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ABSTRACT

This dissertation proposes three classes of new sparse nonlinear optimization

algorithms for network echo cancellation (NEC), 3-D synthetic aperture radar (SAR)

image reconstruction, and adaptive turbo equalization in multiple-input multiple-

output (MIMO) underwater acoustic (UWA) communications, respectively.

For NEC, the proposed two proportionate affine projection sign algorithms

(APSAs) utilize the sparse nature of the network impulse response (NIR). Benefiting

from the characteristics of l1-norm optimization, affine projection, and proportionate

matrix, the new algorithms are more robust to impulsive interferences and colored

input than the conventional adaptive algorithms.

For 3-D SAR image reconstruction, the proposed two compressed sensing (CS)

approaches exploit the sparse nature of the SAR holographic image. Combining CS

with the range migration algorithms (RMAs), these approaches can decrease the load

of data acquisition while recovering satisfactory 3-D SAR image through l1-norm

optimization.

For MIMO UWA communications, a robust iterative channel estimation based

minimum mean-square-error (MMSE) turbo equalizer is proposed for large MIMO de-

tection. The MIMO channel estimation is performed jointly with the MMSE equalizer

and the maximum a posteriori probability (MAP) decoder. The proposed MIMO de-

tection scheme has been tested by experimental data and proved to be robust against

tough MIMO channels.
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1 INTRODUCTION

1.1 BACKGROUND AND PROBLEM STATEMENT

Sparse nonlinear optimization [1] [2] is to solve the large-scale problem with

sparse nature efficiently and effectively. In the last decade, sparse nonlinear opti-

mization has made significant achievements and has been widely researched in many

signal processing applications: system identification, radar imaging, magnetic reso-

nance imaging (MRI), wireless communication, etc. This dissertation proposed three

classes of sparse nonlinear optimization algorithms for network echo cancellation, 3-D

synthetic aperture radar (SAR) image reconstruction, and adaptive turbo equalization

in multiple-input multiple-output (MIMO) underwater acoustic (UWA) communica-

tions, respectively.

A network echo canceller (NEC) is an adaptive filter essential to modern voice

communication networks. An NEC first estimates the echo path of the network,

generates a replica of the network impulse response (NIR), and then subtracts the

replica of the far-end echo from the near-end signal to obtain clean signals. Although

NEC is a classic system identification application, modern VoIP (Voice over Internet

Protocol) and telephone networks impose several challenges on conventional adaptive

filters. The first is that today’s large scale network often experiences long delays and

causes long network impulse responses (NIRs) that require adaptive filters with 1000

or more taps; while the traditional network only requires adaptive filters with less

than 100 taps. However, the response of the long-distance/local-loop interface is still

typically only 6 to 12 milliseconds long, which with a typical sample rate of 8 kHz

yields a flat delay of zero to nearly 900 samples followed by a damped ringing of about

50 samples. This means that the NIR is typically rather sparse, in that most of the
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coefficients are close to zero. The second challenge is that the excitation signals in

NECs are speech signals which are often highly colored non-Gaussian processes rather

than white Gaussian noises. Many adaptive algorithms suffer reduced convergence

rate in this scenario. The third challenge of NEC is due to double-talk where both

near-end speech and far-end speech are active simultaneously. This often causes

extremely slow convergence or even divergence in adaptive filters.

The NEC scheme is shown in Fig. 1.1, where x(k) is the far-end signal, z(k)

and v(k) are the near-end speech and background noise signal, respectively. The NIR

of the true echo path is denoted by a length L coefficient vector h.

Figure 1.1. Structure of a network echo canceller (NEC).

The estimated impulse response of the NEC is denoted byw(k) = [w0(k), w1(k),

. . . , wL−1(k)]
T , where k is the time index and the superscript T denotes transpose.

The signal y(k) contains the echo, the near-end speech, and background noise. That

is, y(k) = xT (k)h+ z(k) + v(k), where x(k) = [x(k), x(k − 1), . . . , x(k − L + 1)]T is

the far-end signal vector. Generating the replica echo ŷ(k) = xT (k)w(k), the NEC

tries to minimize the difference between y(k) and ŷ(k) with an adaptive w(k).
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Different from the l2-norm algorithms [3], the formulation of sparse nonlinear

optimization for NEC is obtained by minimizing the l1-norm of the a posteriori error

vector with a constraint on the filter coefficients,

min
w(k+1)

‖y(k)−XT (k)w(k + 1)‖1 (1.1)

subject to ‖w(k + 1)−w(k)‖22 ≤ µ2 (1.2)

where µ2 is a parameter to ensure the weight coefficient vector does not change too

much in one iteration, X(k) = [x(k),x(k− 1), . . . ,x(k−M +1)], y(k) = [y(k), y(k−

1), . . . , y(k −M + 1)]T , and M is the projection order.

Wideband 3-D SAR imaging has important applications in the area of non-

destructive testing and evaluation (NDT&E). This is due to its feasibility to acquire

high-resolution holographic images of specimen under test. Microwave and millime-

ter wave as interrogating signals can not only penetrate dielectric materials but also

interact with their inner structure to render a comprehensive image for inspection.

Microwave and millimeter wave NDT&E techniques have been applied to diverse ap-

plications (i.e., the detection and evaluation of corrosion under paint and composite

laminates, the detection and sizing of fatigue cracks in metal surfaces, and the char-

acterization of dielectric material). However, the speed of data acquisition for these

wideband 3-D SAR imaging systems hinders their practical applications due to the

slowness of mechanical scanning. For example, uniform raster scanning requires ap-

proximately one hour to scan a 120 × 180 mm2 area at 2 mm spacing. In contrast,

random undersampling can reduce the acquisition time when the antenna probe is

placed at only a fractional number of positions on the uniform grid. Advanced sparse

methods are required to reconstruct images when undersampled measurements are

used.
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For 3-D SAR image reconstruction, the sparse nonlinear optimization problem

can be interpreted as [4]

min
ĝ

J(ĝ) subject to ‖Φĝ − r‖22 < σ2, (1.3)

where ‖ · ‖2 is the l2 norm, ĝ ∈ CN×1 is the vectorized estimated 3-D SAR image,

σ2 is the noise variance, and Φ ∈ CM×N (M < N) is the measurement matrix that

reflects the acquisition of the vectorized raw measurements r ∈ CM×1. For the Stolt-

CS and NUFFT-CS, Φ is the reverse Stolt-RMA and NUFFT-RMA, respectively.

The measurement operator Φ can be written as

ΦStolt = UF−1
2D

{

Θ†[F3D(·)]
}

, (1.4)

ΦNUFFT = UF−1
2D {FNUFFT[F2D(·)]} , (1.5)

Note that the phase compensation term is omitted for brevity. Here, Θ† represents

the pseudoinverse 1-D Stolt transform with the nearest neighbor interpolation, F3D

denotes the 3-D FFT, and U denotes the binary matrix that is used to select the

random (x, y) positions for random undersampling.

The cost function J(ĝ) represents some l1 regularization term with respect to

ĝ. In this paper, it is selected as

J(ĝ) =
γ2
2
‖Ψĝ‖1 +

λ

2
‖Dĝ‖1, (1.6)

where ‖ · ‖1 denotes the l1 norm, Ψ ∈ CN×N is the linear operator that transforms

the image from voxel representation into a sparse representation, D is the discrete

3-D isotropic TV operator, and γ2 and λ are the weights for the consistency of the l1

norm and the TV norm, respectively.
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MIMO UWA communications are challenging for three main reasons: first, the

available channel bandwidth is very limited; second, the multipath delay is excessively

long; third, the Doppler spread effect is significantly large. Accurate channel estima-

tion is crucial in achieving satisfactory performance for MIMO UWA communica-

tions. The traditional block-based least squares (LS) or minimum mean-square-error

(MMSE) channel estimation techniques often need the periodic training sequence and

the inversion of large matrix. In comparison, the iterative channel estimation based

on the adaptive algorithms, such as least mean squares (LMS) or recursive least

square (RLS) algorithms [3], can better track the time-varying frequency-selective

channel. As the required adaptive filter lengths grows, the conventional normalized

LMS (NLMS) [3] algorithm suffers a slow convergence rate, thus requiring long train-

ing sequence. However, it is desirable to use short training sequence to reduce the

overhead and increase the data transmission efficiency. With short training sequence,

this slow convergence rate degrades the accuracy of the channel estimation.

This dissertation develops several robust iterative or adaptive signal processing

algorithms to solve these sparse nonlinear optimization problems. For NEC, two

adaptive solutions are proposed and evaluated under the environment of impulsive

interference and colored input. For 3-D SAR image, two iterative reconstruction

algorithms are proposed, which utilize the principle of compressed sensing (CS) and

radar imaging. For MIMO UWA communications, the proposed iterative improved

proportionate NLMS (IPNLMS) MIMO channel estimator is performed jointly with

the MMSE turbo equalizer [5] at the receiver, which ensure efficient and effective soft

information exchange between the equalizer and the decoder.

1.2 SUMMARY OF CONTRIBUTIONS

This dissertation consists of two journal publications and one conference paper

as listed in the publication list. My contributions that are published or accepted are:
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1. Proportionate affine projection sign algorithms for sparse system iden-

tification in impulsive interference. Two new proportionate affine projection sign

algorithms (APSAs) are proposed for NEC applications where the impulse response

is often real-valued with sparse coefficients and long filter length. The proposed

proportionate-type algorithms can achieve fast convergence and low steady-state mis-

alignment. Benefiting from the characteristics of l1-norm optimization, affine projec-

tion, and proportionate matrix, the new algorithms are more robust to impulsive inter-

ferences and colored input than the proportionate least mean squares (PNLMS) algo-

rithm [6] and the robust proportionate affine projection algorithm (Robust PAPA) [7].

The computational complexity of the new algorithms is lower than the affine projec-

tion algorithm (APA) family due to the elimination of the matrix inversion.

2. Compressed sensing approaches and comparative study for 3-D synthetic

aperture radar image reconstruction. By utilizing the sparse nature of 3-D synthetic

aperture radar (SAR) images, the proposed two compressed sensing (CS) approaches

can reconstruct satisfactory images with undersampled measurements. Combining

CS with the range migration algorithm (RMA), using either Stolt transform or non-

uniform fast Fourier transform (NUFFT), yields two different approaches: Stolt-CS

and NUFFT-CS. These approaches can decrease the load of data acquisition through

l1-norm optimization. Both the simulation and the experimental reconstruction re-

sults demonstrate that the NUFFT-CS achieves a good tradeoff between the recon-

struction quality and the computational costs.

3. Robust iterative channel estimation based adaptive turbo equalizer in

multiple-input multiple-output underwater acoustic communications. For UWA com-

munications, a robust iterative channel estimation based MMSE adaptive turbo equal-

izer is proposed and studied for MIMO detection. Rather than the classical MMSE

or NLMS estimation algorithms, the IPNLMS [8] is adopted for the iterative MIMO
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channel estimator to utilize the sparse nature of UWA channel. The MIMO chan-

nel estimation is performed jointly with the MMSE equalizer and the maximum a

posteriori probability (MAP) decoder. With inter-block interference removed, the

MIMO MMSE equalization is performed with overlapped information subblocks with-

out guard intervals, thus a high transmission efficiency is guaranteed and performance

degradation is prevented. The proposed MIMO detection scheme has been tested by

experimental data and proved to be robust against tough MIMO channels.
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PAPER

I. PROPORTIONATE AFFINE PROJECTION SIGN ALGORITHMS

FOR NETWORK ECHO CANCELLATION

Zengli Yang, Yahong Rosa Zheng, and Steven L. Grant

ABSTRACT—Two proportionate affine projection sign algorithms (APSAs) are

proposed for network echo cancellation applications where the impulse response is of-

ten real-valued with sparse coefficients and long filter length. The proposed proportionate-

type algorithms can achieve fast convergence and low steady-state misalignment by

adopting a proportionate regularization matrix to the APSA. Benefiting from the

characteristics of l1-norm optimization, affine projection, and proportionate matrix,

the new algorithms are more robust to impulsive interferences and colored input than

the proportionate least mean squares (PNLMS) algorithm and the robust proportion-

ate affine projection algorithm (Robust PAPA). The new algorithms also achieve much

faster convergence rate in sparse impulse responses than the original APSA and the

normalized sign algorithm (NSA). The new algorithms are robust to all types of NEC

impulse response with different sparseness without the need to change parameters or

estimate the sparseness of the impulse response. The computational complexity of

the new algorithms is lower than the affine projection algorithm (APA) family due to

the elimination of the matrix inversion.
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1 INTRODUCTION

A network echo canceller (NEC) is an adaptive filter essential to modern voice

communication networks. An NEC first estimates the echo path of the network,

generates a replica of the network impulse response (NIR), and then subtracts the

replica of the far-end echo from the near-end signal to obtain clean signals. Although

NEC is a classic system identification application, modern VoIP (Voice over Internet

Protocol) and telephone networks impose several challenges on conventional adaptive

filters. The first is that today’s large scale network often experiences long delays and

causes long network impulse responses (NIRs) that require adaptive filters with 1000

or more taps; while the traditional network only requires adaptive filters with less

than 100 taps. However, the response of the long-distance/local-loop interface is still

typically only 6 to 12 milliseconds long, which with a typical sample rate of 8 kHz

yields a flat delay of zero to nearly 900 samples followed by a damped ringing of about

50 samples. This means that the NIR is typically rather sparse, in that most of the

coefficients are close to zero. The second challenge is that the excitation signals in

NECs are speech signals which are often highly colored non-Gaussian processes rather

than white Gaussian noises. Many adaptive algorithms suffer reduced convergence

rate in this scenario. The third challenge of NEC is due to double-talk where both

near-end speech and far-end speech are active simultaneously. This often causes

extremely slow convergence or even divergence in adaptive filters.

