Class 3 Class 4 Class 5
Class 0 14364 0 13 0 5 4
Class 1 0 3252 2 11 4 2
Class 2 23 2 2139 5 1 0
Class 3 46 8 0 4311 13 0
Class 4 24 0 2 11 3188 0
Class 5 21 1 6 2 6 2278

Predicted

A
ct

ua
l

( d ) Randomly Selected TUs

Figure 6.4: Confusion matrix by MC-SVM.
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Table 6.3: Precision and recall comparison of 1NN and 3NN.

Observations
10% 20% 30%

1NN 3NN 1NN 3NN 1NN 3NN

Daily
NOB 654 656 588 593 525 533
Precision 0.945 0.916 0.957 0.944 0.949 0.961
Recall 0.774 0.686 0.818 0.772 0.786 0.829

Weekly
NOB 3265 3274 2966 2964 2680 2697
Precision 0.957 0.950 0.969 0.967 0.972 0.973
Recall 0.818 0.792 0.863 0.855 0.877 0.877

Monthly
NOB 12942 12968 11693 11721 10600 10621
Precision 0.968 0.967 0.971 0.975 0.974 0.976
Recall 0.861 0.855 0.871 0.886 0.885 0.890

Randomly
NOB 29758 29766 26912 26896 24411 24383
Precision 0.969 0.970 0.974 0.976 0.979 0.977
Recall 0.865 0.865 0.882 0.891 0.904 0.898

Conversely, Table 6.4 shows the precision and recall outcomes for MLP with 10%,

20% and 30% training and 90%, 80%, and 70% samples. It is observed from the

result table that 20% training sample is required to produce maximum precision

and recall values for daily, weekly, monthly, and for random analysis for high

performance. Thus, it is determined that MC-SVM provides high precision and

recall with less number of training data than MLP neural network.

Table 6.4: Classification results by MLP.
Observations 10% 20% 30%

Daily
NOB 656 595 536
Precision 0.847 0.962 0.825
Recall 0.411 0.520 0.490

Weekly
NOB 3262 2970 2672
Precision 0.953 0.934 0.957
Recall 0.350 0.320 0.375

Monthly
NOB 12944 11705 10643
Precision 0.876 0.854 0.813
Recall 0.498 0.530 0.531

Randomly
NOB 29744 27002 24339
Precision 0.866 0.883 0.798
Recall 0.562 0.633 0.648

The precision and recall values are plotted in Figure 6.5 to compare the perfor-

mance of MC-SVM, 1NN, 3NN, and MLP for 10%, 20%, and 30% training set.
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Precision and recall are shown in blue and yellow colour respectively. It is ob-

served that MC-SVM achieved higher precision and recall than 1NN, 3NN, and

MLP for all time spans. Therefore, the obtained accuracy of the MC-SVM exhibit

the effectiveness of this algorithm to learn and predict for faulty and non-faulty

HVAC TUs, which is approximately 99% precision and 96% recall. The above

fault detection and diagnosis results using the MC-SVM algorithm indicates, this

method is robust and effective to recognize any types of faulty and non-faulty TU

behaviours.
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Figure 6.5: Precision and recall value analysis for TU data of (a) Daily, (b)
Weekly, (c) Monthly, and (d) Randomly.
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6.4 Conclusion

This chapter concludes on the classification methods which was applied to predict

and diagnose the faults within a building automatically. The theory behind the

models and their working principles have been presented. The result analysis based

on the different obtained algorithms have been explained. Although, it is observed

that MC-SVM performed well in identifying the different faulty and non-faulty TU

behaviours among the compared methods. Therefore, suitability of MC-SVM for

this building’s TU data is evaluated by statistical measures and considered as

baseline classification method for these terminal unit behaviour research. Due

to the more realistic implementation i.e. lack of knowledge of sensor location,

weather data, and the occupancy information, it is difficult to detect and diagnose

the cause of faults effectively here, though the excellent accuracy of the proposed

method signifies the real world effectiveness of the work.

This experiment has been tested on approximately forty thousand TUs and gath-

ered the ground truth information. Augmenting this work includes further tests

on TUs where faults such as, improper dead bands and varied set point tempera-

tures, etc. have been identified using AFDD and rectified. This has been used to

train the model for forecasting, which can predict faults on more recent data in

real time by using semi-supervised learning techniques are explained in the next

chapter.





Chapter 7

Semi-supervised learning

techniques

“Purity, patience, and

perseverance are the three

essentials to success and above all,

love.”

-Swami Vivekananda

7.1 Introduction

The terminal units (TU) are responsible for maintaining the temperature inside

a room via a constant air-flow. The quality of this air flow is being monitored

using intelligent methods based on the provided historical or old dataset. The

identification of the TU behaviours whether it is faulty or not has already been

explored in Chapter 6 using supervised learning and successfully identified the

distinct TU behaviours. In this case, these datasets have been priory labelled to

classify them into ‘faulty’ or ‘non-faulty’ categories. This brings a new perspective

103



104 Chapter 7 Semi-supervised learning techniques

towards automatic fault detection and diagnosis (AFDD) TU behaviour analysis.

However, if the classification needs to be done in real-time, it means all the data

must be labelled prior to performing the classification continuously. This makes the

‘fault’ identification or classification task time complex as well as computationally

heavy. It affects the whole fault finding process and it will take more time to

inform the building engineer about the faults resulting in poor behaviour and

energy consequences. To accommodate this obstacle, semi-supervised learning

must be considered. This chapter demonstrates and evaluates semi-supervised

learning (SSL) techniques for TU behaviour classification.

