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Abstract

In photogrammetry, sensor modelling with 3D point estimation is a fundamental topic
of research. Perspective frame cameras offer the mathematical basis for close range
modelling approaches. The norm is to employ robust bundle adjustments for
simultaneous parameter estimation and 3D object measurement. In 2D to 3D
modelling strategies image resolution, scale, sampling and geometric distortion are
prior factors. Non-conventional image geometries that implement uncalibrated
cameras are established in computer vision approaches; these aim for fast solutions at
the expense of precision. The projective camera is defined in homogeneous terms and
linear algorithms are employed. An attractive sensor model disembodied from
projective distortions is the affine. Affine modelling has been studied in the contexts
of geometry recovery, feature detection and texturing in vision, however multi-view

approaches for precise object measurement are not yet widely available.

This project investigates affine multi-view modelling from a photogrammetric
standpoint. A new affine bundle adjustment system has been developed for point-
based data observed in close range image networks. The system allows calibration,
orientation and 3D point estimation. It is processed as a least squares solution with
high redundancy providing statistical analysis. Starting values are recovered from a
combination of implicit perspective and explicit affine approaches. System
development focuses on retrieval of orientation parameters, 3D point coordinates and
internal calibration with definition of system datum, sensor scale and radial lens
distortion. Algorithm development is supported with method description by
simulation. Initialization and implementation are evaluated with the statistical
indicators, algorithm convergence and correlation of parameters. Object space is
assessed with evaluation of the 3D point correlation coefficients and error ellipsoids.
Sensor scale is checked with comparison of camera systems utilizing quality and
accuracy metrics. For independent method evaluation, testing is implemented over a
perspective bundle adjustment tool with similar indicators. Test datasets are initialized
from precise reference image networks. Real affine image networks are acquired with
an optical system (~1M pixel CCD cameras with 0.16x telecentric lens). Analysis of
tests ascertains that the affine method results in an RMS image misclosure at a sub-

pixel level and precisions of a few tenths of microns in object space.



Iepiinyn

2T QOTOYPOUUETPIO. O TPOGOVATOMGUOG TNG KAUEPOS KOl O TPOCIOPIGHOG
Tprodldotatwv onueiov arotedel Bepelmdeg epevvnTikd Bépa. Ilpoomtiéc khpepeg
TPocPEpoLy TN padnuotikny Paon tov adydpiumv mov epapudloviol oe emiyeleg
eQapuoYES. NOpua amoTeLel 11 EQUPUOYT GLOTNUATOV GLVOPOHWONG TG dECUNG Yo
TOV TOVTOYPOVO TPOGIOPIGHO TOV TAPUUETPOV TPOCHUVATOAIGHOD Kol TPLOIACTOTNG
pétpnong onueiov. Xe otparnywkés mov Pacifovior otn ddIoTOT TPOG TN
TPIOOIOTATN OvVTIoTOWYioL 1 avédAvon g €wovag, 1N KAIHoKo Tov G€veopa, M
derypotoAnyio em@aveiog KabmG Kol 1 YEOUETPIKN O1GTPOPT OTOTELOVV PacIKOVG
mopayovteg. Mn couPatikég €IKOVOANTTIKEG YeOUETPie OV epopudlovion 6e pun-
Babpovounuéveg kdpepeg etvot EdpaLOUEVES GE EQUPUOYEG TNG OPACT|G VITOAOYIGTAV;
AVTEG OMOGKOTOVV GE EMAVGELS VYNANG TayTNTag EMPApOVOVTAG TOV TAPAYOVTO TNG
akpifeag. H mpoPoikn Kdauepa mpocdopiletor o€ GLGTAUOTO  OLOYEVDV
cuvietaypévav  Omov  gpapuolovtal ypoupkol aAdyopiBuor.  ‘Evoc  céveopag
WOwiTEPOL  EVOLOPEPOVTOS €lvar 0 aQvikdg, 0 omoiog &lvarl omoAlayuévog amd
mpoPorkés JoTPoPEs. Apvikég pébodor €yovv peretnfel oto mlaiclo g
OVOKOTOOKEVNG YEOUETPlaG, €Eayyng onuelov kot tng onmuovpyiocg veodv oty
OpOoT) VTOALOYIGTMV; WGTOGO TOAV-EWKOVIKES HEOOOOL Yo LETPNOT OVTIKEILEVOV LE

VYN akpifeta dev eivar axopo eVPEMS O10OECES.

Avty n  pekétn gpeuvd TO  AQWVIKO  TOAV-EWKOVIKO  TWPOPANUO  amd TNV
QOTOYPOUUETPIKN okomid. Eva véo apvikd cuotnuo cuvopbmong g déoung €xet
avartuyfel yioa dedopéva PETPNONG ONUEI®V TOL TTAPATNPOVVTIOL GE EMiyEln dikTVval
ewkovov. To ocvomua emrpénel Pabpovouncn, mPocavATOMGUO KOl LITOAOYIGUO
onuelowv o610 y®po Tov avtikeévoy. EmeEepydletor ©G €AOYIGTOTETPAYDVIKN
enthvon pe VYNA meEPIGOEN TOPEYOVIONG OTOTIOTIKN OvAAVLoT. ApIKES TIUES
OVOKTOVTOL LEG® GLVOVOGHOD EUUECHV TPOOTTIKAOV Kol AUECHV APIVIKMOV POVTIVAOV.
H oavéntoén tov ocvotquotog €otidlel 6TOV  VTOAOYICUO TO®V  TAPAUETP®V
TPOCOAVATOAMGCUOD,  CUVIETAYUEVOV — ONUEI®V  OVTIKEWEVOL KOl ECMTEPIKNG
BaBuovounong pe 1t dSvvatdémra va mpocdlopiletor TO GVOTNHO  OVOPOPAS
(e&mTepikég 1 0MTEPIKES OEGUEVGELS), TNG KAMLOKOS TOV GEVOOPO KOl TNG OKTIVIKNG
owotpoens. H avantuén tov alydpiBpov vrootmpileton pe meprypaen e pnebddov

HE O€0OUEVO. TPOGOUOIONG. YTOAOYIGUOG OPYIK®OV T®V KOl EQOPUOYN TOV
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aAYOPIOLOL EKTILMOVIOL HE OTATIOTIKOVS OEIKTEG, GUYKAION TOL daAyOplOUoL Kot
GLOYETION TOV TOPAUETP®V. O YDPOG TOV AVTIKEYEVOL EAEYYETOL LE OEIOAOYNOT TOV
GUVTEAEGTMV GLGYETIONG YOl TOL CNUEID TOV YDPOL KOl TOV EAAENYOEWDDV GOAALOTOG,
H «Mipoxo tov cévoopa eAéyyetal pe ocOYKPLON CLOTNUATOV KAPEPAG HE HETPOL
eomTEPIKNG Kot eEmTepkne axkpifetag. o v aveEdptnn a&oddynon g uebosov,
Eleyyog epapuoleton pe ocvuPatikd cvomuo peBOdoL ™G dEoUNG e TOPOLOLOVG
ogikteg. O VITOAOYIGUOC TOV OPYIKOV TIUOV TOV TEPOUOATIKOV OESOUEVOV £)EL
mpoéAdel amd okpiP] diktva €KOVOS avapopds. AAnOM aewvikd diktvo €KOVEOV
AopPavovtar pe Eva ontikd cvotnua (~1M pixel CCD kauepeg ommldueveg e 0.16X
TNAEKEVIPIKO PoKO). Avdivon tov eAéyyov emPePoidvel 0Tl TO aAPVIKO HOVTELO
amodidel anoteréopata pe RMS ocpdipo siodvag vroynedkng Taéng Kot axpifetog

NG TAENG TOV HEPIKMV OEKASMV UIKPDV GTO YDPO TOL OVTIKELLEVOU.
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1. Introduction

Photogrammetry is primarily focused on camera calibration, orientation and object
reconstruction. Since its origin, perspective-based imaging sensors have been widely
utilized particularly in industrial, archaeological and medical applications. In
principle, the main aim of photogrammetric processing is accuracy. The norm is to
apply robust bundle adjustment tools for both parameter estimation and object
reconstruction. A similar sensor-based discipline is computer vision which is
generally open in variant imaging geometries focusing on the implementation of
uncalibrated cameras and automation. The projective camera is defined in
homogeneous terms and linear algorithms are employed. Current state of the art is
system automation and often fusion of intensity and range imaging sensors. Thus,
integration of photogrammetry and computer vision approaches is a fact, particularly

when considering their significant overlap in close range applications.

This research reports on the investigation and development of the affine sensor model
adopted from the computer vision community. It offers a processing framework in the
context of multi-view modelling from affine images. Specifically a new bundle
adjustment system has been developed and applied in close range images arranged in
strong convergent network configurations. The developed system allows calibration,
orientation and three dimensional (3D) point estimation in a photogrammetric
approach. This implies that the system is processed as a least squares solution with
high redundancy and that it provides statistical analysis of the achieved quality. To
introduce the research covered within this thesis, the following sections are outlined
to provide the context (see section 1.1.), motivation (see section 1.2.), problem
statement (see section 1.3.), research objectives (see section 1.4.) and tools (see

section 1.5.) as well as a summary of the thesis structure (see section 1.6.).

1.1. Context

Photogrammetric modelling and measurement approaches are highly dependent on
correct camera calibration and orientation. Frame perspective-based sensors are
typical in established close range systems (Maas, 2008). In industrial applications
such systems are calibrated based on routine self-calibrated bundle adjustment
strategies with quality assessment (Brown 1974; Granshaw, 1980; Clarke and Fryer
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1998; Triggs et. al., 2000; Gruen and Beyer, 2001; Fraser, 2001). In fact processing
usually implies the establishment of geometrically strong (wide baselines, angle of
convergence and intersection rays) imaging networks. Planar or volumetric arrays,
artificial high contrast or natural signalized point features, controlled illumination and
stable calibration conditions are some of the physical requirements. It is natural that
these are aspects concerning the algorithmic framework within which calibration and

orientation are implemented.

Besides the establishment of camera calibration and orientation, applications in
architecture, cultural heritage and medicine, the main areas of close range
photogrammetry, generally require the production of complete (without voids)
textured 3D models. Image based approaches applied in such instances are based on
stereo or multi-image matching strategies (Remondino and Zhang, 2006). At larger
mapping scales alternative techniques combine images with laser scan range data. The
accuracy achieved is dependent on the registration and texture mapping methods (EI
Hakim et. al., 1998). Where data registration is concerned this can relate to a
geometric transform between different sensors, views or temporal variations (Zitova
& Flusser, 2003). Approaches that are based on intensity and feature correspondences
are typical; yet they result in seamless pairwise problems that are propagated within
the final model and reduce the quality as a result (EI-Hakim et al., 2004). Subsequent
texturing may rely on a projective transform between for example the triangle plain
(of a model) and the texture (of an image). However, significant distortions can be
visible at triangle edges particularly regarding radiometric differences, even if correct
calibration and orientation are considered (Grammatikopoulos et al., 2005). Object
geometry and texture, as well as metric requirements, dictate the approach followed at

different instances.

In close range imaging the perspective sensor can present strong scale variation, non-
consistent sampling as well as inner geometric distortions. In fact applications that
focus on fine object detail measurement of objects that occupy volumes of a few
centimetres in object space, scale recovery becomes critical. An alternative imaging
situation is the affine projection which connects image and object spaces through
parallel lines of sight. It is characterized by an invariant scale factor and given the
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parallelism of observation lines no perspective projection is involved. As a result, the
image plane can be positioned anywhere along the optical axis while oriented
orthogonally to the imaging rays. The affine is a generic sensor model which is closer
to the Euclidean reconstruction, it was firstly introduced by the computer vision

community and it can thus be found in associated literature.

In structure from motion problems the affine sensor has been implemented with
geometric approaches based on local coordinate frame methods (Koenderink and Van
Doorn, 1991). Tomasi and Kanade (1992) proposed a non-local coordinate frame
method applied in the total scene points, but problems regarding rank considerations
have been observed. Definition of a coordinate datum is based upon the centroid of
targets cluster. Shapiro (1995) follows an extended multi-view approach based on a
singular value decomposition (SVD)! solution. In image analysis Mikolajczyk &
Schmid (2004) outline a series of interest detection methods which are invariant under
scale and affine transforms with main objective the performance evaluation of these
methods. From the photogrammetric standpoint the affine sensor has been employed
in mathematical problems that for example explore initialization of orientation
procedures (Kyle, 2004) or perform long distance measurements (Ono et. al., 2004).
El-Hakim et al. (2004) apply image-based registration methods based on an affine or
projective model® for the purpose of image mosaicing. In fact, in mapping
applications orthoimage generation is the result of aircraft or satellite imagery in the
aerial processing domain or architectural mapping in the close range. This can be
regarded as a special case of image resampling where the spatial resolution of the
source image in combination with the resolution of the digital elevation model (DEM)
in digital photogrammetric workstations (DPW) identify the final quality of the
product (Agouris et al., 2004). Where texturing is concerned, Weinhaus & Devich
(1999) have demonstrated a hybrid projection model based on a unified perspective
and affine projection model that can be optionally adapted for the purpose of mapping

textures onto planar polygons.

! Singular Value Decomposition (SVD): If A is a mxn real matrix with m>n, then matrix A can be
written based on the SVD form: A=UDV" (Wolfram, 2009b).