As the required adaptive filter lengths grow, the conventional normalized least

mean squares (NLMS) [1] algorithm exhibits a slower convergence rate. This slow

convergence rate becomes noticeable in that echo is often heard, especially in the

first few seconds of a connection. The proportionate NLMS (PNLMS) [2] has been

designed to ameliorate this situation by exploiting the sparse nature of the NIR. By
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selecting a proportionate matrix at each iteration, PNLMS updates each coefficient

in the weight vector proportionate to its magnitude. This results in very fast initial

convergence for sparse NIRs relatively independent of their length. However, the

drawback of PNLMS is that, though it has fast initial convergence for sparse NIRs,

it has slower convergence than NLMS for non-sparse NIRs. This problem has been

addressed by several modifications to PNLMS. The first is PNLMS++ [3] which has

two versions, one where the adaptation algorithm alternates between both PNLMS

and NLMS in successive sample periods and another where both updates are com-

bined in each sample period. The resulting convergence is generally the better of the

two algorithms. That is, PNLMS++’s convergence is like PNLMS’s for sparse NIRs

and like NLMS’s for dispersive NIRs. Another modification to PNLMS is the im-

proved PNLMS (IPNLMS) [4] which has the feature of being optimal for a given NIR

sparseness. This feature has later been exploited in a class of sparseness-controlled

(SC) [5] algorithms which measure the sparseness of the developing coefficients on-

the-fly. Another approach is to use adaptive combination of proportionate filters [6]

which adaptively mix the outputs of two independent adaptive filters together based

on IPNLMS. In addition, the µ-law PNLMS (MPNLMS) [7] is an optimal step-size

algorithm modified from PNLMS.

A number of proportionate algorithms are also developed for the affine projec-

tion algorithm (APA) [1] which is well known for its better convergence than NLMS for

colored input. These proportionate algorithms include proportionate APA (PAPA),

improved proportionate APA (IPAPA) [8] and “memory”-IPAPA (MIPAPA) [9]. The

IPAPA extends the proportionate matrix of IPNLMS [4] directly to APA; while the

MIPAPA designs an efficient matrix to reduce computational complexity. Both algo-

rithms improve convergence rate over that of PNLMS in practical NEC applications

where the inputs are speech and the NIRs are sparse. However, they have higher
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complexity than PNLMS algorithms because they generally require a matrix inver-

sion where the size of the matrix is the order of the projection. In practice, the

projection orders are typically around ten and direct matrix inversion of this size

may be too expensive.

In addition to convergence rate and complexity, another challenging problem

in NEC is the double-talk problem. Typically, a double-talk detector (DTD) is used

to detect this situation, and the adaptation of the coefficients is inhibited by setting

the step-size to zero for a period Thold during double-talk. Completely reliable DTDs

are notoriously difficult to design because the NEC has stringent requirements on

its detection. Even the first few samples of double-talk can lead to divergence of

the adaptive filter. One approach to mitigate the effect of double-talk is to design

the adaptive filter to be especially robust to DTD errors. Several algorithms have

been developed in this robustness approach, such as the robust PNLMS and robust

PAPA [10]. Another approach treats the double-talk as variable background noise and

adapts the step-size of the adaptation algorithm accordingly. This is the philosophy

behind variable step-size NLMS (VSS-NLMS) [11] and variable step-size APA (VSS-

APA) [12]. Yet a third strategy is to use adaptive algorithms based on l1 rather

than l2 error norms because l1 algorithms are especially robust to impulsive noise

like speech. A conventional l1 algorithm is the normalized sign algorithm (NSA).

Unfortunately, NSA’s robustness comes at the price of slower than NLMS convergence.

Recently, a new affine projection sign algorithm (APSA) [13] addresses this problem

and provides good robustness and fast convergence. Indeed it has been shown [13] that

APSA achieves faster convergence and lower steady-state normalized misalignment

than NLMS, APA, and NSA under impulsive interference. This is achieved without

the need for a matrix inversion as in APA.

In this paper we combine the proportionate approach with APSA to obtain

even faster convergence when the echo path is sparse. The resulting algorithm is called
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proportionate APSA. Two types of proportionate matrix, one based on PNLMS [2]

and another based on IPNLMS [4], are applied to the APSA for real-coefficient sys-

tems and the resulting real-coefficient proportionate APSA (RP-APSA) and real-

coefficient improved proportionate APSA (RIP-APSA) achieve fast convergence in

sparse NEC applications with robustness to colored input and double-talk. The com-

putational complexity of the two proportionate APSAs is slightly higher than the

original APSA but is lower than the APA family. The RIP-APSA also exhibits espe-

cially good robustness in all types of NIRs without the need to change parameters or

estimate the sparseness of the NIRs.
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2 PROPORTIONATE AFFINE PROJECTION SIGN ALGORITHMS

Consider the NEC scheme shown in Fig. 1, where x(k) is the far-end signal,

z(k) and v(k) are the near-end speech and background noise signal, respectively. The

NIR of the true echo path is denoted by a length L coefficient vector h. The level of

the sparseness in the NIR may vary according to the changing network environment,

which is measured by [14],

ξ =
L

L−
√
L

(

1− ‖h‖1√
L‖h‖2

)

(1)

where 0 ≤ ξ ≤ 1, and the p-norm is defined by

‖h‖p :=
( L−1
∑

l=0

|hl|p
)1/p

. (2)

In the extreme case, if h is a pure impulse, then ξ = 1. On the other hand, if all the

elements of h have equal value, then ξ = 0. In other words, a larger ξ corresponds

to a sparser impulse response, while a smaller ξ corresponds to a more dispersive

impulse response. .

Figure 1. Structure of a network echo canceller (NEC).
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The estimated impulse response of the NEC is denoted byw(k) = [w0(k), w1(k),

. . . , wL−1(k)]
T , where k is the time index and the superscript T denotes transpose.

The signal y(k) contains the echo, the near-end speech, and background noise. That

is, y(k) = xT (k)h+ z(k) + v(k), where x(k) = [x(k), x(k − 1), . . . , x(k − L + 1)]T is

the far-end signal vector. Generating the replica echo ŷ(k) = xT (k)w(k), the NEC

tries to minimize the difference between y(k) and ŷ(k) with an adaptive w(k).

Different from the l2-norm algorithms [1,2,4], the original APSA algorithm [13]

is obtained by minimizing the l1-norm of the a posteriori error vector with a constraint

on the filter coefficients,

min
w(k+1)

‖y(k)−XT (k)w(k + 1)‖1 (3)

subject to ‖w(k + 1)−w(k)‖22 ≤ µ2 (4)

where µ2 is a parameter to ensure the weight coefficient vector does not change too

much in one iteration, X(k) = [x(k),x(k− 1), . . . ,x(k−M +1)], y(k) = [y(k), y(k−

1), . . . , y(k−M +1)]T , and M is the projection order. Using the method of Lagrange

multipliers, we get

w(k + 1) = w(k) +
1

2λ
X(k)sgn[e(k)] (5)

where λ is a Lagrange multiplier, the error vector e(k) = y(k) − XT (k)w(k), and

sgn[·] is the signum function. For sparse h, we would like to adapt the coefficients

of w(k) proportionately by pre-multiplying the update vector with a proportionate

matrix. Then, (5) can be rewritten as

w(k + 1) = w(k) +
1

2λ
G(k)X(k)sgn[e(k)] (6)
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where G(k) =diag{g0(k), . . . , gL−1(k)} is a diagonal proportionate matrix whose ele-

ments may be selected according to [2, 4]. Using (4) and (6), we obtain

1

2λ
=

µ
√

xT
gs(k)xgs(k)

(7)

where xgs(k) = G(k)X(k)sgn[e(k)]. Substituting (7) into (6) and adding a small

positive parameter δ to avoid possible division by zero, the weight updating equation

for the proportionate APSAs is

w(k + 1) = w(k) +
µxgs(k)

√

δ + xT
gs(k)xgs(k)

(8)

where µ is regarded as the step size satisfying µ > 0.

In this paper, we choose the proportionate matrixG(k) according to [2] and [4],

and for real-valued systems, we call the resulting proportionate-type algorithms real-

coefficient proportionate APSA (RP-APSA) and real-coefficient improved proportion-

ate (RIP-APSA), respectively. The proposed two new algorithms are summarized in

Table 1. For RP-APSA, the parameter ρ prevents wl(k) from stalling when it is much

smaller than the largest coefficient and q regularizes the updating when all coefficients

are zero at initialization. For α = −1, the RIP-APSA and APSA are identical. For

α close to 1, the RIP-APSA behaves like the RP-APSA.
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Table 1. Proportionate Affine Projection Sign Algorithms

Algorithms RP-APSA RIP-APSA
Initialization w(0)=0L×1

Parameters ρ=0.01 or 0.1, q=0.01 α=0 or −0.5, ε=0.01

Proportionate

matrix

γmin=ρmax(q, |w0(k)|, . . . , |wL−1(k)|)
γl(k)=max(γmin, |wl(k)|) gl(k)=

1−α
2L

+ (1+α)|wl(k)|
2‖wl(k)‖1+ε

gl(k)=
γl(k)

‖γl(k)‖1/L

Adaptation

G(k)=diag{g0(k), . . . , gL−1(k)}
e(k)=y(k)−XT (k)w(k), xgs(k)=G(k)X(k)sgn[e(k)]

w(k + 1)=w(k)+ µxgs(k)√
δ+xT

gs(k)xgs(k)
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3 COMPUTATIONAL COMPLEXITY

The computational complexity of the proportionate APSAs are compared with

that of conventional algorithms in terms of the total number of additions, multipli-

cations, divisions, comparisons, square-roots, and direct matrix inversions (DMIs).

With filter length L and projection order M , the complexities are shown in Table 2.

Although APA behaves better than NLMS, APA has higher complexity because the

number of multiplications and the size of the DMI increase proportionately to M2.

In contrast, the APSA does not require matrix inversion thus the projection order M

does not affect the number of multiplications, and the number of additions is only

linearly dependent on M . Note that APSA does not require matrix inversion, thus

the APSAs are more efficient than APA. With a modest increase in the proportionate

matrix computation, the proportionate APSAs behave much better than the original

APSA, especially for sparse NIRs.

Table 2. Computational Complexity of Algorithms’ Coefficients Update
(DMI = Direct matrix inversion)

Algorithm ADD MUL DIV CMP SQRT DMI (size)

NLMS L 2L+1 1 0 0 No

PNLMS 2L−1 4L+1 2 2L 0 No

IPNLMS 3L 4L+1 2 0 0 No

APA (M2+M−1)L (M2+M+1)L+M
2 0 0 0 M×M

IPAPA (M2+M+1)L (M2+M+2)L+M
2 0 0 0 M×M

APSA ML 2L 1 0 1 No

RP-APSA (M+1)L−1 5L 2 2L 1 No

RIP-APSA (M+2)L 5L 2 0 1 No
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4 SIMULATION RESULTS

The proposed algorithms were evaluated via computer simulations. The echo

path had 512 coefficients with some significant (active) coefficients and many near

zero (inactive) coefficients. Fig. 2 shows three typical impulse responses of the echo

path with sparseness measures ξ = 0.895, ξ = 0.758 and ξ = 0.556, respectively.

Throughout our simulations except the double-talk scenario (Section 4.2), the input

signal x(k) was a first order autoregressive signal (AR(1)) with a pole at 0.8; while the

white Gaussian noise (WGN) v(k) was added to the near-end to give a signal-to-noise

ratio (SNR) of 30 dB. The near-end signal z(k) was a strong impulsive interference

with a signal-to-interference ratio (SIR) of −10 dB and it was modeled by a Bernoulli-

Gaussian (BG) signal [13, 15]. The BG distribution was generated as the product of

a Bernoulli process and a Gaussian process, i.e., z(k) = ω(k)n(k), where n(k) was

WGN with zero mean and variance σ2
n, and ω(k) was a Bernoulli process with the

probability mass function given as P (ω) = 1 − Pr for ω = 0, and P (ω) = Pr for

ω = 1. The average power of the BG process was Pr ·σ2
n. Keeping the average power

constant, the BG process was spikier when Pr was smaller. It reduced to a Gaussian

process when Pr = 1. We chose Pr = 0.001 for our simulations.

For the double-talk scenario in Section 4.2, both near-end and far-end signals

were speech segments and the background noise was WGN. The SIR and SNR were

6 dB and 30 dB, respectively. The classical Geigel DTD [10, 16] was used to inhibit

adaptation by setting µ = 0 for Thold period when both near-end speech and far-end

speech were detected as being active simultaneously. In Geigel DTD, double-talk is

declared if

|y(k)| ≥ ϑmax |x(k)|, |x(k − 1)|, ..., |x(k − L+ 1)| (9)

where ϑ is the detection threshold.
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The performance of the algorithms was mainly measured by the normalized

misalignment and the excess mean-square error (MSE) (in dB). The normalized mis-

alignment is defined by

η(k) = 10 log10
‖h−w(k)‖22
‖h‖22

. (10)

Excess MSE reflects the MSE that is in excess of the minimum MSE, which is based

on ensemble averaging of the squared estimation excess error |eex(k)|2. Here,

eex(k) = xT (k)h− xT (k)w(k). (11)

In our simulations, both misalignment and excess MSE behaved similarly in

all cases. Therefore, only misalignment curves are shown here for brevity. In addi-

tion, the regularization parameter δ = 0.01 for all the following algorithms except

the improved proportionate-type algorithms [4], where δIP = 1−α
2L

δ. The simulation

results shown were obtained by ensemble averaging ten independent trials.

4.1 PERFORMANCE COMPARISON BETWEEN THE

PROPORTIONATE APSAS AND OTHER ALGORITHMS

The normalized misalignment of the l1-norm algorithms were compared with

that of the l2-norm ones. The NIR of the echo path was sparse with ξ = 0.758,

as shown in Fig. 2b. The proportionate parameters ρ and α were selected as in

reference papers [2,4], as shown in Fig. 3, Fig. 4 and Fig. 5. Without interference, the

step-size µ was adjusted to make the algorithms achieve the steady-state normalized

misalignment of −14 dB, as shown in Fig. 3. Considering only the background noise

v(k), RP-APSA converged slower than PAPA but faster than conventional APA, while

APSA had slowest convergence.

With strong interference, the step-size µ for the l2-norm algorithms was 0.1

and was adjusted to achieve the same steady-state normalized misalignment for the
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Figure 2. Typical impulse responses of the echo path for NEC applications. (a)
Sparse impulse response with ξ = 0.895. (b) Sparse impulse response with ξ = 0.758.
(c) Dispersive impulse response with ξ = 0.556.

l1-norm algorithms, as shown in Fig. 4 and Fig. 5. Benefiting from the robustness of

l1-norm minimization, the APSA family and the NSA converged at different speeds,

while the NLMS family and the APA family diverged under strong impulsive inter-

ference.
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Figure 3. Normalized misalignment comparison of the APA, PAPA, APSA and RP-
APSA without interference. M = 2, µAPA = µPAPA = 0.15, µAPSA = 0.0005,
µRP−APSA = 0.001, AR(1) input with SNR=30 dB.
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Figure 4. Normalized misalignment comparison of the NLMS, PNLMS, IPNLMS,
NSA, APSA, RP-APSA and RIP-APSA with interference. M = 1, µNLMS =
µPNLMS = µIPNLMS = 0.1, µNSA = 0.3, µAPSA = 0.013, µRP−APSA = 0.024,
µRIP−APSA = 0.022, AR(1) input with SNR=30 dB and SIR=−10 dB. Strong BG
interference with Pr = 0.001.
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Moreover, the steady-state normalized misalignment of the APSA family with

the projection order M = 1 and M = 2 were adjusted to be −15 dB and −20 dB, re-

spectively. With M = 1 and using only sign arithmetic, APSA performed almost the

same as NSA against impulsive interference. Adding the affine projection arithmetic

(M = 2), APSA outperformed NSA, as shown in Fig. 5. Combining the decorrelation

property of affine projection and exploiting the sparse nature of the NIR, propor-

tionate APSAs had faster convergence than APSA and NSA with both values of M .