The rapid and dynamic growth of the data brings new challenges to BMS mod-

elling. It is essential to use effective ML techniques rather than traditionally ap-

plied learning methods. This could help forecast different unit’s behaviour more

accurately and quickly. Semi-supervised learning is a class of machine learning

technique’s that make use of a small amount of labelled data for training with a

large amount of unlabelled data for testing. It falls between unsupervised learn-

ing (without any labelled training data) and supervised learning (with completely

labelled training data) methods. To ensure improved performance of automated

methods promoting machine-learning techniques, a building’s raw sensor data re-

quires labelling, which increases the overall operational costs of the system em-

ployed and makes real time application difficult. Due to the limited availability

of labelled information and to make the AFDD worth implementing in real-time,

data driven semi-supervised learning based robust AFDD method is proposed here.

Further, this method has been tested and compared for more than twenty million

data points. The results presented in this chapter have a major contribution in

obtaining the established statistical performance metrics and paired t-test have

been applied to validate the proposed method.
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7.2 Proposed semi-supervised learning method

Semi-supervised learning models have gained popularity than the traditional learn-

ing methods of fully supervised or unsupervised. Semi-supervised learning exploit

both labeled and unlabeled data and have shown good performance in many appli-

cations [96]. In real-world situations, most of the data are unlabeled and need to

be fit for particular purpose by labelling a small amount of dataset for unlabelled

learning. The limited availability of appropriate ‘fault’ information, enormous lev-

els of data for pre-processing and labelling before testing can be executed. This of

course is time consuming but common with real world scenarios where data is not

always in appropriate formats. Previously proposed unsupervised and supervised

machine learning algorithms (described in Chapter 5 and Chapter 6) were inves-

tigated to create the lablled data set for training from TUs over a given period

from the same buildings under test for the experiments [97].

In this chapter, SSL is introduced to develop a framework that would identify

the ‘faulty’ and ‘non-faulty’ behaviour to predict their behaviour using highly

confident unlabeled data. Therefore, SSL based multi-class support vector machine

(MC-SVM) is employed for AFDD and established through training, testing, and

validation process. The proposed AFDD methodology consist of several stages

and the step-wise procedure of the proposed architecture is shown in Figure 7.1.

These feature extraction steps (as shown in Figure 7.1) intend to derive informa-

tive and non-redundant values about TU characteristics, which helps the proposed

semi-supervised learning framework in the identification of significant TU patterns.

In this test, six different classes of faulty and non-faulty TU patterns are available

for specific period and used as labelled data. Then, multi class support vector

machine (MC-SVM) is employed into SSL framework for classifying the faulty

and non-faulty TU patterns [98]. This SSL model is simple yet more efficient and

adopts three steps: training, testing and validation. Subsequently, the training
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Input
FCU-TU

Data

Pre- Processing

Feature
Extraction

Labelled Pattern Unlabelled  Pattern

Train & Validate
the Model

Semi-supervised
Classifier

TU Behaviour
Prediction

Figure 7.1: Proposed AFDD architecture for semi-supervised learning ap-
proaches.

and testing accuracy of the proposed model have been measured through preci-

sion and recall calculation. Thereafter, new unlabelled data are fed into the best

scored SSL model to predict the faulty and non-faulty TU patterns. This pre-

diction then validated through paired t-test [99, 100] which has been determined

for understanding the correlation between historical data (labelled) and predicted

data (unlabelled).
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7.2.1 Multi-class support vector machine and

kernel function

Multi-class support vector machine (MC-SVM) has been used to perform the train-

ing and testing task in this semi-supervised learning approach. The algorithm of

MC-SVM and it’s working principles have already been discussed in the previous

chapter, where it has been employed for supervised approach. It has been defined

that six classes are present in this TU behaviour classification. Thus, MC-SVM has

been employed rather than the general SVM as this is suitable for binary classifica-

tion. Here, a group of mathematical functions are determined as kernel function,

which are applied for choosing the decision boundary margin for MC-SVM clas-

sifier. Kernel function take the input data and convert it to the desired form in

a implicit feature space with view to make it linear dataset. Different kernels are

simply different in case of making the hyper plane decision boundary between the

classes. Depending upon the application and data characteristics different types of

kernel functions has been used [101, 102] such as, linear, polynomial, radial basis

function (RBF), etc. Here, two type of kernel functions have been used for the

experiments: liner kernel and quadratic kernel. In addition, quadratic kernel is a

polynomial kernel, it uses the degree of the parameter (p) as 2, thus it known as

quadratic. The linear kernel and quadratic kernel functions are defined as,

k(xi, xj) = (xi . xj) (7.1)

k(xi, xj) = ((xi . xj) + 1)p (7.2)

Where, k is the kernel functions and (xi . xj) is the dot product of the two feature

vector, p is the adjustable parameter (here p =2) and requires one addition and

exponentiation on the original dot product.
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7.2.2 Model validation

Precision and recall (described in Section 6.2.4) have been measured to validate

the training and testing phase where label information are available which assist

to find out the true TU predictions (truly faulty and non-faulty TU) and false

predictions (wrong TU class prediction). Precision and recall are then calculated

from these true and false predictions. SSL has been applied to the unlabelled data

therefore true and false predictions could not be calculated as before. Thus, the

paired t-test has been investigated to estimate the correlation between a labelled

class and the same TU class predicted by the SSL algorithm. Therefore, the null

hypothesis symbolise the fitness of a predicted TU class data with the TU belongs

to that class in historical data. Test result delivers one to denote the rejection

of consideration of predicted data in the same class of labelled data and zero for

acceptance based on the probability (p-value) of test observation. Low probability

or p-value implies the invalidity of null hypothesis. The null hypothesis (H0)

assumes that the true mean difference (µd) is equal to zero as shown below,

H0 : µd = 0 (7.3)

The results of precision, recall, and t-test have been discussed in the result analysis

below.

