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ABSTRACT 

 This work focuses on performance improvement of adaptive algorithms for both 

line and acoustic echo cancellation applications. Echo in telephone networks, Line Echo, 

is observed naturally due to impedance mismatches at the long-distance/local-loop 

interface. Acoustic echo is due to the acoustic coupling between the microphone and the 

speaker of a speakerphone. The Affine Projection (APA) and the Fast Affine Projection 

(FAP) algorithms are two examples of reliable and efficient adaptive filters used for echo 

cancellation. The FAP Algorithm is considerably less complex than the APA while 

demonstrating similar convergence properties. Both algorithms use a fixed regularization 

parameter to mitigate undue noise amplification for small eigenvalues in the excitation 

covariance matrix. However, this regularization also introduces a bias and limits the 

convergence property of the adaptive filter. This thesis presents, Variable Regularized 

Fast Affine Projections (VR-FAP) algorithm, with a varying, optimal regularization value 

which provides the desirable property of both fast and low misadjustment of the filter. 

 In a separate section of the thesis, an improved technique for sub-band filter 

design is discussed. Sub-band implementation of adaptive filters for echo cancellation is 

popular due to its properties of reduced complexity and fast convergence when compared 

to the full band processing. However, sub-band structure introduces aliasing and results in 

degraded performance of the adaptive filter. Therefore, design of the analysis and 

synthesis filter involves careful tuning of several design parameters. Manual adjustment 

of these design parameters is a tedious job and could take many days. This thesis 

introduces an offline technique which uses a Hybrid Particle Swarm Optimizer with a 

Neural Network to find the optimal parameters effortlessly without manual tuning. 
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1. INTRODUCTION 

 For decades people have been using the telephone as a means of distant voice 

communication. As the coverage area and number of subscribers increased, the telephone 

system has become more and more sophisticated. Long distance connections and the 

sophisticated systems introduced a lot of challenging problems. One of the major 

challenges in the telephone system is the “Echo Effect”. Echo is an undesired 

phenomenon experienced by a user over a phone call when he/she hears his/her own 

voice back after a delay [1]. Echo generation can be characterized as Network/Line Echo 

and Acoustic Echo [2]. The following sub-sections briefly explain the generation of echo 

and some promising solutions for the same.  

 

 

1.1. LINE ECHO 

 Consider a Public Switched Telephone Network (PSTN) as described in the 

Figure 1.1.  

 

 

 

 

Figure 1.1.  A Simplified Telephone Circuit. 
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User A and user B are connected via 2-wire circuits (local subscriber loop) and 4-wire 

circuits which used for long distance connections. The 2-wire circuits and 4-wire circuits 

are interconnected using a hybrid network, as shown in Figure 1.2 [2].  

 

 

 

 

Figure 1.2.  Hybrid Network. 

 

 

 When Z is equal to the impedance of the 2-wire circuit, the signal on the In port of 

the 4-wire side is passed to the 2-wire circuit. The hybrid network consists of passive 

electrical elements (balanced transformers, a capacitor, and a resistor) and can be 

connected to different 2-wire circuits of varying length and impedance. An imperfect 

impedance (Z) match at the hybrid B results in the electrical signal transmitted from A to 

be sent back to A (or vice versa) and hence producing the network echo. As a result, 

speaker A hears his own echo after a delay and it can be noticed by the subscriber which 

is annoying, for example when the round trip delay is greater than 100ms and echo signal 

energy with reference to the excitation signal energy is greater than -30dB [2].   

 Line echo impulse response is typically sparse and the energy of the impulse 

response is concentrated mostly around a few coefficients of the response. Figure 1.3 
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illustrates the simulated impulse response at 8000Hz sampling frequency [2]. The length 

of the impulse response depends on the delay introduced by the telephone network. 
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Figure 1.3.  Simulated Impulse Response of Line Echo Path-Typical. 

 

 

1.2. ACOUSTIC ECHO 

 Acoustic echo is significant for hands-free and teleconferencing applications. 

Echo generated due to the acoustic path (acoustic coupling) between the loudspeaker and 

microphone of a communication device is known as acoustic echo. Figure 1.4 illustrates 

the acoustic echo path [2].  

 Impulse response of acoustic echo path is dispersive (not sparse) and is 

characterized by the acoustic environment variables like the size of the room, materials 

inside the room and the reflection coefficients of the materials. Figure 1.5 shows an 

Image Model Derived Impulse Response of acoustic echo path in a room at 8000Hz 

sampling frequency. Acoustic echo path response is tougher to estimate because the echo 

path is long (typically 150 ms or more). Also the echo path varies rapidly as the room is 
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not static over time [2]. It varies with temperature, pressure, humidity, movement of the 

objects and the microphone in the room. 

 

 

 

 

Figure 1.4.  Acoustic Echo Path. 
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Figure 1.5.  Simulated Acoustic Echo Impulse Response – Example. 
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1.3. ECHO CANCELLER 

 Telephone companies use a device called an echo canceller (EC) to overcome the 

echo problem [1]. An echo canceller is a simple adaptive filter with self adjusting 

coefficients to cancel out the echo. Every echo has an echo path and it is characterized by 

an impulse response. The echo canceller adapts its filter coefficients to the network echo 

path such that it cancels out the echo. This process can be visualized with an echo 

canceller unit in Figure 1.6 and Figure 1.7. 

 

 

 

 

Figure 1.6.  Telephone System with Echo Canceller (EC). 

 

 

 

 

Figure 1.7.  Echo Canceller Unit. 
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1.4. VARIABLE REGULARIZED FAST AFFINE PROJECTIONS 

 Section 3 introduces a variable regularization method for the fast affine projection 

algorithm (VR-FAP).  It is inspired by a recently introduced technique for variable 

regularization of the classical affine projection algorithm (VR-APA) [17]. In both the 

algorithms, the regularization parameter varies as a function of the excitation, 

measurement noise, and residual error energies.  Because of the dependence on the last 

parameter, VR-APA and VR-FAP demonstrate the desirable property of fast convergence 

(via a small regularization value) when the convergence is poor and deep convergence 

(low misadjustment) and immunity to measurement noise (via a large regularization 

value) when the convergence is good.  While the regularization parameter of APA is 

explicitly available for on-line modification, FAP’s regularization is only set at 

initialization.  To overcome this problem, noise-injection with the noise-power 

proportional to the variable regularization parameter is used. As with their fixed 

regularization versions, VR-FAP is considerably less complex than VR-APA and 

simulations verify that they have very similar convergence properties. 

 

 

1.5. OPTIMIZATION OF SUB-BAND ANALYSIS AND SYNTHESIS FILTERS  

  USING CI TECHNIQUES 

 In Section 5, an improved technique for sub-band filter design for sub-band 

adaptive filters is discussed. Sub-band adaptive filters are built on multirate digital filters, 

which require analysis and synthesis filter banks [3,4]. The analysis filter banks separate 

a full band signal into sub-band signals. The adaptive filter adapts the filter coefficients in 

each sub-band. The synthesis filter bank combines the sub-band signals into full-band 

signals. For the perfect reconstruction of the full band signal, an ideal filter with zero 

phase has to be used which is impractical. Hence, a Finite Impulse Response (FIR) filter 

is used for analysis and synthesis filter bank implementation. However, the analysis and 

synthesis filters should be designed to have a sharp cut-off with low pass band ripple and 

minimal ripple in the stop band to avoid aliasing effects and enable good reconstruction 

of the full band signal. The design of these filters involves choosing parameters like pass-

band edge, weighting of the synthesis filter versus analysis filter, delay, and the length of 
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analysis and synthesis filters [4]. These parameters have to be tuned for every 

combination of the sub-band number and sub-sampling rate. This process is cumbersome, 

time consuming and tedious. In addition, manual tuning of these parameters does not 

guarantee optimality and can adversely affect the performance of the sub-band adaptive 

filter. Therefore, a computational intelligence technique comprised of a neural network 

(NN) with particle swarm optimization (DEPSO) [5,6,7] with a multi-objective cost 

function and the offline learning method was used to obtain the parameters for the best 

performance of the sub-band adaptive filter. 
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2. ADAPTIVE FILTERS FOR ECHO CANCELLATION 

2.1. LEAST MEAN SQUARE ALGORITHMS 

In this section we discuss two types of adaptive filters.  The first is a stochastic gradient 

algorithm called least mean squares (LMS) and the second is a derivative of LMS, 

normalized least mean squares (NLMS). 

2.1.1. The LMS Algorithm.  LMS is the most widely used adaptive filtering 

algorithm in the world. It is used in various applications like system identification 

problems (e.g. echo cancellation), speech coding and channel equalization problems. 

Although, its speed of convergence is often slower than desired, it is popular because of 

its robust performance, low cost of implementation and simplicity [8].  

 LMS is a stochastic gradient algorithm. The derivation of the algorithm is similar 

to the steepest descent method. However, the steepest descent uses a deterministic 

gradient to reach the Wiener solution, whereas LMS uses a stochastic gradient for 

recursive updates which tends to achieve the Wiener solution [8]. 

 LMS’s application to echo cancellation can be visualized from figure 2.1.  Let us 

make the following definitions, 

( )x n is the excitation signal, often called the far-end signal. 

( ) ( ) ( ) ( )
T

, 1 , , 1x n x n x n x n L = − − + K  is the excitation vector. 

( ) ( ) ( )x hT

trues n n y n= +  is the desired signal, it is the summation of the echo 

( )x hT

truen , near-end background noise/signal, ( )y n . 

h
true

is the true echo path impulse response of the system. 

( ) ( ) ( ) ( )
T

0 1 1, , ,h
L

n h n h n h n− =  K , where ( )ih n  is the i
th

 tap weight of the filter at time 

n. 

( ) ( ) ( ) ( )1x hT
e n s n n n= − −  is the a priori error or residual echo.  

 The performance index (cost function) of LMS is the mean squared error, 

( )( ) ( ){ } ( ) ( ) ( ){ }2
2 T 1h x hJ n E e n E s n - n n = = −       (1) 
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Figure 2.1.  Illustration of an Echo Canceller with LMS Algorithm. 
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( ) ( )2 2 1h p RhJ n -∇ = − +         (2) 

 

where, ( ) ( ){ }p= xE n s n   is the cross-correlation vector between the desired response 

( )s n  and excitation vector ( )x n . ( ) ( ){ }T
R= x xE n n    is the correlation matrix of the 

excitation vector ( )x n . 

 It is computationally expensive to exactly estimate R and p in an unknown 

environment. Hence, the so-called stochastic approximation [8] is used instead. That is, 

R is replaced by ( ) ( )T
n nx x  and p  is replaced by ( ) ( )n s nx . Therefore, ( )hJ∇  

becomes, 

( ) ( ) ( ) ( ) ( ) ( )Tˆ ˆ2 1h x +2x x hJ n s n n n n
∗∇ = − −      (3) 
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where, ‘ ∗ ’ denotes complex conjugate. According to the steepest descent method, 

successive adjustments applied to the weight vector,h  are in the direction opposite to the 

direction of the gradient [2,8], ( )hJ∇ . Hence, the weight vector update equation is, 

( ) ( ) ( ) ( ) ( ) ( )T1 2 1h h x x h
LMS

n n n s n n nµ ∗ = − + − −       (4) 

 

Let,  

( ) ( ) ( ) ( )T 1x he n s n n n∗ ∗ = − −         (5) 

 

Then the ( )h n  update can be written as,  

( ) ( ) ( ) ( )1 2h h xLMSn n n e nµ ∗= − +        (6) 

 

where, 
LMS

µ is a constant, also known as the step-size or relaxation parameter. For the 

stable operation of the LMS algorithm, 
LMS

µ is restricted to [8], 

max

1
0 LMS

LS
µ

 
〈 〈 

 
         (7) 

 

where, L is the length of the adaptive filter and Smax is the maximum value of the power 

spectral density of the excitation vector, ( )x n . A high value of 
LMS

µ  yields faster, but 

noisier convergence of the adaptive filter  while a low value of 
LMS

µ  provides slower but 

less noisy or deeper convergence (or closer to wiener solution) [8]. 