Also, the RIP-APSA converged a little faster than RP-APSA under such conditions.

The advantage of proportionate APSAs for a sparse NIR is clearly demonstrated.
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Figure 5. Normalized misalignment comparison of the APA, PAPA, IPAPA, NSA,
APSA, RP-APSA and RIP-APSA with interference. M = 2, µAPA = µPAPA =
µIPAPA = 0.1, µNSA = 0.15, µAPSA = 0.01, µRP−APSA = 0.017, µRIP−APSA = 0.014,
other parameters were the same as those in Fig. 4.
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4.2 DOUBLE-TALK SCENARIO

The performance of the APSA family for speech signals during double-talk

were compared with the non-robust and robust PAPAs [10] with projection order

M = 5. Parameters for the robust algorithms and double-talk were almost the same

as those in [10]. In detail, (λ̂, k0, β) = (0.997, 1.1, 0.60665) for the robust PAPA, the

average far-end to double-talk ratio was 6 dB (SIR = 6 dB), the Geigel detector

assumed 6 dB attenuation (ϑ = 0.5), and the hang-over time, Thold = 240 samples.

We chose the echo path shown in Fig. 2b to obtain 20 dB hybrid attenuation. The

far-end speech and near-end speech used in the double-talk simulation are shown in

Fig. 6. Double-talk happened in the period with sample index of [1.4, 2.8] × 104.

We chose the step-size µ = 0.0002 for the APSA family and µ = 0.005 for the non-

robust and robust PAPAs to achieve their best performance. A larger µ will make

the robust PAPA diverge faster during double-talk under such parameter settings. As

shown in Fig. 7, both PAPAs behaved almost the same most of the time, although

robust PAPA outperformed non-robust PAPA against some double-talk disturbance.

In comparison, the APSA family were more robust against double-talk than robust

PAPA, and the proportionate APSAs achieved lower normalized misalignment and

faster convergence rate than all other algorithms. Without the need to change the

parameter settings to obtain a robustness feature, the proportionate APSAs exhibited

better robustness to double-talk than robust PAPA.

4.3 CHARACTERISTICS OF THE PROPORTIONATE APSAS

The performance of the RP-APSA and RIP-APSA with different projection

order M were studied using AR(1) input and BG interference. The step size µ = 0.01,

echo path and other parameters were the same as those in Fig. 4. It has been shown

that, for the APA family, a larger projection order M leads to faster convergence

with higher steady-state misalignment in stationary environments [17]. In contrast,
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Figure 6. Speech signals used in the double-talk scenario. Average Far-end speech to
double-talk ratio is 6 dB (1.4× 104th - 2.8× 104th samples). (a) Far-end speech. (b)
Near-end speech.

for the RP-APSA and RIP-APSA, a larger M achieved both faster convergence and

lower steady-state misalignment in sparse NIR, as shown in Fig. 8. Benefiting from

the convergence behavior (see the Appendix), the new algorithms can exploit the

advantage of affine projection even in the steady-state.

The effects of proportionate matrix were investigated for both sparse and dis-

persive NIRs using the AR(1) input and BG interference. Impulse responses shown

in Fig. 2a and Fig. 2c were used in the simulation with step size µ = 0.005. The

results are shown in Fig. 9 for RP-APSA and in Fig. 10 for RIP-APSA. Similar to

the effect of ρ on PNLMS as shown in [2], the RP-APSA with a smaller ρ (ρ = 0.01)

lead to a higher convergence rate and lower steady-state misalignment simultaneously
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Figure 7. Performance of the APSA family, nonrobust and robust PAPA for speech
signals during double-talk. M = 5, ρ = 0.01, α = 0. (a) µAPSA = 0.0002, µPAPA =
µRobust PAPA = 0.005, (λ̂, k0, β) = 0.997, 1.1, 0.60665). (b) µAPSA = µRP−APSA =
µRIP−APSA = 0.0002.
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Figure 8. Normalized misalignment of the proportionate APSA with varying projec-
tion orders M = 1, 2, 5, 10. The input, interference and echo path were the same as
those in Fig. 4. The step size µ = 0.01. (a) RP-APSA, ρ = 0.01. (b) RIP-APSA,
α = 0.
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for sparse NIR because more proportionality of the NIR was exploited. However, for

the dispersive NIR, little proportionality can be utilized and most of the filter coeffi-

cients were updated at a similar rate. Therefore, if ρ is too small, it deteriorated the

performance of RP-APSA with slower convergence but maintained lower steady-state

misalignment than that of a large ρ.

The effect of α on the convergence of the RIP-APSA are shown in Fig. 10 for

both sparse and dispersive NIRs. According to [4], α = 0 and α = −0.5 were good

choices for the improved proportionate algorithms to achieve robustness to different

sparseness of NIRs in practice. The RIP-APSA with α = 0 achieves a little lower

steady-state misalignment in both NIRs. In contrast to the effect of ρ on the RP-

APSA, the RIP-APSA is less sensitive to the value of α.

4.4 EFFECT OF SPARSENESS OF THE IMPULSE RESPONSES

Ten different NIRs with sparseness measure 0.556 ≤ ξ ≤ 0.938 were used to

study the effect of sparseness on the convergence of the proportionate APSAs. All

step-sizes were adjusted so that the algorithms achieved almost the same steady-

state normalized misalignment between −27 dB to −25 dB. The number of samples

taken to achieve −25 dB normalized misalignment were used as a measure for the

convergence rate versus the sparseness measure, as shown in Fig. 11. The projection

order M = 2 was employed for the APSA family. The RIP-APSA with both α =

−0.5 and α = 0 outperformed the other two algorithms over the entire sparseness

region, and the number of samples taken to converge decreased approximately linearly

with the increase of spareness. In comparison, APSA performed worst except in

dispersive NIRs with ξ < 0.64, where RP-APSA with ρ = 0.01 had particularly

slow convergence. With ρ = 0.1, RP-APSA behaved similarly as RIP-APSA in the

entire ξ range. For sparse NIRs with ξ > 0.7, both RP-APSA and RIP-APSA had
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Figure 9. Convergence of the RP-APSA for different ρ using µ = 0.005. The input
and interference were the same as those in Fig. 4. Impulse responses in Fig. 2(a) and
(c) were used as the sparse and dispersive impulse responses, respectively. (a) In the
sparse NIR with ξ = 0.895. (b) In the dispersive NIR with ξ = 0.556.

similar high convergence rates regardless of the selection of the proportionate matrix

parameters ρ and α.



29

0 0.5 1 1.5 2

x 10
4

−30

−25

−20

−15

−10

−5

0

5

Samples

N
or

m
al

iz
ed

 m
is

al
ig

nm
en

t (
dB

)

 

 

α=0

α=−0.75

α=−0.5

Dispersive NIR

Sparse NIR
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Figure 11. Number of samples to reach the −25 dB normalized misalignment against
different sparseness measure of ten systems for the APSA, RP-APSA and RIP-APSA.
The input and the interference were the same as those in Fig. 4. M = 2, ρ = 0.01 or
0.1 for the RP-APSA and α = −0.5 or α = 0 for the RIP-APSA.
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4.5 TRACKING PERFORMANCE OF THE PROPORTIONATE

APSAS

The tracking performance of the APSA, RP-APSA and RIP-APSA was also

studied in the BG interference environment. As in the previously discussed simula-

tions, we chose the step-sizes µAPSA = 0.003, µRP−APSA = 0.006, µRIP−APSA = 0.005

to make sure they achieved the same steady-state normalized misalignment under

sparse NIR. The echo path changed from sparse (Fig. 2a) to dispersive (Fig. 2c) NIR

at the 2 × 104th sample. It can be seen in Fig. 12 that the RIP-APSA tracked the

change faster than the APSA and RP-APSA, but with slightly higher steady-state

misalignment in the dispersive NIR. The APSA had similar slow convergence in both

sparse and dispersive NIRs. Its steady-state misalignment was slightly lower than

those of the RP-APSA and RIP-APSA for dispersive NIR. The tracking performance

of RP-APSA was in between APSA and RIP-APSA.
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Figure 12. Tracking performance of the APSA, RP-APSA and RIP-APSA. The input
and the interference were the same as those in Fig. 4. The echo path changed from
sparse to dispersive at the 2×104th samples. ρ = 0.01, α = −0.5, µAPSA = 0.003,
µRP−APSA = 0.006, µRIP−APSA = 0.005.
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4.6 SELECTION OF STEP SIZE

The relationship between step size and convergence behavior of the l2 norm

algorithms has been studied intensively in the literature [18, 19, 1, 20, 17, 21]. It has

been shown that the step size of the NLMS and APA has to be bounded to 0 <

µ < 2 to ensure stability. However, the stochastic model for the l1 norm algorithms

is more difficult than that of the l2 norm family. Limited studies are devoted on

the convergence analysis of the sign algorithm and its variations [22, 23, 24, 25, 26,

27, 28]. Attempts to finding a stability bound for the sign algorithm family have

been reported in [22, 23, 24] using a second order stochastic model similar to that in

the analysis of l2 algorithms. However, this approach is proved to be incorrect for

l1 algorithms [25]. Instead, an interesting result for l1 algorithms is that the sign

algorithm converges asymptotically for any step size µ > 0 [25]. This result is also

proven to be true [27, 28] for the sign algorithm family without the Gaussianity or

independence assumptions. This property does not present in the l2 norm algorithms

and it proves to be a significant advantage of the sign algorithm family. Upper

bounds for the time-averaged mean absolute deviation (weight misalignment) and

time-averaged MSE at steady-state are found to be functions of the step size µ [25,27],

which gives guidelines for choosing step size in practical applications.

As a member of the sign algorithm family, the APSA and proportionate APSAs

exhibits similar convergence behavior to that of the pure sign algorithm in that any

step size µ > 0 guarantees the asymptotic convergence and the bound is a function

of µ. However, rigorous proof of this property for the APSA family is very involved

mathematically because the weight adaptation formula (8) has nonlinear functions of

the error in both the numerator and denominator. Attempt of theoretical analysis

deserves a separate treatment. Here, numerical results for the excess MSE versus the

step size µ are provided in Fig. 13 and Fig. 14 for the RP-APSA and RIP-APSA. The

simulation results were obtained by time-averaging 500 instantaneous excess square
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errors in the steady-state and then averaging 10 independent trials. The step size µ

varied from 0.0005 to 10. For most simulations, we used the NIR with ξ = 0.631 for

large filter length L = 512, while for small filter lengths, we used random dispersive

NIRs with ξ = 0.220. Similar to the previous simulation, the input was AR(1) and

the interference was a BG with Pr = 0.001. The normalized misalignment versus

step size performed similarly as the excess MSE and is omitted for brevity.

The steady-state excess MSEs of the RP-APSA, as shown in Fig. 13, increased

with the step size µ in a similar manner for different NIR lengths. With the same

step size, a larger length L yielded higher excess MSEs, which was consistent with

the results in [27]. The results for the RIP-APSA is similar to Fig. 13, thus omitted

here for brevity. Other parameters, such as the projection order and proportionate

regularization parameters, exhibited small impact on the steady-state excess MSE

of the two proportionate APSAs, as shown in Fig. 14. For a given step size µ,

both proportionate APSAs with a larger M achieved a slightly lower steady-state

excess MSE when µ > µt and a higher excess MSE when µ < µt, where µt =

0.002 for the RP-APSA (Fig. 14a) and µt = 0.001 for the RIP-APSA (Fig. 14b).

The value µt might change slightly depending on the proportionate regularization

parameters. Interestingly, the RP-APSA exhibited almost the same excess MSE for

different projection orders at µ = 0.1 and this µ might also shift slightly depending

on the proportionate regularization parameters. For a given projection order M , the

impact of the proportionate regularization parameters on the excess MSE were small,

as shown in Fig. 14c and Fig. 14d, except that the excess MSE of the RP-APSA with

ρ = 0.01 was a little lower than that of the other parameters. This is because the

NIR of the echo path was dispersive with ξ = 0.631 and the recommended ρ = 5/L

according to [2].

Although no step sizes can cause asymptotic divergence, the steady-state ex-

cess MSE is related with the step size. This convergence behavior of the APSA family
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Figure 13. Steady-state excess MSE of the RP-APSA as a function of the step size
µ. The input and the interference were the same as those in Fig. 4. The projection
order M = 2 and proportionate regularization parameter ρ = 0.01. The impact of L
for the RIP-APSA was similar to that of the RP-APSA, thus omitted for brevity.

will be illustrated by geometrical interpretation in Appendix. However, in the practi-

cal range of excess MSE less than 0 dB, the step size has to be very small for both the

RP-APSA and RIP-APSA. The range of 0 < µ < 0.1 is recommended for practical

NEC applications.
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Figure 14. Steady-state excess MSE vs. the step size µ for the RP-APSA and RIP-
APSA with varying projection order and proportionate parameters. The input and
the interference were the same as those in Fig. 4. The filter length L = 512. (a) RP-
APSA with varying M and ρ = 0.01. (b) RIP-APSA with varying M and α = −0.5.
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Figure 14. (c) RP-APSA with M = 2 and varying ρ. (d) RIP-APSA with M = 2
and varying α. (cont.)
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5 CONCLUSION

Two proportionate affine projection sign algorithm (APSA) have been pro-

posed for the identification of real-coefficient, sparse systems. With a modest increase

in computational complexity over that of the original APSA, the proportionate AP-

SAs can achieve faster convergence rate and lower in a steady-state misalignment in

a sparse network echo path, colored input, and impulsive interference environment.