7.3 Result analysis

The faulty and non-faulty TUs classification for the new unlabelled data has been

performed here using the historical labelling data, and have already been per-

formed previously (in Chapter 5). The novel feature extraction method (proposed
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earlier in Chapter 4) was employed on the new multi-stream TU dataset for di-

mensionality reduction. Thereafter the featured data used for the data-driven

TU fault detection and diagnosis purpose employing semi-supervised multi-class

support vector machine.

7.3.1 Experimental data details

This experiment has been tested and results are observed for two commercial build-

ing in London over a period from July 2015 to July 2018. A single TU consists of

multiple data streams; such as, control temperature, set point, dead band, heat-

ing and cooling power, enable signals (for this test more than 50 million TU data

points are considered). An example of signal TU data for January 2016 of case

study-1 is shown in Figure 7.2. Here the blue lined graph denotes control tempera-

ture variation with respect to the heating and cooling set point and corresponding

power demand (shown in red) for a month during winter from a building based in

central London. The x-axis shows number of days and y-axis shows temperature

in the below graph and corresponding power demands on the other graph.

This investigation has been performed on two case study buildings detailed in the

Section 3.3. First the building of case study-1 comprises 17 floors and 723 operat-

ing TUs all spread across different floors. The experiments have been executed on

the second building of case study-2 which has altogether 490 operating TUs across

7th floors. This experiment was conducted using data covering a period of three

years from these two case-studies. The data labelling procedure has already being

explained in the previous chapters. Labelled data have been used to train the

model and test on different days. This study have been started for the 17th of July

2015 for case study 1 and the 1st of January 2016 for case study 2. These whole

period of data has been considered to train the model with the help of labelled

information. This involves both training and testing with varying percentages to
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Figure 7.2: An example of a TU control temperature and power data signal
over 30 days in winter.

understand how well the data will train with the dataset. Then, TU behavioural

prediction has been performed by SSL where a label is unavailable. This training

and testing have been done as a trial basis for two seasons mainly: summer and

winter over a period of 3 years. The first year data has been considered for training

the model and rest of the data used for testing purpose. In addition it has been

kept in mind that the training data should have the varieties of different seasons

(mainly summer and winter) so that it can classify different seasons data desirably.

The experimental data for both the case studies are tabulated in Table 7.1. In

the table labelled data have been used for training the model and unlabelled for

testing the model.
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Table 7.1: Obtained data details for the SSL experiments.

Data Details
Case Study 1 Case Study 2

Seasons
From To From To

Labelled
17th July

2015
23rd October

2015
1st January

2016
31st July

2016
Summer &

Winter

Unlablelled
1st November

2015
31st July

2018
1st August

2016
31st July

2018
Summer &

Winter

7.3.2 Results analysis of case study-1

The SSL model has been trained using different training data and investigated by

two classification algorithms with variable parameter tuning. The data set have six

classes including three types of faulty and three types of non-faulty TU patterns

(described in Chapter 5). The baseline classification method multi-class support

vector machine (MC-SVM) has been used and K-nearest neighbour (KNN) [85]

has been performed for model comparison. In the case of the KNN experiment,

the ‘K’ has been varied by one, three, and five while MC-SVM has been exper-

imented using two kernel functions, linear (LMC-SVM or LSVM) and quadratic

(QMC-SVM or QSVM). The obtained testing accuracy results are compared and

tabulated in Table 7.2.

Table 7.2: Testing accuracy results obtained by different methods for case
study 1.

Methods
10% 20% 30% 40% 50% 60%

Pr Re Pr Re Pr Re Pr Re Pr Re Pr Re
1NN 0.692 0.744 0.774 0.902 0.802 0.918 0.734 0.812 0.774 0.887 0.788 0.902
3NN 0.772 0.987 0.798 0.955 0.789 0.939 0.786 0.891 0.809 0.932 0.823 0.934
5NN 0.799 0.976 0.813 0.961 0.829 0.967 0.804 0.955 0.811 0.919 0.815 0.931

LSVM 0.771 0.995 0.785 0.987 0.831 0.973 0.837 0.978 0.821 0.946 0.824 0.981
QSVM 0.691 0.898 0.745 0.91 0.753 0.919 0.813 0.948 0.741 0.914 0.772 0.892

The experiment has been executed by selecting training and testing data ran-

domly from each of the specific training and testing set (as given in Table 7.2).

