11,619 research outputs found

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Distributed smart charging of electric vehicles for balancing wind energy

    Get PDF
    To meet worldwide goals of reducing CO2 footprint, electricity production increasingly is stemming from so-called renewable sources. To cater for their volatile behavior, so-called demand response algorithms are required. In this paper, we focus particularly on how charging electrical vehicles (EV) can be coordinated to maximize green energy consumption. We present a distributed algorithm that minimizes imbalance costs, and the disutility experienced by consumers. Our approach is very much practical, as it respects privacy, while still obtaining near-optimal solutions, by limiting the information exchanged: i.e. consumers do not share their preferences, deadlines, etc. Coordination is achieved through the exchange of virtual prices associated with energy consumption at certain times. We evaluate our approach in a case study comprising 100 electric vehicles over the course of 4 weeks, where renewable energy is supplied by a small scale wind turbine. Simulation results show that 68% of energy demand can be supplied by wind energy using our distributed algorithm, compared to 73% in a theoretical optimum scenario, and only 40% in an uncoordinated business-as-usual (BAU) scenario. Also, the increased usage of renewable energy sources, i.e. wind power, results in a 45% reduction of CO2 emissions, using our distributed algorithm

    Peer-to-peer and community-based markets: A comprehensive review

    Full text link
    The advent of more proactive consumers, the so-called "prosumers", with production and storage capabilities, is empowering the consumers and bringing new opportunities and challenges to the operation of power systems in a market environment. Recently, a novel proposal for the design and operation of electricity markets has emerged: these so-called peer-to-peer (P2P) electricity markets conceptually allow the prosumers to directly share their electrical energy and investment. Such P2P markets rely on a consumer-centric and bottom-up perspective by giving the opportunity to consumers to freely choose the way they are to source their electric energy. A community can also be formed by prosumers who want to collaborate, or in terms of operational energy management. This paper contributes with an overview of these new P2P markets that starts with the motivation, challenges, market designs moving to the potential future developments in this field, providing recommendations while considering a test-case

    A review on the virtual power plant: Components and operation systems

    Full text link
    © 2016 IEEE. Due to the high penetration of Distributed Generations (DGs) in the network and the presently involving competition in all electrical energy markets, Virtual Power Plant (VPP) as a new concept has come into view, with the intention of dealing with the increasing number of DGs in the system and handling effectively the competition in the electricity markets. This paper reviews the VPP in terms of components and operation systems. VPP fundamentally is composed of a number of DGs including conventional dispatchable power plants and intermittent generating units along with possible flexible loads and storage units. In this paper, these components are described in an all-inclusive manner, and some of the most important ones are pointed out. In addition, the most important anticipated outcomes of the two types of VPP, Commercial VPP (CVPP) and Technical VPP (TVPP), are presented in detail. Furthermore, the important literature associated with Combined Heat and Power (CHP) based VPP, VPP components and modeling, VPP with Demand Response (DR), VPP bidding strategy, and participation of VPP in electricity markets are briefly classified and discussed in this paper

    Systematic categorization of optimization strategies for virtual power plants

    Get PDF
    Due to the rapid growth in power consumption of domestic and industrial appliances, distributed energy generation units face difficulties in supplying power efficiently. The integration of distributed energy resources (DERs) and energy storage systems (ESSs) provides a solution to these problems using appropriate management schemes to achieve optimal operation. Furthermore, to lessen the uncertainties of distributed energy management systems, a decentralized energy management system named virtual power plant (VPP) plays a significant role. This paper presents a comprehensive review of 65 existing different VPP optimization models, techniques, and algorithms based on their system configuration, parameters, and control schemes. Moreover, the paper categorizes the discussed optimization techniques into seven different types, namely conventional technique, offering model, intelligent technique, price-based unit commitment (PBUC) model, optimal bidding, stochastic technique, and linear programming, to underline the commercial and technical efficacy of VPP at day-ahead scheduling at the electricity market. The uncertainties of market prices, load demand, and power distribution in the VPP system are mentioned and analyzed to maximize the system profits with minimum cost. The outcome of the systematic categorization is believed to be a base for future endeavors in the field of VPP development

    Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources

    Get PDF
    The energy landscape is experiencing accelerating change; centralized energy systems are being decarbonized, and transitioning towards distributed energy systems, facilitated by advances in power system management and information and communication technologies. This paper elaborates on these generations of energy systems by critically reviewing relevant authoritative literature. This includes a discussion of modern concepts such as ‘smart grid’, ‘microgrid’, ‘virtual power plant’ and ‘multi-energy system’, and the relationships between them, as well as the trends towards distributed intelligence and interoperability. Each of these emerging urban energy concepts holds merit when applied within a centralized grid paradigm, but very little research applies these approaches within the emerging energy landscape typified by a high penetration of distributed energy resources, prosumers (consumers and producers), interoperability, and big data. Given the ongoing boom in these fields, this will lead to new challenges and opportunities as the status-quo of energy systems changes dramatically. We argue that a new generation of holonic energy systems is required to orchestrate the interplay between these dense, diverse and distributed energy components. The paper therefore contributes a description of holonic energy systems and the implicit research required towards sustainability and resilience in the imminent energy landscape. This promotes the systemic features of autonomy, belonging, connectivity, diversity and emergence, and balances global and local system objectives, through adaptive control topologies and demand responsive energy management. Future research avenues are identified to support this transition regarding interoperability, secure distributed control and a system of systems approach

    Applications, Operational Architectures and Development of Virtual Power Plants as a Strategy to Facilitate the Integration of Distributed Energy Resources

    Get PDF
    In this article, we focus on the development and scope of virtual power plants (VPPs) as a strategy to facilitate the integration of distributed energy resources (DERs) in the power system. Firstly, the concepts about VPPs and their scope and limitations are introduced. Secondly, smart management systems for the integration of DERs are considered and a scheme of DER management through a bottom-up strategy is proposed. Then, we analyze the coordination of VPPs with the system operators and their commercial integration in the electricity markets. Finally, the challenges that must be overcome to achieve the large-scale implementation of VPPs in the power system are identified and discussed.The authors acknowledge the support from GISEL research group IT1191-19, as well as from the University of the Basque Country UPV/EHU (research group funding 181/18)

    Electric Vehicle Fleet Integration in the Danish EDISON Project:A Virtual Power Plant on the Island of Bornholm

    Get PDF
    The Danish EDISON project has been launched to investigate how a large fleet of electric vehicles (EVs) can be integrated in a way that supports the electric grid while benefitting both the individual car owners and society as a whole through reductions in CO 2 emissions. The consortium partners include energy companies, technology suppliers and research laboratories and institutes. The aim is to perform a thorough investigation of the challenges and opportunities of EVs and then to deliver a technical platform that can be demonstrated on the Danish island of Bornholm. To reach this goal, a vast amount of research is done in various areas of EV technology by the partners. This paper will focus on the ICT-based distributed software integration, which plays a major role for the success of EDISON. Key solution technologies and standards that will accommodate communication and optimize the coordination of EVs will be described as well as the simulation work that will help to reach the goals of the project

    Electric Vehicles Integrated with Renewable Energy Sources for Sustainable Mobility

    Get PDF
    Across the globe, governments have been tackling the concerning problem of air-polluting emissions by committing significant resources to improving air quality. Achieving the goal of air purification will require that both the private and public sectors invest in clean energy technology. It will also need a transition from conventional houses to smart houses and from conventional vehicles to electric vehicles (EVs). It will be necessary to integrate renewable energy sources (RESs) such as solar photovoltaics, wind energy systems and diverse varieties of bioenergies. In addition, there are opportunities for decarbonisation within the transportation sector itself. Paradoxically, it appears that the same transportation sector might also present an opportunity for a speedy decarbonisation. Statistics indicate that transportation is responsible for 14% of global greenhouse gas (GHG) emissions. However, there are numerous options for viable clean technology, including the plug-in electric vehicles (PEVs). There are indeed many technologies and strategies, which reduce transportation emissions such as public transportation, vehicle light weighing, start-stop trains, improved engine technology, fuel substitution and production improvement, hydrogen, power-to-gas, and natural gas heavy fleets. This work concentrates on EV adoption integrated with RES. Specifically, this chapter examines the feasibility of significantly reducing GHG emissions by integrating EVs with RESs for sustainable mobility
    • …
    corecore