The computational complexity of the two proportionate APSAs is lower than the

APA family due to elimination of the matrix inversion. Especially, the RIP-APSA

also exhibits good robustness in all types of NIRs without the need to change param-

eters or estimate the sparseness of the NIRs. Numerical results also demonstrate that

the proportionate APSAs exhibit asymptotic convergence for all step size µ > 0, but

practically, a small step size of µ < 0.1 is required to achieve excess MSE less than

0 dB.
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6 APPENDIX: GEOMETRICAL ILLUSTRATION OF

CONVERGENCE

We now demonstrate the convergence behavior of the proportionate APSA

through geometrical illustration. First consider the NLMS algorithm

e(k) = y(k)− xT (k)w(k) (12)

and

w(k + 1) = w(k) + µx(k)[xT (k)x(k) + δ]−1e(k). (13)

When µ = 1 and δ = 0, the NLMS can be shown to be a projection algorithm.

Inserting (12) into (13) with µ = 1 and δ = 0 yields

w(k + 1) = {I− x(k)[xT (k)x(k)]−1xT (k)}w(k)

+x(k)[xT (k)x(k)]−1y(k). (14)

Recall that y(k) = xT (k)h+ z(k) + v(k) and define the projection matrix,

P(k) = x(k)[xT (k)x(k)]−1xT (k). (15)

We can write (14) in terms of P(k) as

w(k + 1) = [I−P(k)]w(k) +P(k)h

+x(k)[xT (k)x(k)]−1[z(k) + v(k)]. (16)

Consider the case where there are no near-end signals, z(k) + v(k) = 0, then

w(k + 1) = [I−P(k)]w(k) +P(k)h. (17)
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Figure 15. Two dimensional weight vector space observation for NLMS.

Since [I−P(k)] is a projection matrix complementary to P(k), the coefficient update

described by (17) is a classical affine projection of w(k) onto the affine subspace

defined by P(k) and h to obtain the new coefficient vector w(k + 1). This is shown

in Fig. 15 where w(k + 1) is found by projecting w(k) onto the subspace defined by

[I − P(k)] and then adding the projection of h onto the subspace defined by P(k).

Let us define that particular affine subspace as Wk.

Note that the true echo path vector, h, is always in the affine subspace Wk

since replacing w(k) with h in (17) results in w(k + 1) = h. We further note from

(13) that the direction of the update is determined by the input vector x(k) and the

sign of e(k).

The vectors, w(k) through w(k + 3), in Fig. 16a shows the coefficient update

over several time periods. As the adaptive coefficient vector projects onto the sub-

spaces Wk, Wk+1, and Wk+2, it keeps getting closer to the true coefficient vector h.

The dotted vectors, w′(k) through w′(k + 3), indicate the progression of the coeffi-

cients when the step size µ is less than 1. These are called relaxed projections and

the step size µ is also the relaxation parameter. In relaxed projections, the update
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only goes part way to the affine subspace Wk. Clearly relaxed projections converge

more slowly than pure projections.

Now we consider the case when there are near-end signals, that is when z(k)+

v(k) 6= 0. The last two terms of equation (16) are the near-end speech and background

noise terms of the update. The direction of the update is determined by x(k) and

the sign of [z(k)+v(k)]. This effect is geometrically illustrated in Fig. 16b, where the

affine projection subspaces at the various sample periods are offset by the double-talk

and background noise terms. The “noisy” affine subspaces, denoted Ŵk, Ŵk+1 and

Ŵk+2, are shown in dashed lines. The NLMS algorithm will project onto the noisy

subspaces rather than the true ones. Unfortunately, the noisy subspaces no longer

all meet at the true NIR vector, h. However, they do “almost” intersect in an area

whose size is a function of the near-end speech variance, σ2
z , and the noise variance, σ2

v .

When the adaptive coefficients w(k)’s get close to the true coefficients h, they enter

this zone of “almost intersection”. The smaller the relaxation value µ is, the less the

w(k)’s “chase after” the noisy Ŵk, and the closer to the true coefficient vector they

remain. Thus, graphically, we have described the usual trade-off with the relaxation

parameter. For large µ (close to one) there is fast convergence, but large steady-state

mean squared error, and with small µ (closer to zero) we have slower convergence but

lower steady-state mean squared error.

Now consider the PNLMS algorithm

w(k + 1) = w(k) + µG(k)x(k)[xT (k)G(k)x(k) + δ]−1e(k). (18)

This can also be shown to be a projection algorithm. To do this we make the change

of variables,

w(k) =
√

G(k)b(k) (19)
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(a)

(b)

Figure 16. Geometrical illustration of NLMS weight updating process. (a) z(k) +
v(k) = 0. (b) z(k) + v(k) 6= 0.

where
√

G(k) =diag{
√

g0(k), . . . ,
√

gL−1(k)}. Then (12) becomes

e(k) = y(k)− xT (k)
√

G(k)b(k) (20)

and (18) becomes,
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√

G(k)b(k + 1) =
√

G(k)b(k)

+µG(k)x(k)[xT (k)G(k)x(k) + δ]−1e(k). (21)

Multiplying both sides from the left by [
√

G(k)]−1

b(k + 1) = b(k) + µ
√

G(k)x(k)[xT (k)G(k)x(k) + δ]−1e(k). (22)

We can define

s(k) =
√

G(k)x(k), (23)

then (20) and (22) become,

e(k) = y(k)− sT (k)b(k) (24)

and

b(k + 1) = b(k) + µs(k)[sT (k)s(k) + δ]−1e(k). (25)

Note that (24) and (25) have exactly the same form as (12) and (13) thus,

under the same conditions as described for NLMS (µ = 1 and δ = 0), PNLMS is

an affine projection algorithm with behavior similar to that of NLMS, but with a

twist. With NLMS we saw that h was always in the affine subspaces defined in each

sample period and that accordingly the convergence of the algorithm was toward the

intersections of these affine subspaces, h. With PNLMS, however, it is [
√

G(k)]−1h

that is in each sample period’s affine subspace. Since G(k) is time varying, the affine

subspaces will not all intersect at a single point until w(k) (or equivalently, b(k))

reaches steady state. In fact, since [
√

G(k)]−1h is a moving target, it speeds the

convergence of PNLMS for sparse h’s in that it tends to keep the w(k)’s sparse and
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thus searches out a smaller space than otherwise the NLMS would search the entire

L-dimensional space.

Now consider the new proportionate APSA algorithm with the coefficient up-

date for projection order M = 1 being

w(k + 1) = w(k) + µxgs(k)[x
T
gs(k)xgs(k) + δ]−1/2 (26)

where

xgs(k) = G(k)x(k)sgn[e(k)]. (27)

Unlike the NLMS and PNLMS cases, this coefficient update cannot be manip-

ulated into the form of an affine projection operation. However, the update still has

some interesting properties. One is that the term in the denominator of (26) does

not in general converge to zero as w(k) approaches h because of the sign operator in

(27). That is, sgn[e(k)] = ±1 despite convergence. The only time xT
gs(k)xgs(k) gets

small is when G(k)x(k) has a small magnitude. If G(k)x(k) has a large enough mag-

nitude that we may ignore the small positive number δ, then the coefficient updating

equation becomes

w(k + 1) = w(k) + µxgs(k)/‖xgs(k)‖2. (28)

Note that the update vector, µxgs(k)/‖xgs(k)‖2, always has a magnitude of µ. The

direction of the coefficient update is always given by xgs(k).

Though (26) through (28) do not represent an affine projection, we may con-

sider the update as a relaxed affine projection if µ is sufficiently small. The relaxation

factor in this case is not equal to the step size µ and it changes every sample period.

The length of the update remains constant each sample period. In contrast, with

NLMS and PNLMS, the relaxation factor was constant, but the length of the update

generally change each sample period.
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(a)

(b)

Figure 17. Geometrical illustration of APSA weight updating process. (a) Large µ,
far from steady state. (b) Small µ, closed to steady state.

Figure 17a shows the update of two sample periods using the new algorithms

when the w(k)s are far from their steady-state values. The size of the update vector is

always µ regardless of how far the coefficient vector is from the affine subspace of the

projection. Fig. 17b shows the case where the adaptive coefficients are in the “almost

intersection” region. Since the updates are always the same size, the coefficients are
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less likely to “chase after” noisy Ŵks than conventional l2-norm algorithms. This

accounts for the algorithm’s good steady-state performance and low minimum mean

squared error.
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II. A COMPARATIVE STUDY OF COMPRESSED SENSING

APPROACHES FOR 3-D SYNTHETIC APERTURE RADAR IMAGE

RECONSTRUCTION

Zengli Yang, and Yahong Rosa Zheng

ABSTRACT—This paper investigates two compressed sensing (CS) approaches

that can be used to reconstruct 3-D synthetic aperture radar (SAR) images with

undersampled measurements. Combining CS with the range migration algorithm

(RMA), using either Stolt transform or non-uniform fast Fourier transform (NUFFT),

yields two different approaches: Stolt-CS and NUFFT-CS. These approaches can

decrease the load of data acquisition while recovering satisfactory 3-D SAR images

through l1-norm optimization. A simulated image is used as the ground truth to facil-

itate the comparative study. The 2-D structured similarity (SSIM) index is extended

to 3-D to assess the quality of the reconstructed images. Both the simulation and

the experimental reconstruction results demonstrate that the Stolt-CS contributes

little to image quality improvement or computational complexity reduction due to

the inaccuracy of the Stolt transform. In contrast, the NUFFT-CS achieves a good

tradeoff between the reconstruction quality and the computational costs.
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1 INTRODUCTION

Wideband 3-D synthetic aperture radar (SAR) imaging has important appli-

cations in the area of nondestructive testing and evaluation (NDT&E) [1]. This is

due to its feasibility to acquire high-resolution holographic images of specimen un-

der test (SUT). Microwave and millimeter wave as interrogating signals can not only

penetrate dielectric materials but also interact with their inner structure to render a

comprehensive image for inspection. Microwave and millimeter wave NDT&E tech-

niques have been applied to diverse applications (i.e., the detection and evaluation

of corrosion under paint and composite laminates, the detection and sizing of fatigue

cracks in metal surfaces, and the characterization of dielectric material).

Several high-resolution 3-D SAR imaging systems were developed at the Ap-

plied Microwave Nondestructive Testing Laboratory (AMNTL) at Missouri University

of Science and Technology (Missouri S&T). The imaging system uses stepped frequen-

cies in the 20–60 GHz band and raster/rotary scanners with step size on the order of

a millimeter. These systems can achieve a volumetric resolution on the order of mil-

limeter. They can also assist in the detection and quantification of either small flaws

or targets in a specimen under test (SUT). However, the speed of data acquisition for

these wideband 3-D SAR imaging systems hinders their practical applications due to

the slowness of mechanical scanning. For example, uniform raster scanning requires

approximately one hour to scan a 120× 180 mm2 area at 2 mm spacing. In contrast,

random undersampling can reduce the acquisition time when the antenna probe is

placed at only a fractional number of positions on the uniform grid. Advanced sparse

methods are required to reconstruct images when undersampled measurements are

used. Our experiments have demonstrated that sampling 20% – 40% of the original

uniform grid can reduce the data acquisition time by 70% – 60% [2, 3, 4]. Note that
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the percentage of the measurement points kept is referred to as the undersampling

rate. Meanwhile, the reconstructed images can achieve a quality that is comparable to

those reconstructed from full sampling when the compressed sensing (CS) approach

is used [6, 7, 8, 9, 5, 10].

In the literature [5] [11] [12], CS has been applied for remote sensing with

3-D SAR imaging where fewer 3-D Fourier (k-space) measurements were obtained at

the airborne radar from multiple elevation passes. Unlike our CS problem formula-

tion, the works in [5] [11] [12] use the ω − k algorithm [13] with nearest-neighbor

Stolt interpolation as a pre-processing step. After the one-time interpolation, the

raw measurements were firstly converted into a uniformly sampled k-space data, in

which an iterative recovery algorithm is applied to reconstruct the 3-D images. This

method results in computational savings but the quality of the reconstructed image is

compromised. For our CS application, the backscatter data are acquired on a planar

aperture, and one-time preprocessing yields unsatisfactory image quality. Therefore,

we focus on involving the complete nonlinear forward and reverse SAR transforms

during the reconstruction process via l1 optimization. The procedure needed to con-

vert the raw measurements into the 3-D image is known as forward SAR transform,

the reverse procedure is known as reverse SAR transform [10]. The CS approach

applies both the forward and the reverse SAR transforms during each iteration of the

minimization. The forward SAR transform is used for image reconstruction, and the

reverse SAR transform is used to generate the estimated measurement from the recon-

structed image. The CS approach emphasizes the consistency between the estimated

measurement and the actual raw measurement. Thus, it is a truly underdetermined,

compressed sensing system which exhibits a larger computational cost than the one-

time preprocessing approach due to the complicated nonlinear SAR transforms in

each iteration.
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When the backscatter data are acquired on a planar aperture, the conventional

3-D SAR transform will typically adopt the range migration algorithm (RMA) [14]

with either Stolt transform [15] or non-uniform fast Fourier transform (NUFFT) [16]

[17]. In this paper, the two conventional RMAs are referred to as Stolt-RMA and

NUFFT-RMA, respectively. The image recovered by the NUFFT-RMA usually has

fewer artifacts and better resolution than that using the Stolt-RMA. However, the

NUFFT-RMA has a much higher computational cost than does the Stolt-RMA. With

undersampled measurements, the CS principle can be combined with the two RMAs,

thus yielding two different approaches. The two CS approaches are denoted here as

Stolt-CS and NUFFT-CS, respectively. Previous works investigated these approaches

using experimental data, demonstrating their performance separately [2, 3, 10, 4].

Therefore, comparing the overall tradeoff between the image quality and compu-

tational costs for the two approaches is quite interesting.

