1,026 research outputs found

    Sparse nonlinear optimization for signal processing and communications

    Get PDF
    This dissertation proposes three classes of new sparse nonlinear optimization algorithms for network echo cancellation (NEC), 3-D synthetic aperture radar (SAR) image reconstruction, and adaptive turbo equalization in multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications, respectively. For NEC, the proposed two proportionate affine projection sign algorithms (APSAs) utilize the sparse nature of the network impulse response (NIR). Benefiting from the characteristics of l₁-norm optimization, affine projection, and proportionate matrix, the new algorithms are more robust to impulsive interferences and colored input than the conventional adaptive algorithms. For 3-D SAR image reconstruction, the proposed two compressed sensing (CS) approaches exploit the sparse nature of the SAR holographic image. Combining CS with the range migration algorithms (RMAs), these approaches can decrease the load of data acquisition while recovering satisfactory 3-D SAR image through l₁-norm optimization. For MIMO UWA communications, a robust iterative channel estimation based minimum mean-square-error (MMSE) turbo equalizer is proposed for large MIMO detection. The MIMO channel estimation is performed jointly with the MMSE equalizer and the maximum a posteriori probability (MAP) decoder. The proposed MIMO detection scheme has been tested by experimental data and proved to be robust against tough MIMO channels. --Abstract, page iv

    On data-selective learning

    Get PDF
    Adaptive filters are applied in several electronic and communication devices like smartphones, advanced headphones, DSP chips, smart antenna, and teleconference systems. Also, they have application in many areas such as system identification, channel equalization, noise reduction, echo cancellation, interference cancellation, signal prediction, and stock market. Therefore, reducing the energy consumption of the adaptive filtering algorithms has great importance, particularly in green technologies and in devices using battery. In this thesis, data-selective adaptive filters, in particular the set-membership (SM) adaptive filters, are the tools to reach the goal. There are well known SM adaptive filters in literature. This work introduces new algorithms based on the classical ones in order to improve their performances and reduce the number of required arithmetic operations at the same time. Therefore, firstly, we analyze the robustness of the classical SM adaptive filtering algorithms. Secondly, we extend the SM technique to trinion and quaternion systems. Thirdly, by combining SM filtering and partialupdating, we introduce a new improved set-membership affine projection algorithm with constrained step size to improve its stability behavior. Fourthly, we propose some new least-mean-square (LMS) based and recursive least-squares based adaptive filtering algorithms with low computational complexity for sparse systems. Finally, we derive some feature LMS algorithms to exploit the hidden sparsity in the parameters.Filtros adaptativos são aplicados em diversos aparelhos eletrônicos e de comunicação, como smartphones, fone de ouvido avançados, DSP chips, antenas inteligentes e sistemas de teleconferência. Eles também têm aplicação em várias áreas como identificação de sistemas, equalização de canal, cancelamento de eco, cancelamento de interferência, previsão de sinal e mercado de ações. Desse modo, reduzir o consumo de energia de algoritmos adaptativos tem importância significativa, especialmente em tecnologias verdes e aparelhos que usam bateria. Nesta tese, filtros adaptativos com seleção de dados, em particular filtros adaptativos da família set-membership (SM), são apresentados para cumprir essa missão. No presente trabalho objetivamos apresentar novos algoritmos, baseados nos clássicos, a fim de aperfeiçoar seus desempenhos e, ao mesmo tempo, reduzir o número de operações aritméticas exigidas. Dessa forma, primeiro analisamos a robustez dos filtros adaptativos SM clássicos. Segundo, estendemos o SM aos números trinions e quaternions. Terceiro, foram utilizadas também duas famílias de algoritmos, SM filtering e partial-updating, de uma maneira elegante, visando reduzir energia ao máximo possível e obter um desempenho competitivo em termos de estabilidade. Quarto, a tese propõe novos filtros adaptativos baseado em algoritmos least-mean-square (LMS) e mínimos quadrados recursivos com complexidade computacional baixa para espaços esparsos. Finalmente, derivamos alguns algoritmos feature LMS para explorar a esparsidade escondida nos parâmetros