2 An affine transform involves six parameters and it is generally composed of translation, rotation,
scale and orthogonality (scaling direction) parameters. The affine transform can be upgraded to
projective by incrementing the transformation parameters by two. The resultant eight parameter
projective transform will generally map parallel lines to convergent.
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1. Introduction

1.2. Motivation

Imaging projection is the process that connects a two dimensional (2D) image with
3D object space to recover geometry. From the close range viewpoint, affine images
have not been widely utilized in practice. A primary reason for this is the fact that
such real images are acquired with dedicated machine vision systems which are not
general purpose cameras. In fact these sensors are characterized by a limited imaging
footprint and range with a simultaneous increase in image scale. Nevertheless,
minimal geometric distortion, as well as consistent image sampling, can significantly
enhance the quality of modelling (for instance in a multi-view framework) from pure
affine images. In the context of establishing a close range convergent network of
affine images the modelling task becomes the intersection of the 2D to 3D lines of
sight in order to calibrate, orientate the employed sensor and coordinate points in 3D.
Photogrammetric processing of such data requires the ability to include full error

propagation within the system for statistical analysis.

This thesis presents a new multi-view modelling algorithm for the processing of point
based data structures measured on affine images in the close range. The method is
appropriate for close-range convergent image networks acquired with an affine
machine vision system. System initialization is performed from a set of artificially
high contrast signalized geometric structures. The algorithm is processed in the form
of a bundle adjustment system supported with statistical analysis. Both stages of
initialization and bundle adjustment processing are evaluated in a methodological
approach starting from a simulation project and subsequent testing with real world
datasets. Assessment is extracted at each stage with statistical indicators, correlation
analysis as well as independent checks according to the demands of testing. It is noted
that the employed datasets are purpose built geometric structures of varying geometry

and that they are implemented in order to evaluate practical aspects of the method.

This work focuses on the investigation and implementation of an affine multi-view
modelling framework which can be seen as an initial research work towards complete
3D modelling from pure affine sensor imagery. In this context, and as far as affine

multi-view modelling is concerned, the method can be applied in any application
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1. Introduction

where non-contact fine object detail measurements are required such as metrology,

archaeology and medicine (see section 2.2.).

1.3. Problem statement

This research work seeks the answers to the following fundamental questions:

Is it realistic to generate, measure and process real affine multi-view images
within a modelling framework in the context of deriving precise close range
object measurements?

In the context of such a framework, how do sensor geometry (parallel
projection rays, invariant scale factor and calibration) as well as local
coordinate frame (datum) influence method precision and 3D point estimation
(object geometry)?

What is the quality of affine multi-image modelling in comparison to

established photogrammetric solutions?

1.4. Research objectives

Built upon the problem statement the main objectives of this thesis are formulated as

follows:

1. To investigate the affine sensor model for the multi-view imaging case from

the photogrammetric standpoint. On this basis the main aim is to develop and
propose a framework that offers the potential to accommodate sensor
calibration, orientation and 3D object measurement. In addition the method
needs to be capable of catering for full covariance matrices and therefore to
provide measurable outcomes with regards to the method’s quality evaluation.
It is stated that affine sensor development involves both study of theoretical
aspects (e.g. starting value derivation, algorithm design and method
development with simulation data) as well as treatment of practical aspects
(e.g. method application for real world test data acquired with an affine
system).
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1. Introduction

2. To assess the method intrinsically in the aspects of (a) model parameters
estimation (b) algorithm convergence behaviour and (c) consistency of
parameters correlation.

2.1. Model behaviour refers to method initialization (reference measurements
and affine starting value estimation) as well as overall bundle adjustment
results. To achieve this, evaluation measures include implicit statistical
indicators (e.g. number of iterations, redundancy, a posteriori precision
factor and RMS image misclosure), 3D point precisions, residual vectors
and histograms visualizations, radial lens distortion profiles as well as 3D
check measurements.

2.2. Convergence behaviour assesses the aspects of algorithm convergence as
well as quality of convergence. Estimation and visualization of the change
in model parameters between successive pairs of iterations is one derived
measure for this purpose. Additional measures are model parameters
precisions and their visualization as well as the mean of absolute
differences between successive iteration pairs.

2.3. Consistency of parameter correlations are evaluated with inspection of the
correlation coefficient matrix patterns for different bundle adjustment runs
(e.g. external or inner constraints datum, control and tie point data
implementation and inclusion or exclusion of radial distortion parameter).
In addition, individual solutions are selected to illustrate correlations of
parameters where these are significantly large (the term large here denotes
correlation coefficients that are greater than 0.75 and 0.90 in magnitude).

3. To assess the method extrinsically in the aspects of (a) object space evaluation,
as well as (b) system scale invariance.

3.1. Object space evaluation refers to evaluation of bundle adjustment results
for datasets of different image sensor and quality, object geometry and
point data contribution (network geometry and point visibility). Measures
utilized to assess this aspect can include the method’s statistical indicators,
absolute 3D correlations with point proximity as well as 3D error
ellipsoids for the estimated point data.

3.2. System scale assessment relates to method evaluation for test datasets
acquired with different sensors. Prior measures applied for this purpose
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1. Introduction

involve the method’s statistical indicators. Further absolute differences can
be employed over external independent length measurements whereas
absolute differences between estimated and reference point data can be
considered as highly useful.

4. To assess the method quality aspect in relation to corresponding established
photogrammetric approaches. This aims on the evaluation of the developed
affine multi-view solution with regards to a well tested and well understood
perspective-bundle adjustment. Besides bundle adjustment statistical results,
3D point error ellipsoids and 3D point (control and tie point data) can be

utilized for the purpose of independent evaluation.

1.5. Research tools

To develop and implement the method that is demonstrated here a set of tools have
been utilized. The mathematical model was written and implemented in Microsoft’s
Visual Studio 2005 in C/C++ (Press et al., 2005) and was subsequently upgraded in
Visual Studio 2008. In support of implementation and analysis of the developed
multi-view framework additional tools were utilized. Particular mathematical model
testing and partial graphical output in some instances was performed in the
Mathworks Matlab environment (Mathworks, 2009). Initialization, image
measurement and reference data processing were implemented in the in-house
photogrammetric tool VMS 8.0. Additional educational and open source tools were
utilized to underpin experimental analysis and methodological testing.

1.6. Structure summary

This thesis is composed of seven main chapters supported by the references and the
associated appendices (see Figure 1.1). Chapters 2 - 4 form the core background to
this research work, Chapter 5 refers to the proposed modelling methodology
developed and implemented for the purposes of this research work, Chapter 6
analyzes and outputs the results and finally Chapter 7 summarizes the main

conclusions and discusses directions for future research.
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1. Introduction

Figure 1.1: Thesis outline.

In more detail the thesis contents are outlined as follows:

Chapter 2: Non-contact object measurement in the close range

This chapter provides the thesis’ context. The main concepts of photogrammetry and
computer vision are covered with reference to basic calibration and orientation
procedures whilst covering examples of close range measurement applications. Prior
to the analysis of any multi-view problem a first concern is to understand the digital
image formation process. This is the central topic of the subsequent chapter.

Chapter 3: Digital close range image formation

This chapter emphasizes the fundamental issues governing digital images presented as
a literature review. Aspects relating to close range image acquisition systems, digital
image characteristics in relation to quality and geometry, as well as measurement
methods are covered. The chapter closes with the fundamental camera calibration

models.

Chapter 4: Modelling from multiple views

This chapter is initiated from the starting point of a bundle adjustment overview to
place the current state of the art in modelling of frame cameras. Subsequently it
reviews the least squares technique and fundamental modelling of perspective
cameras, covering the aspects of self calibration and starting value estimation. It
introduces the affine sensor linked with a description of approaches found in the
literature. The concepts of datum constraints, network geometry and quality control

are additionally given.
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Chapter 5: Affine multi-view modelling

This chapter presents the proposed method, starting from the point of model
initialization to the full implementation of the affine multi-view framework. The
description of the method is given in analytical terms regarding its subsequent
implemented stages. In support of algorithm development the method is presented
from the standpoint of simulation. In this regard a synthetic test object is treated for a

subset of two, three and seven view geometry cases to describe the method.

Chapter 6: Results and analysis

This chapter covers the research results and provides analysis of the developed
method. Starting from a descriptive viewpoint of the designed test objects and image-
sets, this chapter addresses the developed method through a series of extensive test
cases where ad hoc aspects are evaluated. Particularly, the demonstrated approach is
investigated in relation to model behaviour, object space analysis, sensor scale
analysis as well as independent assessment. The test-data are initialized and
premeasured from precise reference measurements. Statistical quality and accuracy

measures are given for each of the test cases.

Chapter 7: Conclusions and future research

This chapter summarizes the findings of the research illustrating the central
conclusions and proposes future research work directions regarding algorithm

improvements as well as practical extensions of the developed approach.

The thesis is completed with the enclosed references and appendices that support the

methods and data processing where this is critical.
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2. Non-contact object measurement in the close range

This chapter is organized as a background chapter starting from the main areas of
interest which are relevant to this thesis (see section 2.1.). Subsequently some
application examples are given linked with an outline of some typical problems in the
close range (see section 2.2.). These topics are covered in the aspect of non-contact

object measurement in the close range in order to provide the thesis context.

2.1. Areas of interest

The central application areas of close range photogrammetry are industrial metrology,
cultural heritage and medicine. Nowadays a range of different approaches can be
applied dependent on the requirements, specifications and accuracy levels of the end
product, as well as employed sensors, tools and algorithms capabilities to name a few
factors. Figure 2.1 comprises an attempt to provide a diagram of the approaches that
find wide applications in studies of close range object measurements. Following the
structure of the diagram, these disciplines are referred to as sensor-based, subdivided
as photogrammetry and computer vision. In the antipode, geometry-based infer
computer graphics methods. The processes behind these areas present differences
related to accuracy, processing and cost as key factors but they share overlapping

interest in their suitability for registration and surface reconstruction tasks.

‘ Close Range Approaches
|

Sensor - based ‘ Geometry - based ‘
\

1
‘ Photogrammetry ‘ ‘ Computer vision ‘ ‘Computer graphics‘
[ [ [
¢ Wide — separated views e Close — separated views o Pair wise registration
e Convergent image networks | |® Orientation: automation o 3D surface reconstruction (graphics)
e Registration * Registration e Sensor and object dependent accuracy
e 3D Surface reconstructiom e 3D Surface reconstructiom ‘
° H|gh accuracy ° Fast, real time
L]

Reduced accuracy ¢ High cost. Non - commercial
I e Fast

\ e Range, feature, texture dependent
e Low cost. Non — commercial
o Fast
o Feature, texture dependent

Figure 2.1: Overview of approaches applied in close range object measurement.



Considering the image formation process, the image on a camera sensor is
intrinsically 2D and its pattern represents the geometric correspondence between 2D
image and 3D object spaces. In other words the two dimensional image is the
projection pattern of a perspective-based camera and this forms the basis of the
established processing approaches within photogrammetry. Computer vision aims at
robust solutions (with regards to the presence of outliers) and it is open in more
general cameras and uncalibrated cases following, for example, algebraic approaches.
A unified goal of both photogrammetry and computer vision today is to automate
solutions in the context of the specific application’s requirements. Within this
research the main objective is to investigate the affine sensor model originating in
principle from the computer vision areas but to develop and implement a multi-view
processing framework from the photogrammetric standpoint. In this regard, there
exists the necessity to firstly introduce these areas of interest, in particular to revise
key aspects linked with some applications and approaches. A good overview of the
core connections, as well as differences, of the subject areas of photogrammetry and
computer vision can be found in the literature (Foerstner, 2002; Hartley & Mundy,
1993).

2.1.1. Photogrammetry

Introducing photogrammetry the following definition is chosen:

Photogrammetry and Remote Sensing is the art, science, and technology of obtaining
reliable information from non-contact imaging and other sensor systems about the
Earth and its environment, and other physical objects and processes through

recording, measuring, analyzing and representation.

ISPRS Statutes and Bylaws (ST&BL) - Definitions (ISPRS, 2004)

Photogrammetry aims to derive accurate, precise and reliable measurements of the
world with prior focus on camera calibration, stereo measurement, 3D object
modelling and navigation. It typically focuses on high accuracy levels with classical
processing having its roots on geometric approaches. In close range applications there

is a particular focus on the creation of efficient measurement systems that are able to
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deliver precise measurements. In fact the increased use of Charge-Coupled Device
(CCD) and video based cameras have resulted in a broad use of uncalibrated cameras
which opened the area to new applications. Main implementation strategies are based
upon the fundamental basis of perspective sensor modelling (see section 4.3.2.) and
processing involves robust self-calibrated bundle adjustment systems (which is the
central topic of Chapter 4). Standard photogrammetric treatment utilizes direct
minimal or iterative least squares estimation solutions (see section 4.2.). The essential
problem of starting value evaluation (see section 4.3.5.) is recovered on the
assumption that the correspondence problem is solved, however automation in this
area is limited. Whilst, in many applications, the direct linear transform (DLT) (see
section 4.3.3.), the essential matrix (originating from the principles of stereo
geometry) and the spatial similarity transform can provide sufficient solutions, bundle
adjustments offer highly robust solutions with full statistical analysis which is critical

to photogrammetric processing and assessment.

2.1.2. Computer vision

Introducing computer vision the following statement is chosen:

Computer vision has at least two aspects. It is an engineering discipline aiming at
working solutions and it is a natural science discipline aiming at understanding the

human visual system.