 Considering real valued excitation and desired signals, the LMS algorithm can be 

summarized as, 

( ) ( ) ( ) ( )T 1x he n s n n n = − −         (8) 

( ) ( ) ( ) ( )1 2h h xLMSn n n e nµ= − +        (9) 

 

The dependence of the stochastic gradient vector of equation (3) on the instantaneous 

value of the input instead of the ensemble average introduces an error to the gradient, 
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( )hJ∇ . This error is known as gradient noise. Hence, LMS is classified as a stochastic 

gradient descent algorithm.  

 The computational complexity of LMS for one sample period is summarized in 

the Table 2.1. The total memory required for LMS implementation is about 2L. Where, L 

is the length of the adaptive filter. 

 

 

Table 2.1. Complexity of LMS Algorithm. 

Equation Multiplications 

( ) ( ) ( ) ( )T 1x he n s n n n = − −   L 

( ) ( ) ( ) ( )1 2h h xLMSn n n e nµ= − +  L 

Total Complexity 2L 

 

 

2.1.2. The NLMS Algorithm.   As indicated by Equation (8) LMS’s  step size is  

restricted by its region of stability which is determined by the energy in the excitation 

signal.  For signals that have time-varying short-time energy, like speech, a constant step-

size means the speed of convergence will vary with the short-time energy. NLMS 

overcomes this problem by normalizing the step size every update with the squared 

Euclidian norm of the excitation vector, ( )x n .  NLMS can be derived by considering a 

sample-by-sample cost function that minimizes the size of the coefficient update under 

the constraint that the a posteriori error (the error after the coefficient update) for that 

sample period is zero.  Thus, 

( ) ( ) ( )T 2ˆ
nJ n n e nδ= +r r         (10) 

 

where, ( )nr  is the coefficient update vector at sample period n , ( )ê n  is the a posteriori 

error, and  δ  is a weighting factor between the size of the update and the a posteriori 

error.   
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The a posteriori error can be expressed as, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

ˆ

1

T

T

T

e n s n n n

s n n n n

e n n n

= −

 = − − + 

= −

x h

       x h r

       x r

      (11) 

 

Thus, the cost function can be written as, 

( ) ( ) ( ) ( ) ( )
2

T T

n
J n n e n n nδ  = + − r r x r       (12) 

 

Setting the gradient of 
n

J with respect to ( )nr  and setting the result to zero, we find this 

cost function is minimized when, 

( ) ( ) ( ) ( ) ( )
1

Tn n n n e nδ
−

 = + r x x x        (13) 

 

NLMS algorithm can be written in the two steps of its usual implementation form as, 

( ) ( ) ( ) ( )T 1x he n s n n n = − −          (14) 

( ) ( ) ( ) ( ) ( ) ( )
1

1 T

NLMS
n n n n n e nµ δ

−
 = − + + h h x x x     (15) 

 

where, the NLMS step-size parameter, 
NLMS

µ  has been added as a relaxation factor and 

the stability range of 
NLMS

µ  for NLMS is 0 1
NLMS

µ< < .  The parameterδ in the NLMS 

coefficient update is also known as the regularization parameter. It is seen that when  δ  

is non-zero (it is always non-negative) the coefficient update is prevented from becoming 

unstable when ( ) ( )T 0n n =x x . 

 Placing equation (14) into (15) we may write the update as, 

( ) ( )
( )

( ) ( ) ( ) ( )T

2
1 1h h x x h

x

NLMSn n n s n n n
n

µ

δ
 = − + − − 

+
    (16) 

 

Recalling that the desired signal is, 

( ) ( ) ( )T

trues n n y n= +x h         (17) 
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where, ( )y n  is the noise signal from the echo path and using this in equation (16) the 

update is expressed as, 

( )
( )

( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

2

2

2

1h I x x h
x

                      x x h
x

                                + x
x

TNLMS

TNLMS
true

NLMS

n n n n
n

n n
n

n y n
n

µ

δ

µ

δ

µ

δ

 
 = − −
 + 

+
+

+

      (18) 

 

This expression of NLMS is useful for making a few observations. The matrix 

( )
( )

( ) ( )2

1 T
n n n

n
=P x x

x
        (19) 

 

occurs in both the first and second terms of equation (18).  It is a rank one projection 

matrix and can be written in the form, 

( ) ( ) ( )

1

0

0

T
n n n

 
 
 
 
 
 

P =U U
O

       (20) 

 

where, ( )nU  is an L-dimensional unitary matrix whose first column is ( ) ( )/n nx x . 

 When 1
NLMS

µ =  and 0δ = , the first term of equation (18) is the old coefficient 

vector multiplied by the rank L-1, L dimensional projection matrix,  

( )
( )

( ) ( )

( ) ( ) ( )

2

1

0

1

1

T

T

n n n
n

n n n

−

 
 
 = − =
 
 
 

Q =I x x
x

       I P U U
O

     (21) 
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Thus, one-dimension of ( )1h n −  is forgotten in each coefficient update. The second term 

in the equation (18) is the true coefficient vector h
true

 multiplied by a rank 1, L-

dimensional projection matrix, ( )nP .  So, in the second term, one dimension of the 

actual echo path is learned in each coefficient update.  

 Now, we return to the cases where 1
NLMS

µ ≠  and 0δ ≠ .  Equation (18)’s third 

term is where the effect of noise is manifested.  Here, we see the noise, ( )y n  is 

multiplied by the vector, 
( )

( )2

NLMS n
n

µ

δ+
x

x
, whose magnitude is, 

( )

( )
2

NLMS
n

n

µ
ξ

δ
=

+

x

x
         (22) 

 

For sufficiently large L, ( )
2

nx  may be approximated by 2

x
Lσ .  Therefore, 

2

NLMS x

x

L

L

µ σ
ξ

σ δ
≈

+
          (23) 

 

This ξ  is known as the noise amplification factor.  Both 
NLMS

µ  and δ  help control the 

size of the noise amplification factor.  When the excitation signal’s energy, 2

x
σ  is very 

small, ξ  is limited in its growth by the regularization factor δ  in its denominator.   

 A high regularization value results in slower convergence and very low 

regularization leads to a larger noise amplification factors. Choosing the correct 

regularization value is important for optimizing the performance of the adaptive filter [8]. 

In general, compared to LMS, NLMS with regularization is faster and more stable for all 

kinds of excitation signals (white noise, colored noise and speech).   

 The computational complexity of the NLMS filter for one sample period is 

summarized in Table 2.2. The total memory required is around 2L. The total complexity 

is a little higher than LMS. ONLMS is a constant associated with the computational 

complexity of the required inverse in equation (15). 
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Table 2.2. Complexity of NLMS Algorithm. 

Equation Multiplications 

( ) ( ) ( ) ( )T 1x he n s n n n = − −   L 

( ) ( ) ( )
1

2

n n e nε δ
−

 = +  
x  

ONLMS 

( ) ( ) ( ) ( )1 NLMSn n n nµ ε= − +h h x  L 

Total Complexity 2L+ONLMS 

 

 

2.2. AFFINE PROJECTION ALGORITHMS 

2.2.1. Affine Projection Algorithm, APA.  APA is a generalization of  NLMS. 

Where the coefficient update NLMS can be viewed as a rank-1 affine projection, a rank-

N projection with 1N ≥  is made in APA. As the projection rank increases, the 

convergence speed of the adaptive filter increases as well, unfortunately so does the 

computational complexity [9,10,11]. 

 The N
th

-order affine projection algorithm, in a relaxed and regularized form, can 

be defined as, 

( ) ( ) ( ) ( )1e s X hT
n n n n= − −         (24) 

( ) ( ) ( ) ( )1[ ]ε X X I eT
n n n nδ −= +        (25) 

( ) ( ) ( ) ( )1h h X ε
T

APAn n n nµ= − +        (26) 

 

The APA variables are defined as follows: 

• The excitation signal matrix, ( )nX , is L by N and has the structure, 

( ) ( ) ( ) ( )[ , 1 , , 1 ]X x x xn n n n N= − − +L      (27)  

where, again ( ) ( ) ( )[ , , 1 ]x T
n x n x n L= − +L  is the excitation vector.  

• The adaptive tap weight vector is ( ) ( ) ( )0 1[ , , ]h T

Ln h n h n−= L , where ( )ih n  is the 

th
i  coefficient at sample period n .  
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• ( ) ( ) ( ) ( )0 1 1, , ,e
T

N
n e n e n e n−=   L  is the N- length vector consists of background 

noise and residual echo. 

• The N-length desired response vector, ( ) ( ) ( ) ( ), 1 , , 1s
T

n s n s n s n N= − − +  L , 

where, ( ) ( ) ( )x hT

trues n n y n= + , is the system output consisting of the response 

of the echo path impulse response, trueh , to the excitation and the additive system 

noise, ( )y n . 

• 
APA

µ  is the adaptation constant in the range 0 1
APA

µ≤ ≤ and δ  is the 

regularization parameter. 

• N defines the rank of affine projections in the solution space and it is called as the 

order of APA. 

• L is the length of the adaptive filter. 

 

 Similar to NLMS representation,  when 1
APA

µ = , 0δ = , and there is no noise 

( ( ) 0y n = ), the APA coefficient update can be defined as [9,11],  

( ) ( ) ( ) ( ) true1
APA APA

h I P h P hn n n n = − − +        (28)  

 

where, ( )APAP n  now has rank N. 

 

( ) ( ) ( ) ( )( ) ( )
1

T T

APAP X X X X Un n n n n
−

= =                            T
U    (29) 

 

 

and, 

 

( )APAI P Un− =                            T
U        (30) 

 

 

0 

       
          0 

              1 

 

                        1 

1 

       
          1 

              0 

 

                        0 
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has nullity N.  From equations (28), (29) and (30), it can be seen that for every update, N 

dimensions of ( )1h n −  are forgotten and N dimensions of trueh are learned [9,11] as 

opposed to 1 each for NLMS.  

 When the projection order of APA is 1, it is equivalent to NLMS. However, the 

convergence of APA gets better with the increased in the projection order and APA 

demonstrates very good convergence properties with colored excitation signals.  

The computational complexity of APA for one sample period is shown in Table 2.3. OAPA 

is a constant associated with the complexity of the inverse required in equation (25). The 

total memory required is roughly 2L+ OAPA[N
2
]. 

 

 

Table 2.3. Complexity of APA Algorithm. 

