13,099 research outputs found

    Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Get PDF
    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy

    Launching the Grand Challenges for Ocean Conservation

    Get PDF
    The ten most pressing Grand Challenges in Oceans Conservation were identified at the Oceans Big Think and described in a detailed working document:A Blue Revolution for Oceans: Reengineering Aquaculture for SustainabilityEnding and Recovering from Marine DebrisTransparency and Traceability from Sea to Shore:  Ending OverfishingProtecting Critical Ocean Habitats: New Tools for Marine ProtectionEngineering Ecological Resilience in Near Shore and Coastal AreasReducing the Ecological Footprint of Fishing through Smarter GearArresting the Alien Invasion: Combating Invasive SpeciesCombatting the Effects of Ocean AcidificationEnding Marine Wildlife TraffickingReviving Dead Zones: Combating Ocean Deoxygenation and Nutrient Runof

    Efeitos do solo e clima numa vinha de uva de mesa com cultura de cobertura. Gestão da rega utilizando redes de sensores

    Get PDF
    [ENG] TThe use of mulches in vineyards and orchards is a traditional agricultural practice used with the aim of saving moisture, reducing weed growth and improving organic matter content in the soil. In table grape vineyards trained to overhead system in Puglia region (Southeastern Italy), plastic sheets covering the canopy are often used to either advance ripening or delay harvest. In this environment, the living mulches could contribute to the modification of the microclimate around the canopy below the plastic sheets. This condition has an influence on the climatic demand and on both the vegetative and productive activities, mainly in stages with a high evapotranspiration. However, the presence of living mulches could increase the demand of available water and nutrient resources and this could cause a lower yield. The aim of this study was to acquire a suitable knowledge to manage irrigation and verify the influences of living mulches on the vine by using wireless sensor networks to measure the vapor pressure deficit, soil water potential and content.[POR] A utilização de coberturas do solo em vinhas e pomares é uma prática agrícola tradicional, utilizada com o objetivo de preservar a humidade do solo, reduzir o crescimento de infestantes e melhorar o teor de matéria orgânica no solo. Em vinhas de uva de mesa, conduzidas em sistema de pérgula na região de Puglia (sudeste da Itália), são frequentemente usadas coberturas de plástico para promover o avanço da maturação ou o atraso da colheita. Neste ambiente a utilização de enrelvamentos pode contribuir para a modificação do microclima do copado. Esta condição pode influenciar a demanda atmosférica, bem como a atividade vegetativa e reprodutiva da videira, principalmente em períodos de elevada evapotranspiração. No entanto, a presença do enrelvamento pode originar um aumento da demanda dos recursos disponíveis, nomeadamente água e nutrientes, o que poderá provocar uma quebra de produção. O objetivo deste estudo foi adquirir conhecimento para a gestão da rega e, simultaneamente, verificar a influência dos enrelvamentos na atividade da videira, usando para o efeito redes de sensores “sem fio” para medir o déficit de pressão de vapor, o potencial e o conteúdo de água no solo.The development of this work was supported by: The Spanish Ministry of Science and Innovation through the project RIDEFRUT (ref. AGL2013-49047-C2-1-R), the “Fundacion Seneca, Agencia de Ciencia y Tecnologia” of the Region of Murcia under the “Excelence Group Program”, and the Technical University of Cartagena under the PMPDI Program

    A low power IoT network for smart agriculture

    Get PDF
    Traditional agriculture is transforming into smart agriculture due to the prominence of the Internet of Things (IoT). Low-cost and low-power are the key factors to make any IoT network useful and acceptable to the farmers. In this paper, we have proposed a low-power, low-cost IoT network for smart agriculture. For monitoring the soil moisture content, we have used an in-house developed sensor. In the proposed network, the IITH mote is used as a sink and sensor node which provides low-power communication. We have evaluated our network with state of the art networks, proposed for agriculture monitoring. Power and cost are the two metrics used for evaluation of these networks. Results show that the proposed network consumes less power and has prolonged lifetime in the agriculture field

    Internet of Things Applications in Precision Agriculture: A Review

    Get PDF
    The goal of this paper is to review the implementation of an Internet of Things (IoT)-based system in the precision agriculture sector. Each year, farmers suffer enormous losses as a result of insect infestations and a lack of equipment to manage the farm effectively. The selected article summarises the recommended systematic equipment and approach for implementing an IoT in smart farming. This review's purpose is to identify and discuss the significant devices, cloud platforms, communication protocols, and data processing methodologies. This review highlights an updated technology for agricultural smart management by revising every area, such as crop field data and application utilization. By customizing their technology spending decisions, agriculture stakeholders can better protect the environment and increase food production in a way that meets future global demand. Last but not least, the contribution of this research is that the use of IoT in the agricultural sector helps to improve sensing and monitoring of production, including farm resource usage, animal behavior, crop growth, and food processing. Also, it provides a better understanding of the individual agricultural circumstances, such as environmental and weather conditions, the growth of weeds, pests, and diseases

    Utilization of Internet of Things and wireless sensor networks for sustainable smallholder agriculture