Computer Vision and Remote Sensing - Lessons Learned (Foerstner, 2009)

Computer vision is a field strongly connected with areas of mathematics and
computer science and loosely connected with physics. It focuses by concept on the re-
invention of silicon-based vision to imitate or even replace biological vision.
Geometric computer vision refers to the description of the way the appearance of
objects changes when viewed from different viewpoints as a function of the object’s
shape and the camera’s orientations (Hartley & Zisserman, 2004a). Computer vision
presents a close relation to the fields of image processing, pattern recognition and
scene analysis (Trucco & Verri, 1998). In Gruen (1996) it is stated that computer

vision addresses the theory and fundamental algorithms of image and scene analysis
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whereas machine vision is linked with the sensor models and the associated systems
including hardware issues. Horn (1986) specifies that the central issue of machine
vision is to generate a symbolic description (output) from one or more images (input)

as illustrated in Figure 2.2.
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Figure 2.2: A machine vision system’s task (source: Horn, 1986).

In practice, 3D computer vision shares one common task with photogrammetry and
this is geometry. Its main goal is to compute 3D properties of the world from image
sequences, namely recovering the cameras pose and 3D structure of the scene
(structure from motion problem). The studied scenes can be geometric in shape and
position (static) or include moving parts (dynamic). The typical norm is to utilize
uncalibrated cameras particularly where there is no a priori knowledge about the
camera (unknown internal camera geometry or interior orientation) or the cameras are
equipped with zoom optical systems. For example, in robotics applications, a robot
may be moving while zooming and unzooming in the absence of any internal or
external camera parameters. The key advantage of employing uncalibrated cameras is
that they allow exploitation of projective geometry in full. In computer vision the 3D
to 2D mapping is expressed as a linear mapping of homogeneous coordinates®.
Solutions based on linear systems are employed with the DLT method being the most
straightforward solution (see section 4.3.3.). Regarding minimal solutions more robust
techniques are usually employed. In the context of computer vision-based strategies,
self-calibration starts from uncalibrated cameras aiming on a projective or better an
upgraded subsequent Euclidean reconstruction. Algorithmic performance is usually

assessed with error analysis.
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2.1.3. Comparison of photogrammetry and computer vision

Photogrammetry and computer vision present a common interest in geometry and
statistics. Close range photogrammetry usually involves highly controlled imaging
situations with known camera calibration (although this is not the case in intelligence
applications) and concentrates on a consistent global geometric description of objects.
Computer vision on the other hand is more flexible regarding imaging geometries and
implementation of uncalibrated cameras but usually achieves lower accuracy levels.
However, in consideration of the average projection error this is small compared to
the projective error from an incorrect calibration model, for example. Moreover,
computer vision is view-centred based on algebraic solutions utilizing homogeneous
coordinates. It is fast (real time applications) utilizing linear-based algorithms at the
expense of precision. Common application paradigms are robot navigation as well as
control of autonomous vehicles. On the contrary photogrammetry is world-centred,
usually based on robust, error model propagated solutions aiming at high precision
object measurements. Object measurement and performance evaluation of
photogrammetric approaches usually require assessment over high order precision

reference measurements (with the establishment of benchmarks as an example).

2.2. Applications examples

It is reiterated here (see section 1.2.) that as far as affine multi-view modelling is
concerned the developed approach can be extended towards its application in any
field that focuses on fine object detail measurement such as industrial metrology,
cultural heritage and medicine, typical application areas of close range
photogrammetry. Within this scope, such application examples are subsequently
given. Particularly these are supported in the context of providing some cases that
could potentially offer their measurement data acquired for application of the method.
The measurement data reported here have been acquired with passive (e.g. cameras)

or active (e.g. laser scanners) systems, as follows.

* Homogeneous coordinates represent a point in 3D as a four-vector X=(X,Y,Z,T)" which represents
the point (X/T, Y/T, Z/T)" in non-homogeneous terms and in image space a three-vector x=(x,y,t)"
representing the point (x/t, y/t)" in the associated non-homogeneous representation.
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2.2.1. Spatial measurements with passive systems

In close-range engineering applications it is often the case to select the tools
(hardware and software) and engineer the object of interest to make it compatible with
the available measuring procedure. Figure 2.3 illustrates such a measurement example,
where sparse image data are required for the purpose of digital image recording. In
particular, the image on the left illustrates a geometric object with distinctive digitized
natural details, whereas the image on the right shows a 3D calibration structure with
coded and retro-reflective targets that cover an equivalent measurement volume in
3D.

Figure 2.3: 3D object measurements. Measurement object of constructivist sculptor Naum
Gabo (left) and calibration object of UCL laboratory (right) (images supplied by Tate Britain,
October 2007).

In this example (see Robson et al., 2008) the object of interest is a geometric 3D
structure with key characteristics being the object’s transparent and plastic material
which primarily mean that no natural features (textured areas) can be utilized for point
identification and measurement. Yet, the object’s physical geometry; that is geometric
sections and edges (linear discontinuities in intensities values) could make it ideal for
methods that for example utilize linear-based processing (Heuvel, 2003). For
derivation of a sparse point-cloud with photogrammetric processing, the Hasselblad
H2D and H3D were employed. These high resolution systems offer an analysis of ~39
M pixels (pixel size: 6.8um and format: 7,216 x 5,412 pixels). Both objects of interest
and calibration volume were located on a turntable, illuminated with controlled lights
and marked with purpose-built artificial white markers, retro-reflective and coded
targets (see section 3.3.1.) in order to achieve high contrast measurement features in

image space. As a result the objects were imaged from a systematic range of
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viewpoints including subsets of rolled images about their optical axis (imaging range:
~0.5cm). Data processing has been performed with a set of 3D technologies (cameras
and laser scanners) and available software tools (VMS 8.0 and Geomagic Studio 7.0)
that have been applied for the purpose of 3D measurement. Consequently, the applied
multi-image bundle adjustment resulted in sparse point-cloud estimation, providing
calibration, orientation and measurement parameter estimation as well as associated
precisions (3D target precision= ~15.8um; relative precision for the image network=
~1:40,000). In this particular selected example the object’s lack of natural textures as
well as the combination of data acquisition with the data processing chain (based on
commercial systems) precluded the followed methodology from delivering fully
textured 3D models. The main limitation of this approach was the conjunction of the
noisy laser point data (given the object’s transparent surface) together with the
registration mismatches (due to software inability to handle 3D registration between

different coordinate systems).

2.2.2. Spatial measurements with active systems

Quality assessment of small or large industrial products, monitoring and recording of
historical monuments or organic objects in medicine and multimedia or realistic 3D
models for virtual modelling in archaeology and heritage are some of the relevant
applications where active laser sensors are employed. Such spatial measurements
focus on the modelling of clouds of points in 3D delivering geometry or intensity
values. The modelling procedure is bound to a set of processing steps (registration,
modelling, texturing, visualization) that at each stage can present key deficiencies. A
problem of prior significance is the 3D to 3D registration mismatches due to
limitations in standard or commercial approaches usually based on a 3D similarity
transform. In most cases such a transform is implemented with strategies based on the
iterative closest point (ICP) algorithm and modifications (Besl & McKay, 1992).
Systems utilized for spatial data processing are generally classified as triangulation or
time of flight. Triangulation-based systems are applicable in ranges varying between
0.1-1m and their operational principle relies on the projection of a light spot or profile
onto an object’s surface which is subsequently recorded by one or two CCD cameras.
Time of flight systems are applicable in ranges between a few centimetres to several

kilometres and they record the range to the object by the estimation of the time that
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light needs to travel from the sensor to the object and return (roundtrip). A relatively

recent overview of typical active systems can be found in the literature (Blais, 2004).

The case example given here demonstrates a set of data acquired with a Metris
handheld CMM* laser scanner. Figure 2.4 illustrates an experimental alabaster
sculpture scanned with the Metris laser scanner and its derived raw point cloud which
has been visualized in Raindrop Geomagic software (Geomagic Studio 7.0, 2006).
Another form of data has been acquired and presented in the same figure where a
wooden object has been scanned with the same system and subsequently triangulated
providing a crude visualization of a local detail of the object (visualized in the

Pointstream 3D Image Suite software).

Figure 2.4: Laser scan data. Point cloud of alabaster sculpture (top) and triangulated irregular
network of wooden object (bottom) (data acquired in May 2006).

The Metris tool is a triangulation system which hosts a red laser light (wavelength
670nm). It projects a profile line (2D) by means of a CCD camera which forms an
angle of 30° to the laser plane. The returned reflection is a function of the object’s
surface as well as the intensity of the laser line. It is particularly important to note that

there exist particular measures that aim on system acceptance and reverification of

* Metris handheld CMM hosts the LC50 laser scanner. The scanner has a FOV 50mm, a data
acquisition range of 100 mm and collects 19,200 points per second.
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such optical 3D measuring systems relying on measurements of calibrated artefacts.
As an example the three dimensional length measurement error which is evaluated
from the difference between measured and calibrated distances between two
distinctive points is reported. Specifically, the definition of the quality parameter
length in such measuring systems is similar to that in 1SO 10 360-2°, which is now
monitored in the guidelines VDI/VDE 2634° (see section 4.7.). Problems encountered
with such systems are related to the sampling (see section 2.2.4.3.) and resolution of
the data points as well as data voids due to surface occlusion problems. In order to
generate clean, complete and registered data from scanning systems significant post-

processing is required.

2.2.3. Related measurement examples
In the context of covering some case studies related to close range object
measurement and applications this section reviews key paradigms that can be found in

the literature.

Gruen et al. (2003) and Gruen et al. (2001) follow a data processing strategy
(including phototriangulation, image matching for surface model generation, point
cloud editing and view-dependent texture matching) applied into particularly difficult
situations regarding surface structure and complexity with the ultimate goal being the
production of textured 3D models. Whilst the authors show that their method is robust
for datasets sensitive to blunders, the employed image matching method presents
failure cases in imagery with large scale differences. Thus the authors applied a
weighted averaging scheme to reduce the effects of radiometric differences in
adjacent images. Pollefeys et al. (2003) and Pollefeys et al. (2004) proposed a very
similar 3D recording approach employing an uncalibrated approach (a change in the
focal length and remaining interior parameters in the video sequences is allowed)

based on pixel matching, bundle adjustments and 3D model texturing. Results prove

> Established in 1994 the international standard 1SO 10 360 ‘Acceptance and reverification tests for
coordinate measuring machines (CMM)’ describes test procedures for CMM applications including
length measurement, form inspection, use of rotary table etc (1ISO10360, 1994).

® The VDI / VDE 2634 guideline was drafted by the technical committee “Optical 3D measurement of
the Society for measurement and automatic control (GMA) and by the working group ‘Close Range
Photogrammetry’ of the German Association for Photogrammetry and Remote Sensing (DGPF).
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that incorrect camera motion and calibration computations may enforce a global bias
on the model reconstruction. Yet the method can deal with object complexity which is
key, particularly where a high degree of realism is demanded, and can therefore be
used as a scale model for generation of reference measurements (derivation of
absolute localization and scale). Moreover, Gruen & Acka (2005) treat the registration
problem as a surface matching task which in essence is based on a generalization of
the least squares matching process allowing for the analysis of the final quality
through statistical tools. A recent overview of the registration methods highlighting
some key problems regarding mainly the 2D to 3D and 3D to 3D based approaches
for object measurement in the close range can be found in (Remondino et al., 2009).
Finally, Betham et al. (2009) present a 3D free-form surface measurement system
built upon a strategy employing stereo-image matching with focus on the
measurement of dynamic surface deformations. The implemented strategy is flexible
in that it handles the problem of visibility and occlusions on the knowledge of object
shape and position in 3D. Common factors to the success of the employed approach
are related to the application’s requirements (specified point density and accuracy)
and limitations (object size, surface condition and surface characteristics like shadows

and occlusions).

2.2.4. Typical problems in close range object measurement

Considering the referenced applications examples (see section 2.2.) it follows that the
problems dominating close range object measurement have their source in the
physical formation process. The image formation process starts from a light source
which emits light energy falling onto an object’s surface (irradiance given in Wm)
and is back reflected to act as an incoming ray (radiance given in Wm™sr™) through
the angular aperture of the optical system hitting the image plane where the camera’s
photosensitive device is located. Figure 2.5 illustrates the fundamental imaging process
drawing a vector of incident light (I), the surface normal vector (N) as well as the
vector of which forms the direction of the scene irradiance (R) at an object’s surface
point (P). For example the radiance of opaque objects (e.g. mirror and carbon black)
that do not emit their own energy depends on the strength, position, orientation, type
(point or diffuse) of the light sources, and ability of the object surface to reflect

energy as well as the local orientation of the surface (with relation to the surface
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normal). Radiometry is fundamental to the imaging procedure, however it is regarded
as complex and numerically instable. The reader is pointed to further literature for
detailed coverage of the critical concepts of radiometry and associated methods (see
Sonka et al., 1999c as an example) as here the main approach and hence research

focus is driven by geometry.

Light source
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Figure 2.5: Illustration of the fundamental imaging process.

The main practical problems in the imaging process can arise from the system’s
optical parameters (e.g. lens, focal length, FOV and angular properties in the case of a
photogrammetric camera), photometric properties (e.g. illumination, reflectance and
physical effects of the sensor) and geometric parameters (e.g. camera projections, 3D
pose and geometric internal distortions). Additionally to these, equally fundamental
factors include the discrete nature and quantization of the intensity scale (see section
3.1.1. for imaging sensors). Viewing projections, scale and sampling are three
concepts that are fundamentally linked with the geometric transformation between 2D
and 3D space (see sections 2.2.4.1., 2.2.4.2. and 2.2.4.3.). A key factor is however
how these properties interact with real objects that can often present high geometric

complexity, occlusions, shadows or surface reflections.