Equation Multiplications Memory 

( ) ( ) ( ) ( )1e s X hT
n n n n= − −  NL L 

( ) ( ) ( ) ( )1[ ]ε X X I eT
n n n nδ −= +  OAPAN

2 
N

2 

( ) ( ) ( ) ( )1h h X ε
T

APAn n n nµ= − +  NL L 

Total Complexity 2NL+OAPA[N
2
] 2L+N

2
 

 

 

2.2.2. Fast Affine Projection Algorithm, FAP.  APA is computationally  

complex and demands a lot of memory for an implementation. The complexity of APA 

increases greatly with increase in projection dimensions. To address this problem, FAP 

was introduced in 1990’s. The computational complexity and required memory of FAP 

are roughly the same as NLMS [2,10]. The problem was solved in three steps. 

 First, the complexity of ( )e n  update was reduced to L from NL. Considering 

APA equations (24), (25) and (26) as a reference, ( )e n  is defined as [2,10], 

( ) ( ) ( ) ( )
( )

( ) ( )
1

1 1
e s X h

e

T
e n

n n n n
nµ

 
= − − =  

− −  
     (31) 
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where, the N-1 length vector ( )1e n −  contains the N-1 first elements of ( )e n . Therefore, 

the complexity L, is required to calculate ( )e n  and complexity N-1, for ( )e n  

calculation. 

 Second, the complexity of the ( )ε n  update was reduced to OAPA[N] from 

OAPA[N
2
].  Defining, 

( ) ( ) ( )T
n n n δ= +R X X I         (32) 

 

And using this in equation (25), we can express the normalized error vector as, 

( ) ( ) ( )n n n= -1
ε R e          (33) 

 

( )R n  may be updated from ( )1R n −  using two rank-1 updates, 

( ) ( ) ( ) ( ) ( ) ( )1 TR R α α α α
T

n n n n n - L n - L= − + −      (34) 

 

where, ( ) ( ) ( ), , 1α
T

n x n x n N = − + L and ( )0R Iδ= . Note that the regularization 

parameter is set at initialization and then persists indefinitely. Because ( )α n  (which is 

also the first row of the excitation matrix) is shift invariant, we may use sliding 

windowed fast recursive least squares (SW-FRLS) techniques to reduce the 

computational complexity of equation (33) [2, 13].  

 Finally, the complexity of ( )h n  update is reduced to L from NL. The ( )h n  

update is replaced by an ( )ĥ n  update. Where ( )ĥ n  only uses the last vector of ( )X n in 

its update. ( )ĥ n  is defined as, 

( ) ( ) ( ) ( )1
ˆ ˆ 1 1h h x Nn n n - N + E nµ −= − +       (35) 

 

where, ( ) ( ) ( ) ( )( )1 1 2 01 1
N N N

E n n n n Nε ε ε− − −
 = + − + − − L . The error vector ( )e n  is 

then calculated using ( )ĥ n  instead of ( )h n . 
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 The FAP algorithm with 1µ = can summarized as follows [2,10]: 

1. Initialize, ( )aE n δ=  and [ ]0 1,0, ,0a
T

= L . 

2. Update ( )aE n and ( )a n  with FRLS [14,11]. 

3. ( ) ( ) ( ) ( ) ( ) ( )1r r α αxx xxn n x n n x n - L n - L= − + +% % % %     (36) 

4. ( ) ( ) ( ) ( )ˆˆ x h
T

e n s n n n - 1= +        (37) 

5. ( ) ( )ˆˆ 1r ET

n n xxe e n n= + −        (38) 

6. ( )
( ) ( )

0 1
E ε

E
n

a

n
n E n

µ
 

= + 
 

       (39) 

7. ( ) ( ) ( ) ( )1
ˆ ˆ 1 x n-N+1h h Nn n E nµ −= − +      (40) 

 

The complexity of FAP without relaxation is 2L+14N which, when L<<N, is close to 

NLMS.  The details are shown in Table 2.4. The total memory required by FAP is around 

2L. The complexity of FAP with the relaxation parameter is 2L+20N; see [2,9,10,11] for 

complete details.   

 

 

Table 2.4. Complexity of FAP without relaxation. 

Equation Multiplications 

Update ( )aE n and ( )a n  with FRLS. 10N 

( ) ( ) ( ) ( ) ( ) ( )1r r α αxx xxn n x n n x n - L n - L= − + +% % % %  2N
 

( ) ( ) ( ) ( )ˆˆ x h
T

e n s n n n - 1= +  L 

( ) ( )ˆˆ 1r ET

n n xxe e n n= + −  N 

( )
( ) ( )

0 1
E ε

E
n

a

n
n E n

µ
 

= + 
 

 
N 

( ) ( ) ( ) ( )1
ˆ ˆ 1 x n-N+1h h Nn n E nµ −= − +  L 

Total Complexity 2L+14N 
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2.3. SUB-BAND ADAPTIVE FILTER 

 Sub-band adaptive filters demonstrate the desirable properties of fast convergence 

at low computational complexity when compared to full-band adaptive filters. However, 

sub-band adaptive filters introduce some latency due to their analysis and synthesis 

filters. They also need careful designing to avoid aliasing effects [3,4].  

 Figure 2.2, shows the block diagram of a sub-band adaptive filter [1]. In sub-band 

adaptive filtering, the sub-band analysis filter bank divides the full-band excitation and 

the line signals into M sub-bands of equal width. An adaptive filter attempts to adjust the 

FIR coefficients in each sub-band to predict the echo path coming from the room (in the 

case of acoustic echo) or hybrid network (in the case of line echo). The error residual 

signals in each sub-band are obtained and passed on to the synthesis filter bank after non-

linear processing. The sub-band synthesis filter then combines the M sub-band residual 

signals into a single full-band output signal [1]. Generally, a complex NLMS adaptive 

filter is used to estimate the adaptive FIR coefficients in each sub-band. Other adaptive 

filters like LMS, APA or FAP can also be used instead of NLMS filter. In this thesis 

complex NLMS adaptive filters are used.  

 Sub-band signals are sub-sampled by a factor R, sub-sampling of each sub-band 

decreases the overall computational complexity when compared to the full-band rate. 

Also, the sub-band adaptive filter lengths are R times shorter; therefore, sub-band 

structure provides R times as much time to do the processing. Computational savings 

over full-band processing is thus 
2

2M

R R
= , for M=2R. 

 Consider the conceptual operation of an analysis filter. Let ( )x n  denote the full-

band excitation signal. The th
m sub-band signal ( )mx k  is generated by multiplying the 

full-band signal ( )x n with the complex exponential M
mnj

e
π2−

, to shift the spectrum of 

( )x n down in frequency by m sub-bands, and then the result is convolved with an 

analysis low-pass filter [1]. Finally, the signal is then sub-sampled by the factor R. For 

the efficient implementation of the analysis filter, polyphase filters are used. Figure 2.3 

shows a polyphase implementation of the sub-band analysis filter. In the Figure 2.3, 

( )h n  is the analysis low-pass filter.  
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Figure 2.2. Sub-Band Adaptive Filter – Schematic Diagram. 

 

 

 The sub-band error signals, ( )me k , are reconstructed by the synthesis filter bank. 

The sub-band error signals are up-sampled by R. Up-sampling results in images repeating 

in the frequency domain. Hence, the up-sampled signal is convoluted with a low-pass 

synthesis filter. These up-sampled, low-passed signals are then shifted up in frequency by 

m sub-bands by multiplication with the complex exponential 
2j mn

Me
π

 [1]. The polyphase 

implementation of the sub-band synthesis filter is shown in Figure 2.4. In the Figure 2.4, 

( )ê n  is the reconstructed residual error signal and ( )g n  is the synthesis low pass filter. 
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Figure 2.3. Polyphase Implementation of Analysis Filter Bank. 

 

 

 Let an excitation signal be band limited to
o

f . Then the cross-over frequency of 

each sub-band would be o
f

M
. To avoid aliasing o

f

R
 must be greater than o

f

M
, i.e. R must 

be less than M. As R is chosen close to M, the transition band of the analysis filter must 

narrow. Narrow transition is achieved with a low pass analysis filter of increased length 

and hence, the latency and computational complexity of the analysis filter increases. 

Therefore, it is desirable to make R large and M small to reduce the adaptive filter’s 

complexity. 
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Figure 2.4. Polyphase Implementation of Synthesis Filter Bank. 
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3. VARIABLE REGULARIZED FAST AFFINE PROJECTIONS 

3.1. INTRODUCTION 

 A wide variety of adaptive filters are now available in the signal processing 

community.  Each has their advantages and disadvantages.  The affine projection 

algorithm (APA) [15,9] has received considerable attention over the past 15 years or so 

because it’s attributes provide a nice compromise between normalized least mean squares 

(NLMS) [8] and fast recursive least squares (FRLS) [14].  NLMS is computationally 

quite efficient and numerically stable, but converges rather slowly when a colored 

excitation signal is used.  FRLS, is less computationally efficient and somewhat difficult 

to stabilize numerically, but has fast convergence for colored excitation. 

 The NLMS coefficient update method may be viewed as a one-dimensional affine 

projection in the parameter space.  Under this view, APA is a generalization of NLMS in 

that it performs an N-dimensional affine projection each sample period [9,2].  When N is 

greater than or equal to the order of the source model that creates the excitation signal, 

APA’s convergence properties are roughly the same as FRLS’s [9].   Depending on the 

exact implementation, APA generally enjoys a much greater degree of numerical stability 

than FRLS algorithms – even the so-called stabilized ones.  However, depending on N, 

APA’s computational complexity can be higher than FRLS. To address this defect, the 

fast affine projection (FAP) [9,2,10,16] was introduced in the early 1990’s.  FAP reduced 

the computational complexity to roughly that of NLMS. 

 As the affine projection order, N, increases from one, a simple scalar inversion of 

the excitation vector’s norm in NLMS becomes an N-by-N excitation sample covariance 

matrix inversion in APA.  Often, with highly colored noise excitation, this sample 

covariance is ill-conditioned and to prevent undue noise amplification, a regularization 

parameter,δ  is added to the matrix diagonal prior to inversion.  In [17] a method for 

dynamically estimating an optimal regularization parameter for APA was described and 

the subsequent improvement in convergence for stationary excitation signals was 

demonstrated.  This thesis work re-derives the optimal regularization for FAP.  

Traditionally, FAP’s regularization is implemented by way of an initialization parameter 

that remains fixed thereafter; this static-regularization problem is overcome by using only 
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a very small initial regularization and then using the noise-injection technique to vary the 

regularization as determined by the VR method.  

 This section is arranged as follows:  Sub-section 3.2 is a brief review of APA and 

FAP, Sub-section 3.3 presents the derivation of the variable regularization parameter for 

FAP and the use of the noise injection method.  Finally, simulation results are presented 

in Sub-section 3.4 and conclusions in Sub-section 3.5. 

 

 

3.2. REVIEW OF APA AND FAP 

3.2.1. The Affine Projection Algorithm.  This section presents a brief review 

of APA and a review of FAP to the extent that the VR algorithm for it may be derived.  

For a complete derivation of FAP, see [9,2,10,16]. 