In this paper, the performance of the two CS approaches are first compared

using a synthesized SUT and its simulated measurements, and then by experimental

measurements of real SUT and millimeter wave imaging system. Choosing simulation

provides access to the ground truth image, thus enabling a fair comparison. Mean-

while, experimental results were provided to verify the characteristics of the two CS

approaches in practice. The results of the experimental system verified that the CS

approaches can indeed save data acquisition time while achieving satisfactory image

quality. The structured similarity (SSIM) [18] index rather than the peak signal-to-

noise ratio (PSNR) or mean square error (MSE) was adopted to evaluate the image

qualities, because SSIM is considered to be more consistent with human eye percep-

tion. The original 2-D SSIM discussed in [18] was extended into a 3-D SSIM in this

paper to assess the similarity between the reconstructed images and the ground truth

image. The 2-D split Bregman framework [19] [20] was also extended here to 3-D to

solve the l1-regularized image reconstruction problems. The split Bregman algorithm
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was adopted because it can achieve faster convergence and better numerical stability

than traditional continuation methods [21] [22]. Both the numerical simulations and

the experimental results demonstrate that the Stolt-CS approach yields low image

quality, albeit with a low computational complexity. In contrast, the NUFFT-CS

exhibited a higher image quality than the Stolt-CS at all undersampling rates. The

overall computational complexity of the NUFFT-CS is affordable for an undersam-

pling rate that is greater than 25%.
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2 CONVENTIONAL 3-D SAR IMAGE RECONSTRUCTION WITH

FULL SAMPLING

Consider a wideband monostatic stripmap 3-D SAR imaging system in which

raw data is collected by a probe that scans the SUT over a 2-D plane in the 3-D

Cartesian space. The dimension perpendicular to the 2-D XY plane is defined as the

Z-dimension; its positive direction points away from the surface of the SUT. A point

target is characterized by its reflectivity function g(x′, y′, z′). Because the probe is

within the near-field of the SUT, the wavefront curvature is no longer negligible. The

received spherical waveform at position (x, y), with a temporal angular frequency of

ω, is then given by

r(x, y, ω) =

∫ ∫ ∫

g(x′, y′, z′)

×e−j2k
√

(x−x′)2+(y−y′)2+z′2 dx′ dy′ dz′ (1)

where j =
√
−1, ω = 2πf (with f being the temporal frequency), and k = ω/c is

the wavenumber (with c being the propagation speed of the microwave). By using

the plane wave decomposition for spherical wave and Stolt transform [15], the 3-D

reflectivity function of the SUT is given by [23]

g(x, y, z) = F−1
3D

{

Θ{F2D [r(x, y, ω)] e−jkzz}
}

, (2)

which is known as either the 3-D Stolt-RMA [14] or the ω−k algorithm [13] (in its 2-

D version). Here, F2D denotes a 2-D cross-range fast Fourier transform (FFT) along

the XY -plane, F−1
3D denotes the 3-D inverse FFT (IFFT), and Θ denotes the 1-D

Stolt transform with the nearest neighbor interpolation. Note that the distinction



55

���������	
��
	�	��� ( , , )r x y ω

�����
����

��	����

������
�	�����	��
����
( , , )x yP k k k

����������
�	 ( , , )g x y z

��������

����������
�

����
�

�����
����


��	�����

�������	
�	�
�����

( , , )x y zQ k k k ( , , )x yQ k k z

Figure 1. Conventional 3-D SAR image reconstruction methods: Stolt-RMA (on the
left) and NUFFT-RMA (on the right). The 2-D phase compensation step accounts
for the e−jkzz term and is used to adjust the focal plane.

between the primed and the unprimed coordinate systems is now dropped because

the coordinate systems coincide after the FFT and IFFT operations.

Let P (kx, ky, k) represent the 2-D cross-range Fourier transform of r(x, y, ω),

and Q(kx, ky, kz) represent the 3-D Fourier transform of the reflectivity function

g(x, y, z), where kx, ky, and kz are the wavenumbers in the x, y, and z dimensions,

respectively. Curvature in near-field wave propagation creates kz =
√

4k2 − k2
x − k2

y.

The direct interpolation is known as Stolt transformΘ to obtain equispaced Q(kx, ky, kz)

in kz for the 3-D IFFT operation. Alternatively, nonuniform spaced Q(kx, ky, kz)

in kz can be transformed to the reflectivity image by applying nonuniform FFT

(NUFFT) [16] [17],

g(x, y, z) = F−1
2D

{

F−1
NUFFT{F2D [r(x, y, ω)] e−jkzz}

}

, (3)
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which is known as the 3-D NUFFT-RMA [17]. Here, F−1
2D denotes the 2-D cross-range

IFFT, and F−1
NUFFT is the 1-D inverse NUFFT along kz. With Gaussian-kernel inter-

polation, the NUFFT-RMA achieves better image quality at a higher computational

cost than does the Stolt-RMA. A summary of the complete procedures used for the

conventional, fully-sampled 3-D SAR image reconstruction methods is given in Fig. 1.
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3 COMPRESSED SENSING APPROACHES FOR 3-D SAR IMAGE

RECONSTRUCTION

To take the advantage of the CS approach for 3-D SAR imaging, the radar

probe can measure a small percentage of randomly-selected positions on the uniform

XY grid. The backscatter data at these positions are collected and saved as the

raw data, which is referred to as the undersampled measurements. The ratio of the

number of undersampled points over the number of fully sampled points is defined

as the undersampling rate α. The CS approaches are used to reconstruct 3-D SAR

images from the raw measurement r(x, y, ω). This approach exploits the sparsity of

3-D SAR images, relying on both the l1-norm and total variation (TV) minimizations

[19]. Either the Stolt-RMA or NUFFT-RMA is applied to yield two different CS

approaches: Stolt-CS and NUFFT-CS, respectively.

3.1 TWO COMPRESSED SENSING APPROACHES

The CS approach emphasizes the consistency between the estimated measure-

ments and the actual gathered raw measurements during reconstruction. For 3-D

SAR imaging, the CS approach can be interpreted as [4]

min
ĝ

J(ĝ) subject to ‖Φĝ − r‖22 < σ2, (4)

where ‖·‖2 is the l2 norm, ĝ ∈ CN×1 is the vectorized estimated 3-D SAR image, σ2 is

the noise variance, and Φ ∈ CM×N (M < N) is the measurement matrix that reflects

the acquisition of the vectorized raw measurements r ∈ CM×1. For the Stolt-CS and

NUFFT-CS, Φ is the reverse Stolt-RMA and NUFFT-RMA, respectively. According
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to (2) and (3), the measurement operator Φ can be written as

ΦStolt = UF−1
2D

{

Θ†[F3D(·)]
}

, (5)

ΦNUFFT = UF−1
2D {FNUFFT[F2D(·)]} , (6)

Note that the phase compensation term is omitted for brevity. Here, Θ† represents

the pseudoinverse 1-D Stolt transform with the nearest neighbor interpolation, F3D

denotes the 3-D FFT, and U denotes the binary matrix that is used to select the

random (x, y) positions for random undersampling.

The cost function J(ĝ) represents some l1 regularization term with respect to

ĝ. In this paper, it is selected as

J(ĝ) =
γ2
2
‖Ψĝ‖1 +

λ

2
‖Dĝ‖1, (7)

where ‖ · ‖1 denotes the l1 norm, Ψ ∈ CN×N is the linear operator that transforms

the image from voxel representation into a sparse representation, D is the discrete

3-D isotropic TV operator, and γ2 and λ are the weights for the consistency of the l1

norm and the TV norm, respectively.

Note that this paper uses the split Bregman algorithm, as detailed in Section

3.2, which considers the complex nature of the image and updates the real and imag-

inary parts jointly in the inner iteration of the CS solver. Therefore, the TV can be

successfully applied with the l1 optimization.

3.2 SPLIT BREGMAN FRAMEWORK FOR 3-D IMAGE

RECONSTRUCTION

The split Bregman framework [19,20] is now extended to the 3-D image recon-

struction, so that (4) can be solved. The split Bregman algorithms, when compared
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to traditional continuation methods [21, 22], can achieve faster convergence and bet-

ter numerical stability during reconstruction. Equation (4) can be transformed as a

sequence of unconstrained problems [19]:

ĝi+1 = argmin
ĝi

γ1
2
‖Φĝi − bi‖22 +

γ2
2
‖Ψĝi‖1 +

λ

2
‖Dĝi‖1, (8)

bi+1 = bi + r−Φĝi+1, (9)

where i denotes the iteration number of the outer loop, and γ1 denotes the regulariza-

tion parameters that determine the trade-off between measurement consistency and

sparsity in the Ψ domain and the finite difference domain. The iterative shrinkage

methods [24,25] provide an efficient way to solve the linear inverse problem with one

l1-norm constraint. Two l1-norm terms, however, are involved in (8). Therefore, (8)

is further relaxed to prepare for further splitting of the two l1-norm terms:

min
ĝ,dx,dy,dz ,w

γ1
2
‖Φĝ− b‖22 +

γ2
2
‖w −Ψĝ − bw‖22 + ‖w‖1 +

λ

2

[

‖dx −Dxĝ− bx‖22

+‖dy −Dyĝ − by‖22 + ‖dz −Dzĝ − bz‖22
]

+ ‖Dd‖1, (10)

where the subscript i is omitted for brevity, dx,dy,dz,d,bx,by,bz,bω are the auxil-

iary variables with d = (dx, dy, dz) (given the elements of d,dx,dy,dz are d, dx, dy, dz,

respectively). Moreover, Dx,Dy,Dz represents the 1-D discrete derivative operator

in the X, Y, Z dimension, respectively. The goal is to find the optimal solution pair

dx,dy,dz, w, and ĝ to (10) in sequence by solving their corresponding subproblems.

For example, since dx,dy,dz are only involved in the fourth, fifth, sixth, and seventh

terms in (10), it can be formulated as a standard linear inverse problem as shown

in (16) in the Appendix. The iterative shrinkage method can then be applied, so

as the way to find the solution w. The procedures needed to identify the optimal

dx,dy,dz,w are described in detail in the Appendix.
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Once the solution dx,dy,dz, and w to (10) is found, the optimal ĝ can be

found by solving the optimization subproblem of (10) as related to ĝ. That is,

ĝ = argmin
ĝ

λ

2

[

‖dx −Dxĝ − bx‖22 + ‖dy −Dyĝ − by‖22 + ‖dz −Dzg− bz‖22
]

+
γ1
2
‖Φĝ− b‖22 +

γ2
2
‖w−Ψĝ − bw‖22. (11)

Note that (11) has only l2-norm terms, which are differentiable. Thus the solution (ĝ)

can be found by apply the nonlinear conjugate gradient (CG) algorithm [26]. Setting

the first-order derivative of (11) with respect to ĝ as zero produces

Bĝ = λ
[

DT
x (dx − bx) +DT

y (dy − by) +DT
z (dz − bz)

]

+ γ1Φ
Hb+ γ2Ψ

H(w − bw)(12)

where (·)T represents the transpose, (·)H represents Hermitian transpose, and

B = λ
(

DT
xDx +DT

yDy +DT
z Dz

)

+ γ1Φ
HΦ+ γ2Ψ

HΨ. (13)

Because B is a large, symmetric, and positive definite matrix, the CG algorithm can

be applied to solve (12) efficiently.

Now the solution dx,dy,dz, w, and ĝ tin (10) is available for the current

iteration. The bx,by,bz,bw in (10) is updated to make the ĝ converge to the solution

in (8), and (10) is solved for a number of iterations (identified here as the inner loop).

The procedures used to update bx,by,bz,bw in (10) for each inner iteration are

described in the Appendix. After the inner loop, the suboptimal solution ĝi in (8) is

obtained, and the outer loop is used to solve the original constrained problem (4). The

split Bregman algorithm for the sparse 3-D SAR image reconstruction is summarized

in Algorithm 1.
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Algorithm 1: Split Bregman Algorithm for sparse 3-D SAR Image Recon-
struction

Data: maximum outer iterations Nouter

maximum inner iterations Ninner

tolerance η
begin

ĝ = Φ−1r

b = r

bx = by = bz = bw = 0

i = n = 0

while ε =
‖Φĝ−r‖2

2

‖r‖2
2

> η or i ≤ Nouter do

while n ≤ Ninner do
Compute the optimal ĝ in (11) by solving (12) with the
nonlinear CG algorithm
Use (17a) and (18) in the Appendix to compute dx,dy,dz,w
Update bx,by,bz,bw according to (19a) in the Appendix;
n← n+ 1

end

b← b+ r−Φĝ

i← i+ 1

end

end

For the image denoising approach, we have A = IN×N and Ψ is an orthogonal

transform. Equation (13) can be simplified as

B = λ
(

DT
xDx +DT

yDy +DT
z Dz

)

+ (γ1 + γ2)I. (14)
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4 SIMULATIONS AND EXPERIMENTAL RESULTS

Our previous publications [2, 3, 10, 4] reported experimental results that used

undersampled raw data that was measured by the 3-D SAR imaging system. Good

image qualities were demonstrated with 30 – 40 % randomly undersampled spatial

points. The qualities were compared with the reconstructed image from the fully

sampled raw data using the NUFFT-RMA algorithm. Due to limitations of the

RMA algorithm, the reconstructed image from 100% spatial points may still deviate

significantly from the ground truth. Therefore, in this paper, several targets are

simulated as the ground truth image. According to the simulated targets, the raw

measurement data is generated. The reconstructed images recovered from either the

simulated or the experimental undersampled raw data are compared to demonstrate

the differences between the two CS approaches.

4.1 IMAGE QUALITY METRICS AND PARAMETER SELECTIONS

The SSIM [18] is commonly used for 2-D image quality assessment.It is consid-

ered more consistent with human eye perception than either the PSNR or the MSE.

Hence, the mean SSIM (MSSIM) measure is extended to 3-D images by averaging

the SSIM over 3-D windows instead of 2-D windows. The specific form of the SSIM

index between signals x and y is defined as [18]

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (15)

where C1 and C2 are the auxiliary variables, and µx(µy), σ
2
x(σ

2
y) and σxy are the

weighted mean, variance, and covariance, respectively, which are computed locally in

a cubic window with a weighting function. The cubic window moves pixel-by-pixel

over the entire 3-D image. Throughout these simulations, the SSIM measure uses
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the following typical parameter settings: C1 = 10−4, C2 = 9 × 10−4. The weighting

function is selected as a spherical-symmetric Gaussian lowpass filter that was 16 ×

16 × 16. Its standard deviation is 4 samples that is normalized to unit sum. If the

reconstructed image is exactly the same as the ground truth image, then the MSSIM

is 1. Thus, a larger MSSIM index corresponds to better reconstruction quality, and

vice versa. For all of these simulation results, the MSSIMs were averaged over the

results of 8 independent trials.

For the CS approaches, when solving, we adopted The split Bregman frame-

work [19] was adopted to achieve fast convergence and better numerical stability for

the CS approaches when solving (4). The sparse transformΨ was selected as the Haar

wavelet transform in (7). For the NDT&E application, the SUT typically exhibited

the nature of sparsity in the wavelet domain [1]. Choosing λ = γ1/2 and γ2 = γ1/100

ensures good convergence. Also, we set Ninner = 10 and the sparse transform Ψ to

be 3-D Haar wavelet transform. The parameters for the CG algorithm [26] embed-

ded in the Split Bregman framework were taken as: the CG tolerance ηcg = 0.01

and the iteration limit Ncg = 20. The iteration limit is set to be small to keep the

overall reconstruction complexity acceptable because it is unnecessary to solve each

subproblem entirely to a high numerical precision for SAR imaging.