2.2.4.1. Viewing projections

A digital image is a discrete 2D array of numbers (light intensities or distances).
When considering the imaging sensor, besides its geometric and radiometric
characteristics, a prior factor that identifies data processing and method
implementation is projection. In geometric terms projection is the result of the image

acquisition process. Following the classification of cameras after Mugnier et al.
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(2004), and assuming that the image to object space correspondence is realized
through a definite projection center, the following definitions are given (see Figure
2.6). An Euclidean camera, the typical camera met in photogrammetry, is generally
identified with a principal point and it can be reduced to a normalized camera which is
given with a principal distance c=1 and the rotation matrix being the identity matrix
(R=1). An ideal camera is subsequently a camera ascribed with its camera constant
considering that the image coordinate system coincides with the principal point.
According to the same author, the basic property of an affine or projective coordinate
system camera is the invariance of straight lines including optionally a principal point
offset, a shear and a non-isotropic differential scaling. Finally the concept of the
general camera is introduced as a camera that does not preserve any straight lines and
additional parameters may be incorporated for modelling additional sensor distortions.
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rotation  translation affinity stralght line
pertubing parts
exterior orientation interior orientation
>

normalized camera

»
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camera with affine sensor coord. system / projective camera
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»

general camera

Figure 2.6: Camera models (classification follows Mugnier et al., 2004).

Imaging an object with a perspective based sensor will in general introduce geometric
distortions (due to convergence imaging geometries, large object surface slopes and
differences in depth) (see section 3.2.2.) which can be significantly large in the close
range and will necessitate appropriate sensor modelling. The alternative affine sensor
has a projection centre at infinity. It is the generalization of orthographic, scaled
orthographic or parallel projection cameras and it realizes the image to object space
correspondence minimizing perspective distortions. However, this projection does not
connect image and object spaces in a one-to-one relation; the projection is realized

through a constant scale factor. In fact a real affine camera can include identical
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physical parameters when a natural camera is considered (Hartley & Zisserman,

2004b) (see section 3.4. for a detail reference of camera models).

Figure 2.7 provides an overview image of an alabaster object together with two close-
ups of a selected object detail and their associated projections when imaging a 3D
volume (drawn as a cube). The test alabaster object has been imaged with one affine
and one perspective sensor from an identical range (~175mm). The employed affine
system in this case is a Sony DFW-SX900 (pixel size: 4.78um, format: 1,024x768
pixels) fitted with an optical telecentric system (MVO® TMLTM/0.16x lens) whereas
the perspective system is comprised of the same Sony sensor fitted with a Fujinon,

f:16mm lens (see sections 3.1.2. and 3.1.3. for technical systems characteristics).

S Perspective

True _ View
Orthographic

View

Figure 2.7: Image data of an alabaster sculpture. Affine and perspective image sensors (top
left and top right respectively) and corresponding projections (bottom).

Considering the Sony sensor characteristics as well as the need to establish an
identical imaging viewpoint, these views illustrate the differences in object coverage
and perspective distortion between the two lens types. It is evident that the affine view
has a significantly constrained footprint as well as depth of field which would pose it
impractical in instances of measuring objects of large sizes exceeding for example the
viewing capabilities of the utilized sensor. Particularly the selected detail covers an
area of 41.67mm x 31.28mm (blue framed) when imaged with the perspective sensor

and it is reduced to 23.81mm x 17.87mm (green framed) when this view is acquired
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with the affine sensor (complete object covers a 3D volume of 246mm x 223mm x
40mm). As a trade-off the parallel projection image can be apparently ideal for local
object modelling due to its uniform magnification factor. As can be seen, the
perspective sensor (besides its geometric distortion particularly at the edges of the
image) can not enhance very fine object details (small in size) that could be otherwise
modelled with an affine camera. An example of objects presenting very fine details
are given in (Remondino & Zhang, 2006), where it has been shown that stereo or
multi-image least squares matching approaches can be applied but again these are

based on the established perspective sensor geometry.

2.2.4.2. Scale

Scale is key factor in every projection problem particularly recovering the 2D to 3D
image space to object space relation. In close range object measurement it is usually
the case to present the inability to recover 3D scaled models or link 3D model space
with a 3D object space coordinate system. In pure geometric terms scale is in essence
the product of the transform acting between different processing spaces. Scale factor
calculation for perspective sensors is given by the ratio 1 / k = ¢ / h (where: k= scale

factor, c= camera constant and h= range measured from the mean object’s depth).

To illustrate image scale in the 2D image formation process the typical 2D system is
illustrated as follows (see Figure 2.8). Origin of this system is the upper left corner
whereas the restitution of the relation between the image space coordinate systems is

given in Appendix A.
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Figure 2.8: Digital image coordinate system.
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CCD based cameras (see sections 3.1. and 3.2.) generate a NxM numerical array of
pixels (where: N= rows and M= columns). The location of a point in image plane can
differ when this is measured with CCD elements (image pixels). More precisely it is
noted that n/N and m/M (where: n= horizontal light sensitive photosensors and m=
vertical light sensitive photosensors, in a nxm CCD rectangular grid) are not the only
parameters that are held responsible for a different scaling of the image with respect
to the CCD array in both horizontal and vertical directions. The same effect is realized
due to the ratio of the horizontal to vertical sizes of the CCD array (Trucco & Verri,
1998). This parameter is the aspect ratio or affinity which is usually modelled as the

in plane distortions (see section 3.2.2.3.).

Within a system, scale recovery relates to the design of the employed algorithms to
recover scale. For example 2D approaches are vision-based and 3D approaches are
graphics-based (see section 2.1.). In image analysis scale is highly important
especially in methods based on edge detection (see for example the typical Canny
edge detector) or multiple scale description (Sonka et al., 1999a) specifically in
strategies that make use of the reduced resolution datasets (image pyramids).
Operations on the image scale space (Koenderink, 1984) apply Gaussian filters with
varying standard deviations which can be very useful to extract features by isolating
them for example at lower resolutions (processing at individual description levels)
and subsequently locate then at higher layers (Agouris et al., 2004). Implementing
image pyramids in image matching has already been discussed in Baltsavias (1991).
To place scale in context particularly implementation on a fine to coarse analysis
basis, it is pointed that in the direction of decreasing value of standard deviation large
scale events are localized (Sonka et al., 1999a). Shape invariants (e.g. cross ratio) and
invariant descriptors are beyond the scope of this text. The reader can find more
information on these topics in the computer vision literature (e.g. see Sonka et al.,
1999b for an overview).

2.2.4.3. Sampling
In the spatial quantization process of image formation (see section 3.2.1.1.) whilst
uniform aspect ratio is usually assumed the resultant pixels will in general be

rectangular. The sampling theorem specifies the highest spatial frequencies v
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(ve=1/2d, where: d= distance between adjacent CCD elements) whereas the diffraction
theory states that spatial frequencies v’ exceeding v.’ = a /Af (where: a= linear size of
the angular aperture, A= wavelength of light, f= focal length) are filtered out not
contributing to the spatial spectrum of the image. With spatial frequencies v, nearly an
order of magnitude less than v.’, aliasing effects can be present in the case where the
imaged pattern contains spatial frequencies exceeding v, (Trucco & Verri, 1998). In
detail the concepts of image formation and sensor characteristics will be given in the
subsequent chapter.

2.3. Summary

In summary this chapter introduces the reader to non-contact object measurement in
the close range. First the areas of interest, in particular photogrammetry and computer
vision, with some key principles, methods and solutions have been introduced.
Subsequently, some application examples are reported, firstly linked with case studies
from the current literature, as well as some ad-hoc to this work are reported at a
following stage. These pose the context of the developed method in relation to object
measurement applications. In addition typical problems that occur in relevant
situations (characterized by the viewing projections, scale and sampling) are

illustrated.
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3. Digital close range image formation

Implementing image measurements on digital images requires that the background to
the imaging process is firstly introduced. This chapter provides a review of the main
concepts, principles and methods that were utilized as a basis of this work, reviewing

or pointing where necessary to the related literature.

Although there exist different sensors modalities (photosensitive materials with
different spectral sensitivities) an image in the context of this text is generated by
conventional optical means sensed in the visible spectrum (A= 400-700 nm). The
camera systems (see section 3.1.) are decomposed with the description of CCD sensor
technology, close range cameras and machine vision optics. The output of the image
formation process, the digital image (see section 3.2.) is inherently linked with the
employed sensor. Its geometry can be reduced as a result of the internal geometry of
the optical system in combination with physical instabilities within the camera body.
The resultant digital image is then the fundamental source where measurement
methods (see section 3.3.) are utilized for data generation and initialization applied to
artificially signalized point-based data structures. The chapter closes with two image
projection models (see section 3.4.): the projective and the affine cameras; the

investigation of which introduces the central topic of this work.

3.1. Digital camera systems

Developments in sensor technology have resulted in electronic imaging systems that
utilize CCD and more recently Complementary Metal Oxide Semiconductor (CMOS)
-based sensors in combination with powerful local Central Processing Units (CPUs)
to increase performance, particularly flexibility at a lower cost. As a result, digital
camera systems open new applications in the domain of close range imaging. Figure
3.1 illustrates the basic functionality of an imaging system outlining its main units.
The generated analogue image collected at the sensor is converted into digital form by
an analogue to digital (A/D) conversion taking place within the camera in which case

a digital interface is utilized (RS422, camera link, USB, firewire protocol).



3. Digital close range image formation

Image capture — A/D conversion — Short term storage — Signal processing
\

<
Image transfer — Archiving — Networking

Figure 3.1: Functionality of an electronic imaging system (source of schematic structure:
Schenk, 1999).

3.1.1. Imaging sensors

CCD technology was originally developed in 1970 as a memory device by Boyle with
digital imaging systems based on CCD sensors effectively utilized in the eighties
when they replaced vidicon tube cameras (Smith, 2009). Since then, CCD electronic
cameras have been routinely utilized in camcorders, electronic still cameras to the

more recent machine vision and scientific specific systems.

3.1.1.1. CCD Principle of operation

Following the comprehensive studies of Lenz (1989), Luhmann et. al. (2006), Robson
& Kyle (2004), Schenk (1999) and Shortis & Beyer (1996) the operational principle
of CCDs is described here. Solid state cameras utilize a sensor composed of
photodiodes (with a positive region beneath the surface layer) or Metal Oxide
Semiconductor (MOS) capacitors (with a metal or polysilicon electrode layer). The
building block of the sensor is the semiconductor substrate which is silicon including
a silicon dioxide insulator layer at its top surface (see Figure 3.2). Light photons with
greater energy than the band gap energy of the semiconductor can be absorbed below
the sensor’s surface (depletion region) generating an electron-hole pair at each sensor
element (photosensitive detector). The electrons are attracted by the positive charge
and accumulated in the depletion region while the mobile holes move towards the
electrical ground. The charge accumulates at opposite sides of the insulator and the
actual charge is proportional to the number of absorbed photons under the electrode.
In the case of lower energy photons (that exceed the band gap with A= 1.lum
wavelength) these may penetrate the depletion region and absorbed outside resulting
in a potential that the electron-hole pair may recombine before reaches the depletion
layer noting that not every photon generates an electron that is accumulated at the

capacitor side. Hence, a CCD array requires an increased number of capacitors.
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Figure 3.2: The fundamental MOS structure (left) and a CCD sensor element (right).

Outside the spectral range of A= 400-1,100 nm silicon presents an opaque behaviour
in ultraviolet light and is transparent to infrared. The intrinsic absorption on the
material is limited with optimal energy to liberate electrons and therefore detect
radiation in the visible and near-infrared. Dark-current is the result in background
noise due to thermal effects. Longer wavelength radiation penetrates at deeper levels
allowing impurities to be introduced within the sensor. The generated number of
photons is linearly related to the number of electron-hole pairs and hence to the
charge level. Each sensor type has a finite potential well capacity with the result that
charge can overflow into the neighbour sensor elements causing blooming (see
section 3.1.1.2.). This is stopped by isolation of the sensor rows by electrodes, oxide
steps or channel stops. Sensor elements are typically arranged as one dimensional
(1D) or 2D arrays. Line sensors connect the active sensor element to a serial read-out
register to output the generated charge. In contrast, bilinear arranged CCD lines can
be coupled with two read out registers. The most common matrix-based sensors
transfer principles are the frame, full frame, interline and time delay integration
methods (see Figure 3.3).
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Figure 3.3: CCD sensors architecture (source: Luhmann et al., 2006).

- 49 -



3. Digital close range image formation

Frame transfer sensors (FT): Are composed of an active array that accumulates
charges, a storage zone and a horizontal read out register. Charges are moved
vertically from the sensor to the storage area which is read out serially per line
to the register. This architecture often utilizes a mechanical shutter that covers
the sensor during readout to reduce smear (continuous charge integration
during read out).

Full frame transfer sensors (FFT): Are a variation of the FT sensors where the
sensor consists of an active array (imaging area) and a serial read out register.
FFT sensors may present significant vertical smearing due to the need for long
transfer lines.

Interline transfer sensors (IT): Comprise one column of active detectors with a
column of transfer register. The accumulated charges in the sensor columns
are shifted into the transfer register columns and then read out serially
(horizontal register). The structure of IT and the discrete nature of sensor
elements prevent interlacing. Additionally aliasing (high frequency patterns
imaged at lower frequencies) is reduced by increasing the fill factor of each
pixel (for example by utilization of microlenses).

Time delay and integration (TDI): This sensor follows the forward motion
compensation logic where the sensor allows electronic linear motion
compensation. The charge is transferred during an integration interval where
charge is accumulated continuously during the next interval. On completion

sequential image read out is performed.