The training data have been varied from 10% to 60% and vice versa for testing

purpose. The training and testing performances have been calculated separately

to check the robustness of the proposed model. The highest recall (0.987) has
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achieved in 3NN using 10% of training data and highest precision (0.823) in 3NN

using 60% training data. KNNs have performed competitive with MC-SVMs in

training phase because KNNs find the distance between data points in feature

space and a nearest neighbour is the data point itself in the training period, where

MC-SVMs find the inner product or solve quadratic function to discover the best

margin among support vectors that do not deliver as good a result as KNN. 1NN

has worked well because of data compactness. In the case of testing phase, five

nearest neighbour votes deliver improved TU pattern recognition than 1NN. Con-

versely, LMC-SVM has gained the highest recall (0.978) in the testing cases for

40% training data variations. In addition, LMC-SVM has achieved better testing

precision (0.837 with 40% training data). The bar graph representation of the

obtained performance in testing phases using different classification algorithms

has been compared and shown in Figure 7.3. In terms of overall precision and

recall, linear kernel has worked better than the other algorithms. The linear ker-

nel function defines the optimum margin in feature space. Therefore, LMC-SVM

has obtained highest performance score among other classifiers. Thus, LMC-SVM

model with 40% training data has been considered most efficient predictor for this

TU data using the SSL approach.

7.3.3 Results analysis of case study-2

The same experiment have been performed on the building of case study-2 to

check the robustness of the proposed model. The SSL model has been trained by

data over a period as shown in Table 7.1. The training has been performed on

labeled data. Therefore, the data labeling has been done by employing X-means

clustering as described in the previous chapter (Chapter 5). The six different

faulty and non-faulty classes have been identified. Thereafter the SSL approaches

have been performed to illustrate the effectiveness of the proposed approach. This

classification is performed by KNN [85] and MC-SVM for the classification and
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Figure 7.3: Comparison of precision and recall score for case study-1.

method comparison. For KNN, the ‘K’ has been varied by one, three, and five.

For MC-SVM, two kernel function linear (LMC-SVM) and quadratic (QMC-SVM)

has been used. The obtained testing accuracy based on the training variation have

been tabulated and compared in Table 7.3. The experiment was also conducted

by randomly dividing the data set into training and testing phases. The training

data have been varied from 10% to 60% and vice versa for testing. Both the
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training and testing performances have been calculated separately to investigate

the robustness of the proposed model and the testing results are shown here. It can

be observed based on the KNN classification outcomes that the highest precision

(0.816) and recall (0.928) have been achieved in 1NN using 30% of training data.

But, for 3NN and 5NN highest precision (0.825) and (0.830) have been achieved

with 30% and 60% training data. Highest recall (0.986 and 0.955) for both of them

achieved with 10% training data. So, overall it can be remark that 1NN with 30%

training data will be good for classification in terms of both precision and recall

outcomes.

On the other hand, LMC-SVM has also gained the high recall values for all the

different amount of data variations. In addition, LMC-SVM has achieved better

testing precision (0.831) and recall (0.986) with 40% training data than the train-

ing percentage. Although, in QMC-SVM best results were obtained with 40%

training data where precision and recall are 0.825 and 0.958 respectively. Form

this experiments it has been found that in terms of overall precision and recall,

linear kernel (LMC-SVM) has performed superior than other algorithms for both

the case studies. Therefore, it is assumed that the linear kernel function defines

the optimum margin in the feature space of these TU data. The LMC-SVM has

found appropriate for this TU data classification and further the hypothesis vali-

dation has been performed for this classifiers. The bar graph of the outcome table

for the testing phases have been shown in Figure 7.4.

Table 7.3: Testing accuracy results obtained by different methods for case
study-2.

Methods
10% 20% 30% 40% 50% 60%

Pr Re Pr Re Pr Re Pr Re Pr Re Pr Re
1NN 0.683 0.754 0.784 0.912 0.816 0.928 0.754 0.810 0.754 0.889 0.786 0.913
3NN 0.775 0.986 0.778 0.935 0.782 0.969 0.726 0.901 0.813 0.922 0.825 0.914
5NN 0.789 0.955 0.821 0.952 0.830 0.927 0.805 0.952 0.808 0.911 0.826 0.932

LSVM 0.731 0.965 0.795 0.975 0.829 0.976 0.831 0.986 0.813 0.957 0.821 0.979
QSVM 0.771 0.858 0.732 0.920 0.761 0.920 0.825 0.958 0.732 0.944 0.778 0.873
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Figure 7.4: Comparison of precision and recall score for case study-2.

7.3.4 Validation on unlabelled data

In case of the case study 1, LMC-SVM model with 40% training data has been

considered the most efficient predictor for the SSL approach. Further, this model

is used here for the TU prediction without label information. Consequently, paired

t-test has been implemented to discover the correlation between the predicted TU
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class and the TUs truly belong to that class. Figure 7.5 shows the comparison of p-

values obtained by the semi-supervised LMC-SVM for different TU classes where,

the first three classes represent the non-faulty TU patterns in terms of control

temperature and corresponding power demands. Other three classes represent the

different faulty TU patterns. The significance level 0.05 has been considered and

the p-value has been determined for a TU class to justify the null hypothesis. The

null hypothesis has been accepted for a predicted class where p-value is more than

the significance level. Figure 7.5 shows that the predicted class-1 and class-6 have

failed to fit in the actual classes, i.e. the semi-supervised LMC-SVM could predict

the class-2, 3, 4, and 5 correctly but unsuccessful in predicting the TUs from class-

1 and class-6. It is observed from the results that available training data for class

1 and 6 might not be sufficient to train the LMC-SVM.
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Figure 7.5: Obtained p-values for different classes from SSL approach using
LMC-SVM for case study-1.