( ) ( ) ( ) ( )1e s X hT
n n n n= − −         (41) 

( ) ( ) ( ) ( )1[ ]ε X X I eT
n n n nδ −= +        (42) 

( ) ( ) ( ) ( )1h h X ε
T

n n n n= − +         (43) 

 

The excitation signal matrix, ( )X n , is L by N and has the structure, 

( ) ( ) ( ) ( )[ , 1 , , 1 ]X x x xn n n n N= − − +L       (44) 

 

where, the ( ) ( ) ( )[ , , 1 ]x T
n x n x n L= − +L . The adaptive tap weight vector is 

( ) ( ) ( )0 1[ , , ]h t

Ln h n h n−= L , where ( )ih n  is the th
i  coefficient at sample period n . The 

N-length vector, ( )e n , consists of background noise and residual echo left uncancelled by 

the echo canceller’s L-length adaptive tap weight vector, ( )h n . The N-length 

vector, ( )s n , is the system output consisting of the response of the echo path impulse 

response, h
true

 to the excitation and the additive system noise, ( )y n , 

( ) ( ) ( )s X h yT

turen n n= +         (45) 
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 The scalar δ  is the regularization parameter for the sample autocorrelation matrix 

inverse used in (42), the calculation of the N-length normalized residual echo 

vector, ( )ε n . Where ( ) ( )X XT
n n may have eigenvalues close to zero, creating problems 

for the inverse, ( ) ( )X X IT
n n δ+  has δ as its smallest eigenvalue which, if large enough, 

yields a well behaved inverse. The step-size parameter µ  is the relaxation factor. As in 

NLMS, the algorithm is stable for 0 2.µ≤ <  

 Defining the coefficient error vector as ( ) ( )h h htruen n∆ = − , the error vector, 

( )e n  may be written as, 

( ) ( ) ( ) ( )e X h yT
n n n n= ∆ +         (46) 

 

 If the order of projection, N is set to one, relations (41), (42) and (43) reduce to 

the familiar NLMS algorithm. Thus, APA is a generalization of NLMS. 

3.2.2. The Fast Affine Projection Algorithm.  The complexity of APA 

is 22
inv

LN K N+  multiplies per sample period, where 
inv

K is a constant associated with the 

complexity of the inverse required in (42).  FAP performs a complete N-dimensional 

APA update each sample period with 2 ( )L O N+ multiplies per sample [9,2,10,16].  The 

development of FAP involves reducing the computational complexity of each of the steps 

in equations (41), (42) and (43).  For the variable regularization derivation in Section 3.3 

it is needed to review only the FAP’s computational reduction of equation (43). 

3.2.3. Fast Adaptive Coefficient Vector Calculation.  The “trick” used in FAP 

to reduce the computational complexity of the coefficient update equation for ( )h n  is to 

introduce an alternate coefficient vector, ( )ĥ n , whose update each sample period 

consists only of adding a weighted version of the last column of ( )X n . This requires 

only L multiplications as opposed to NL for the update of equation (43).  FAP also 

provides a method for calculating ( )e n from ( )ĥ n  which is not shown in this work. 

 From  (43) the APA tap update is, 

( ) ( ) ( ) ( )1h h X εn n n nµ= − +        (47) 
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One can also express the current echo path estimate, ( )h n , in terms of the original echo 

path estimate, ( )0h , and the subsequent ( ) 'X i s and ( ) 'ε i s , 

( ) ( ) ( ) ( )
1

0

0h h X ε
n

i

n n i n iµ
−

=

= + − −∑        (48) 

 

Now, expanding the vector/matrix multiplication, 

( ) ( ) ( ) ( )
1 1

0 0

0h h x ε
n N

j

i j

n n j i n iµ
− −

= =

= + − − −∑∑       (49) 

 

Assuming that ( ) 0x n = for 0n ≤ , (49) can be rewritten as, 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1

0 0 0

0h h x ε x ε
N k n N

j j

k j k N j

n n k n k j n k n k jµ µ
− − −

= = = =

= + − − + + + − − +∑ ∑ ∑ ∑  (50) 

 

If the first term and the second pair of summations on the right side of (50) are defined 

as, 

( ) ( ) ( ) ( )
1 1

0

ˆ 1 0h h x ε
n N

j

k N j

n n k n k jµ
− −

= =

− = + − − +∑ ∑      (51) 

 

and the first pair of the summations in (50) are recognized as a vector-matrix 

multiplication, 

( ) ( ) ( ) ( )
1

0 0

X E x ε
N k

j

k j

n n n k n k jµ
−

= =

= − − +∑ ∑       (52) 

 

where,  

( )

( )

( ) ( )

( ) ( ) ( )( )

0

1 0

1 2 0

1

1 1

E

N N

n

n n
n

n n n N

ε

ε ε

ε ε ε− −

 
 

+ − 
=  
 
 + − + − − 

M

L

     (53) 
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then, (50) can be expressed as, 

( ) ( ) ( ) ( )ˆ 1h h X En n n nµ= − +        (54) 

 

It is easily seen from (51) that, 

( ) ( ) ( )( ) ( )
1

0

ˆ ˆ 1 1 1h h x ε
N

j

j

n n n N n N jµ
−

=

= − + − − − + +∑     (55) 

 

or, 

( ) ( ) ( )( ) ( )1
ˆ ˆ 1 1h h x Nn n n N E nµ −= − + − −       (56) 

 

where, ( )1NE n−  is the last element of ( )E n  (note, the elements are numbered from 0 to 

N-1). 

 

 

3.3. VARIABLE REGULARIZATION FOR FAP 

 Now make the regularization parameter variable with time, explicitly denoting it 

as ( )nδ  [18].  In the following derivation it is assumed that the relaxation parameter, 

1µ = . Similar to the approach in [10] chose the optimization criterion which minimizes 

the cost function [18], 

( )( ) ( )( )2 2
ˆ ˆ 1h hJ E n E n= ∆ − ∆ −        (57) 

 

where, 

( ) ( )ˆ ˆh h htruen n∆ = −          (58) 

 

is the FAP coefficient error vector.  Applying (58)  to (56) yields, 

( ) ( ) ( ) ( )1
ˆ ˆh h 1 1h h xtrue true Nn n n N E n−− ∆ = − ∆ − + − +     (59) 

( ) ( ) ( ) ( )1
ˆ ˆ 1 1h h x Nn n n N E n−∆ = ∆ − − − +       (60) 
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From (53), it is seen that 

( ) ( ) ( ) ( )( )1 1 2 01 1N N NE n n n n Nε ε ε− − −= + − + − −L      (61) 

 

Defining, 

( ) ( ) ( ) 1[ ]S X X IT
n n n δ −= + ,        (62) 

 

Now, make the simplifying assumption that the sample covariance matrix, ( ) ( )X XT
n n  

is fixed and equal to R
x

L  where R
x
is the correlation matrix of ( )x n . This is a 

reasonable assumption when N<<L.  This implies that 

1[ ]S R I
x

L δ −≈ +          (63) 

 

where, the time index is removed to emphasize the assumption that S  is now non-time-

varying.  Under these assumptions (42) becomes 

( ) ( )ε Sen n≈           (64) 

 

Since it is assumed that the step-size, 1µ = , from [2] it is known that FAP sets 

( ) ( ) 1,e 0
T

T

N
n e n −

 =            (65) 

 

where, 0
k

is an k-length all zero vector. Thus,  

( ) ( )0ε Spn e n≈          (66) 

 

where, 1,  1,    0 1p 0 0
T

T T

k k N k
k N− −

 = ≤ ≤ −  .  By careful inspection one can observe that 

( ) ( )1 1 0p SpT

N k N kn k e n kε − − − −− ≈ −        (67) 

 

Thus, with some manipulation one can rewrite (61) as, 

( ) ( )1 0p SeT R

NE n n− =
(

         (68) 
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where, the R  in the superscript of ( )e n
(

 denotes the “reverse” of the vector and ( )e n
(

 is 

given by, 

( ) ( ) ( ) ( )1 1e
T

n e n e n e n N= − − +  
(

L       (69) 

 

is a history of the N most recent FAP residual errors – not to be confused with ( )e n  of  

(41) and certainly not that of (65).  One can now express (60) as, 

( ) ( ) ( ) ( )0
ˆ ˆ 1 1h h x p Se

T R
n n n N n∆ = ∆ − − − +

(
      (70) 

 

Using (70) in (57) , write the cost function as, 

( ) ( ) ( )( )( )
( ) ( ) ( )( )

2 22

0

0

ĥ 1 1

ˆ                                              2 1 1

x p Se

h x p Se

T R

T T R

J E n E n N n

E n n N n

 = ∆ − + − + 
 

− ∆ − − +

(

(
  

( )
2

ˆ                                                                                          h 1E n − ∆ − 
 

 (71)  

( ) ( )( )( ) ( ) ( ) ( )( )
22

0 0
ˆ1 2 1 1x p Se h x p SeT R T T RJ E n N n E n n N n= − + − ∆ − − +

( (
 (72) 

 

Assuming the excitation signal is white,  

( ) 2

1
S I

x
n Lδ σ

≈
+

         (73) 

 

Then, 

( )
( )

( )
( )
( )

0

0 2 2

1
p Se

R

T R

x x

e n e n N
n

n L n Lδ σ δ σ

− +
= =

+ +

(
(

      (74) 

 

Assuming that ( )ˆ 1h
T

n∆ −  changes slowly enough that  ( ) ( )ˆ ˆ1h h
T T

n n N∆ − ≈ ∆ −  and 

the filter is close enough to convergence that ( ) ( )ĥ h
T T

n N n N∆ − ≈ ∆ − , then 

( ) ( ) ( ) ( )ˆ 1 1 1h x h x
T T

n n N n N n N∆ − − + ≈ ∆ − − +      (75) 
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Using this in (46) at the sample period 1n N− + yields, 

( ) ( ) ( ) ( )ˆ 1 1 1 1h x
T

n n N e n N y n N∆ − − + ≈ − + − − +     (76) 

 

Applying (73) and (76) to (72), and assuming ( )
2 21x

x
n N Lσ− + ≈ , the performance 

index can be written as, 

( ) ( )( )( )
( )( )

( ) ( )( ) ( )

( )( )

2 2

2 22

1 1 1 1x

xx

L E e n N E e n N y n N e n N
J

n Ln L

σ

δ σδ σ

− + − + − − + − +
= −

++
 (77) 

( )( ) ( )( )
( )( )

2
2

2 22

2
1x

xx

L
J E e n N

n Ln L

σ

δ σδ σ

 
 = − − +
 ++ 

( ) ( )( )
( )( )2

2 1 1
                                                                   

x

E y n N e n N

n Lδ σ

− + − +
+

+
 (78) 

 

From (76),  can be written as,  

( ) ( )( )1 1E y n N e n N− + − + =   

( ) ( ) ( )( ) ( )( )ˆ1 1 1 1                                     h xT
E y n N n n N y n N− + ∆ − − + + − +  (79) 

 

Assuming that the excitation energy is independent from the background noise,  

( ) ( ) ( )( )( )ˆ1 1 1 0h xT
E y n N n n N− + ∆ − − + ≈      (80) 

 

Applying (79) , (80) to (78) and assuming ( )( )2 21 yE y n N σ− + = , the cost function J  

can be  written as, 

( )
( )

( )( )
( )( )

2 2

2

22
2

2 2
1

y x

x
x

L n
J E e n N

n L n L

σ σ δ

δ σ δ σ

+
≈ − − +

+ +
     (81) 

 

Consider ( )( )2 1E e n N ψ− + = for readability. Minimizing J with respect to ( )nδ  yields, 
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( ) ( )( )
( )( )

( )( ) ( )( )

22

2 3 2
2 2 2

2 22 2
0

xy

x x x

n LJ

n n L n L n L

δ σ ψσ ψ

δ δ σ δ σ δ σ

+−∂
= + − =

∂ + + +
   (82) 

( )( ) ( )( ) ( )( )2 2 2 22 0
y x x x

n L n L n Lσ δ σ δ σ ψ δ σ ψ− + + + − + =     (83) 

( )( ) ( )( ) ( ) ( )( )2 2 2 2 0
y x x x

n L n L n n Lσ δ σ δ σ ψ δ ψ δ σ ψ− + + + + − + =    (84) 

( )
( )( )

2 2

2 21

y x

y

L
n

E e n N

σ σ
δ

σ
=

− + −
       (85) 

 

As in [17] estimate ( )( )2 1E e n N− + with a time average.  From the simulations it is 

found that a time average of length L is sufficient. The estimated ( )( )2 1E e n N− +  

quantity may result in a magnitude lower than 2

yσ . Therefore, when the denominator in 

equation (85) goes negative the value of ( )nδ  is limited to 
MAX

δ . 
MAX

δ  is given as  

2

limit

x
MAX

σ
δ

δ
=           (86) 

  

 The regularization of (85) is applied to FAP via the technique of noise injection.  