The read out method of a frame array based method can be interlaced as traditionally

used in television systems where the frame consists of odd and even fields where each

of these correspond to odd and even lines. Contrary to the interlaced method

progressive scan sensors record the whole frame at one instant. Progressive scan

sensors present higher vertical resolution in the absence of interlace artefacts.

3.1.1.2. CCD main characteristics

The basic attributes that characterize image sensor performance are related to image

quality (see 3.2.1.2.), and its reduction mainly due to spurious signals with various

effects. For example the more dominant effects can be the dark current (thermal
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3. Digital close range image formation

generation of electrons generated on the CCD both during illumination and read out),
blooming (intense light falling causes the generating photons to spill over
neighbouring capacitors), smear (given by the ratio of the change in brightness above
or below a bright area which covers the 10% of the sensor extent in the column
direction) and so forth. The most significant parameters that characterize a sensor are
summarized as follows (Edmund, 2006; Shortis & Beyer, 1996):

e Quantum efficiency: Is the ratio of the electron flux over the incident photon
flux and it is characterized by the spectral sensitivity. It depends on the energy
of the incident photon (dominated by the wavelength 1), the material (usually
silicon) and method utilized to collect the freed electrons.

e Resolution: Expressed by the Modulation Transfer Function (MTF) (given by
the contrast transfer against the resolving power, expressing the degree of
contrast degradation with spatial frequency) or the Point Spread Function
(PSF) (showing the dispersion of an imaged point of light through an imaging
lens). The limiting resolution of a system can be identified by imaging test
targets of varying or continuous series of frequencies.

o Fill factor: Is the ratio of the obtainable to the theoretical power or the ratio of
light sensitive area to the total pixel size.

e Spectral response: Directed by the quantum efficiency of silicon
(semiconductor material) and represented as a step function in the ideal case.
The spectral sensitivity of a CCD sensor can be extended by back side
thinning and illumination (astronomic applications).

e Linearity: Expresses the ratio of the maximum departure from linearity over
the full range of signal level to the maximum signal level.

e Signal to noise ratio (SNR): Stated as the ratio of the signal and its noise. It is
expressed in decibels as SNRgg= 20 logip (s/os) (where s is the signal
amplitude and o; is the standard deviation of the signal expressing the noise
caused by photon shot noise, dark current and circuit noise). High SNR is an
indicative measure of ‘good’ image quality.

e Dynamic range: Defined as the ratio between the peak signal level and the
system noise level. Given their large sensor element capacity, FT CCDs with
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3. Digital close range image formation

large sensor elements will have greater radiometric sensitivity (increased SNR

and dynamic range).

3.1.1.3. CMOS sensor overview

An alternative sensor technology is the CMOS sensor. Contrary to the CCD sensor,
where each pixel’s charge packet is transferred sequentially to an output structure for
charge to voltage conversion, buffering and readout, in a CMOS imager the charge to
voltage conversion is implemented within each pixel. This is the key difference which
differentiates both technologies with relation to the sensor architecture, its advantages
and shortcomings. Both CCD and CMOS sensors are equally reliable in consumer and
industrial applications. The general functionality of CMOS image sensors relies on all
circuit functions being positioned on a single integrated circuit chip. Timing, signal
processing A/D conversion interface are placed on the imager chip. As a consequence,
CMOS-based sensor systems have a reduced size. Main features constitute their
inherent anti-blooming ability, potential to readout Regions Of Interest (ROI)
(windowing), increased speed, operation with a single bias voltage and clock level
and less power consumption (Blanc, 2001; Butler, 2003; Litwiller, 2001; Litwiller
2005; Seitz et al., 1995). In contrast, CCD technology is characterized by high
quantum efficiency, low dark current, reduced pixel size, reduced operating voltages
(power dissipation) and improved signal handling with significant improvements

regarding performance, power consumption and sensor sizes.

The cost of CMOS imagers (silicon wafer fabrication material) can be considered
with relation to integration, adaptability and flexibility. The general acceptance that
CMOS imagers perform better is not always the case at high speeds and cost needs
always to refer to the application’s purpose. With CCD imagers dominating in general
purpose applications as well as in high performance applications (scientific, industrial,
medical, security and aerospace), CMOS are regarded as consumer specific devices.
CCDs can also be adjusted with relation to their functionalities (readout, speed,
dynamic range, digitizing depth and so forth) to fit the application’s requirements.
CMOS-based sensors can be considered as less expensive than CCDs when judged as

systems regarding circuit functions (timing, biasing, analog signal processing,
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interface and feedback circuitry) but not at a component level for the image sensor

function itself.

3.1.1.4. Colour methods

Acquisition methods for colour images are generally classified as spatial multiplex,

parallel acquisition, temporal multiplex as well as methods where the sensor is of true

colour type. The colour cameras utilized within this work are of the first listed type;

hence greater emphasis is given (see section 3.1.2.1. for camera’s systems

characteristics).

Spatial multiplex system is a single exposure system. It utilizes strip or mosaic
colour filter arrays (CFA) with most common the Bayer mosaic mask,
typically arranged as GRGB or RGGB. Area sensors are based on pixel
interpolation where the digital value of the colour band sensed by the photosite
is assigned directly from the received signal, the other two colours required to
form the red green blue (RGB) images are derived from the surrounding
pixels. However, subsequent demosaicing and resampling of pixel intensities
can reduce image quality.

Parallel acquisition system is a single exposure system. It is based on a colour
filtered prism arrangement or beam splitter that simultaneously projects
incident light onto three sensors with each sensor registering intensity of one
colour channel. The generated analogue signals are digitized in parallel. Based
on the beam splitting principle, these systems are freed from the pixel
interpolation method at the cost of increased complexity and physical size.
Temporal multiplex system is a three exposure system. Colour is recorded
employing a single sensor introducing a red, green or blue filter into the
optical system. Temporal sampling of the signal generates the digital RGB
equivalent of the three colour bands.

True colour sensor is a single exposure, single chip system. Foveon X3 sensor
is @ CMOS high resolution colour sensor (Foveon, 2009). It consists of three
stacked layers each of which has a different spectral sensitivity curve noting
that different wavelengths of light penetrate silicon at different levels. The

processed signals are registered to generate the RGB colour.
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3.1.2. Close range cameras

The selected camera system is strongly related to the application’s requirements. The
Kodak DCS (Digital Camera System) series can be considered as the first high image
quality single lens reflex (SLR) type cameras employing an area array CCD sensor
since the early nineties (Graham, 1998). Following the technological developments,
small format digital single lens reflex cameras (DSLR) with matrix sensors and an
integrated to the camera’s body storage device are commonly deployed. Close range
systems can be video (resolution: 780 x 580 - 1,900 x 1,100 pixels), high resolution
(resolution: 1,000 x 1,000 - 4,000 x 4,000 pixels) or scanning (resolution: 3,000 x
3,000 pixels - 20,000 x 20,000 pixels) cameras (Luhmann et al., 2006).

3.1.2.1. Systems characteristics

This section reviews the systems characteristics of three CCD-based digital camera
systems that were utilized within this research work as illustrated in the following
Table 3.1. In particular the listed camera systems were employed for the generation of
datasets utilized for initialization and measurement (Nikon D100 and Kodak
Megaplus ES1.0 camera systems) as well as for method testing and analysis (Kodak
Megaplus ES1.0 and Sony DFW-SX900 camera systems).

Camera system

Nikon D100 Kodak Megaplus ES1.0 Sony DFW-SX900
[AEE= ]
Sensor Nikon DX CCD KAI-1010M CCD % CCD
Transfer, readout IT IT, progressive scan IT, progressive scan
Colour filters Primary GRGB Monochrome Colour
[Bayer mosaic] [Bayer mosaic]
Effective pixels 3,008 x 2,000 1,008 x 1,018 1,280 x 960
Unit cell size (um) 7.8x7.8 9.0x9.0 4.65 x 4.65
Bit depth 12 8/10 24
Frame rate (fps) 3.06/5.09 15/30 3.75/175

(single channel /
dual channel)
Interface USB 1.1 RS-422 IEEE 1394 - 1995

Table 3.1: Synoptic specifications for CCD-based close range camera systems.
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The Nikon D100 DSLR camera (introduced in 2002) is appropriate for Nikon F
mount lenses. It is equipped with a 23.7mm x 15.6mm 12-bit RGB CCD sensor
rendering 6.1 million effective pixels. Data transfer is based on the interline method
and the GRGB Bayer mosaic filter (see 3.1.1.4.) is utilized for generation of colour
imagery (Nikon 2002; Nikon, 2009). As an example of the rapid development in
DSLR cameras technology, the Nikon D3X 24.5 megapixel camera distributed by
Nikon in late 2008 is given (see Figure 3.4 left). This camera system is the successor
of the D3 and D700. Based on a CMOS architecture (sensor size: 35.9 x 24.0 mm, FX
format, continuous shooting: 5.5 frames per second, lens type: Nikon F bayonet
mount) its high image quality and good dynamic range render sufficient colour
accuracy. The second listed camera is the Kodak Megaplus ES1.0 (predecessor of
Redlake imaging) which is a C mount monochrome video camera. The solid state
CCD sensor is an interline progressive scan sensor (see 3.1.1.2.) (analysis: 1 M pixel,
active image area: 9.1 x 9.2 mm) (Kodak, 1996). The camera is utilizing an RS-422
(Recommended Standard-422) twisted pair bus interface standard for data transfer to
the host computer. This camera system belongs to the class of high resolution
Megaplus cameras distributed by Kodak in the late nineties. An example is the Kodak
Megaplus 1.6i (sensor: Kodak KAF-1600, solid state FFT CCD) (see Figure 3.4 right)
which is constructed in a rugged, compact design (Robson & Kyle, 2004). Its 1,024
gray levels (readout method: progressive scan, analysis: 1.6 M pixels, continuous
shooting: 5.5 fps) and minimal dark current ensure such dynamic range and sensitivity
that in combination with its square pixels cover the demanding requirements in
industrial and machine vision applications, particularly when considering the time

they were manufactured.

Figure 3.4: Close range cameras. Nikon D3X (left) and Kodak Megaplus 1.6i (right).

The third camera system is a Sony DFW-SX900 which is a C mount digital video
colour camera utilizing a ¥ type interline progressive scan CCD. Nominal operational

values for this system are given (pixel size: 4.65um at full resolution: 1,280 x 960
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pixels); yet in practice data were captured at a resolution of 1,024 x 768 pixels with
this sensor (see section 6.2.2.2.). Colour imagery is generated based on the Bayer
mosaic pattern and there is the ability to adjust the gain of the video signal amplifier.
Sony’s primary colour filter CCD for colour reproduction and its square pixel CCD
eliminates the need for aspect ratio conversion in the image sensor (Sony, 2001).
Figure 3.5 illustrates the typical spectral characteristics curves of the Sony’s CCD
image sensor in the visible spectrum. Although high speed data transfer rate can be
realized (IEEE 1394 serial bus interface standard); for the purpose of data generation
single frame images were obtained. In all three utilized camera systems the raw
acquired image data were subsequently saved in the camera’s file format as defined

within the accompanied software.

Figure 3.5: Spectral characteristics curves - Sony DFW-SX900 CCD (source: Sony, 2001).

3.1.3. Digital cameras optics

Optical lenses are a key unit of a camera system. The standard approach is to utilize
off-the-shelf optics which in most machine vision applications can suffice over their
customized optics counterparts. The main considerations regarding the selection of an
optical system are a function of the levels of accuracy and reliability to be directed by
the application’s purpose. The key factors are related to the FOV (given as a range for
zoom lenses, angular magnification for lenses working over a range of distances or as
a fixed value for fixed focal length lenses), the primary magnification (identified as
the ratio of sensor’s size over the lens’s FOV) and the sensor’s format (specified as a
maximum format or diagonal that can be covered by the selected lens) which is
typically identified for the standard 4/3 aspect ratio as 1/4°°, 1/3*°, 1/2°°, 2/3*> and 1”’
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(where *’: denotes an inch). Additional parameters are the imaging range (measured
from the front lens’s diameter), resolution and reproduction of contrast levels and

depth of field (DOF) (specified with a single value from the diffraction limit).

3.1.3.1. Perspective projection lenses

Most close range optical systems employed utilize standard central perspective
projection lenses (see Figure 3.6). Their type can vary according to the application’s
purpose and selected equivalent camera (see 3.1.2.1.). Besides the imaging geometry
the light source can insert additional geometric distortions (see section 3.2.2.) to the
image formation process. In this work external electronic ring flash lights, light
emitting diode (LED) rings and fluorescent high frequency ring illumination (green
and white) sources were selected to illuminate the scene to be measured. Conventional
optical systems were selected according to their nominal properties to initialize image
networks and generate reference measurement data. Table 3.2 summarizes the

nominal specifications of the utilized camera systems.
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Figure 3.6: Central projection model. Optical imaging geometry (source: Mugnier et al.,
2004) (left) and principle of collinearity (source: Cooper & Robson, 1996) (right).
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Model Focal F# AOV Focus Mount
Nikkor AF 28mm 2.8- N/A 00-0.25m F
22
Fujinon TV 125mm  1.4- 1 inch 54°13°x42°01° 00-0.1m C
CF12.5HA-I 22 2/3inches 38°47°x29°35° [A]
1/2 inches 28°43°x21°%44°  16.07mm
[B]
-101mm
| [C]
Kern Switar 10mm 1.6- N/A -8’ [A] C
H16RX 22
No. 1066951

Table 3.2: Nominal specifications of employed optical systems. Table notation: focal = focal
length, F#= aperture range, AOV= angle of view, Focus [A]= front lens diameter, [B]= back
focal distance in air and [C]= exit pupil position.