In the case study 2, also as the 40% training data has been found to show the

highest precision and recall for the LMC-SVM model. Thus, it has also been

considered the most efficient predictor for the SSL approach for this building’s

TU data. Perhaps, this model is used here for the TU prediction without using

labelled data. Consequently, paired t-test has been used to find out the correlation

between the predicted and actual class. Figure 7.5 shows the comparison of p-

values obtained by the semi-supervised LMC-SVM for this case study-2 building’s
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TU. As, the significance level is 0.05 and the p-value must be above the significance

level for each class to accept the null hypothesis of the outcomes. Figure 7.6 shows

the p-values and found that it is higher than the case study-1 but still failed to

fit in the actual classes for class-1 and class-6. Semi-supervised LMC-SVM is able

to predict the class-2, 3, 4, and 5 correctly but unsuccessful in predicting the

TUs from class-1 and class-6. Further investigation is underway to overcome this

limitation with more training data which can deal with these class 1 and 6 as might

the amount of data in these two classes are inadequate to train the LMC-SVM

model properly.
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Figure 7.6: Obtained p-values for different classes from SSL approach using
LMC-SVM for case study-2.

7.4 Conclusion

It is concluded from the presented research outcomes that the semi-supervised

learning (SSL) approach for automatic fault detection and diagnosis study is chal-

lenging and worth investigating. Here, faulty and non-faulty TU prediction has

been investigated using two different classification algorithms varying five different

parameters. The results show that it performs well (overall precision and recall are

above 0.8 and 0.95) when compared to the different KNN algorithm for both case
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studied building’s TU data. New and unlabelled data can be effectively classi-

fied using this approach depending upon the previously available historic dataset,

which have been labelled priory employing Xmeans clustering. It is also found that

the performance of LMC-SVM is the best-fitted model among five-tested methods.

Based on the paired t-test results, LMC-SVM would need to be improved in the

one faulty and one non-faulty class types. Thus, more training data could effec-

tively solve these issue and other classification algorithms investigated to improve

future SSL performance.



Chapter 8

Conclusions of the thesis

.

“Take risks in your life. If you

win, you can lead, if you lose, you

can guide.”

-Swami Vivekananda

8.1 Introduction

Computerized building management system (BMS) provides an opportunity to

facilitate building maintenance and render optimal operational performance. The

foremost concern in the building sector is to optimise the excess energy consump-

tion and maintain the performance inside buildings. One of the major units used

in buildings is the heating, ventilation, and air-conditioning (HVAC) system which

consumes most of the effective energy and is the primary unit for maintaining user

comfort in a building. Specifically, this research has focused on small HVAC units

i.e., terminal unit (TU) of FCU. Moreover, BMS plays a vital role when TU work

119
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inefficiently as they are vast in numbers. However, it is challenging to perform an-

alytics on enormous and amorphous BMS databases. Additionally, finding faults

through manual searching is exhaustive, requires expert views, time consuming,

expensive, and this is why so many energy problems are left undetected/ignored.

Currently, systems cannot autonomously predict future scenarios to anticipate

faults.

8.2 Remark on the proposed automatic fault de-

tection and diagnosis system

It has been concluded from the research outcomes that the proposed automatic

fault detection and diagnosis (AFDD) model and the technical machine learning

sequence is the best possible solution for buildings to predict their behaviour and

faults anticipation. Initial research started by developing a system to demon-

strate how predictive control can be influential in a commercial building for faulty

heating and cooling TU units. This study has described the benefits of the pro-

posed approach to identify the faults remotely in building and forecasting the

behaviour automatically to notify building engineer for taking necessary actions.

The proposed strategy has been built based on unsupervised, supervised and semi-

supervised learning techniques. These learning enable building to be more intel-

ligent through automatic monitoring the heating and cooling temperature inside

building. In consequence, these systems would be able to predict future situations

and anticipate faults to optimize building operation and their energy use.

Real TU behaviour is analysed remotely in this work, where temperature set point

and corresponding power consumption are considered as the parameters for be-

haviour characterisation. These parameters enable a story to form around the TU

and its direct environment, i.e. providing real data on the building under test
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and enabling managers to investigate faulty TUs. Three distinct fault and three

non-fault clusters have been remotely identified and classified. From the AFDD

results, it can be concluded that faulty behaviour can be automatically and re-

motely detected and understood. Subsequently useful and exact information can

be delivered to those managing the TUs in question. Using this vital new informa-

tion an investigator can then identify if it is the environment (set-point issues) or

the particular TU creating the fault. The predictive fault finding can be achieved

using the classification results presented through SSL, thus managers can ensure

timely interventions. In some cases where a fault is assumed, but actual fact is

the TUs in question once checked are not “broken” but for example have had their

temperature set points set too high or low for their environmental setting, making

it difficult for those TUs to achieve set point temperature leading to “faulty” be-

haviour displays. Additionally, too narrow dead band settings (difference between

high and low set points) ranges cause many potential faulty behaviour. Also, exter-

nal influences such as weather conditions, sunlight, photocopiers, fridges, manual

set point changes (based on personal preferences), open windows, etc. are not con-

sidered for both the set point and dead band levels estimation. Usually set point

changes in situations above can be triggered by the building occupants depending

upon their desired comfort levels and the effect of such request on TU behaviour

is observable. Affected TUs subsequently demand excess power but will be unable

to maintain the control strategies requested. Importantly the TUs in this case are

not always defective but simply trying to achieve unattainable goals. Thus, energy

and OPEX savings can be quickly made by addressing these external issues and

the solution satisfies the result was driven at the end of thesis as having major

contribution in the provides this assistance for the proposed AFDD system.
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8.3 Future work

This research will concentrate guiding the previous AFDD study to building main-

tenance services by incorporating text-mining method. This will explore the fur-

ther use of the system with different buildings data to improve the performance

and provide guidance for building operators. This can be done by analysing and

tracking the error messages provided by building engineers and service providers.