Noise injection is a method of regularizing a signal’s covariance by adding gaussian 

white noise.  The standard deviation of the noise is set to the square root of the desired 

regularization value.  In VR-FAP, this noise is only added in the excitation signal input to 

the sliding window FRLS part where the calculation of the forward and backward linear 

predictors and their estimation error energies are calculated [9,2,10,16].   

 

 

3.4. SIMULATIONS 

 The performance of the VR-FAP was compared with FAP and VR-APA adaptive 

filters. The measure of the performance was given by the misadjustment or the coefficient 

error in dB, κ . κ  is defined as, 

( ) ( )( )10log10 h h h h
T

true trueκ = − −        (87) 
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where, ,0 ,1 , 1[ , , , ]h T

true true true true Lh h h −= L  is the true echo path and 0 1 1[ , , , ]h=
T

L
h h h −L  is the 

estimated echo path by the adaptive filters. L is the length of the filter, i.e. number of 

coefficients. For all the simulations, L was set to 512 and the true echo path used for the 

simulations is as shown in Figure 3.1. 

 Figure 3.2 shows a comparison of the convergence of FAP, VR-APA and VR-

FAP. The excitation signal was white Gaussian noise. The length of the echo path was set 

to L=512. The projection order, N=2 and the additive noise, ( )y n , was set 30dB down 

from the echo signal.  The 
limit

δ for VR-FAP was set to ( ) 20.001 xσ . For FAP the fixed 

regularization was ( ) 25 xδ σ= . For VR-APA the parameter γ  (referred to as δ  in [17]) 

was set to 0.05. VR-FAP performs very well when compared to FAP; the VR-FAP 

coefficient error goes below -50dB while FAP bottomed-out at -29dB. VR-APA and VR-

FAP have similar initial convergence rate but VR-APA only reaches -43dB.  

 Figure 3.3 shows the convergence curves of the FAP, VR-APA and VR-FAP for 

colored noise input. The colored noise was generated using and auto regressive model 

with one pole at z-0.95, AR1(0.95). The total length of the echo path was L=512 and the 

additive noise, ( )y n , was set to 30dB lower than the echo. The order of the projection, N 

was 2. δ  for VR-FAP and FAP are the same as above. γ  for VR-APA is set to 0.08. The 

performance of the proposed algorithm is significantly improved over FAP. VR-FAP has 

fast initial convergence rate and finally converges to a value around -32dB where as FAP 

settles down at around -17dB. For all the simulations the sampling frequency was 

considered to be 8000Hz. 

 Figure 3.4 shows the convergence curves of the FAP, VR-APA and VR-FAP for 

speech excitation. The total length of the echo path was L=512 and the additive 

noise, ( )y n , was set to 30dB lower than the echo. The order of the projection, N was 2. 

Initialδ  for VR-FAP was set to ( ) 20.1limit xδ σ= and the fixed regularization for FAP was 

set to ( ) 210 xδ σ= . γ  for VR-APA is set to 10. The proposed VR-FAP algorithm 

performs well with the speech excitation. VR-FAP finally converges to a value around -

18dB and FAP settles down at around -15dB. For all the simulations the sampling 

frequency was considered to be 8000Hz. 



34 

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

Samples

M
a
g
n
it
u
d
e

True Echo Path, h
ep

 

 

Figure 3.1. True Echo Path, h
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Figure 3.2. Coefficient Error (in dB) for White Excitation Noise, L=512, N=2, 

SNR=30dB. 
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Figure 3.3. Coefficient Error (in dB) for Colored Noise AR1(0.95), L=512, N=2, 

SNR=30dB. 
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Figure 3.4. Coefficient Error (in dB) for Speech Excitation, L=512, N=2, SNR=30dB. 
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4. COMPUTATIONAL INTELLIGENCE METHODS 

 Computational intelligence (CI) is a field which involves the study of adaptive 

mechanisms to facilitate intelligent behavior in complex and varying environments [5]. 

These mechanisms include artificial intelligence (AI) topics namely artificial neural 

networks (ANN), swarm intelligence, evolutionary computing and fuzzy systems [5]. The 

ability to learn and adapt to new situations can be defined as the intelligent behavior 

demonstrated by AI techniques [5]. Particle swarm optimization (PSO) is one of the 

swarm intelligence based algorithms used for optimizing a set of parameters [6]. In this 

thesis work an ANN combined with PSO is used to search for a solution in a multi 

dimensional space.  

 

 

4.1. ARTIFICIAL NEURAL NETWORK, ANN 

 ANN, also known as Multi Layer Perceptron, MLP can be defined as 

interconnected group of simple processing units called neurons [5]. These neurons are 

generally connected in parallel and layer fashion to perform the required mathematical or 

logical operation. The neuron connections are weighted with so-called synaptic weights 

[5]. A single neuron consists of synaptic weights, a summation or product operator and an 

activation function (also called a transfer function). Figure 4.1 shows a model of an 

artificial neuron with a summation unit [5,19]. 

 The output of a neuron is defined as, 

1

n

ij j

j

y w xψ
=

 
= + Θ 

 
∑          (88) 

 

where, Θ is the external threshold.  It is also called as bias term or offset.  Ψ(n) is the 

activation function. There can be unipolar or bipolar activation functions (e.g. sigmoid, 

hard limiter, ramp, hyperbolic, Gaussian). The weights, wji are the synaptic weights of the 

neuron. These weights are adjusted by optimization algorithms to get the desired output. 

The inputs are the xj ‘s and y is the output of the neuron [5]. 
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Figure 4.1. Artificial Neuron with Summation Unit. 

 

 

 A neural network can be designed for an adjustable number of layers, neurons, 

inputs and outputs. A schematic representation of a 3 2 2× ×  feed forward multi-layer 

perceptron organized in three layers, input, hidden and output is shown in Figure 4.2. 

 

 

 

 

Figure 4.2. Schematic Diagram of an Artificial Neural Network. 
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4.2. PARTICLE SWARM OPTIMIZATION (PSO) 

 Particle swarm optimization (PSO) is an algorithm which belongs to the swarm 

intelligence field [6,7,20,19].  PSO adjusts the synaptic weights of the NN to give the 

desired optimal outputs and parameters based on the fitness function or performance 

index of the NN outputs.  

 Discovery of the PSO algorithm was based on the observations of a simplified 

social model where the individuals arrive at the solution working together in a collective 

manner [6]. PSO consists of a group (population) of particles, which search for the best 

solution in a given ‘n’ dimensional space. The number of dimensions of the space being 

searched is defined by the number of NN weights. The particles in the search fly within 

the boundaries of the given dimensional space at different velocities which are 

dynamically adjusted according to their personal and social (population) historical 

behavior [6,7,20]. Therefore, each particle of the population is a potential solution. Every 

particle records its personal best values, ‘pbest’, recorded with reference to the fitness of 

the NN output. The best of the ‘pbest’ is considered to be the global best (the best fit 

particle of the population), ‘gbest’, and is updated continuously. The particles move 

towards or search for the solution in the ‘n’ dimensional space with the help of velocity. 

Each particle has a different velocity and also different velocity in each dimension. The 

velocity is calculated with the past experience, referring to the ‘pbest’ and ‘gbest’ values. 

An inertia term is also involved. The velocity calculation also involves randomness. This 

random nature helps avoid convergence to local minima. Thus, the particles are approach 

the solution in every iteration/epoch. Boundaries defined for the velocities and the 

weights of the neural network act as the total search space boundaries [6,7,20]. 

 In this work, PSO is used for offline training of the NN. The pseudo code for 

particle swarm optimizer is as follows [6,7,19,20]: 

 

Step 1: Randomly initialize the weights of the particles, velocity, pbest, fitness vector and 

define the number of particles, velocity and weight boundaries, inertia weight, cognitive 

acceleration term and social acceleration term, and the number of epochs (or iterations). 
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Step 2: Evaluate the fitness of each particle using the fitness function by providing all the 

inputs (batch). 

 

Step 3: For each particle, update the fitness vector and pbest vectors (pbest) if the current 

fitness is better.  

 

Step 4: Find ‘gbest’ value. Exit if the ‘target fitness’ is achieved, else go to Step 5. 

 

Step 5: Inform each particle of the new gbest vector. 

 

Step 6: Calculate the velocity, using the velocity equation. 

1 2* * ()*( ) * ()*( );
id id bestid id bestid id

V w V C rand P X C rand G X= + − + −   (89) 

 

where, 

Vid, is the velocity vector. 

Xid, is the current weights of each particle. 

w, is the inertia term. 

C1, is the Cognitive acceleration term. 

C2, is the Social acceleration term. 

Pbestid, is the vector of weights which stores the personal best of each particle. 

Gbestid, is the vector of weights which stores the Global best of all particles. 

()rand , is a function generating the random variable of uniform distribution 

 

Step 7. Update the weights of the particles with the velocity and go to step 2. 

id id id
X X V= +          (90) 

 

 It can be observed from equation (89) that near the optimal solution, ( )
bestid id

P X−  

and ( )
bestid id

G X−  become very small [7,6]. Due to this effect, velocity,
id

V  damps out in 

some particles, resulting in losing the search space’s exploration property which limits 

the convergence of the algorithm [7]. Therefore, a so-called differential evolution (DE) 
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operator derived from evolutionary computing techniques is applied to improve the Gbestid  

solutions to overcome this defect. PSO with DE is known as DEPSO. The differential 

evolution process involves identifying ‘n’ random particles for Pbestid solutions in every 

epoch. These randomly identified Pbestid solutions are mutated with the gbest particle in 

the current epoch to generate an offspring using the differential operator [7]. The 

offspring is tested for fitness and compared with its gbest parent. If the offspring is found 

to be a better fit than the gbest parent, the offspring replaces the gbest parent particle in 

the population. Thus, this hybrid DEPSO-gbest version overcomes the problem of zero 

damping and stimulates the search for a better solution [7]. The DEPSO-gbest version 

introduces the following computations in the PSO algorithm for every epoch/iteration [7], 

 

Step1. Calcluate one offspring for every epoch. 