The NikkorAF is a 28mm (fixed focal length) wide angle lens. This early lens model
is a typical F mount lens featuring a bayonet type suited for Nikon’s 35mm SLR
cameras. The Fujinon TV lens is a 12.5mm lens and the Kern Switar is a 10mm
similar C mount, fixed focal length lens (no zoom or autofocus) fitted to 1 inch
sensors. The lens models utilized here are designed following the retrofocus’
principle, which according to Ray (1988) can result in significant geometric

distortions when compared to the more symmetric optically short focus lenses.

3.1.3.2. Affine projection lenses

The non-conventional optical configuration which preserves magnification within the
DOF is referred to as telecentric and it is usually characterized by its telecentricity®. In
the literature three different types appear; namely image-based, object-based and
double-sided (bi-telecentric) optics (Lenhardt & Kreuznach, 2006). Whilst most
commercial lenses are object-based, conventional lenses can be converted to
telecentric by the insertion of an additional aperture (Watanabe & Nayar, 1997).
Single-sided telecentric lenses maintain their properties according to their fabrication.
As an example, in the object-sided case the entrance pupil is located at infinity; hence
the principal rays enter into the lens in parallel to the optical axis (Konrath &
Schroder, 2002). The image formation is realized under parallel projection. On the

’ Retrofocus lenses: Resolve the short focus limitation characterized by the small separation between
the vertex of the rear element of the lens and the focal plane. They can present problems; especially in
the case of 35mm SLR type bayonet mounts cameras (Ray, 1988).
® Telecentricity: Determines the amount of the magnification variation within the lens’s DOF at the
specified imaging range (Melles Griot, 2006).
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contrary, in the image-sided case the exit pupil is placed at infinity, therefore the
perspective model is maintained whilst the magnification remains constant with
relation to the placement of the image detector behind the lens. Double-sided
telecentric lenses can be thought of as a combination of two single-sided lenses.

Figure 3.7 illustrates an example of two commercial telecentric optical configurations.

Lan

Figure 3.7: Telecentric optical systems. Techspec silver series (source: Edmund, 2009) (left)
and telecetric system for contrast transfer function (CTF) measurements (source:
Optoengineering, 2009) (right).

Table 3.3 lists the main differences between conventional, perspective and non-

conventional, telecentric imaging configurations.

Optical system

Perspective Telecentric
Projection centre Finite At infinity
Scale Variable Constant
Distortion Geometric (extended model) Insignificant (radial)
FOV Wide (~f) Narrow
Processing Bundle adjustment (PG) Geometric SVD / affine (CV)
Applications Measurement, registration, Metrology, inspection

texturing, etc.
Table 3.3: Comparison of perspective and telecentric optical systems. Table notation: PG=
photogrammetry, SVD= singular value decomposition and CV= computer vision.

Telecentric optical systems are advantageous in that they offer minimal perspective
distortions, constant magnification within the image format, image quality
enhancement and even illumination. However they do not increase DOF and accuracy
or correct illumination problems which are inherent to the imaging process. In
practice, object sided telecentric lenses can be utilized in measurements where the
image space to object space are correlated up to a scale factor. Specifically, 2D
checking, image quality improvement are a few of the applied on-line or off-line

metrological examples. Additionally, telecentric lenses can enhance the performance
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of centroiding algorithms for target identification and measurement. Image sided
telecentric optics can be effective in the location of three image planes in colour
sensors as they result in a uniform image space illumination. The reader is directed in
the literature for further analysis related to some examples of utilization of telecentric
optical systems (Ahn et al., 1997; Fournel et al., 2003; Watanabe & Nayar, 1997).
Within this work, a telecentric optical system was selected to approximate the affine
sensor model, the investigation and analysis of which is discussed throughout this
thesis particularly for method testing. The employed system was an MVO®
TMLTM/0.16x (supplied by Edmund Optics in March 2006) and can be now found as
TECHSPEC® SILVER series telecentric lenses in Edmund (2009). The specifications
(see Table 3.4) ensure that the telecentric lens is fitted for a maximum CCD sensor
format of % inch (6.4 x 4.8mm) and that according to the nominal values it realizes
parallel projection imagery under a constant magnification of 0.16x at an imaging
range of 175mm, allowing variations within a volume of DOF: £19.7mm. It presents a
radial pincushion distortion at the order of 0.3% with a 40mm FOV which is limited
by the 65mm front lens diameter (for example a field of 1000 pixels will image a
point 3 pixels far from the optical axis). Figure 3.8 illustrates the system which is
comprised of an MVO® TMLTM/0.16x telecentric lens mounted on a progressive
scan monochrome Kodak Megaplus ES1.0 camera. The illustrated telecentric lens is
characterized by the drawn dimensions (where A: maximum outer diameter= 65mm,
B: mounting diameter= 30mm, C: length= 191mm, D: mounting length= 50mm, E:

mounting offset= 43mm and F: filter size= M62x 0.75mm).

Magn. Ro. Res. Telec. Dist. DOF Apert.
(image@ F10) (Max.) (10%@201p/mm) (f14#)

0.16x 175mm  >40%@40 Ip/mm  <0.1° <0.3% +19.7mm @ F10 F6-
closed

Table 3.4: Specifications for TECHSPEC® SILVER telecentric lens series. Table notation:
Magn.= magnification factor, Rg.= imaging range, Res.= resolution, Telec.= telecentricity,
Dist.= distortion, DOF= depth of field, Apert.= aperture (source: Edmund, 2009).
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Figure 3.8: Affine machine vision system. Kodak Megaplus ES1.0 camera with MVO®
TMLTM/0.16x telecentric (left) and schematic view of telecentric lens (right).

3.2. Digital image characteristics

The imaging process can degrade the image quality of the generated imagery in both
radiometric and geometric terms. The digital image characteristics are therefore
critical to the measurement process and in this context these will be outlined with
relation to (a) the digital image properties, (b) internal geometric distortions and (c)

geometric camera stability.

3.2.1. Digital image properties

This section is concerned with the digital image and its properties. These are
discussed in the context of two considerations: (a) the digital image formation process
and (b) the quality of digital images, as follows.

3.2.1.1. Digital image formation

According to section 3.1.1.1. a sensor forms an image by the collected electrons when
photons hit a photo-sensitive material. The developed analogue in the sensor is
subsequently quantized (A/D conversion) for digital reading and processing. The
continuous image function g(x,y) in a 2D plane, where x, y are its spatial variables
and the function amplitude is the density, is generated by sampling (each continuous
sample is assigned an integer value) the spatial variables and quantizing (dividing the
initial continuous range into k intervals resulting in k=2° brightness levels for b bits

per gray level) the gray levels (amplitude). Improving sampling and quantization
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levels achieves a closest approximation of the continuous image function. The data
structure representing a digital image is a matrix and the corresponding sampling
point is a pixel usually represented as either square or rectangular cells (in which case
resulting in different horizontal and vertical resolutions). A pixel collects information
about the brightness at a specific location in the image. The highest spatial frequency
that can be preserved without loss of information is defined by Shannon’s sampling
theorem. According to this, the Nyquist frequency (fn= 1/2Axs) states that the
smallest pixel size should be less than half of the continuous function’s highest
frequency. Additionally, a practical limitation is that data volume and processing
times dictate suitable sampling rates to achieve the desirable resolution and accuracy
(Schenk, 1999). Measurement and processing of digital images are commonly
implemented with operations that take into account basic measures such as brightness,

contrast and histogram.

3.2.1.2. Digital image quality

Digital image quality is a measure of the degradation which can happen during the
image formation stages of capture, transmission, processing or representation. The
degree of degradation is assessed by measures that compare a given image against a
reference image based on mean or absolute differences or correlation methods for
example (Sonka et al., 1999d). Image quality is affected by factors such as sensor
dynamic range, contrast, sharpness, geometric aberrations and equally significantly
photographic effects like vignetting® and exposure settings. Image quality is directly
related to the utilized sensor, hence its properties (quantum efficiency, resolution,
SNR) are the main sources affecting the quality of the measured image (see section
3.1.1.2).

3.2.2. Internal geometric distortions

In the geometric context, image formation is the process where the bundle of rays
travel through an optical lens to reach the image plane. This physical reality is

modelled with what it is termed in photogrammetry interior and exterior orientations

% Vignetting: Is the effect where pixels closer to the image frame borders appear darker due to the
property of optical rays with large span - off angle from the optical axis to present increased attenuation
(Sonka et al., 1999a).

-62 -



3. Digital close range image formation

(10 and EO) of the camera-lens system. Yet, in the real imaging case the formed
image can be ‘reduced’ from its theoretically exact model due to aberrations that may
degrade the image quality or geometric aberrations that can alter the position of the
image. These perturbations are a factor of the nature of the camera system and it is
generally accepted that in CCD-based systems symmetric radial distortion,
decentering distortion, focal plane unflatness (chip bowing or crinkling) and in plane

distortions (electronic effects like line jitter) are common (Fraser, 2001).

3.2.2.1. Radial distortion

Radial lens distortion is the result of the Seidel aberrations and it is given as an odd-
powered polynomial (see equation (3.1)). Whilst in most instances the third order
term will suffice, in the case of demanding accuracies or wide angled lenses higher
order terms are needed to model in full a lens’s potential distortion. Judgement of the
inclusion of these parameters into the calibration model is a function of their statistical
significance and performance of correlation checks on the implemented parameters

(see section 4.3.4.).

dR = kgrS +kgr> +kyr’ (3.1)
dx; =X (Kor? +kqr® +kgr®)

dyy = ye(kor? +kar? +kgr®)

(= (x—x0)2 + (Y- o))

Where:

dR=radial lens distortion (mm, expressed in pm)
r=radial distance (mm)

X, y=image coordinates (mm)

Xo, Yo= principal point components (mm)

ki= i power terms of radial lens distortion polynomial (unitless)

The radial distortion profile is formed from the set of the distortion values (um) over a

range of radial distances (mm) which correspond to the targets coverage within the
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frame and it can be of Gaussian (when it is referred to the nominal camera constant or
a specific camera constant for zoom lenses) or balanced form (when obtaining the
mathematical equivalent of the curve by shifting the camera constant by doc) (Fryer,
1996; Fraser, 2001). In the balanced radial lens distortion, the influence of the linear
term kor refers to a uniform change in image scale equivalently to a k,c change into
the camera’s constant. Every point is shifted symmetrically from the principal point
(dr) hence the points that lie on the same circle have undergone the same radial
distortion (see Figure 3.9). Calculation of radial distortion at two focus settings (close
up and infinity) allows the determination of its coefficients at any other focus setting
(Magill, 1955).
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Figure 3.9: Radial lens distortion and its effect on an image frame.

3.2.2.2. Decentering distortion

The misalignment of the lens elements with relation to the optical axis results in a
geometric effect known as decentering lens distortion having both radial asymmetric
and tangential components (Mugnier et al., 2004). Decentering distortion is given in
two components and it is represented by its profile function (see equations (3.2) and
(3.4)) (Fryer, 1996; Fraser, 2001). Its parameters are highly correlated with the
principal point components, noting that decentering is an order of magnitude less than
radial lens distortion (order of a few tens of um). To resolve this projective coupling

3D calibration arrays, strong intersection angles and full format coverage are normally

dD:rZQ;p12+p% (3:2)

dDx = pl(r2 +2X) +2(poXy)

employed.

dDy = 2pyxy +p (r +2y)
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Where:

dD= decentering lens distortion (mm, expressed in pm)

dDx= decentering lens distortion x component (mm, expressed in pm)
dDy= decentering lens distortion y component (mm, expressed in pum)
p1, P2= decentering distortion coefficients (unitless)

r=radial distance calculated from the principal point (mm)

X,y= image meaurements (mm)

3.2.2.3. In plane distortions

In plane distortions are usually manifested in differential scaling between the
horizontal and vertical pixel spacing and introduce a non-orthogonality between
image axes. In other words the affinity (scale factor between x axis and y axis) and
orthogonality (deviation from 90° between x axis and y axis) terms are usually
denoted as affine deformations, they are mathematically inserted into the internal
calibration model and are treated with robust bundle adjustment approaches. It is
important to note that when employing such extended models, singularities due to
system overparameterization may occur. To avoid the system’s overparameterization
the parameters are implemented within the system upon the examination of their
associated precisions and correlation coefficients. Specifically, insignificant
parameters are generally suppressed whereas as acceptable correlations are considered
those that are equal or less than 0.5 within image networks (VMS, 2009) (see section
4.3.4)).

3.2.3. Geometric stability

The geometric stability of digital cameras is held responsible for the suitability
(photogrammetry and vision applications) and the accuracy that can be achieved. As a
result, understanding the causes that impinge on the geometric stability in
combination with the models and the measures utilized to accommodate for potential

geometric instabilities is of high significance.
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Digital cameras present instabilities related to the fixed CCD array with relation to the
optical lens. Camera parameters are not considered to be stable due to a number of
physical causes. Geometric camera stability needs to consider the camera’s features in
combination with the inserted mechanical influences while operating the camera. The
main features that can influence the geometric stability of a camera are the resolution,
zoom, focus and aperture settings. Mechanical effects include gravity (the torque of
the lens mount is the product of the lens’ weight multiplied by the distance of the
lens’ centre of gravity from the lens mount) with different viewing directions, camera
heating due to long image acquisition periods and potential physical strains while

operating the camera (Hastedt et al., 2002).