The parameters γ1 and Nouter were selected according to their relationship

with the normalized error ε = ‖Φĝ− r‖22/‖r‖22, as illustrated in Fig. 2. The tolerance

was η = 0. A larger γ1 indicates a larger measurement consistency. A small γ1

weakens the denoising function. Both γ1 = 10 and Nouter = 7 were selected to achieve

a good compromise among the data consistency, the denoising capability, and the

computational complexity. If η > 0, the number of outer iteration will always be less

than Nouter.
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Figure 2. Normalized error vs. γ1 with Nouter = 4 and Nouter = 10 for the two CS
approaches. η = 0, Ninner = 10, λ = γ1/2 and γ2 = γ1/100. (a) Undersampling rate
α = 0.4. (b) Undersampling rate α = 0.9.
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4.2 SIMULATIONS AND RESULTS

The simulated SUT had three objects: a square pad, a cross profile, and a

circle profile distributed at depths of −28 mm, −58 mm, and −88 mm, respectively,

as illustrated in the leftmost column of Fig. 3. The simulated SUT are represented

by complex numbers with a certain magnitude and random phase. The backscatter

data were simulated over the square area of 128×128 mm2 with an additive complex-

valued noise. Raw measurements were generated from the SUT according to (1)

with a uniform measurement grid of 2 mm in both the X and Y directions. The

stepped-frequencies were between from 35.04 GHz and 44.64 GHz (Q-band) with a

step-size of δf = 0.64 GHz. The maximum depth of the reconstructed image was

then Zmax = c/(4δf) ≈ 118 mm for the benchmark [14]. Spacing along the Z-

dimension was set at 2 mm, so that the data cube of the 3-D image had a dimension

of 64 × 64 × 59. This is also the dimension of the fully sampled raw data. The

undersampled measurements were selected from the fully-sampled raw measurements

at randomXY positions. All frequency points were kept because reducing the number

of frequencies saved little on the acquisition time. The undersampling rate was defined

as α being the ratio of the number of points in the undersampled measurements over

the number of samples in fully sampled raw data.

4.2.1 Reconstruction Performance. Figure 3 illustrates a the compar-

ison of the ground truth image, a reconstructed image from 100% raw data using

the conventional methods in the noiseless environment. The shadow of the targets

and artifacts created by the RMAs and random undersampling are dominant in the

3-D images, as illustrated in the right two columns of Fig. 3. More specifically, the

Stolt-RMA blurred the SUT to a large extent. This image indicates that more severe

background artifacts are present in the image recovered by the Stolt-RMA than they

are in the image recovered by the NUFFT-RMA.
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(a) 3-D view.

(b) Top view.

(c) Side view.

Figure 3. Ground truth image, and reconstructed image from 100% raw data using
conventional methods. The three columns (from left to right) represent the ground
truth image, Stolt-RMA with 100% data, and NUFFT-RMA with 100% data, respec-
tively.

The reconstructed images using the two CS approaches are given in Fig. 4,

with η = 0.25, 20% or 40% undersampled measurements in the noiseless environ-

ment. Not surprisingly, the CS approach based on the NUFFT recovered the 3-D

images with better resolution and less background noise than did the CS approach

based on the Stolt transform. More specifically, the NUFFT-CS recovered the image
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with fewer horizontal shadows of both the cross profile and the circle profile. When

the undersampling rate was reduced from 40% and 20%, both the Stolt-CS and the

NUFFT-CS suffered little degradation. The reflectivity of the square pad at the lower

undersampling rate is weakened. Additionally, both CS approaches failed to remove

the vertical blurriness of the targets. Because the vertical resolution of the 3-D SAR

image depends on the bandwidth of the imaging system [23], the CS approaches were

unable to make up the bandwidth deficiency.

(a) 3-D view.

(b) Top view.

(c) Side view.

Figure 4. Reconstructed images from undersampled simulated measurements using
the CS approaches. The four columns (from left to right) represents Stolt-CS with
20% data, Stolt-CS with 40% data, NUFFT-CS with 20% data, and NUFFT-CS with
40% data, respectively. η = 0.25, SNR =∞.
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Figure 5 illustrates the averaged MSSIM between the ground truth image and

the reconstructed 3-D SAR images with varying undersampling rates and SNRs. The

NUFFT-CS had a much higher MSSIM than did the Stolt-CS at all SNR scenarios,

a finding that is consistent with the data illustrated in Fig. 4. This high performance

gain is achieved at the cost of high computational complexity.
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Figure 5. Averaged MSSIM of the reconstructed 3-D SAR images, using the CS
approaches, with varying undersampling rates and SNRs. η = 0.25. (a) Stolt-CS. (b)
NUFFT-CS.
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The tolerance (η) also affects the MSSIMs of the reconstructed images, as

illustrated in Fig. 6. A larger η results in a larger MSSIM when SNR = 0 dB. For

the NUFFT-CS, MSSIM degradation caused by a small η is relatively small when

compared to the Stolt-CS. Therefore, the NUFFT-CS can handle noise variations

with fixed parameter settings better than the Stolt-CS.
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Figure 6. Averaged MSSIM of the reconstructed 3-D SAR images using the CS
approaches with varying undersampling rates and η. SNR = 0 dB. (a) Stolt-CS. (b)
NUFFT-CS.
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4.2.2 Computational Complexity. All of the conventional methods and

CS approaches were implemented by MATLAB R2011a (x86) on a computer with

Intel(R) Core(TM)2 Quad CPU Q9400 at 2.66 GHz and 8.00 GB RAM. The typical

running times for conventional Stolt-RMA and NUFFT-RMA were 0.08 s and 0.40

s, respectively. This is regardless of the undersampling rate. The CS approaches

have a much higher computational complexity than do the conventional methods,

as presented in Fig. 7. The running times were averaged over the results of 8 in-

dependent trials for each undersampling rate. The running time of the NUFFT-CS

was comparable to that of the NUFFT-DN when the undersampling rate α > 0.6,

η = 0.25, and SNR = 10 dB. Interestingly, when SNR = ∞ dB, the running time

for the NUFFT-CS was comparable to that of the Stolt-CS at a low undersampling

rate and lower than that of the Stolt-CS at a high undersampling rate. This occurred

because the NUFFT has better accuracy. Thus, the NUFFT-CS required a smaller

number of iterations to reach the stopping criteria. Therefore, the low-complexity

Stolt transform cannot decrease the overall computational load for the sparse meth-

ods due to its inherent inaccuracy. When SNR = 10 dB, both approaches required

a smaller running time than did the zero-noise cases, because it was easier to reach

the tolerance criterion. Overall, the NUFFT-CS provided significant improvement on

image quality for all cases when α > 0.25 at an affordable computational complexity.

4.3 EXPERIMENTS AND RESULTS

The experimental SUT consisted of three layers of construction foam taped

together yielding dimensions 120× 180× 80 mm3 [10]. On each layer of foam, three

round rubber pads of 5 mm diameter and 2 mm height were embedded at different

locations, as illustrated in Fig. 8. The distance between the aperture and the surface

of the SUT (standoff distance) was 34 mm. The SNR was approximately 30 dB

during the experiment. The same frequency range, step size, and 3-D grids were
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Figure 7. Averaged running time for the two CS approaches with varying undersam-
pling rate. η = 0.25.
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Figure 8. Schematic of the rubber pads in the scanned area of SUT, where unit in
figure is mm, and z is the distance from the probe (not to scale).

adopted as those used in the simulations discussed in Section 4.2. Our experiments

on a 120×180 SUT show that by using the optimum scanning method, we can reduce

the acquisition time from 50 min for full-set measurement of a to 17 min for a typical

random sampling of 20% of the full uniform grid [10].
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Figure 9 illustrates the reconstructed images from undersampled experimen-

tal measurements, using the Stolt-CS and NUFFT-CS approaches with 40% data,

respectively. The 3-D image recovered by the NUFFT-CS was more focused than

that recovered by the Stolt-CS, while the running time of the Stolt-CS algorithms

was approximately 2/3 of that of the NUFFT-CS using the same PC as in Section

4.2. Therefore, the experimental results verified that the characteristics of the two

CS approaches in practice are similar to the simulation results.

(a)

(b)

Figure 9. The reconstructed images from undersampled experimental measurements,
using the CS approaches, with 40% data. Unit in figure is mm and η = 0.25. (a)
Stolt-CS, the running time is 218 s. (b) NUFFT-CS, the running time is 340 s.
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5 CONCLUSION

Two CS approaches for 3-D SAR image reconstruction have been compared in

terms of their reconstructive quality and computational complexity. Both numerical

simulations and experimental results demonstrate that the CS approach based on

the Stolt transform helps little on image quality improvement and computational

complexity reduction, albeit the low complexity property of Stolt transform. The

NUFFT-CS method significantly improves image quality for an undersampling rate

greater than 25% with affordable computational complexity.
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6 APPENDIX: PROCEDURES FOR UPDATING AUXILIARY

VARIABLES IN THE SPLIT-BREGMAN ALGORITHM FOR 3-D

SAR IMAGE RECONSTRUCTION

The procedures of finding optimal dx,dy,dz,w and updating bx,by,bz,bw

for (10) are described as follows. To obtain the optimal dx,dy,dz in (10), we must

iteratively solve the subproblem [19],

{dx,dy,dz} = arg min
dx,dy,dz

λ

2

[

‖dx −Dxĝ − bx‖22 + ‖dy −Dyĝ− by‖22 (16)

+‖dz −Dzĝ − bz‖22
]

+ ‖Dd‖1.

Specifically, (16) can be solved by the generalized shrinkage formula [24, 25],

(dx)l = max(s− 1/λ, 0)
(Dxĝ + bx)l

s
, (17a)

(dy)l = max(s− 1/λ, 0)
(Dyĝ + by)l

s
, (17b)

(dz)l = max(s− 1/λ, 0)
(Dzĝ + bz)l

s
, (17c)

where s =
∥

∥(Dxĝ+ bx)l, (Dyĝ+ by)l, (Dzĝ+ bz)l
∥

∥

2
, and (·)l denotes the lth element

of a vector. Similarly, we use the standard shrinkage formula to compute the optimal

w,

(w)l = max(|(Ψĝ + bw)l| − 1/γ2, 0)
(Ψĝ + bw)l
|(Ψĝ + bw)l|

. (18)

Then we update bx,by,bz,bw in the similar way as that in (9),

bx,n+1 = bx,n +Dxĝ− dx,n+1, (19a)

by,n+1 = by,n +Dyĝ− dy,n+1, (19b)

bz,n+1 = bz,n +Dzĝ − dz,n+1, (19c)

bw,n+1 = bw,n +Ψĝ −wn+1. (19d)
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III. ROBUST ADAPTIVE CHANNEL ESTIMATION IN MIMO

UNDERWATER ACOUSTIC COMMUNICATIONS

Zengli Yang, and Yahong Rosa Zheng

ABSTRACT—For underwater acoustic (UWA) communications, a robust itera-

tive channel estimation based minimum mean-square-error (MMSE) adaptive turbo

equalizer is proposed and studied for multiple-input multiple-output (MIMO) detec-

tion. Rather than the classical MMSE or normalized least mean squares (NLMS)

estimation algorithms, the improved proportionate NLMS (IPNLMS) is adopted for

the iterative MIMO channel estimator. The MIMO channel estimation is performed

jointly with the MMSE equalizer and the maximum a posteriori probability (MAP)

decoder. With inter-block interference removed, the MIMO MMSE equalization is

performed with overlapped information subblocks without guard intervals, thus a high

transmission efficiency is guaranteed and performance degradation is prevented. The

proposed MIMO detection scheme has been tested by experimental data and proved

to be robust against tough MIMO channels. The experimental results for the under-

sea 2008 Surface Processes and Acoustic Communications Experiment (SPACE08)

are reported.
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1 INTRODUCTION

Accurate channel estimation is crucial in achieving satisfactory performance

for multiple-input multiple-output (MIMO) underwater acoustic (UWA) communica-

tions [1]. Two of the main challenges for UWA channel estimation in the time domain

are the extremely long delay spread and the time-varying nature of the channel [2],

which often lead to high computational complexity and low estimation accuracy. The

traditional block-based least squares (LS) or minimum mean-square-error (MMSE)

channel estimation techniques often need the periodic training sequence and the in-

version of large matrix [1]. In comparison, the iterative channel estimation based

on the adaptive algorithms, such as least mean squares (LMS) or recursive least

square (RLS) algorithms [3], can better track the time-varying frequency-selective

channel [4]. As the required adaptive filter lengths grows, the conventional normal-

ized LMS (NLMS) [3] algorithm suffers a slow convergence rate, thus requiring long

training sequence. However, it is desireable to use short training sequence to reduce

the overhead and increase the data transmission efficiency. With short training se-

quence, this slow convergence rate degrades the accuracy of the channel estimation.

The improved proportionate NLMS (IPNLMS) [5] has been designed to ameliorate

this situation by exploiting the sparse nature of the channel impulse response (CIR).

By updating the coefficient in the weight vector proportionate to its magnitude, the

IPNLMS can estimate the UWA channel better than NLMS and the conventional

proportionate NLMS (PNLMS) [6], whatever the sparsity of the impulse response

is [7] [8].

When adopting turbo equalization [9] at the receiver, accurate channel estima-

tion is necessary to ensure efficient and effective soft information exchange between
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the equalizer and the decoder. In the training mode, the proposed MIMO detec-

tor employs iterative channel estimation using pilot symbols. In the decision-directed

(DD) mode, both the previous and current detected symbols are used to assist channel

estimation. To boost the efficiency of turbo equalizer and ease the overall computa-

tional costs, the channel estimation is performed jointly with the MMSE equalizer

and the maximum a posteriori probability (MAP) decoder. More specifically, in the

DD mode, these detected symbols are obtained by performing hard decoding and

mapping on the extrinsic log-likelihood ratios (LLRs) from the MAP decoder.

In this paper, the proposed MIMO detection scheme using iterative IPNLMS

channel estimation and turbo MMSE equalization is tested by field trial data col-

lected in the undersea 2008 Surface Processes and Acoustic Communications Experi-

ment (SPACE08) conducted at Martha’s Vineyard, Edgartown, MA, in October 2008.