    Performance improvement of adaptive filters for echo cancellation applications

    Get PDF
    This work focuses on performance improvement of adaptive algorithms for both line and acoustic echo cancellation applications. Echo in telephone networks, Line Echo, is observed naturally due to impedance mismatches at the long-distance/local-loop interface. Acoustic echo is due to the acoustic coupling between the microphone and the speaker of a speakerphone. The Affine Projection (APA) and the Fast Affine Projection (FAP) algorithms are two examples of reliable and efficient adaptive filters used for echo cancellation...This thesis presents, Variable Regularized Fast Affine Projections (VR-FAP) algorithm, with a varying, optimal regularization value which provides the desirable property of both fast and low misadjustment of the filter --Abstract, page iii

    Sparseness-controlled adaptive algorithms for supervised and unsupervised system identification

    No full text
    In single-channel hands-free telephony, the acoustic coupling between the loudspeaker and the microphone can be strong and this generates echoes that can degrade user experience. Therefore, effective acoustic echo cancellation (AEC) is necessary to maintain a stable system and hence improve the perceived voice quality of a call. Traditionally, adaptive filters have been deployed in acoustic echo cancellers to estimate the acoustic impulse responses (AIRs) using adaptive algorithms. The performances of a range of well-known algorithms are studied in the context of both AEC and network echo cancellation (NEC). It presents insights into their tracking performances under both time-invariant and time-varying system conditions. In the context of AEC, the level of sparseness in AIRs can vary greatly in a mobile environment. When the response is strongly sparse, convergence of conventional approaches is poor. Drawing on techniques originally developed for NEC, a class of time-domain and a frequency-domain AEC algorithms are proposed that can not only work well in both sparse and dispersive circumstances, but also adapt dynamically to the level of sparseness using a new sparseness-controlled approach. As it will be shown later that the early part of the acoustic echo path is sparse while the late reverberant part of the acoustic path is dispersive, a novel approach to an adaptive filter structure that consists of two time-domain partition blocks is proposed such that different adaptive algorithms can be used for each part. By properly controlling the mixing parameter for the partitioned blocks separately, where the block lengths are controlled adaptively, the proposed partitioned block algorithm works well in both sparse and dispersive time-varying circumstances. A new insight into an analysis on the tracking performance of improved proportionate NLMS (IPNLMS) is presented by deriving the expression for the mean-square error. By employing the framework for both sparse and dispersive time-varying echo paths, this work validates the analytic results in practical simulations for AEC. The time-domain second-order statistic based blind SIMO identification algorithms, which exploit the cross relation method, are investigated and then a technique with proportionate step-size control for both sparse and dispersive system identification is also developed

    Affine multi-view modelling for close range object measurement

    Get PDF
    In photogrammetry, sensor modelling with 3D point estimation is a fundamental topic of research. Perspective frame cameras offer the mathematical basis for close range modelling approaches. The norm is to employ robust bundle adjustments for simultaneous parameter estimation and 3D object measurement. In 2D to 3D modelling strategies image resolution, scale, sampling and geometric distortion are prior factors. Non-conventional image geometries that implement uncalibrated cameras are established in computer vision approaches; these aim for fast solutions at the expense of precision. The projective camera is defined in homogeneous terms and linear algorithms are employed. An attractive sensor model disembodied from projective distortions is the affine. Affine modelling has been studied in the contexts of geometry recovery, feature detection and texturing in vision, however multi-view approaches for precise object measurement are not yet widely available. This project investigates affine multi-view modelling from a photogrammetric standpoint. A new affine bundle adjustment system has been developed for point-based data observed in close range image networks. The system allows calibration, orientation and 3D point estimation. It is processed as a least squares solution with high redundancy providing statistical analysis. Starting values are recovered from a combination of implicit perspective and explicit affine approaches. System development focuses on retrieval of orientation parameters, 3D point coordinates and internal calibration with definition of system datum, sensor scale and radial lens distortion. Algorithm development is supported with method description by simulation. Initialization and implementation are evaluated with the statistical indicators, algorithm convergence and correlation of parameters. Object space is assessed with evaluation of the 3D point correlation coefficients and error ellipsoids. Sensor scale is checked with comparison of camera systems utilizing quality and accuracy metrics. For independent method evaluation, testing is implemented over a perspective bundle adjustment tool with similar indicators. Test datasets are initialized from precise reference image networks. Real affine image networks are acquired with an optical system (~1M pixel CCD cameras with 0.16x telecentric lens). Analysis of tests ascertains that the affine method results in an RMS image misclosure at a sub-pixel level and precisions of a few tenths of microns in object space