3.2.3.1. Stability modelling

Geometric camera stability needs therefore to consider the degree of influence of the
above factors to the variations of the calibration parameters over time. The influences
of geometric instabilities are accommodated with parameterization (image variant
interior orientation) or mechanical stabilisation (sensor placement within the camera)
of parameters (Zapp et al., 2009). Parameterization models are based on analytical
correction methods with most appropriate the self-calibrating bundle adjustment.
Fundamental elements concern the intrinsic elements camera constant, principal point
with the geometric distortions measures (see section 3.2.2.). The image variant
interior orientation parameters are modelled within a bundle adjustment procedure.
One implementation is to introduce the camera constant and the principal point
variations as observed unknowns within the adjustment weighted to appropriate
values. This is advantageous over the model’s over-parameterization and minimal
correlation effects, especially with relation to the perspective centre. Calibrating an
image variant interior orientation based on a common parameterization for distortion,
affinity and shear is one approach. Alternative methods account for a balanced form
of parameters describing radial symmetric distortion where the remaining image
errors (e.g. unflatness) in sensor space are modelled using a finite elements correction
grid™® (Tecklenburg et al., 2001).

19 The finite elements correction method is based on a raster type corrections grid, where each of the
grid points is associated with correction values that are subsequently computed by point interpolation.
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3.2.3.2. Stability evaluation

Geometric camera stability is covered in the literature with papers focusing on
comparative testing of different camera systems, methods and performance measures.
Camera systems fitted with zoom lenses at variant resolution or compression rate
settings have been investigated with temporal variations of calibration parameters
(camera constant, principal point, lens distortions, resolution and influences of zoom,
focus and aperture settings) extracting estimates that are normalized to the image’s
width (Labe & Foerstner, 2004). Other comparative camera systems (CCD or CMQOS)
fitted with zoom and fixed lenses have been used to test stability with block invariant
or photo invariant methods based on internal and external statistical measures (Shortis
et al., 2006). Line-based calibration procedures for stability evaluation that address
the degree of similarity between reconstructed bundles using different interior
orientation parameters over time have also been discussed (Habib & Morgan, 2005).
Calibration tests to evaluate the object space accuracy and its potential with image
variant parameters and mechanical stabilization are investigated using a measuring
testfield designed in compliance to the guidelines for the acceptance and reverification
of optical 3D measuring systems (Zapp et al., 2009; Zapp et al., 2008). In these
studies it has been proved that fixation of the focusing tube as well as preventing
gravitational loads on the lens or the mount yields accuracies that are optimal for high
precision surveys. The effect of lens movement due to gravity and unstable fixings
has been studied and mathematically compensated (Haig et al., 2006). It is reiterated
here that the criteria utilized to assess object space accuracy are based on the quality
parameter length measurement error (difference between measurement and calibrated
distances) as monitored in VDI/VDE guidelines that have been referenced in section

2.2.2. and will be additionally pointed subsequently in section 4.7.

3.3. Image measurement method

Digital image measurements are generated as the product of the imaging process
involving the characteristics of the deployed imaging system, the properties of the
measured features and the reliability of the measurement method. This section deals
with the aspects of point-based features and applied measurement method utilized for

sub-pixel target location.
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3.3.1. Point-based features

A number of point based features can be utilized for 3D object measurement and these
must be well identified. These point types can be man-made targets or natural features
of high contrast and distinctiveness from the background. The quality of digital
features is linked to the geometric and radiometric characteristics of the sensor and the
characteristics of the feature (size, shape and texture). Good features are considered to
be those that have high spatial frequency and are distinct from the background,
geometrically and radiometrically invariant, interpretable, stable to noise and unique
(Foerstner & Gulch, 1987). Feature quality is an important subject; dissimilarity
measures (RMS residuals of mismatches) that enable, for example, judgement of
feature matching between different frames based on affine motion models have been
utilized (Shi & Tomasi, 1994).

Besides image-based measurements that utilize natural features (texture content and
geometry), there are instances where artificial features need to be used. For example
2D or 3D artificial features can be defined in instances where there are insufficient
natural locators (points, edges, regions) or where there is a need for unique point
utilization for the establishment of reference measurements (rotation invariant spheres
for scanning systems), engineering control or benchmarking, automation systems in
metrology or accuracy enhancement. Such features can be manual (retro-reflective,
coded, colour, white diffuse spheres, black on white naturally reflecting targets,
eccentric, LEDs) or projected light (laser or other type of light projectors) with
relation to their form and passive or active with relation to their illumination (Clarke,
1994; Luhmann et al., 2006). Figure 3.10 illustrates a sample of targets utilized for

close range measurement.

QIR 1
=[]

Figure 3.10: Artificial coded targets. Coded targets and exterior orientation devices (top)
(source: Fraser, 1997) and coded targets example (source: VMS 8.0) (bottom).
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Manmade point-based features for sub-pixel image measurement would require a
minimum size of 5 pixels in the image space. Yet circular point features can be
reduced due to eccentricity effects. Eccentricity is a deficiency in the image space
where an ideal circle is projected to an ellipse and it can be significant with increased
image scale and viewing angle. Whilst eccentricity effects can reduce image
measurement quality, it has been shown that in multi-view processing frameworks

they are considered to be absorbed within the process (Otepka, 2004).

3.3.1.1. Retro-reflective point features

A common type of point locators is the retro-reflective. Retro-reflective point features
are adhesive targets made of retro-reflective material or an array of microprisms. The
utilized material is called Schotchlite and it is constructed by 3M (Scotchlite, 2009).
The building block of retro-reflective targets are 50 um diameter spheres located on a
layer and they can act as a cat’s eye or as a retro-reflective prism provided they are
illuminated from the camera’s viewing direction in the ideal case. However, in real
imaging situations the returned light will not be strictly parallel to the incident light
due to a number of different factors (geometry of spheres, viewing direction,
illumination and mechanical stress). Additionally, increasing the viewing angle from
the normal can occlude the returned illumination by the adjacent spheres. Clarke
(1994) has reported that for sub-pixel point location the targets will have to be located
within a range of £50 degrees on the object of interest and that for highest light return
the light source can deviate within a cone of 0.5 degrees. Figure 3.11 illustrates a

sample of different retro-reflective targets of varying diameter in the object space.

Figure 3.11: Retro-reflective point targets. Single retro-reflective (left) and single masked
retro-reflective (right) (source: Geodetic, 2009).

Retro-reflective targets return high SNR and given optimal imaging (range, viewing
direction, illumination) and geometric conditions (perspective image distortion) can

result in ‘good’ measurements in the image space. Yet, the high cost of these targets
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can become significant, especially in the case of coded targets or extensive

signalization to delineate an object’s surface.

Within this work 2mm object space diameter circular retro-reflective targets were
produced from 7610 type Scotchlite™! high gain reflective sheeting generated with a
circular hole-puncher. These targets present significant overexposure and saturation
with changes in aperture settings. Moreover, their limitations regarding physical
object space deformations and their large image footprints at very close imaging
ranges under both perspective and affine projections, disabled them from targeting the
designed structures and hence reduced their usage to sparse target objects mainly for

reference purposes from sparse data (see section 6.2.2.1).

3.3.1.2. Non retro-reflective point features

Non retro-reflective point features are considered passive features that do not present
retro-reflective properties. These can vary from artificial locators, including for
example circular white markers on a dark background, encoded targets or natural
features like distinctive edge intersections on high intensity imagery (see Figure 3.12).

o

Figure 3.12: Point feature measurements. White marker on a dark background (left), coded
target (middle) and natural feature on intersected edges (right). Images acquired with the
Hasselblad H2D and H3D (f= 50mm, 7,216 x 5,412 pixels, pixel size 6.8um) camera systems.

Circular point features are usually employed in instances where features of other types
are impractical due to limitations regarding geometry, radiometry and texture. The
centre of the target is considered as rotation invariant. However in real imagery
influences of sensor, model projection and imaging conditions (viewpoint variation

and imaging range) reduce an ideal circular point location to the determination of the

1 Scotchlite™ High Gain Reflective Sheeting 7610: This exposed reflective lens with adhesive and
liner material returns the highest brightness under wide imaging angles.
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centre of an ellipse and in parallel identify the SNR of the identified locator. Point
location and quality of location are factors of the employed feature detection method
(see section 3.3.2.). Within this work the deployed structures are metal or plastic rigid
geometrical objects that were signalized to achieve distinctive point source
measurement features. The purpose-built self-adhesive targets constructed in the
Rhinokeros 4.0 CAD software tool as circular white points (diameter: 0.5mm and
1.0mm) on a black background which were subsequently printed (onto adhesive laser,
inkjet paper) and attached on the objects of interest. Figure 3.13 visualizes such a
target imaged under affine projection geometry within a 40x40 magnification

window.

Frequency

| S

1] Pixel value

Figure 3.13: Self-adhesive white marker. Marker on a black background (left) and brightness
histogram (with two local maxima) (right).

Encoded with a unique point identification number, coded targets are formed by
patterns (lines, regions) surrounding the central feature point. These patterns are
specific to the utilized measurement method embedded in the software (VMS, 2009).
Key characteristics of these locators are their scale invariance, robust detection over
rotation and model projection for recognition and measurement enabling image
analysis processing methods (Shortis et al., 2003). They are usually applied in
automatic orientation procedures, establishment of control and object space scale.
Natural features rely on local image content and usually occur in applications ranging
in scale from aerial to close range situations with most common points, lines and
regions. These features are identified with algorithms based on detectors and
descriptors; a review of which can be found in Remondino (2006). Here object space
target occupancy, projection scale, close-up imaging ranges in combination with the
scope of method testing (algorithm, model and geometry behaviour) excluded coded

or natural features as a selection for data acquisition and testing.
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3.3.2. Point-based measurement method

Feature measurement methods aim at the recognition and location of features in
digital images based on automatic or interactive approaches for sub-pixel point
location dependent on the associated application (for example measurement,
registration, surface generation and texturing). A significant number of interest point
methods exist in the literature based on detectors that analyze the image’s signal or fit
the image signal on a template. Here, point-based images were generated as input data
to the deployed process. It is therefore clear that the employed point-based
measurement method will be reported in the context of its application on digital

images for subsequent processing and testing.

3.3.2.1. Centroid location method

Point-based structures were generated in a photogrammetric measurement tool that
deploys an embedded centroid location method (VMS, 2009). The tool computes the
2D centre of an image centroid within a ROI (4-64 pixels) and it leads to a successful
answer where high contrast target images occur allowing a manual point location in
an alternative case. Considering that a window of size n x m pixels is placed around

the target to be located, the centroid of the target is given as follows:

ig (XiJ (3:3)
gij| ., .
xo ] _izaja
Ym N m

2. 2. i

i=1j=1
Where:
Xn, Ym= centroid of the target coordinates (mm)

Xi, yj= pixel coordinates
Xj . S . .

9ij vi =digital value of light intensity at location (Xj, ;)
J

n X m= window dimensions
The method follows established approaches that have been similarly reported in

Fraser (1997) and Shortis et al. (1994). Prior to the actual centroid computation the
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applied thresholding method classifies pixels as target or background within the ROI.
The method requires identification of the location method, threshold type and passes
of relevant geometric tests. In addition a set of empirical factors (sigma value for
random threshold and ellipse fit, minimum gray level range within the window and
minimum span of the target image) are identified to apply each of these tests within
the method. A centroid is identified as binary, weighted, square weighted or ellipse
fit. The locally identified threshold within the ROI is set as the mean of the intensity
values between the two peaks (high and low) on the intensity histogram. Besides
standard thresholding, the tool can utilize an additive (setting a robust threshold in the
presence of significant background intensities) or a random (on the assumption of
background image noise) method. The target image is located with a series of
geometric tests (ratio test for circular targets and target region ratio test) based on the
knowledge of the location and extent of the target image within the ROI together with

expected size and shape.

3.3.2.2. Epipolar geometry and back-projection

Point based measurement generation as input to a multi-view algorithm demands
establishment of point correspondences. Given the knowledge of a point on an image
its homologue can be identified along the epipolar line (see Figure 3.14) which is
usually curved on the presence of large perspective distortions. Correspondence
solutions utilize search areas close to the points of intersection of epipolar lines and

can assist the point location method described above (see 3.3.2.1.).

Figure 3.14: Epipolar geometry. Notation after (Mugnier et al., 2004): ¢(P)= epipolar plane,
E’, E”’= epipoles, I’(P), I’’(P)= epipolar lines, b’= baseline, O’, O’’= projection centres and P,
R= objects points, Q’ R’, Q’* R”’=imaged points.
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The measurement method applied here can be listed in the following sequential steps:

1. Establish point correspondences on image data based on centroid or manual
location assisted by epipolar geometry.

2. Estimate the camera’s exterior parameters on an initial subset of four control
point (CP) data (initialize exterior orientation).

3. Back-project on a set of known points (predetermined CP or pre-triangulated
tie point (TP) data) to retrieve remaining image measurement locations and
update camera’s exterior parameters (backproject on resection).

4. Refine image measurements if necessary to enter the subsequent computation.

This process has been applied throughout this thesis in order to generate the
implemented datasets, resulting in image networks that handle 17 (minimum) to 85
(maximum) images where 20 (minimum) to 178 (maximum) target points have been
measured (CPs and TPs) (see section 6.2.2.). It is recalled here that data generation
was implemented within the tool VMS 8.0. All data forms were subsequently read as
ASCII files within the developed method.