Investigating and learning the text of the message and combining with the devel-

oped AFDD system could make the system more intelligent and further contribute

towards making the building smarter informing best practice. These could lead

to improve BMS control strategies, identify faulty and failing equipment that is

misbehaving and making excessive demands on the plant rigorously. The method

will be executed in the following steps:

1. Step 1- Historic text data collection, provides the received messages for the

behaviour of HVAC units and respective suggestions and completed actions.

2. Step 2- Pre-processing of the text data to convert work order descriptions into

a mathematical format that provides itself to a quantitative lexical analysis.

3. Step 3- Clustering to focus on interesting sections of database that contain

information about faults in building systems and components – rather than

less interesting routine maintenance and inspection activities.

4. Step 4 Association rule-mining with the fault classification from the de-

veloped AFDD to identify the coexistence tendencies among the cluster of

interest.

The power and flexibility of a modern BMS allows energy control strategy to

be implemented and the changes in user requirements, developments in HVAC
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technology and evolving policies on energy conservation ensure that innovation

and advancement in building design is a continuing process.
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Appendix

from datetime import datetime , timedelta

from pandas import DataFrame

import matplotlib.pyplot as plt

import numpy as np

from pytz import utc

from hold import hold

from scipy.stats import pearsonr

from scipy.integrate import simps

from IPython import get_ipython

from dllab.utils.model import BEMSObject , do_setup ,BSCollection

from dlutils.trace_exceptions import TraceNoDefinitionError

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_samples , silhouette_score

do_setup ()

# Dashwood House

collection = BSCollection.load(’31c5da2e -f5ed -11e3 -b056 -bc764e08a231 ’)

start = utc.localize(datetime (2015, 7, 20))

end = start + timedelta(hours =24)

freq = ’10Min’

i=0

areas = {}

columns = [’Label’,’F1’, ’F2’,’F3’,’F4’,’F5’,’F6’,’F7’,’F8’,’F9’,’F10’,’F11’,’F12’]

index = np.arange (731) # array of numbers for the number of samples

af = DataFrame(columns=columns , index = index)

for tu in collection.bsobjects:
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print i,tu.label

i=i+1

# Creating Defifnitions

ts={}

ts[’E’]= tu.is_on(start ,end ,freq)

ts[’CT’]=tu.control_temp_trace(start ,end ,freq)

# For Heating TUs

ts[’HSP’]=tu.heating_setpoint_trace(start ,end ,freq)

ts[’HP’]=tu.heating(start ,end ,freq)

ts[’IsHeating ’]=tu.is_heating(start ,end ,freq)

# For Cooling TUs

ts[’CSP’]=tu.cooling_setpoint_trace(start ,end ,freq)

ts[’CP’]=tu.cooling(start ,end ,freq)

ts[’IsCooling ’]=tu.is_cooling(start ,end ,freq)

df = DataFrame(ts)

df[’OutsideGoal ’] = (df[’CT’] < df[’HSP’]) | (df[’CT’] > df[’CSP’])

df[’WithinGoal ’] = df[’OutsideGoal ’] == 0

df[’HError ’] = df[’OutsideGoal ’] * (df[’HSP’] - df[’CT’]). clip(lower =0)

df[’CError ’] = df[’OutsideGoal ’] * (df[’CT’] - df[’CSP’]). clip(lower =0)

# Heating and Cooling event Start

df[’HEventstart ’]= (df[’HError ’]>0) * (df[’CError ’]==0) * df[’E’]

df[’CEventstart ’]= (df[’CError ’]>0) * (df[’HError ’]==0) * df[’E’]

if (df[’HEventstart ’].any ()==1)&( df[’CEventstart ’].any ()==0):

print(’only heating ’)

df[’HEventsEnd ’] = (df[’HError ’]==0)

# Heating Events for Temperature Response Delay - ES -RD

df[’THRD’]=(((df[’CT’]-hold(df[’CT’],df[’HEventstart ’]))/df[’CT’]).abs () <0.05)*df[’HEventstart ’]

# Heating After Response Delay - RD -GA

df[’THARD’] = (df[’THRD’] == 0)*df[’OutsideGoal ’]*df[’HEventstart ’]

# Heating goal achieved - GA -EE

df[’THGA’] = df[’WithinGoal ’]*df[’HEventsEnd ’]

# Heating Events for Power Response Delay - ES -RD

df[’PHRD’] = df[’HP’]*df[’THRD’]
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# Heating After Response Delay - RD -GA

df[’PHARD’] = (df[’PHRD’] == 0)*df[’HP’]

# Heating goal achieved - GA -EE

df[’PHGA’] = df[’WithinGoal ’]*df[’HEventstart ’]*df[’HP’]