,id bestid N d
T G δ= +          (91) 

( )1

N

N
N

δ
∆

=
∑

r

          (92) 

 

where, CR is the so-called crossover mutation constant, 
id

T  is the offspring to be tested 

for fitness, ∆
r

 is the difference vector of the two randomly chosen Pbestid , 

, ,d bestid A bestid BP P∆ = −
r

         (93) 

 

where, ,bestid A
P and ,bestid B

P  are the randomly selected Pbestid from the population. 

 

Step2. Check for the fitness of 
id

T . If 
id

T  is found to have better fitness than 
bestid

G , 

replace 
bestid

G  with 
id

T  in the population. 

 

Step3. Go to the PSO algorithm steps. 
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 DEPSO has two versions. When applied to Pbestid, it is known as the DEPSO-

pbest version. When applied to Gbestid, it is known as the DEPSO-gbest version [7]. Both 

of these versions generally have similar convergence properties and perform better than 

PSO. This thesis work uses the DEPSO-gbest version to solve the optimization problem. 
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5. OPTIMIZATION OF ANALYSIS AND SYNTHESIS FILTER DESIGN   

PARAMETER – A COMPUTATIONAL INTELLIGENCE APPROACH 

5.1. FILTER DESIGN PARAMETERS 

 Sub-band Analysis and Synthesis filter banks are a special type of modulated low 

pass FIR filters [3,4]. The non-ideal characteristics of the filter banks distort the signals in 

the sub-bands due to the pass-band ripple and aliasing effects from the neighboring sub-

bands (in-band aliasing). This aliasing appears as noise to the adaptive filters within the 

sub-bands and result in improper adaptation of the coefficients and hence, degrades the 

performance of the overall sub-band adaptive filter. To avoid such in-band aliasing, the 

filter bank is desired to have a very sharp cut-off and also very low stop band ripple. 

However, practical always have some aliasing, therefore in order to yield good 

reconstruction, the synthesis filter bank is designed such that the aliasing terms are 

cancelled out and the residual aliasing in the output full-band signal is near zero [4]. It is 

also desired to have minimal latency through the analysis and synthesis filters. The 

design of such filters involves choosing optimal values for several parameters [4].  

 An analysis filter is designed with reference to an objective function. In this thesis 

work, the objective function used for analysis filter design is [4], 

h h h
e α β= +           (94) 

 

where, 
h

α  is the pass-band response error and 
h

β is the distortion due to in-band aliasing, 

h
α  and 

h
β  can be defined as [4].  The pass-band response error is the integral of the 

squared magnitude of the error of the designed prototype with respect to the ideal desired 

response over the pass band frequencies, 

 ( ) ( )
21

2

p

p

j j

h LP

p

H e H e d
ω

ω ω

ω
α ω

ω −
= −∫       (95) 

 

Where we define the ideal desired response as a pure delay of 
h

τ  whose Fourier 

transform is, 

( ) , ,   hjj

LP p p
H e e

ωτω ω ω ω−  = ∈ −         (96) 
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where, 
p

ω is the pass-band edge frequency, ( )j

LP
H e ω  is the Fourier transform of the 

desired low pass filter response, 
h

τ  is the group delay of the prototype analysis filter 

bank, and ( )jH e ω  is the Fourier transform of the desired response of the analysis filter to 

be designed. 

 The distortion due to in-band aliasing is the integral of the sum of the aliased part 

of the mean magnitude square of the aliased part of the designed filter after sub-sampling, 

2
1

1

1

2

jD
kD

h D

k

H e W d
ω

π

π
β ω

π

−

−
=

 
=  

 
∑∫        (97) 

 

where, D is the number of distortion terms due to aliasing, equal to the sub-sampling 

factor minus 1. Now consider, 0 1 1, , ,h
h

T

N
h h h −
 =  L and ( ) 111, , ,

h
φ h

T
N

z z z
− +− =  K ,  

( )H z  can be written as, 

( ) ( )h=h φT
H z z          (98) 

 

Applying (98) to (95), (97) and simplifying, 
h

α  and 
h

β  in quadratic form can be written 

as [4],  

2 1h Ah h b
T T

h
α = − +          (99) 

h Ch
T

h
β =           (100) 

 

where,   

( )( )
( )

sin
=

p

i,k

p

k i
A

k i

ω

ω

−

−
         (101) 

( )( )
( )

sin
=

p h

i

p h

i
b

i

ω τ

ω τ

−

−
         (102) 

 

where , 0, , 1
h

i k N= −K . Matrix A has a toeplitz structure and b is a vector. Matrix C  

also has a toeplitz structure and is defined as [4], 
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( )
( )

( ),

sin

i k

k i
k i

D
C

k i

π
ϕ

π

 −
−  

 =
−

        (103) 

 

where, 

( ) ( ) 1
t

n D n tDϕ δ
∞

=−∞

= − −∑         (104) 

 

Therefore, from (99) and (100), 
h

e  can be written as, 

( ) 2 1h A+C h h bT T

he = − +         (105) 

 

Minimizing 
h

e  in (105) with respect to h , the required filter is derived as [4], 

( )
1

h A C b
−

= +          (106) 

 

Equation (106) is derived by minimizing the objective function (94). The objective 

function in (94) considers the pass-band response error and in-band aliasing distortion but 

does not specify the stop-band edge or the stop-band roll-off factor. A sharp cut-off of the 

analysis filter is desired for better performance of the adaptive filter. Hence, a constraint 

with a specified stop-band edge and the roll-off factor when added to the objective 

function will result in significant performance improvement. The stop-band roll-off 

constraint, 
h

χ can be defined as,  

( )
( ) ( )

2 21

2

s

s

j j

h

s

H e d H e d
ω π

ω ω

π ω
χ ω ω

π ω

−

−

 
= + −  ∫ ∫     (107) 

 

where, ( )jH e ω  is the prototype analysis filter response and 
s

ω  is the stop-band edge. 

Therefore, the objective function for the analysis filter design can be re-defined as, 

ˆ
h h h h

e α β γχ= + +          (108) 
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where, γ is the scalar weighting on λ . Setting 1γ > , will result in producing a filter with 

more emphasis on stop-band roll-off factor than the pass-band response error and the in-

band aliasing distortion. Now, the required filter h is derived using the objective function 

(108). The prototype analysis filter response ( )H z  can be expressed in terms of its 

impulse response ( )h n  as, 

( ) ( )
1

0

hN
n

n

H z h n z
−

−

=

= ∑          (109) 

 

Considering, 0 1 1, , ,h
h

T

N
h h h −
 =  L and ( ) 111, , ,

h
φ h

T
N

z z z
− +− =  K ,  ( )H z  from (98) can 

be written as, 

( ) ( )h
=h φj T jH e eω ω          (110) 

( ) ( ) ( ) ( ) ( )
2

h h=h φ φ h
j j j T j H j

H e H e H e e e
ω ω ω ω ω∗=      (111) 

 

Consider, 

( ) ( ) ( ) ( )h h hφ φ =φ
j i kj H j j i j k He e e e e
ωω ω ω ω ω− −−= =      (112) 

 

where, , 0, , 1
h

i k N= −K . Applying  (111) and (112) in (107), yields 

( )
( ) ( )

1

2
h hh φ h h φ h

s

s

T H T H

h

s

d d
ω π

π ω
χ ω ω ω ω

π ω

−

−

 = +  − ∫ ∫     (113) 

 

Re-writing equation (113) in quadratic form, yields 

h λh
T

h
χ =           (114) 

 

where, λ is given as, 

( )
( ) ( )

1

2
h hλ φ φ

s

s

H H

s

d d
ω π

π ω
ω ω ω ω

π ω

−

−

 = +  − ∫ ∫      (115) 
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Substituting (112) in (115) yields,  

( )
( ) ( )

,

1

2

s

s

j i k j i k

i k

s

e d e d
ω πω ω

π ω
λ ω ω

π ω

− − − − −

−

 = +  − ∫ ∫      (116) 

 

where, , 0, , 1
h

i k N= −K . Integrating equation (116), yields, 

( ) ( )
( ) ( ) ( ) ( )( ),

1 1

2

s sj i k j i k j i k j i k

i k

s

e e e e
j i k

ω π π ωλ
π ω

− − − − − −
 −

= − + − 
− −  

   (117) 

 

Simplifying (117), yields, 

( ) ( )
( )( ) ( )( )( ),

1 1
2 sin 2 sin

2
i k s

s

j i k j i k
j i k

λ ω π
π ω

 −
= − − − 

− −  
   (118) 

 

From (116), it can be observed that for i k= , ,i k
λ = 1. Therefore, λ  is a toeplitz matrix 

defined as, 

( )( ) ( )( )( )
( ) ( ),

,

sin sin
,

1,

  

  

s

i k

s

i k

k i k i
for all i k

k i

for all i k

π ω
λ

π ω

λ

− − −
= ≠

− −

= =

     (119) 

 

Substituting (114), (100) and (99) to (108) yields,  

( )ˆ 2 1h A+ λ+C h h bT T

he γ= − +        (120) 

 

Minimizing ˆ
h

e  with respect to h , the required filter is derived as [4], 

( )
ˆ

2 2A+ λ+C h b=0
h

h
e

γ
∂

= −
∂

        (121) 

( )
1

h A λ C bγ
−

= + +          (122) 

 

Comparing (122) to (106), one can observe that the stop band constraint, 
h

χ  introduced 

the term λ in the filter design equation (106). Thus h in (122) defines the desired analysis 

filter. 
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 The design of the synthesis filter is based on the analysis filter because the 

performance focus is on the analysis and synthesis filter bank as a whole [4,3]. Therefore, 

the objective function, 
f

e , of the synthesis filter is defined as the combination of the total 

response error, ( )f hα  and residual aliasing distortion, ( )f hβ . The objective 

function
f

e is given as [4], 

( ) ( ) ( )f f fe h h v hα β= +         (123) 

 

where, 

( ) ( )
2

0

1

2
Tjj

f
h A e e d

π
ωτω

π
α ω

π
−

−
= −∫        (124) 

 

and, 

( ) ( )
21 1

,

1 0

1

2

D M
j

f m d

d m

h A e d
π

ω

π
β ω

π

− −

−
= =

= ∑∑∫        (125) 

 

where, 
T

τ  is the total delay of the analysis and synthesis filter bank, M is the number of 

sub-bands, and D is the number of distortion terms. The term ( ),

j

m d
A e ω defines the 

analysis and synthesis filter bank’s transfer function as a whole [4] and, 

( ) ( )
1

0 ,

0

, where 0 
M

j j

m d

m

A e A e d
ω ω

−

=

= =∑       (126) 

 

( )0

jA e ω is the transfer function of the analysis-synthesis system whose outcome is the 

desired reconstructed signal spectrum [4]. ( ),

j

m d
A e ω , 1, , 1d D= −K  in (125) measures 

the total residual aliasing introduced in all the sub-bands [4].  The value v, is a scalar 

weighting factor for the synthesis filter. Now, similar to the analysis filter, the required 

synthesis filter can be derived as [4], 

( )
1

E P gf v
−

= +          (127) 
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where, , 0, , 1
f

i k N= −K . 
f

N is the length of the synthesis filter. The matrix E and vector 

g are defined as [4], 

( ) ( )
2

, 2i k

t

M
E h kM i h tM k

D

∞
∗

=−∞

= − −∑        (128) 