Also, the performance of the proposed turbo MIMO detector is compared and eval-

uated with the conventional MMSE channel estimation [10] and the NLMS channel

estimation [4] [11]. The experimental results demonstrate that the MIMO detector

using IPNLMS estimation algorithm took much less turbo iterations than that using

MMSE or NLMS estimation algorithms to reach zero BER. Under the time-varying

frequency-selective MIMO UWA channel, the proposed MIMO detector can achieve

better performance at lower overall computational costs.
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2 SIGNALING AND DATA STRUCTURE

Consider an N×M MIMO underwater acoustic communication system, where

N and M are the numbers of transmit transducers and receive hydrophones, respec-

tively. At the transmitter side, each bit stream is independently encoded, interleaved,

modulated and then transmitted by a transducers in designated form. Fig. 1 depicts

the signalling process on the n-th transmit branch, with bn,p, cn,k′, cn,k, and sn,k being

the information bit, the encoded bit, the interleaved bit and the modulation symbol,

respectively.

Channel 
encoder Π Modulator Signal 

former
,n pb , 'n kc ,n kc ,n ks

Figure 1. Signaling process on nth transmit branch.
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Figure 2. The burst structure of the nth transmit branch in the SPACE08 experiment.

A rate-1/2 non-systematic convolutional channel encoder with generator poly-

nomial [G1, G2] = [17, 13]oct and a random interleaver (Π) are used. The modulator
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Figure 3. MIMO detector using iterative channel estimation and turbo MMSE equal-
ization.

employs QPSK, 8PSK and 16QAM modulation schemes, with the constellation sizes

being 4, 8 and 16, respectively. For a given constellation set S = {χq}Qq=1 of size Q,

every log2Q interleaved code bits are mapped onto one modulation symbol, i.e., the

group of bits, {cn,(k−1)log
2
Q+p}log2Qp=1 , are mapped to the modulation symbol sn,k. The

signal former unit assembles the input modulation symbols with auxiliary signals,

and then sends out transmission bursts in specific format.

Without loss of generality, a transmission burst of the SPACE08 experiment is

illustrated in Fig. 2. The burst begins with a head linear frequency modulation (LFM)

signal named LFMB, followed by three packets with QPSK, 8PSK and 16QAM mod-

ulations, and ends with a tail LFM signal named LFME. On the receiver side, the

LFM signals (LFMB and LFME) will serve multiple purposes including coarse syn-

chronization, Doppler shift estimation and channel length measurement, attributed

to their unique correlation properties. Each packet includes a m-sequence of length

511, and a data payload consisting of 30,000 modulation symbols. The m-sequence

can be used for evaluating the channel scattering function, for its sensitivity to the

Doppler spread [10].
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3 ITERATIVE MIMO CHANNEL ESTIMATION BASED TURBO

MMSE EQUALIZATION

Figure 3 depicts the structure of the proposed iterative MIMO channel estima-

tion and turbo MMSE equalization. In the training mode, the MIMO detector uses

pilot symbols for channel estimation. In the DD mode at the zeroth turbo iteration,

the previously detected symbols from the equalizer are used for channel estimation.

In the DD mode at the first and subsequent turbo iterations, the detected symbols

used for channel estimation are obtained by performing hard decoding and mapping

on the extrinsic LLRs of the encoded bits from the interleaver (Π). The estimated

CIR Ĥ and error variance σ̂2 from the channel estimator are then fed into the MIMO

MMSE equalizer. The equalizer exchanges the soft information (extrinsic LLRs) on

the encoded bits with MAP decoder for each branch. With more reliable soft infor-

mation from the MAP decoders, this estimated CIR shall show better accuracy over

the iterations.

Due to the time-varying nature of the UWA channel, the data payload needs to

be partitioned into blocks with length of Nb, as illustrated in Fig. 4. Denote the length

of the data payload as Nd, then there are P = dNd

Nb
e blocks in one data payload. The

pilot with length of Np is inserted at the head of each block. Each block is partitioned

into subblocks, and each subblock has the length of Nsb. The pilot, or the previous

and current Np detected symbols from the equalizer or decoder, are referred to here

as the training sequence for the iterative MIMO channel estimator. It is noted that

the inter-block interference was removed in the MIMO MMSE equalizer during block

processing.
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Figure 4. The partition of the transmitted pilot and data payload.

3.1 SYSTEM MODEL

Consider the detection of one subblock, as shown in the Fig. 4, the train-

ing sequences with length Np from N branches are adopted for channel estimation.

When the durations of the training sequence is less than the channel coherence

time, the channel coefficients can be approximated as quasi time invariant. De-

note the training sequences from the N branches as {xn,k(0≤ k≤Np − 1)}Nn=1, and

the CIR from n-th transmitter transducer to m-th receiver hydrophone as hm,n =

[hm,n(0), hm,n(1), . . . , hm,n(L − 1)]T , where L is the length of the SISO channel and

(·)T represents transpose, then the signal received at the m-th hydrophone can be

approximately expressed, in the matrix form, as

yce
m ≈

N
∑

n=1

Xnhm,n +wm

≈ Xhm +wm. (1)
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Here, yce
m ,

[

ym,L−1, ym,L, · · · , ym,Np−1

]T ∈ C(Np−L+1)×1, and the noise vector wm ,

[

wm,L−1, wm,L, · · · , wm,Np−1

]T ∈ C(Np−L+1)×1. The matrix Xn ∈ C(Np−L+1)×L is de-

fined as

Xn ,



















xn,L−1 · · · xn,1 xn,0

xn,L · · · xn,2 xn,1

...
. . .

. . .
...

xn,Np−1 · · · xn,Np−L+1 xn,Np−L



















(2)

which is the matrix of training sequence from n-th transducer. The matrix X and

the vector hm are given, respectively, as X = [X1,X2, · · · ,XN ] ∈ C(Np−L+1)×NL and

hm = [hT
m,1,h

T
m,2, · · · ,hT

m,N ]
T ∈ CNL×1.

3.2 ITERATIVE MIMO UWA CHANNEL ESTIMATION

The UWA channel estimation can be performed by using the nonadaptive

algorithms, i.e. MMSE [10], or the adaptive algorithms, i.e. NLMS [4] [11]. The

nonadaptive algorithms perform the channel estimation in block-wise, thus ignoring

the time-variant nature of the UWA channel. Instead, the adaptive algorithms have

the nature of channel tracking.

3.2.1 MMSE Nonadaptive Channel Estimation. Based on (1), the

MMSE estimation of hm is obtained as [10]

ĥm = (XHX+ σ2
wINL)

−1XHyce
m, (3)

where the noise variance σ2
w at the hydrophones has to be estimated in silent period

and is assumed unchanged during the period of data payload. The estimation in (3)

is performed on each of the M hydrophones to obtain the MIMO UWA channel esti-

mation. It is noted that the training sequence matrix X is changed over the subblocks
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and turbo iterations. To guarantee the system equation in (1) not underdetermined,

the length of the training sequence shall satisfy Np ≥ (N + 1)L− 1 [10].

3.2.2 IPNLMS Adaptive Channel Estimation. The structure of the

adaptive MIMO channel estimator using adaptive algorithms is shown in Fig. 5. The

training sequences from N branches and the received signal vector y at M receive

hydrophones are used to identify the MIMO channel. The MIMO channel is modeled

as MN FIR filters, where each one has length of L and the coefficients are updated

according to the residual error vector (e). With certain adaptive algorithm and

proper parameters, the adaptive filters shall converge toward the steady state. Also,

the time-averaged error variances are fed back into the MIMO MMSE equalizer.

1( )y t

Training 
sequence 1

1( )e t

�

Training 
sequence N

1,1
ˆ ( )th

1,
ˆ ( )N th

,
ˆ ( )M N th

,1
ˆ ( )M th
�

�

�

�

�

��

�

( )My t
�

−

− �

( )Me t

�

�

�

Figure 5. Structure of N ×M MIMO adaptive channel estimator.
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With classical NLMS estimation algorithms, hm is estimated and updated

as [3]

ĥm(t + 1) = ĥm(t) +
µe∗m(t)x(t)

xH(t)x(t) + δNLMS
(4)

where t is the index of the training symbols, µ is the step size, δNLMS is a small pos-

itive parameter to avoid possible division by zero, x(t) ,
[

xT
1 (t),x

T
2 (t), . . . ,x

T
N(t)

]T
,

xn(t) , [xn,t, xn,t−1, . . . , xn,t−L+1]
T , and the error at the mth receiver em(t) = ym(t)−

xH(t)ĥm(t). It is noted that the training sequence, as shown in Fig. 4, shall be reused

with decreasing step size for proper convergence.

To utilize the sparse nature of the UWA channel, we proposed to adapt the

coefficients of ĥm proportionately by pre-multiplying the update vector with a pro-

portionate matrix. Then, (4) can be rewritten as

ĥm(t+ 1) = ĥm(t) +
µe∗m(t)Gm(t)x(t)

xH(t)Gm(t)x(t) + δIPNLMS
(5)

where (·)∗ represents conjugate, δIPNLMS is a small positive parameter to avoid possible

division by zero, Gm(k) is a diagonal proportionate matrix whose elements may be

selected according to [6] [5]. Specifically, Gm(t) =diag{gm,1(t), gm,2(t), . . . , gm,N(t)}

where gm,n(t) = [gm,n(t, 0), gm,n(t, 1), . . . , gm,n(t, L − 1)]. To make the estimation

algorithm robust against various sparsity of the UWA channel, the IPNLMS chooses

the diagonal elements of Gm(t) as [5]

gm,n(t, l) =
1− α

2L
+ (1 + α)

|ĥm,n(t, l)|
2‖ĥm(t)‖1 + ε

, (6)

where ε regularizes the updating when all coefficients are zero at initialization. For

α = −1, the IPNLMS reduces to NLMS. For α close to 1, the IPNLMS behaves like

the PNLMS [6]. Compared to the MMSE nonadaptive channel estimation, adaptive
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channel estimation algorithms has no strict requirement for the length of the training

sequence. Also, this iteratively coefficients updating can track the channel changes

within current subblock.

3.3 LOW-COMPLEXITY MIMO MMSE TURBO EQUALIZATION

To present the low-complexity (LC) MIMO MMSE equalization algorithm, we

define K1 and K2 as the length of the noncausal and the causal part of the estimator

filter, respectively, and K is the overall filter length, that is, K = K1 +K2 +1. Also,

we denote the observation for estimating sn,k (the k-th transmitted symbol at n-th

transmitter) as yk , [yT
k−K2

,yT
k−K2+1, . . . ,y

T
k+K1]

T , where yk , [y1,k, y2,k, . . . , yM,k]
T .

The mean and variance of sn,k is denoted as s̄n,k and vn,k, respectively, and the mean

of vn,k within the subblock is denoted as v̄. Both s̄n,k and v̄ are obtained based on the

a priori LLRs of the encoded bits. The details on the calculation are discussed in [12]

and omitted here for brevity. With the estimated MIMO channel and the error or

noise variance, the LC linear MMSE estimate of the symbol sn,k is given by [11] [12]

ŝn,k = fHn (yk − Ĥs̄kn)

fn = (σ2
wI+ v̄ĤĤH)h̃n (7)

where

s̄kn = [s̄Tk−K2−L+1, . . . , s̄
T
k−1, s̃

T
n,k, s̄

T
k+1, . . . , s̄

T
k+K1

]T

s̄k = [s̄1,k, s̄2,k, . . . , s̄N,k]
T

s̃n,k = [s̄1,k, . . . , s̄n−1,k, 0, s̄n+1,k, . . . , s̄N,k]
T .
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Also, the estimated channel matrix is defined as

Ĥ ,













ĤL−1 · · · Ĥ0 · · · 0

...
. . .

. . .
. . .

...

0 · · · ĤL−1 · · · Ĥ0













∈ CMK×N(K+L−1)

Ĥl ,













ĥ1,1(l) ĥ1,2(l) · · · ĥ1,N (l)

...
. . .

. . .
...

ĥM,1(l) ĥM,2(l) · · · ĥM,N(l)













∈ CM×N

and h̃n is the (N(K2 + L− 1) + n)-th column of the Ĥ.

In turbo equalization, the demapped bits of the estimated symbols ŝn,k are

converted into the extrinsic LLRs. After the deinterleaver, the extrinsic LLRs are

fed into the MAP decoder as the a priori information of the encoded bits. Then

extrinsic LLRs from MAP decoder after the interleaver are then fed back into the

iterative channel estimator for all N branches.
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4 EXPERIMENTAL RESULTS

The proposed MIMO detector using the iterative channel estimation and MMSE

turbo equalization has been tested by one undersea trial of UWA communications.

The trial named SPACE08 was conducted at the coast of Martha’s Vineyard, Edgar-

town, MA, in October 2008. In this experiment, QPSK, 8PSK and 16QAM mod-

ulations were used with a symbol period of 0.1024 milliseconds (ms). The carrier

frequency was fc = 13 kHz. The transmit filter was a square-root raised cosine filter

with roll-off factor β = 0.2, thus the occupied channel bandwidth was 11.7188 kHz.

The transmit equipment consisted of four transducers, numbered 0 through 3. Trans-

ducer 0 was fixed on a stationary tripod, and was about 4 meters (m) above the sea

bottom. Transducer 1 to 3 were evenly mounted on a vertical array with the inter-

transducer spacing being 50 centimeters (cm). The top transducer in the array was

about 3 m above the sea bottom. There were six sets of receiving hydrophone arrays

placed at six different locations. A detailed description about the six hydrophone

arrays, is given in Table 1. It is noted that for the two cross arrays S1 and S2, each

Table 1. Description On The Hydrophone Arrays

Array Range Orientation Number of Hydrophone

Name/Type (m) hydrophones spacing (cm)

S1/Cross 60 Southeast 16 3.75

S2/Cross 60 Southwest 16 3.75

S3/Vertical 200 Southeast 24 5

S4/Vertical 200 Southwest 24 5

S5/Vertical 1000 Southeast 12 12

S6/Vertical 1000 Southwest 12 12
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“leg” of the cross consisted of 16 hydrophones. The top hydrophone of each array

was approximately 3.3 m above the sea bottom. Finally, the water depth of this ex-

periment was about 15 m. Most of the channel energy is concentrated within 10 ms,

corresponding to a channel with approximated length of 100 in terms of the symbol

period Ts = 0.1024 ms.

An example of the estimated UWA channels is shown in Fig. 6, for a two-

transducer 200 m transmission. Clearly, the CIRs are sparse, nonhomogeneous, and

some are non-minimum phase. The characteristics of the UWA channels make the

channel equalization very difficult.
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Figure 6. An example of the estimated channel impulse responses in the SPACE08
experiment (‘T’ denotes transducer, and ‘H’ denotes hydrophone).