# Calculating the areas

areas[’AH1’] = simps(df[’THRD’])

areas[’AH2’] = simps(df[’THARD’])

areas[’AH3’] = simps(df[’THGA’])

areas[’AH4’] = simps(df[’PHRD’])

areas[’AH5’] = simps(df[’PHARD’])

areas[’AH6’] = simps(df[’PHGA’])

areas[’AC1’] = 0

areas[’AC2’] = 0

areas[’AC3’] = 0

areas[’AC4’] = 0

areas[’AC5’] = 0

areas[’AC6’] = 0

print areas[’AH1’]

print areas[’AH2’]

print areas[’AH3’]

print areas[’AH4’]

print areas[’AH5’]

print areas[’AH6’]

print areas[’AC1’]

print areas[’AC2’]

print areas[’AC3’]

print areas[’AC4’]

print areas[’AC5’]

print areas[’AC6’]

elif (df[’CEventstart ’].any ()==1)&( df[’HEventstart ’].any ()==0):

print(’only cooling ’)

df[’CEventsEnd ’] = (df[’CError ’]==0) *(df[’HEventstart ’]==0)

# Cooling Events for Temperature Response Delay - ES -RD

df[’TCRD’] = (((df[’CT’] - hold(df[’CT’], df[’CEventstart ’])) / df[’CT’]). abs() < 0.05) *df[’CEventstart ’]

# Cooling After Response Delay - RD -GA

df[’TCARD’] =(df[’TCRD’] == 0)*df[’OutsideGoal ’]*df[’CEventstart ’]

# Cooling goal achieved - GA -EE

df[’TCGA’] = df[’WithinGoal ’]*df[’CEventsEnd ’]

# Cooling Events for Power Response Delay - ES -RD
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df[’PCRD’] = df[’CP’]*df[’TCRD’]

# Cooling After Response Delay - RD -GA

df[’PCARD’] = (df[’PCRD’] == 0)*df[’CP’]

# Cooling goal achieved - GA -EE

df[’PCGA’] = df[’WithinGoal ’]*df[’CEventsEnd ’]*df[’CP’]

# Calculating the areas

areas[’AC1’] = simps(df[’TCRD’])

areas[’AC2’] = simps(df[’TCARD’])

areas[’AC3’] = simps(df[’TCGA’])

areas[’AC4’] = simps(df[’PCRD’])

areas[’AC5’] = simps(df[’PCARD’])

areas[’AC6’] = simps(df[’PCGA’])

areas[’AH1’] = 0

areas[’AH2’] = 0

areas[’AH3’] = 0

areas[’AH4’] = 0

areas[’AH5’] = 0

areas[’AH6’] = 0

print areas[’AC1’]

print areas[’AC2’]

print areas[’AC3’]

print areas[’AC4’]

print areas[’AC5’]

print areas[’AC6’]

print areas[’AH1’]

print areas[’AH2’]

print areas[’AH3’]

print areas[’AH4’]

print areas[’AH5’]

print areas[’AH6’]

elif (df[’HEventstart ’].any ()==1)&( df[’CEventstart ’].any ()==1):

print(’both heating and cooling ’)

df[’HEventsEnd ’] = df[’IsHeating ’] *(df[’HError ’]==0)

df[’CEventsEnd ’] = df[’IsCooling ’] *(df[’CError ’]==0)

df[’THRD’] = (((df[’CT’] - hold(df[’CT’], df[’HEventstart ’])) / df[’CT’]). abs() < 0.05) *df[’HEventstart ’]

# Heating Events for Temperature After Response Delay - RD -GA

df[’THARD’] = (df[’THRD’] == 0)*df[’OutsideGoal ’]*df[’HEventstart ’]

# Heating goal achieved - GA -EE

df[’THGA’] = df[’WithinGoal ’]*df[’HEventsEnd ’]
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# Heating Events for Power Response Delay - ES -RD

df[’PHRD’] = df[’HP’]*df[’THRD’]

# Heating After Response Delay - RD -GA

df[’PHARD’] = (df[’PHRD’] == 0)*df[’HP’]

# Heating goal achieved - GA -EE

df[’PHGA’] = df[’WithinGoal ’]*df[’HEventstart ’]*df[’HP’]

# Calculating the areas

areas[’AH1’] = simps(df[’THRD’])

areas[’AH2’] = simps(df[’THARD’])

areas[’AH3’] = simps(df[’THGA’])

areas[’AH4’] = simps(df[’PHRD’])

areas[’AH5’] = simps(df[’PHARD’])

areas[’AH6’] = simps(df[’PHGA’])

print areas[’AH1’]

print areas[’AH2’]

print areas[’AH3’]

print areas[’AH4’]

print areas[’AH5’]

print areas[’AH6’]

# Cooling Events for Temperature Response Delay - ES -RD

df[’TCRD’] = (((df[’CT’] - hold(df[’CT’], df[’CEventstart ’])) / df[’CT’]). abs() < 0.05) *df[’CEventstart ’]

# Cooling After Response Delay - RD -GA

df[’TCARD’] =(df[’TCRD’] == 0)*df[’OutsideGoal ’]*df[’CEventstart ’]

# Cooling goal achieved - GA -EE

df[’TCGA’] = df[’WithinGoal ’]*df[’CEventsEnd ’]

# Cooling Events for Power Response Delay - ES -RD

df[’PCRD’] = df[’CP’]*df[’TCRD’]

