5 research outputs found

    Smart Electric Vehicle Charging System : Controlling Multiple Electrical Vehicle Chargers using OCPP to Limit Electricity Demand

    Get PDF
    Master's thesis Renewable Energy ENE500 - University of Agder 2017Peak demand is a problem when Electrical Vehicle charging is introduced in the electricity grid. Local limitations like fuses and transformer capacity can rapidly be overloaded if multiple Electrical Vehicles are charging at the same time. This can be solved by shifting these loads in time. This master’s Thesis presents a solution by using the communication protocol OCPP to restrict one or more chargers below a set demand limit. The solution is developed in cooperation with Sharebox [1] and Grønn Kontakt [2], and is in prototype phase at the end of this Master’s Thesis. Testing demonstrates that the prototype can reduce the electricity demand of Charge Points in response to other loads. The solution is adaptable and can with small modifications be improved to limit charging based on overall grid capacity. This improvement will allow demand side management to counter grid overload instead of the common solution to have supply side resolve any grid demands. Key Words: Energy Management, OCPP, EVSE, Demand Limi

    SALSA: A Formal Hierarchical Optimization Framework for Smart Grid

    Get PDF
    The smart grid, by the integration of advanced control and optimization technologies, provides the traditional grid with an indisputable opportunity to deliver and utilize the electricity more efficiently. Building smart grid applications is a challenging task, which requires a formal modeling, integration, and validation framework for various smart grid domains. The design flow of such applications must adapt to the grid requirements and ensure the security of supply and demand. This dissertation, by proposing a formal framework for customers and operations domains in the smart grid, aims at delivering a smooth way for: i) formalizing their interactions and functionalities, ii) upgrading their components independently, and iii) evaluating their performance quantitatively and qualitatively.The framework follows an event-driven demand response program taking no historical data and forecasting service into account. A scalable neighborhood of prosumers (inside the customers domain), which are equipped with smart appliances, photovoltaics, and battery energy storage systems, are considered. They individually schedule their appliances and sell/purchase their surplus/demand to/from the grid with the purposes of maximizing their comfort and profit at each instant of time. To orchestrate such trade relations, a bilateral multi-issue negotiation approach between a virtual power plant (on behalf of prosumers) and an aggregator (inside the operations domain) in a non-cooperative environment is employed. The aggregator, with the objectives of maximizing its profit and minimizing the grid purchase, intends to match prosumers' supply with demand. As a result, this framework particularly addresses the challenges of: i) scalable and hierarchical load demand scheduling, and ii) the match between the large penetration of renewable energy sources being produced and consumed. It is comprised of two generic multi-objective mixed integer nonlinear programming models for prosumers and the aggregator. These models support different scheduling mechanisms and electricity consumption threshold policies.The effectiveness of the framework is evaluated through various case studies based on economic and environmental assessment metrics. An interactive web service for the framework has also been developed and demonstrated

    Methods for Optimal Microgrid Management

    Get PDF
    Abstract During the last years, the number of distributed generators has grown significantly and it is expected to become higher in the future. Several new technologies are being de-veloped for this type of generation (including microturbines, photovoltaic plants, wind turbines and electrical storage systems) and have to be integrated in the electrical grid. In this framework, active loads (i.e., shiftable demands like electrical vehicles, intelligent buildings, etc.) and storage systems are crucial to make more flexible and smart the dis-tribution system. This thesis deals with the development and application of system engi-neering methods to solve real-world problems within the specific framework of microgrid control and management. The typical kind of problems that is considered when dealing with the manage-ment and control of Microgrids is generally related to optimal scheduling of the flows of energy among the various components in the systems, within a limited area. The general objective is to schedule the energy consumptions to maximize the expected system utility under energy consumption and energy generation constraints. Three different issues related to microgrid management will be considered in detail in this thesis: 1. The problem of Nowcasting and Forecasting of the photovoltaic power production (PV). This problem has been approached by means of several data-driven techniques. 2. The integration of stations to charge electric vehicles in the smart grids. The impact of this integration on the grid processes and on the demand satisfaction costs have been analysed. In particular, two different models have been developed for the optimal integration of microgrids with renewable sources, smart buildings, and the electrical vehicles (EVs), taking into account two different technologies. The first model is based on a discrete-time representation of the dynamics of the system, whereas the second one adopts a discrete-event representation. 3. The problem of the energy optimization for a set of interconnencted buildings. In ths connection, an architecture, structured as a two-level control scheme has been developed. More precisely, an upper decision maker solves an optimization problem to minimize its own costs and power losses, and provides references (as 3 regars the power flows) to local controllers, associated to buildings. Then, lower level (local) controllers, on the basis of a more detailed representation of each specific subsystem (the building associated to the controller), have the objective of managing local storage systems and devices in order to follow the reference values (provided by the upper level), to contain costs, and to achieve comfort requirements

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems
    corecore