( )Ti

M
g h i

D
τ= −          (129) 

 

The matrix P is defined as [4],  

( ) ( ) ( ), 2i k

l

M
P h l k h l i i k

D
ϕ

∞
∗

=−∞

= + + −∑       (130) 

( ) ( ) 1
t

n D n tDϕ δ
∞

=−∞

= − −∑         (131) 

 

 With reference to the filter design technique discussed above, a few of the 

parameters are chosen by outside design considerations.  Typically, these include the 

number of sub-bands, M, and the sub-sampling factor, R. These parameters influence 

both the performance and complexity of the overall filterbank. Section 2.3 discusses the 

selection criteria for M and R.  The other adjustable parameters are as follows [4,3], 

• The length of the analysis filter, Nh 

• The length of the synthesis filter, Nf 

• The passband edge frequency, 
p

ω  

• The stopband edge frequency, 
s

ω  

• The weighting of synthesis filter design, v 

• The delay or latency of the analysis filter, 
h

τ  

• The total delay or latency of analysis and synthesis filter-bank, 
T

τ  

• The stop-band constraint weighting in the analysis filter, γ   

 The total latency, 
T

τ  introduced by both analysis and synthesis filter banks is 

usually determined prior to the design the filter bank.  The analysis portion of the total 

delay, 
h

τ , is then adjusted for optimal performance. Generally 
h

τ  is chosen to be 
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around 0.5
T

τ . However, in this thesis 
h

τ  is chosen by the optimization algorithm 

considering a pre-defined
T

τ . The pass and stop band frequencies
p

ω  and 
s

ω  determine 

the bandwidth of the filters and influence the total filter response error and residual alias 

distortion of the system [4].  The parameter, γ  is a scalar which defines the weighting on 

the stop-band constraint used for generating the analysis filter. The higher the value of γ , 

the greater the emphasis on the stop-band roll off factor. The weighting parameter, v is 

used in the synthesis filter bank design to trade-off the importance of the filter bank 

response error and the residual aliasing distortion [4].  When 1v > , the design emphasis 

on reducing the residual aliasing distortion is greater than the total response error. In 

greater general total response error can be tolerated when compared to the residual 

aliasing distortion. This is because aliasing affects the sub-band adaptive filter’s 

adaptation rate and depth.  As a result, the parameters v, γ , 
p

ω , 
s

ω , 
h

τ , Nh and Nf  have 

a direct impact on the sub-band adaptive filter’s performance (convergence). Choosing 

the right values for these parameters for optimal adaptive filter performance is a very 

tedious and time consuming job. Hence, this thesis proposes an offline computational 

intelligence optimization approach for the selection of the parameter values. 

 The performance of the adaptive filter can be measured in terms of the echo return 

loss enhancement, ERLE. ERLE is the measure of the attenuation of the echo in the send 

path of the echo canceller. 

 

 

5.2. COMPUTATIONAL INTELLIGENCE APPROACH FOR FILTER DESIGN  

  PARAMETERS’ SELECTION 

 The optimization system is shown in Figure 5.1. The particles in DEPSO-gbest 

which correspond to the synaptic weights of the ANN are randomly initialized. The NN 

is provided with a constant input which acts as a fixed energy source. Each set of 

synaptic weights or particle produces an output of the NN which is a set of parameters for 

the design of the analysis and synthesis filter. These parameters used as inputs to the sub-

band analysis/sub-band filter bank design procedure of the previous section. The resulting 

filter banks are then used in the sub-band adaptive filter for performance evaluation. The 

performance of the sub-band adaptive filter is measured in terms of the fitness function 
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which is a weighted combination of the ERLE of the sub-band adaptive filter and the 

ripple measure of the analysis-synthesis filter bank. Based on this fitness measure, 

DEPSO optimizes the weights of the NN to generate parameters with better fitness 

measure.  

 

 

 

Figure 5.1. Parameter Optimization System. 

 

 

 A feed-forward NN consisting of sixteen neurons distributed in three layers is 

utilized. There are four in the input layer is four, five in the hidden layer, and seven in the 

output layer.  The hidden layer neuron use sigmoid functions in the output where the 

input and the output layer neurons use linear functions. Each parameter has a different 

magnitude range and hence, the outputs of NN are subjected to the range constraints as 

discussed in Section 4.2.2. A population of thirty particles is used to train the NN. The 

sub-band echo canceller is tested for ERLE using a white noise excitation signal.  
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5.2.1. Cost Function.  Both the ERLE and ripple measures are recorded in 

decibels and combined to develop the fitness function, 

( )
2

0

dB

i

J r erle iα
=

= − ∑          (132) 

 

where, 
dB

r  is the ripple measure of the analysis-synthesis filter bank’s response 

(reconstructed signal) and ( )erle i  is a set of three ERLE measurements recorded during 

the adaptive filter’s adaptation period. The weighting constant α is used to weight the 

emphasis of the optimization between 
dB

r  and ERLE.  

 In order to measure
dB

r , a rectangular pulse of unit magnitude is given as input to 

the analysis-synthesis filter bank and the output is evaluated for the reconstruction ability. 

The synthesis filter’s output looks like a delayed version of the input but with distorted 

pulse transition and ripples in the unit magnitude region. The amount of ripple in the unit 

magnitude region is measured in decibels it is defined as, 

( ) ( )
( )10

max min
20log

r r

r
dBr

avg

 −
=   

 
       (133) 

 

where, r is a vector which is the output of synthesis filter bank. The vector r records the 

reconstructed signal constituting only the required unit magnitude region. The function 

( )max r finds the maximum value and the function ( )min r finds the minimum value in 

r . ( )ravg  is be defined as, 

( ) ( )
1

0

1
r

T

n

avg r n
T

−

=

= ∑          (134) 

 

where, T is the length of vector r . The first sample time and the length in the vector r is 

user defined. 

 ERLE is measured in three equally spaced time segments during the filter 

adaptation. The time segments are generally measured near the final convergence. For 

simulations, ERLE is measured at 0.5,1 and 1.5 secs. ERLE can be defined as, 
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( ) ( )2 2

10 10

1 1

ˆ10 log 10log
MR MR

n n

erle s n e n
= =

= −∑ ∑       (135) 

 

where, ( )ŝ n is the pure echo signal without the near-end signal and near-end background 

noise. ( )e n  is the residual echo in the send path of the echo canceller. MR defines the 

size of the data segment considered for ERLE measurement.  

5.2.2. Constraints.  Two types of constraints can be given to the optimization 

system such that the dimension of the search space is reduced. This helps the 

optimization system to search for a better solution faster.  

 Boundary conditions for the particles in the DEPSO algorithm can be imposed to 

constrain the solution to reasonable values. DEPSO optimizes the weights of the NN as 

the particles fly towards the optimal solution in a multi-dimensional search space at 

different velocities. Boundary conditions to the DEPSO algorithm are applied by limiting 

the maximum allowed velocity to each particle and limiting the weight values of the NN 

to a certain range. The boundary conditions are important for DEPSO to avoid any 

divergence of the particles from the solution and also helps find the solution faster. For 

simulations, the maximum allowed velocity of each particle is set to 0.5  and the NN 

weights are allowed to take values between 0.5± . The above said boundaries for the 

DEPSO algorithm were chosen manually using a trial and error approach [19]. The 

simulations show that 100 epochs were good enough to find an optimal set of parameters. 

 Secondly, the output parameters can be restricted to a certain range of values 

using prior knowledge of the parameters. The dependence/relation between the 

parameters can also be exploited to put constraints on the search space. Limiting the 

range of the parameters reduce the multi-dimensional search space and hence, assists the 

optimization system in finding the required solution faster. The total delay, Tτ  of the 

system can always be assumed to be more than the analysis filter bank delay, 
h

τ . The 

length of the analysis and synthesis filter bank can be limited to a certain range based on 

the processing band-width provided to the sub-band adaptive filter. Utilizing prior 

information, the parameters are restricted to a certain range of values as tabulated in 
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Table 5.1. Consider M as the number of sub-bands, R as the sub-sampling factor and fs as 

the sampling frequency. For simulations 
T

τ  is pre-defined to either 
s

M
f

 or  2
s

M
f

secs.  

 

 

Table 5.1. Range Constraints on the Parameters. 

Parameter Range Limits 

h
N  ( ) ( )4 16hR N  R× < < ×   

h
N  can take only integer values 

f
N  ( ) ( )4 16fR N  R× < < ×  

f
N can take only integer values 

h
τ  

h T
τ τ<  

p
ω  0.6 2

p
rad/sample

M M

π π
ω< <  

s
ω  0.6 2

s
rad/sample

M M

π π
ω< <  

v  1 2000v< <  

γ  4000 500000γ< <  

 

 

5.3. SIMULATIONS 

 For simulations an echo path characterized by a 20
th

 order low pass elliptic filter 

is used. Figure 5.2 shows the response of the echo path. 

 Figure 5.3 shows the convergence curve of the proposed optimization system 

which used a 4 5 7× ×  feed forward neural network along with gbest version of DEPSO. 

The DEPSO-gbest version was populated with 30 particles. The other parameters were 

set as, 0.8w = , 1 2C = , 2 2C = , the maximum velocity of each particle 0.5vmax = and 

the NN weights were allowed to be between 0.5± . The sub-band echo canceller was set 

to 32M = , 16R = and 8
T

msτ = . A white noise excitation signal is used and a 20
th

 order 

low pass elliptic filter with the pass-band cut-off at 0.5π characterized the echo path. The 
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sampling frequency, 
s

f  of the excitation signal is 8kHz. No background noise is added to 

the Line signal. Table 5.2 tabulates the filter design parameters identified by the NN-

DEPSO optimization system. The designed analysis and synthesis filter bank response 

has a ripple, 
dB

r = -56dB. The ripple was measured between the time 70ms and 150ms. 

Figure 5.4 shows the response of the ideal and designed analysis and synthesis filter 

bank’s response. 0.1α =  is used in cost function (135).The Figure 5.5 shows the 

cancellation of echo with respect to the number of input samples. Figure 5.6 shows the 

ERLE performance plot with respect to time. The ERLE was measured considering 64ms 

data segment. The ERLE at 2secs is around 38dB.  

 

 

 

Figure 5.2. Response of the Echo Path Channel. 
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Figure 5.3. DEPSO-NN Convergence Curve, M=32, R=16, 8
T

msτ = . 

 

 

Table 5.2. Parameters Identified by the Optimization System, M=32, R=16, 8
T

msτ = . 

Parameter Identified Values 

h
N  240  

f
N  80  

h
τ  1.9848ms 

p
ω  0.045π  rad/sample 

s
ω  0.0625π  rad/sample 

v  1916.7 

γ  17220 



56 

 

Figure 5.4. Analysis & Synthesis Filter Bank Response, M=32, R=16, 8
T

msτ = . 

 

 

 

Figure 5.5. Pure Echo vs. Residual Echo, M=32, R=16, 8
T

msτ = . 
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Figure 5.6. ERLE Plot, M=32, R=16, 8
T

msτ = . 

 

 

 Figure 5.7 shows the convergence curve of the proposed optimization system 

which used a 4 5 7× ×  feed forward neural network along with gbest version of DEPSO. 