For the 200 m transmission, 30 S3 files and 15 S4 files were recorded in two

days, during the SPACE08 experiment. All 45 2× 6 packets with QPSK modulation
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have been processed with Nb = 4500, Np = 600, Nsb = 200, thus incurring 14% pilot

overhead of here. For the LC MMSE equalizer, K1 = 100 and K2 = 50 were chosen.

The conventional MMSE and NLMS channel estimator and the proposed IPNLMS

channel estimator are studied and compared for this MIMO detector. The training

sequences are reused for the adaptive channel estimation algorithms, i.e., NLMS,

IPNLMS, with decreasing step size for five times. The lengths of the MN SISO

channels are set as L = 100. More specifically, other parameters for the adaptive

algorithms were set as,

Initial step-size: µ = 1;

Exponential decay factor for data reuse: β = 0.3;

δNLMS = 0.01, ε = 0.01, α = 0, δIPNLMS = 5× 10−5.

The experimental results using the proposed MIMO detector are shown in

Fig. 7 for turbo iterations 0, 1, 2, 5. The MIMO detector using MMSE channel esti-

mator cannot improve the BER for the tough packets, i.e. packet 11, 44, 45, in the

initial several iterations. This is caused by the fast time-varying nature of these tough

channels, and the MMSE estimation algorithm failed to track the changes within sub-

block. Also, the incorrect estimated symbols cause error propagation within block

in the DD mode. The QPSK packet detection results are also listed in Table 2 in

terms of the number of iterations to achieve zero BER. From the table, all 45 QPSK

packets have achieved zero BER with no more than two iterations when adopting the

proposed iterative IPNLMS channel estimator. In comparison, to make 40 QPSK

packets achieve zero BER, the MMSE channel estimator took five iterations, and the

NLMS channel estimator took four iterations. In [10], MMSE channel estimation and

turbo block decision-feedback equalization (BDFE) were adopted, and the results of

2 × 12 MIMO transmission (200 m) were reported in its Table II. In contrast, with
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a even lower computational complexity, the proposed MIMO detector using iterative

IPNLMS channel estimation and MMSE turbo equalization takes two iterations less

to make all QPSK packets achieve zero BER.

Table 2. Results of 2× 6 MIMO Transmission (200 m, QPSK modulation)

Number of Number of Number of Number of

iterations to packets packets packets

achieve zero BER (MMSE) (NLMS) (IPNLMS)

0 18 4 21

1 17 30 20

2 2 5 4

3 2 0 -

4 0 1 -

5 1 0 -
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Figure 7. Experimental results with iterative MIMO channel estimator and MMSE
turbo equalization. QPSK modulation, 200 m transmission, 5 times training sequence
reuse for the adaptive channel estimation algorithms, i.e., NLMS, IPNLMS. Those
packet indices without corresponding BER value shown for certain iteration indicate
zero BERs have been achieved. (a) MMSE block channel estimation. (b) NLMS
adaptive channel estimation.
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Figure 7. (c) IPNLMS adaptive channel estimation. (cont.)
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5 CONCLUSION

The experimental results demonstrate that the proposed MIMO turbo detec-

tor using iterative IPNLMS channel estimation outperforms that using conventional

MMSE or NLMS estimation algorithms. By utilizing the sparse nature of the CIRs,

the IPNLMS can well track the time-varying frequency-selective UWA channel. With

more accurate channel estimation, fewer turbo iterations are needed to achieve zero

BER, thus saving much computational costs at no performance loss.
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SECTION

2 CONCLUSIONS

This dissertation proposed three classes of new sparse nonlinear optimiza-

tion methodology to the network echo cancellation (NEC), 3-D synthetic aperture

radar (SAR) image reconstruction, and adaptive turbo equalization in multiple-input

multiple-output (MIMO) underwater acoustic (UWA) communications, respectively.

For NEC, two proportionate affine projection sign algorithm (APSA) have

been proposed for the identification of real-coefficient, sparse systems. With a mod-

est increase in computational complexity over that of the original APSA, the pro-

portionate APSAs can achieve faster convergence rate and lower in a steady-state

misalignment in a sparse network echo path, colored input, and impulsive interfer-

ence environment. The computational complexity of the two proportionate APSAs is

lower than the affine projection algorithm (APA) family due to elimination of the ma-

trix inversion. Especially, the real-coefficient proportionate APSA (RIP-APSA) also

exhibits good robustness in all types of network impulse responses (NIRs) without the

need to change parameters or estimate the sparseness of the NIRs. Numerical results

also demonstrate that the proportionate APSAs exhibit asymptotic convergence for

all step size µ > 0, but practically, a small step size of µ < 0.1 is required to achieve

excess mean square error (MSE) less than 0 dB.

For 3-D SAR image reconstruction, the proposed sparse methods are compared

in the area of imaging denoising and compressed sensing (CS) due to its large-scale

and static feature. The CS technique has been successfully simulated, implemented

and investigated in a near-field wideband 3-D SAR imaging system. Two CS ap-

proaches for 3-D SAR image reconstruction have been compared in terms of their re-

constructive quality and computational complexity. Both numerical simulations and
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experimental results demonstrate that the CS approach based on the Stolt transform

helps little on image quality improvement and computational complexity reduction,

albeit the low complexity property of Stolt transform. The non-uniform fast Fourier

transform (NUFFT)-based CS approach significantly improves image quality for an

undersampling rate greater than 25% with affordable computational complexity.

For MIMO UWA communications, the experimental results demonstrate that

the proposed MIMO turbo detector using iterative improved normalized least mean

squares (IPNLMS) channel estimation outperforms that using conventional mini-

mumu MSE (MMSE) or normalized least mean squares (NLMS) estimation algo-

rithms. By utilizing the sparse nature of the channel impulse responses (CIRs), the

IPNLMS can well track the time-varying frequency-selective UWA channel. With

more accurate channel estimation, fewer turbo iterations are needed to achieve zero

bit-error-rate (BER), thus saving much computational costs at no performance loss.

The contributions of my PhD research work are summarized in five journal

papers and seven conference papers, among which, two journal papers and one con-

ference paper are included in this dissertation.



102

3 PUBLICATIONS

[1] Z. Yang, B. Han, and Y. R. Zheng,“DSP implementation of DS/CDMA under-
water acoustic modems,” MTS/IEEE OCEANS 2014, St. John’s, Newfoundland,
Canada, Sep. 14–19, 2014. [To be submitted]

[2] Z. Yang, and Y. R. Zheng,“Robust iterative channel estimation for turbo equal-
ization in MIMO underwater acoustic communications,” IEEE J. Ocean. Eng.,
May 2014. [To be submitted]

[3] Z. Yang, and Y. R. Zheng,“Robust adaptive channel estimation in MIMO un-
derwater acoustic communications,”MTS/IEEE OCEANS 2014, Taipei, Taiwan,
Apr. 7–10, 2014, pp. 1–6. [Accepted]

[4] Z. Yang, and Y. R. Zheng,“A comparative study of compressed sensing ap-
proaches for 3-D synthetic aperture radar image reconstruction,” Elsevier Digital
Signal Process., pp. 1–28, Mar., 2014. [Accepted]

[5] B. Han, Z. Yang, and Y. R. Zheng,“Efficient implementation of iterative MIMO-
OFDM receiver using MMSE interference cancelation,” IET Commun., pp. 1–10,
Dec. 2013. [To be published]

[6] Y. R. Zheng, Z. Yang, J. Hao, and P. Han, “Hardware implementation of un-
derwater acoustic localization system for bridge scour monitoring,” MTS/IEEE
OCEANS 2013, San Diego, CA, Spet. 23–26, 2013, pp.1–6.

[7] B. Han, Z. Yang, and Y. R. Zheng, “FPGA implementation of QR decomposi-
tion for MIMO-OFDM using four CORDIC cores,” IEEE Int. Conf. Commun.
(ICC’13), Budapest, Hungary, Jun. 9–13, 2013, pp. 4556–4560.

[8] H. Kajbaf, J. T. Case, Z. Yang, and Y. R. Zheng,“Compressed sensing for SAR-
based wideband 3D microwave imaging system using nonuniform FFT,” IET
Radar, Sonar, Navig., vol. 7, no. 6, pp. 658–670, Jul., 2013.

[9] Z. Yang, and Y. R. Zheng,“Near-field 3-D synthetic aperture radar imaging
via compressed sensing,” IEEE Int. Conf. Acoustics, Speech, Signal Process.
(ICASSP’12), Kyoto, Japan, Mar. 25–30, 2012, pp. 2513–2516.

[10] M. Yang, Z. Yang, B. Hirst, Y. R. Zheng, A. Singh, and L. Ma,“Determination of
systolic and diastolic functions of mouser heart using Cine-MRI with compressed
sensing,” In Vivo MR Gordon Research Conf., Waterville, ME, Jul. 29–Aug. 3,
2012.

[11] Z. Yang, Y. R. Zheng, and S. L. Grant,“Proportionate affine projection sign
algorithms for network echo cancellation,” IEEE Trans. Audio, Speech, Language
Process., vol. 19, no. 8, pp. 2273–2284, Nov. 2011.



103

[12] Z. Yang, Y. R. Zheng, and S. L. Grant,“Proportionate affine projection sign
algorithms for sparse system identification in impulsive interference,” IEEE Int.
Conf. Acoustics, Speech, Signal Process. (ICASSP’11), Prague, Czech Republic,
May 22–27, 2011, pp. 4068–4071.



104

BIBLIOGRAPY

[1] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:
Cambridge University Press, 2004.

[2] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, Aug. 2006.

[3] S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, New Jersey,
07458.: MPrentice Hall, 2002.

[4] C. Austin, E. Ertin, and R. Moses, “Sparse signal methods for 3-D radar imag-
ing,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 408–423, Jun. 2011.

[5] M. Tuchler, R. Koetter, and A. C. Singer, “Turbo equalization: principles and
new results,” IEEE Trans. Commun., vol. 50, no. 5, pp. 754–767, May 2002.

[6] D. L. Duttweiler, “Proportionate normalized least-mean-squares adaptation in
echo cancelers,” IEEE Trans. Speech, Audio Processing, vol. 8, no. 5, pp. 508
–518, Sep. 2000.

[7] T. Gansler, S. Gay, M. Sondhi, and J. Benesty, “Double-talk robust fast con-
verging algorithms for network echo cancellation,” IEEE Trans. Speech, Audio
Processing, vol. 8, no. 6, pp. 656 –663, Nov. 2000.

[8] J. Benesty and S. L. Gay, “An improved PNLMS algorithm,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Processing, 2002. (ICASSP ’02), vol. 2, 2002, pp.
1881 –1884.



105

VITA

Zengli Yang was born in September, 1987 in Suizhou, Hubei, China. He

received his B.E. degree in Automation from Huazhong University of Science and

Technology, Wuhan, Hubei, China, in 2009. He began his Ph.D. study in August 2009

at the Department of Electrical and Computer Engineering at Missouri University of

Science and Technology. His research interests include adaptive signal processing,

numerical optimization, compressed sensing, wireless communications, and hardware

implementation. He received his Ph.D. degree in Electrical Engineering from Missouri

University of Science and Technology in May 2014.




	Sparse nonlinear optimization for signal processing and communications
	Recommended Citation

	PUBLICATION DISSERTATION OPTION
	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	1 INTRODUCTION
	1.1 BACKGROUND AND PROBLEM STATEMENT
	1.2 SUMMARY OF CONTRIBUTIONS

	I. PROPORTIONATE AFFINE PROJECTION SIGN ALGORITHMS FOR    NETWORK ECHO CANCELLATION
	ABSTRACT
	1 INTRODUCTION
	2 PROPORTIONATE AFFINE PROJECTION SIGN ALGORITHMS
	3 COMPUTATIONAL COMPLEXITY
	4 SIMULATION RESULTS
	4.1 PERFORMANCE COMPARISON BETWEEN THE    PROPORTIONATE APSAS AND OTHER ALGORITHMS
	4.2 DOUBLE-TALK SCENARIO
	4.3 CHARACTERISTICS OF THE PROPORTIONATE APSAS
	4.4 EFFECT OF SPARSENESS OF THE IMPULSE RESPONSES
	4.5 TRACKING PERFORMANCE OF THE PROPORTIONATE    APSAS
	4.6 SELECTION OF STEP SIZE

	5 CONCLUSION
	6 APPENDIX: GEOMETRICAL ILLUSTRATION OF CONVERGENCE
	7 ACKNOWLEDGEMENT
	8 REFERENCES

	II. A COMPARATIVE STUDY OF COMPRESSED SENSING APPROACHES    FOR 3-D SYNTHETIC APERTURE RADAR IMAGE RECONSTRUCTION
	ABSTRACT
	1 INTRODUCTION
	2 CONVENTIONAL 3-D SAR IMAGE RECONSTRUCTION WITH FULL SAMPLING
	3 COMPRESSED SENSING APPROACHES FOR 3-D SAR IMAGE RECONSTRUCTION
	3.1 TWO COMPRESSED SENSING APPROACHES
	3.2 SPLIT BREGMAN FRAMEWORK FOR 3-D IMAGE    RECONSTRUCTION

	4 SIMULATIONS AND EXPERIMENTAL RESULTS
	4.1 IMAGE QUALITY METRICS AND PARAMETER SELECTIONS
	4.2 SIMULATIONS AND RESULTS
	4.2.1 Reconstruction Performance
	4.2.2 Computational Complexity

	4.3 EXPERIMENTS AND RESULTS

	5 CONCLUSION
	6 APPENDIX: PROCEDURES FOR UPDATING AUXILIARY VARIABLES IN THE SPLIT-BREGMAN ALGORITHM FOR 3-D SAR IMAGE RECONSTRUCTION
	7 REFERENCES

	III. ROBUST ADAPTIVE CHANNEL ESTIMATION IN MIMO    UNDERWATER ACOUSTIC COMMUNICATIONS
	ABSTRACT
	1 INTRODUCTION
	2 SIGNALING AND DATA STRUCTURE
	3 ITERATIVE MIMO CHANNEL ESTIMATION BASED TURBO MMSE EQUALIZATION
	3.1 SYSTEM MODEL
	3.2 ITERATIVE MIMO UWA CHANNEL ESTIMATION
	3.2.1 MMSE Nonadaptive Channel Estimation
	3.2.2 IPNLMS Adaptive Channel Estimation

	3.3 LOW-COMPLEXITY MIMO MMSE TURBO EQUALIZATION

	4 EXPERIMENTAL RESULTS
	5 CONCLUSION
	6 ACKNOWLEDGEMENT
	7 REFERENCES

	2 CONCLUSIONS
	3 PUBLICATIONS
	BIBLIOGRAPHY
	VITA