    Get PDF
    Agriculture is the economy’s backbone for most developing countries. Most of these countries suffer from insufficient agricultural production. The availability of real-time, reliable and farm-specific information may significantly contribute to more sufficient and sustained production. Typically, such information is usually fragmented and often does fit one-on-one with the farm or farm plot. Automated, precise and affordable data collection and dissemination tools are vital to bring such information to these levels. The tools must address details of spatial and temporal variability. The Internet of Things (IoT) and wireless sensor networks (WSNs) are useful technology in this respect. This paper investigates the usability of IoT and WSN for smallholder agriculture applications. An in-depth qualitative and quantitative analysis of relevant work over the past decade was conducted. We explore the type and purpose of agricultural parameters, study and describe available resources, needed skills and technological requirements that allow sustained deployment of IoT and WSN technology. Our findings reveal significant gaps in utilization of the technology in the context of smallholder farm practices caused by social, economic, infrastructural and technological barriers. We also identify a significant future opportunity to design and implement affordable and reliable data acquisition tools and frameworks, with a possible integration of citizen science

    Smart greenhouse and plant growth control

    Get PDF
    Since the development of agriculture is an important problem for every state, huge funds are allocated to this industry. However, the problem of lack of fresh fruits/vegetables, that is, the problem of import substitution remains a pressing issue in many countries. The aim of the study was to inspect the growth of plants in a home-based mini-greenhouse, for which reason the following tasks were set: conduct a biological experiment; search for dependence of the influence of environmental conditions (microclimate) on growth. The paper highlights the problem of import substitution of vegetables in Kazakhstan, and suggests the best way to solve this issue. The proposed solution offers the development of mini-greenhouse that meets the criteria of price and quality. The developed system differs from other smart greenhouses, firstly, by its availability to a wide range of users (price criterion), and secondly, by ensuring agrotechnical, energy, and design requirements (quality criterion). These requirements are implemented through the use of promising technologies: phytomonitoring, intelligent technologies and open source software, the use of available construction materials and water saving technologies such as drip irrigation. The economic effect from the use of the proposed technology has amounted to 10,000 tenge, the payback period was 4 seasons

    New strategies for row-crop management based on cost-effective remote sensors

    Get PDF
    Agricultural technology can be an excellent antidote to resource scarcity. Its growth has led to the extensive study of spatial and temporal in-field variability. The challenge of accurate management has been addressed in recent years through the use of accurate high-cost measurement instruments by researchers. However, low rates of technological adoption by farmers motivate the development of alternative technologies based on affordable sensors, in order to improve the sustainability of agricultural biosystems. This doctoral thesis has as main objective the development and evaluation of systems based on affordable sensors, in order to address two of the main aspects affecting the producers: the need of an accurate plant water status characterization to perform a proper irrigation management and the precise weed control. To address the first objective, two data acquisition methodologies based on aerial platforms have been developed, seeking to compare the use of infrared thermometry and thermal imaging to determine the water status of two most relevant row-crops in the region, sugar beet and super high-density olive orchards. From the data obtained, the use of an airborne low-cost infrared sensor to determine the canopy temperature has been validated. Also the reliability of sugar beet canopy temperature as an indicator its of water status has been confirmed. The empirical development of the Crop Water Stress Index (CWSI) has also been carried out from aerial thermal imaging combined with infrared temperature sensors and ground measurements of factors such as water potential or stomatal conductance, validating its usefulness as an indicator of water status in super high-density olive orchards. To contribute to the development of precise weed control systems, a system for detecting tomato plants and measuring the space between them has been developed, aiming to perform intra-row treatments in a localized and precise way. To this end, low cost optical sensors have been used and compared with a commercial LiDAR laser scanner. Correct detection results close to 95% show that the implementation of these sensors can lead to promising advances in the automation of weed control. The micro-level field data collected from the evaluated affordable sensors can help farmers to target operations precisely before plant stress sets in or weeds infestation occurs, paving the path to increase the adoption of Precision Agriculture techniques

    Workshop on Smart Sensors - Instrumentation and Measurement: Program

    Get PDF
    On 18-19 February, the School of Engineering successfully ran a two-day workshop on Smart Sensors - Instrumentation and Measurement. Associate Professor Rainer Künnemeyer organised the event on behalf of the IEEE Instrumentation and Measurement Society, New Zealand Chapter. Over 60 delegates attended and appreciated the 34 presentations which covered a wide range of topics related to sensors, sensor networks and instrumentation. There was substantial interest and support from local industry and crown research institutes

    Environment Control with Low-Cost Microcontrollers and Microprocessors: Application for GreenWalls

    Get PDF
    Green wall irrigation procedures are a particularly important and hard task, given that the quality of the green wall depends on them. There is currently a wide variety of irrigation programmers available, with a range of functions and prices, thereby replacing manual activities and making it easier to maintain green walls. This paper proposes the use of low-cost automated irrigation programmers via a freeware called Arduino. The system is based on air and substrate measurements to ensure optimal plant growth and high water-use efficiency. At certain thresholds, the irrigation system is activated. This not only makes irrigation more convenient but also helps to reduce energy consumption, increases irrigation efficiency and saves time. The data is then sent via Transmission Control Protocol using Internet of Things technology, in this case ThingSpeak. The platform compiles the data and presents them in simple graphical format, thus enabling real-time monitoring from wherever there is Internet access. Together with Arduino, the project incorporates the Raspberry pi system that operates like a database via Hypertext Transfer Protocol Wi-Fi received by a Structured Query Language (MySQL) server using Hypertext Preprocessor. These data are used for the subsequent analysis of green wall performance
    corecore