The DEPSO-gbest version was populated with 30 particles. The other parameters were 

set as, 0.8w = , 1 2C = , 2 2C = , the maximum velocity of each particle 0.5vmax = and 

the NN weights were allowed to be between 0.5± . The sub-band echo canceller was set 

to 32M = , 16R = and 4
T

msτ = . A white noise excitation signal is used and a 20
th

 order 

low pass elliptic filter with the pass-band cut-off at 0.5π characterized the echo path. The 

sampling frequency, 
s

f  of the excitation signal is 8kHz. No background noise is added to 

the Line signal. Table 5.3 tabulates the filter design parameters identified by the NN-

DEPSO optimization system. The designed analysis and synthesis filter bank response 

had a ripple, 
dB

r = -45dB. The ripple was measured between the time 63ms and 150ms. 

Figure 5.8 shows the response of the ideal and designed analysis and synthesis filter 

bank’s response. 0.1α =  is used in cost function (135). The Figure 5.9 shows the 

cancellation of echo with respect to the number of input samples. Figure 5.10 shows the 
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ERLE performance plot with respect to time. The ERLE was measured considering 64ms 

data segment. The ERLE at 2secs is around 32dB. 

 

 

 

Figure 5.7. DEPSO-NN Convergence Curve, M=32, R=16, 4
T

msτ = . 

 

 

Table 5.3. Parameters Identified by the Optimization System, M=32, R=16, 4
T

msτ = . 

Parameter Identified Values 

h
N  64  

f
N  96  

h
τ  2.9296ms 

p
ω  0.01875π  rad/sample 

s
ω  0.0305625π  rad/sample 

v  2000 

γ  4000 
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Figure 5.8. Analysis & Synthesis Filter Bank Response, M=32, R=16, 4
T

msτ = . 

 

 

 

Figure 5.9. Pure Echo vs. Residual Echo, M=32, R=16, 4
T

msτ = . 
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Figure 5.10. ERLE Plot, M=32, R=16, 4
T

msτ = . 

 

 

 Figure 5.11 shows the convergence curve of the proposed optimization system 

which used a 4 5 7× ×  feed forward neural network along with gbest version of DEPSO. 

The DEPSO-gbest version was populated with 30 particles. The other parameters were 

set as, 0.8w = , 1 2C = , 2 2C = , the maximum velocity of each particle 0.5vmax = and 

the NN weights were allowed to be between 0.5± . The sub-band echo canceller was set 

to 16M = , 8R = and 
2

4
T

s

M
ms

f
τ = = . A white noise excitation signal is used and a 20

th
 

order low pass elliptic filter with the pass-band cut-off at 0.5π characterized the echo 

path. The sampling frequency, 
s

f  of the excitation signal is 8kHz. No background noise 

is added to the Line signal. Table 5.4 tabulates the filter design parameters identified by 

the NN-DEPSO optimization system. The designed analysis and synthesis filter bank 

response had a ripple, 
dB

r = -36dB. The ripple was measured between the time 33ms and 

150ms. Figure 5.12 shows the response of the ideal and designed analysis and synthesis 

filter bank’s response. 2α =  is used in cost function (135). The Figure 5.13 shows the 

cancellation of echo with respect to the number of input samples. Figure 5.14 shows the 
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ERLE performance plot with respect to time. The ERLE was measured considering 64ms 

data segment. The ERLE at 2secs is around 36dB. 

 

 

 

Figure 5.11. DEPSO-NN Convergence Curve, M=16, R=8, 4
T

msτ = . 

 

 

Table 5.4. Parameters Identified by the Optimization System, M=16, R=8, 4
T

msτ = . 

Parameter Identified Values 

h
N  88 

f
N  32 

h
τ  0ms 

p
ω  0.115378π  rad/sample 

s
ω  0.0375π  rad/sample 

v  2000 

γ  3084.9 
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Figure 5.12. Analysis & Synthesis Filter Bank Response, M=16, R=8, 4
T

msτ = . 

 

 

 

Figure 5.13. Pure Echo vs. Residual Echo, M=32, R=16, 4
T

msτ = . 
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Figure 5.14. ERLE Plot, M=16, R=8, 4
T

msτ = . 
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6. CONCLUSION 

 This thesis work introduced a variable regularization method for the fast affine 

projection algorithm (VR-FAP). The regularization parameter varies as a function of the 

excitation, measurement noise, and residual error energies.  Because of the dependence 

on the last parameter, VR-FAP demonstrates the desirable property of fast initial 

convergence and deep convergence (low misadjustment)/immunity to measurement 

noise. Conventionally, FAP’s regularization is only set at initialization, to overcome this, 

noise-injection technique is used. Noise in the filter update is injected with the noise-

power proportional to the variable regularization parameter. As with their fixed 

regularization versions, VR-FAP is considerably less complex than VR-APA and 

simulations verify that they both have similar convergence properties for white noise and 

colored noise excitations. The VR-FAP performs well even with the speech excitation 

signal.  

 This thesis work introduced a computational intelligence approach for optimizing 

the filter design parameters in order to improve the performance of the sub-band echo 

canceller. A Hybrid Artificial Intelligence system consisting of Artificial Neural Network 

and gbest version of DEPSO was utilized to find the optimal filter parameters. 

Simulations were performed to identify filter design parameters for a combination of 

different number of sub-bands, sub-sampling factor and total filter delay, using the 

proposed optimization system. The results show that the sub-band adaptive filter was able 

to comfortably cancel the echo by 30dB. Therefore, the proposed parameter optimization 

system can be used to improve the convergence of the adaptive filters. 

 



65 

BIBLIOGRAPHY 

[1] J. Benesty, T.Gänsler, D.R. Morgan, M.M. Sondhi, S. L. Gay, Advances in 

Network and Acoustic Echo Cancellation, Springer-Verlag Berlin Heidelberg 

2001. 

 

[2]  S.L. Gay, “Fast Projection Algorithms with Application to Voice Excited Echo 

Cancellers,” Ph.D. Dissertation, Rutgers University, Piscataway, New Jersey, 

October, 1994. 

 

[3] RE Crochiere and LR Rabiner, “Multirate Digital Signal Processing,” Chapter 7, 

pp. 289-404, Prentice-Hall, Englewood Cliffs, NJ, USA, 1983. 

 

[4] JM de Haan, N Grbic, I Claesson, and SE Nordholm, “Filter bank design for 

subband adaptive microphone arrays,” in IEEE Trans. On Speech and Audio 

Processing, vol. 11, no. 1, Jan. 2003. 

 

[5] Witold Pedrycz, “Computational Intelligence: An Introduction,” Boca Raton, 

Fla.: CRC Press, 1998. 

 

[6] J. Kennedy, R. Eberhart, “Particle Swarm Optimization,” in Proceedings of the 

IEEE Trans. Neural Network, vol. 4, pp. 1942-1948, 1995. 

 

[7] Wen-Jun Zhang, Xiao-Feng Xie, “DEPSO: Hybrid Particle Swarm with 

Differential Evolution Operator,” in Proceedings of the IEEE Trans. Systems, 

Man and Cybernetics, vol. 4, pp. 3816-3821, 2003. 

 

[8]  S. Haykin, “Adaptive Filter Theory,” 3rd ed., Upper Saddle River, NJ: Prentice 

Hall, 2002. 

 

[9]  S.L. Gay, “Affine Projection Algorithms,” in Least-Mean-Square Adaptive 

Filters, S. Haykin, B. Widrow, Eds., John Wiley & sons Inc., Chapter 7, pp. 241-

291, 2003. 

 

[10]  S.L. Gay, S. Tavathia, “The Fast Affine Projection Algorithm,” in Proceedings of 

the IEEE Trans. Acoust., Speech, Signal Process., vol.5, pp. 3023-3026, May 

1995. 

 

[11] S. L. Gay, J. Benesty, “Acoustic Signal Processing For Telecommunication,” 

Massachusetts, Kluwer Academic Publishers, 2000. 

 

[12] S. L. Gay, “A Fast Converging, Low Complexity Adaptive Filtering Algorithm,” 

in IEEE workshop on Applications of Signal Processing to Audio and Acoustics, 

pp. 4-7, 1993. 

 



66 

[13]  Steven L. Gay, “Dynamically regularized Fast RLS with application to Echo 

Cancellation,” in Proc. IEEE ICASSP, pp. 957–960, 1996. 

 

[14]  J.M. Cioffi, T. Kailath, “Windowed Fast Transversal Filters Adaptive Algorithms 

with Normalization,” IEEE Trans. Acoust., Speech, Signal Process., Vol. ASSP-

33, No. 3, June 1985. 

 

[15] K. Ozeki, T. Umeda, “An Adaptive Filtering Algorithm Using an Orthogonal 

Projection to an Affine Subspace and Its Properties,” Electron. Commun. Japan., 

vol.67-A, no.5, pp.19-27, May 1984. 

 

[16]  M. Tanaka, Y. Kaneda, S. Makino, J. Kojima, “Fast Projection Algorithm and Its 

Step Size Control,” in Proceedings of the IEEE Trans. Acoust., Speech, Signal 

Process., vol.2, pp. 945-948, May 1995. 

 

[17]  H. Rey, L.R. Vega, S. Tressens, J. Benesty, “Optimum Variable Explicit 

Regularized Affine Projection Algorithm,” in Proceedings of the IEEE Trans. 

Acoust., Speech, Signal Process., vol.3, pp. 197-200, May 2006. 

 

[18] Deepak Challa, Steven L. Grant, Asif Mohammad, “Variable Regularized Fast 

Affine Projections,” in IEEE Conference On Audio, Speech and Signal 

Processing, April 2007. 

 

[19] Venu G. Gudise, Ganesh K. Venayagamoorthy, “Comparison of Particle Swarm 

Optimization and Backpropagation as Training Algorithms for Neural Networks,” 

in Proceedings of the IEEE Trans. Swarm Intelligence Symposium, pp. 110-117, 

2003. 

 

[20] http://www.swarmintelligence.org/tutorials.php PSO tutorial (July 19th 2007). 

 



67 

VITA 

 Deepak Kumar Challa was born on 17
th

 September, 1982 in Hyderabad, a city in 

the southern part of India. He received his Bachelors in Electronics and Communications 

Engineering from Siddaganga Institute of Technology, Tumkur, India in July 2003. He 

worked as an intern at Dandamizz Research Group, Bangalore, India on GSM 

technologies during his bachelors program. He worked for two years on Audio, Video 

Codecs’ implementation on VLSI platforms at Future Techno Designs Ltd., Bangalore, 

India and Conexant Systems India Pvt. Ltd., Hyderabad, India. He joined the University 

of Missouri Rolla in August 2005 for the masters program specializing in Digital Signal 

Processing and Communications Engineering. He was involved in research with Dr. 

Steven L. Grant on Echo Cancellation and Blind Source Separation techniques during his 

masters study. He also served as an Intern in the Audio Systems team at Qualcomm Inc., 

CA, U.S.A. He received his Master of Science Degree in Electrical Engineering in 

December 2007. His current research interests include Echo Cancellation, Adaptive 

Filtering, Blind Source Separation and Audio/Video Technologies. 



68 

 


	Performance improvement of adaptive filters for echo cancellation applications
	Recommended Citation

	Performance improvement of adaptive filters for echo cancellation applications