    Graph matching with a dual-step EM algorithm

    Get PDF
    This paper describes a new approach to matching geometric structure in 2D point-sets. The novel feature is to unify the tasks of estimating transformation geometry and identifying point-correspondence matches. Unification is realized by constructing a mixture model over the bipartite graph representing the correspondence match and by affecting optimization using the EM algorithm. According to our EM framework, the probabilities of structural correspondence gate contributions to the expected likelihood function used to estimate maximum likelihood transformation parameters. These gating probabilities measure the consistency of the matched neighborhoods in the graphs. The recovery of transformational geometry and hard correspondence matches are interleaved and are realized by applying coupled update operations to the expected log-likelihood function. In this way, the two processes bootstrap one another. This provides a means of rejecting structural outliers. We evaluate the technique on two real-world problems. The first involves the matching of different perspective views of 3.5-inch floppy discs. The second example is furnished by the matching of a digital map against aerial images that are subject to severe barrel distortion due to a line-scan sampling process. We complement these experiments with a sensitivity study based on synthetic data

    Non-convex Optimization for Machine Learning

    Full text link
    A vast majority of machine learning algorithms train their models and perform inference by solving optimization problems. In order to capture the learning and prediction problems accurately, structural constraints such as sparsity or low rank are frequently imposed or else the objective itself is designed to be a non-convex function. This is especially true of algorithms that operate in high-dimensional spaces or that train non-linear models such as tensor models and deep networks. The freedom to express the learning problem as a non-convex optimization problem gives immense modeling power to the algorithm designer, but often such problems are NP-hard to solve. A popular workaround to this has been to relax non-convex problems to convex ones and use traditional methods to solve the (convex) relaxed optimization problems. However this approach may be lossy and nevertheless presents significant challenges for large scale optimization. On the other hand, direct approaches to non-convex optimization have met with resounding success in several domains and remain the methods of choice for the practitioner, as they frequently outperform relaxation-based techniques - popular heuristics include projected gradient descent and alternating minimization. However, these are often poorly understood in terms of their convergence and other properties. This monograph presents a selection of recent advances that bridge a long-standing gap in our understanding of these heuristics. The monograph will lead the reader through several widely used non-convex optimization techniques, as well as applications thereof. The goal of this monograph is to both, introduce the rich literature in this area, as well as equip the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems.Comment: The official publication is available from now publishers via http://dx.doi.org/10.1561/220000005

    Adaptive Algorithms for Intelligent Acoustic Interfaces

    Get PDF
    Modern speech communications are evolving towards a new direction which involves users in a more perceptive way. That is the immersive experience, which may be considered as the “last-mile” problem of telecommunications. One of the main feature of immersive communications is the distant-talking, i.e. the hands-free (in the broad sense) speech communications without bodyworn or tethered microphones that takes place in a multisource environment where interfering signals may degrade the communication quality and the intelligibility of the desired speech source. In order to preserve speech quality intelligent acoustic interfaces may be used. An intelligent acoustic interface may comprise multiple microphones and loudspeakers and its peculiarity is to model the acoustic channel in order to adapt to user requirements and to environment conditions. This is the reason why intelligent acoustic interfaces are based on adaptive filtering algorithms. The acoustic path modelling entails a set of problems which have to be taken into account in designing an adaptive filtering algorithm. Such problems may be basically generated by a linear or a nonlinear process and can be tackled respectively by linear or nonlinear adaptive algorithms. In this work we consider such modelling problems and we propose novel effective adaptive algorithms that allow acoustic interfaces to be robust against any interfering signals, thus preserving the perceived quality of desired speech signals. As regards linear adaptive algorithms, a class of adaptive filters based on the sparse nature of the acoustic impulse response has been recently proposed. We adopt such class of adaptive filters, named proportionate adaptive filters, and derive a general framework from which it is possible to derive any linear adaptive algorithm. Using such framework we also propose some efficient proportionate adaptive algorithms, expressly designed to tackle problems of a linear nature. On the other side, in order to address problems deriving from a nonlinear process, we propose a novel filtering model which performs a nonlinear transformations by means of functional links. Using such nonlinear model, we propose functional link adaptive filters which provide an efficient solution to the modelling of a nonlinear acoustic channel. Finally, we introduce robust filtering architectures based on adaptive combinations of filters that allow acoustic interfaces to more effectively adapt to environment conditions, thus providing a powerful mean to immersive speech communications
    corecore