# Cooling After Response Delay - RD -GA

df[’PCARD’] = (df[’PCRD’] == 0)*df[’CP’]

# Cooling goal achieved - GA -EE

df[’PCGA’] = df[’WithinGoal ’]*df[’CEventsEnd ’]*df[’CP’]

# Calculating the areas

areas[’AC1’] = simps(df[’TCRD’])

areas[’AC2’] = simps(df[’TCARD’])

areas[’AC3’] = simps(df[’TCGA’])

areas[’AC4’] = simps(df[’PCRD’])

areas[’AC5’] = simps(df[’PCARD’])

areas[’AC6’] = simps(df[’PCGA’])

print areas[’AC1’]

print areas[’AC2’]

print areas[’AC3’]

print areas[’AC4’]
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print areas[’AC5’]

print areas[’AC6’]

elif (df[’HEventstart ’].any ()==0)&( df[’CEventstart ’].any ()==0):

print(’neither heating or cooling ’)

# Calculating the areas

areas[’AH1’] = 0

areas[’AH2’] = 0

areas[’AH3’] = 0

areas[’AH4’] = 0

areas[’AH5’] = 0

areas[’AH6’] = 0

areas[’AC1’] = 0

areas[’AC2’] = 0

areas[’AC3’] = 0

areas[’AC4’] = 0

areas[’AC5’] = 0

areas[’AC6’] = 0

print areas[’AH1’]

print areas[’AH2’]

print areas[’AH3’]

print areas[’AH4’]

print areas[’AH5’]

print areas[’AH6’]

print areas[’AC1’]

print areas[’AC2’]

print areas[’AC3’]

print areas[’AC4’]

print areas[’AC5’]

print areas[’AC6’]

print (’---------------------------------------------------’)

af.ix[i-1]={ ’Label ’ : tu.label , ’F1’ : areas[’AC1’], ’F2’ : areas[’AC2’], ’F3’ : areas[’AC3’], ’F4’ : areas[’AC4’], ’F5’ : areas[’AC5’], ’F6’ : areas[’AC6’], ’F7’ : areas[’AH1’], ’F8’ : areas[’AH2’], ’F9’ : areas[’AH3’], ’F10’ : areas[’AH4’], ’F11’ : areas[’AH5’], ’F12’ : areas[’AH6’]}

print (’---------------------------------------------------’)

normalized = {}

normalized[’FC1’] =np.float64(af[’F1’]-af[’F1’]. values.min() )/(af[’F1’]. values.max()-af[’F1’]. values.min() )
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normalized[’FC2’] =np.float64(af[’F2’]-af[’F2’]. values.min() )/(af[’F2’]. values.max()-af[’F2’]. values.min() )

normalized[’FC3’] =np.float64(af[’F3’]-af[’F3’]. values.min() )/(af[’F3’]. values.max()-af[’F3’]. values.min() )

normalized[’FC4’] =np.float64(af[’F4’]-af[’F4’]. values.min() )/(af[’F4’]. values.max()-af[’F4’]. values.min() )

normalized[’FC5’] =np.float64(af[’F5’]-af[’F5’]. values.min() )/(af[’F5’]. values.max()-af[’F5’]. values.min() )

normalized[’FC6’] =np.float64(af[’F6’]-af[’F6’]. values.min() )/(af[’F6’]. values.max()-af[’F6’]. values.min() )

normalized[’FH1’] =np.float64(af[’F7’]-af[’F7’]. values.min() )/(af[’F7’]. values.max()-af[’F7’]. values.min() )

normalized[’FH2’] =np.float64(af[’F8’]-af[’F8’]. values.min() )/(af[’F8’]. values.max()-af[’F8’]. values.min() )

normalized[’FH3’] =np.float64(af[’F9’]-af[’F9’]. values.min() )/(af[’F9’]. values.max()-af[’F9’]. values.min() )

normalized[’FH4’] =np.float64(af[’F10’]-af[’F10’]. values.min() )/(af[’F10’]. values.max()-af[’F10’]. values.min() )

normalized[’FH5’] =np.float64(af[’F11’]-af[’F11’]. values.min() )/(af[’F11’]. values.max()-af[’F11’]. values.min() )

normalized[’FH6’] =np.float64(af[’F12’]-af[’F12’]. values.min() )/(af[’F12’]. values.max()-af[’F12’]. values.min() )

df1 = DataFrame(normalized)

df1=df1.fillna (0)

df1

kmeans = KMeans(n_clusters =6). fit(df1.iloc [: ,1:])

centroids = kmeans.cluster_centers_

labels = kmeans.labels_

sample_silhouette_values = abs(silhouette_samples(df1.iloc[:,1:], labels ))

sample_silhouette_values

clas ={}

clas[’Cluster ’]= labels

clas[’Distance ’]= sample_silhouette_values

clas[’TUs’]=af[’Label’]

df2 = DataFrame(clas)

df2

clust=0

for clust in range (6):

print (’\n******************** PLEASE WAIT ARE TRYING TO FIND OUT FAULTY TUs ****************\n’)

x = df2[df2[’Cluster ’]== clust]

mean = np.mean(x[’Distance ’])

std = np.std(x[’Distance ’])

Th = mean + std

Th = 0.75

print ("Cluster ", clust , "Threshold ", Th)

print x[x[’Distance ’] > Th ]

print (’\n***********************************************************************************\n’)
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