3.4. Camera models

A camera is the medium which performs the mapping that projects 3D spatial
information onto a 2D plane. The geometric underlying principle which establishes
the 3D to 2D correspondence is the pinhole model which forms the basis of the
established central perspective projection. Camera modelling is studied in analytical
terms utilizing the fundamental elements of Euclidean and projective geometries'.
Algebraic approaches are ideal for automation of image analysis and problems that
implement direct solutions, computing for example the (SVD) of matrices utilized
mainly from the computer vision community (Foerstner & Wrobel, 2004). Yet this
work is looking at the geometry governing the camera in non-homogeneous vector
terms. The reason for this approach is related to the focus on design and
implementation of a multi-view problem for the affine projection case which includes

the ability to apply statistical error propagation. It is noted though that where

12 Projective geometry overcomes the limitations of Euclidean geometry by placing points, lines and
planes at infinity as natural entities, unifying transformations such as similarity, affinity under the class
of projective transformation (Foerstner & Wrobel, 2004).
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necessary computer vision literature will be reviewed as part of the problem and its

implementation studied here.

3.4.1. Projective camera

The projective camera is the most general camera model and it can be considered as a
generalization of the perspective camera. Figure 3.15 illustrates the recovery of the
perspective projection process linking 3D object with a 2D image spaces through the

projection centre O.

Object space

Image space

Figure 3.15: Perspective projection model.

In Euclidean geometry a 3D point X= (X, Y, Z)" is projected to a 2D image point
where the line starting from the projection point to the 3D point intersects the image
plane. If the relationship between 3D space and 2D space is expressed in homogenous

terms then the projective camera can be written as it is given in equation (3.4).

x = P X (3.4)
(3x1) (3x4)(4x1)

X P11 P12 P13 P14
fY |=|p21 P22 P23 P24
Z P31 P32 P33 P34

N < X

Where:
X (3x1)= 2D image coordinates vector (mm)

P (3x4) = camera projection matrix
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X (4x1)= 3D object coordinates vector (mm)
f= focal length (mm)

P11-...-P34= projection matrix elements

The relationship between homogeneous and non-homogeneous coordinates is given as
(x, y)'= (FX/Z, £Y/Z)" expressing the 2D image space vector and (X, Y, Z)'= (X/1,
Y/1, Z/1)" stating the 3D object space vector. The projection matrix P can be
decomposed into a calibration matrix which includes the intrinsic camera parameters
together with a rotation and a remaining matrix that are utilized to encode the
extrinsic orientation parameters. These mathematics are equivalent to the established
collinearity condition (see section 4.3.2.) used as the fundamental basis of the image-
to-object space correspondence in photogrammetry. Weinhaus & Devich (1999) point
that the main difference between the projective and the collinearity approach is the
treatment of the focal length and the camera’s projection center. In the collinearity
condition the focal length is used as a physical parameter and no special projection
matrix is required. Additionally, the projection center is maintained as a separate
vector, allowing the solution of its coefficients, whereas in the homogeneous
coordinate approach it is folded in the four-dimensional matrix. It is noted that
intrinsic orientation refers to the elements of interior orientation (principal point and
camera constant) extended by additional internal geometric terms (see section 3.2.2.)
the parameters of which can vary for different camera models. The extrinsic
orientation represents the elements of the exterior orientation of cameras which
include the camera’s attitude and position in the 3D object space coordinate system.
According to Hartley & Zisserman (2004) a general projective camera is represented
by a homogeneous (3x4) matrix of rank 3 with 11 degrees of freedom as scale is
arbitrary. The rank requisite is essential to define the matrix mapping as an image
which is a 2D plane and not a point or a line. A projective camera can be reduced to
the well known perspective projection when the image and 3D object space
coordinate systems are linked with a rigid transformation (Shapiro, 1995). The 2D to
3D mapping is a non-linear problem to solve and given the input data handling can

become computationally expensive. When the perspective projection camera model
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does not map the true geometry of a camera the problem can be ill-conditioned®,

hence an appropriate camera or sensor model needs to be employed.

3.4.1.1. Comparison of projective and perspective camera
Considering the main attributes of projective and perspective camera models a
comparative table is given here (see Wrobel, 2001) representing the underlying

geometry behind the basic orientation tasks to show in parallel the model suitability.

Orientation model

Projective Perspective
(linear model) (non-linear model)
Model x'= P X X' = R X+ T
(3x1) (3x4)(4xD) (3x))  (3x3)(3x1) (3x1)
Parameters 11 (projection matrix P) 6 EO per image; 3-5++ 10 per
camera
Correspondences 6 per image 3 per image
Behaviour Low stability, critical High stability, object space
configurations for object space stable configurations, stable
planar configurations, focus & camera & optics

zoom optics accomodated
Table 3.5: Projective and perspective orientation models. Notation: x’= image space
coordinates vector X= object space coordinates vector, P= projection matrix, A= scale factor
of vector x’, T= object space coordinates of perspective center.

The projective camera model is highly advantageous due to its linearity. Yet its
instability, increased model parameters (and correspondences) as well as inability for
lens distortions accommodations can introduce significant limitations in comparison
to the standard perspective camera model. These are the main reasons for the broad
utilization of standard perspective models in photogrammetry. In this text, analytical
modelling of perspective cameras considering only points is discussed further in
section 4.3. It is however noted that the projective camera model is highly adapted to
diverse situations and transformations to perspective, posing this as an ideal model in

different photogrammetric tasks.

3 11I-conditioning can be a situation where small data variations can cause significant result variations.
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3.4.2. Affine camera

An affine camera can be defined as a camera with a projection centre at infinity that
generalizes parallel projection. The geometric interpretation of the affine image can
be given considering for example the 3D to 2D image formation of a 3D object point
onto a 2D image plane. Figure 3.16 provides a 1D illustration of this relationship for

the perspective, parallel and orthographic projection cases.

Z &
(X, Z) Object point
s Mean depth plane
Image plane
(0] xpersp. ;(paral, xo:rtho. > X, X

Figure 3.16: 3D-2D relation. Perspective, parallel and orthographic projections.

The 3D object space is projected onto the image plane following a line passing
through the projection centre forming its perspective image (denoted as xpersp.).
Departing from this, the line of sight that hits orthogonally the mean depth object
plane and then perspectively projected onto the image plane forms a parallel image
(location xparal.). Different terms for a parallel projection image are the scaled
orthographic and weak perspective projections. It is evident that in the special case
where the line of sight enters the image plane perpendicularly, this results in the strict
orthographic projection with a unit scale. Shapiro (1995) illustrates the imaging case
where the line of sight enters at an angle 0 at the mean depth plane to subsequently
form an image perspectively on the image plane and names this as a paraperspective
projection. Figure 3.17 illustrates two close-up views of the parallel and orthographic

projection models respectively.
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Parallel image plane

Object space

Image space Image space

Figure 3.17: Weak perspective projection (left) and orthographic projection (right).

This work is concerned the affine camera modelling in a multi-view framework with
statistical error propagation. The model will be treated in the non-homogeneous
coordinate system case and in this context the model can be derived from perspective
when adding two assumptions. These form the case where the object of interest
presents a small FOV and a small depth variation. The affine image can then be

written as it is given in equation (3.5).

X =s R X + t (3.5
(2x1)  (2x3)(3x1) (2x1)

[X} :{ﬁl N2 rlB} i {tx}
y 21 22 T23] 5 ty
Where:

x= 2D image coordinates vector (mm)

s= image scale factor (unitless)

r11-r.3= elements of the (3x3) rotation matrix R

X= 3D object coordinates vector (mm)

t= 2D projective translations vector (mm)

An affine camera can be considered as an uncalibrated scaled orthographic camera
requiring no calibration of internal camera parameters such as camera constant and
principal point. This property in combination with its ability to preserve parallelism of
lines enables the utilization of affine epipolar geometry in multi-view location

problems. An analytical description of the affine camera, its interpretation and
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algorithmic implementation can be found in the literature (Faugeras & Luong, 2001;
Hartley & Zisserman, 2004a; Shapiro, 1995; Xu & Zhang, 1996). Model treatment

and implementation will be the central topics of the subsequent chapters 4 and 5.

3.4.2.1. Magnification

A particular property of affine projection is its invariant scale factor. This is of
particular interest as the scale factor plays the role of camera constant in the real
perspective camera case. Model development, implementation and testing have been
based on the ability to generate true parallel projection imagery with the deployed
systems described in section 3.1.2. Following the affine projection formation reported
above, a plane located parallel to the image at a range z= z, defines the lateral
magnification between the distance measured in the image (dx,, dy;, 0)" over the
corresponding distance on the image plane (dxp, dyp, 0)'. The magnification factor
will be uniform for all points that lie on the same plane and this will be estimated as
m<1 for the general affine case or m=1 in the strict orthographic projection case. The
magnification is constant when the depth range of the imaged object is relatively
small in comparison to the range to the camera. The projection equations are thus
simplified as given in equations (3.6).

X'=—-mx; y'=-my (3.6)

ey @) f

) @y %

Where:
x’, y’=2D image coordinates (mm)
X, y = transformed coordinates (mm)

m= magpnification factor (unitless)

To prove that the test camera systems generate geometrically true affine images, the
following example calculates the associated magnification factor. The deployed
camera system was composed of the available Kodak Megaplus ES1.0 monochrome
camera (see section 3.1.2.1.) attached with a perspective (Fujinon TV, f= 12.5mm)
and a telecentric (MVO® TML; m= 0.16x) lens interchangeably (see section 3.1.3.).

Subsequently, a typical calibration arrangement was designed to enable imaging of a
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square grid jointly with perspective and parallel projection camera systems. The
purpose built grid comprises a planar pattern (168 x 168 mm) of 22 x 22 white
circular markers on a black background. It is noted that the planar pattern (constructed
in the Rhinokeros 4.0 CAD tool) was printed on a laser printer and attached on a
planar metal board. To generate measurable image point features in the parallel
projection imagery (nominal magnification factor= 0.16x), the targets were designed
with a finite size of 0.5mm diameter in the object space, resulting in 9 pixel blobs in
Image space. Given that the location where the telecentric lens realizes sharp parallel
projection imagery is a range of 175mm from the front lens diameter, this was set as
the mean imaging range. The experiment was implemented by shifting the calibration
grid at regular intervals (Imm separation) within £30mm from the mean position
(DOF= £19.7mm). To illuminate the scene two LED green ring flashlights were
utilized. These were positioned at near 45° angles from the normal direction for

balanced directional illumination (see Figure 3.18).

Figure 3.18: Single view calibration. Calibration arrangement in a laboratory environment
(left) and experimental data capture design (right).

To generate a set of 2D image measurements, the acquired data were inserted in VMS
8.0 where a sequence processing project was initialized. The image measurement
method involved application of a centroid estimation on a set of four sparse corner
grid points initializing the photo orientation parameters. Next, a ‘resection on
backdriving’ backprojects the remaining CPs on the pre-estimated exterior orientation
and updates the photo locations and rotations on the total measured CPs (see section

3.3.2.2.). The resection closed with an RMS image residual of 2.78um.
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Figure 3.19 illustrates an example of the grid image supported by the selected parallel
projection image (with its image residuals) to show the result of the sequence

measurement process.

Figure 3.19: Calibration grid pattern. Pattern imaged with the Kodak Megaplus ES1.0 camera
with Fujinon TV lens / f= 12.5mm (left) and Kodak Megaplus ES1.0 camera with MVO®
TML 0.16x (right).

The experiment was executed with a set of seven distances (three horizontal and four
vertical) selected to estimate the magnification factor within the image. According to
the calculation of this scalar (as defined in equation (3.6)), m equals to 0.15x (nominal
m= 0.16x) with a mean discrepancy from the nominal equal to 5.74um (0.6 pixel) in

the vertical direction and 6.30um (0.7 pixel) in the horizontal direction.
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Figure 3.20: Point measurements at near, mean and far ranges.
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Range Min.(um) Max.(um) | Mean.(um)
Mean:19 tif - Near:10 _tif 0.70 4.19 2.47
Mean: 19 tif - Far:28_tif 0.57 4.10 2.37

Table 3.6: Absolute differences on selected measured point locations.

Figure 3.20 illustrates the 2D image point locations on the estimation image denoted
as ‘Mean: 19 tif” together with the seven length measurements. The additional images
‘Near: 10 _tif” and ‘Far: 28 tif” are located at corresponding ranges of -/+ 9mm from
the mean location given the system’s DOF. To estimate the 2D image discrepancies of
the mean image position over the near and far range images, the corresponding
absolute differences were calculated (see Table 3.6). It is evident that the deviations
from the ‘ideal’ locations range between 0.70-4.19um in the near range and 0.57-
4.10pum in the far range with a mean discrepancy of 2.40um. The order of these
differences can be attributed to the fact that the imaging system deviates from its
‘optimal’ geometry and radiometry that in effect reduce the image measurement

locations that would in nominal terms lead to a perfect parallel projection.

3.5. Summary

This chapter has reviewed the main concepts and principles that form the fundamental
elements of digital close range image formation. In particular the building block of
data acquisition and processing has been outlined with relation to the employed sensor
elements and systems supported by digital image characteristics, their basic geometric
elements and applied measurement method for data generation, initialization and
testing. This chapter closed with the two fundamental camera models that establish
the 3D to 2D correspondence which introduces the subsequent chapters that describe

the developed methodology and testing for the purposes of this research work.
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The exploitation of the affine sensor from the photogrammetric standpoint demands
that the fundamental background of multi-view modelling is introduced prior to the
analysis of the affine algorithm. In measurement sciences like photogrammetry,
industrial metrology, geodesy and computer vision it is established to base
computations on least squares estimation (LSE) theory as a result of its advantage to
provide statistical analysis for quality assessment. Modelling from multiple views can
therefore be considered in the contexts of (a) sensor modelling from multiple

viewpoints, (b) aspects of geometry as well as (c) statistical quality.

This chapter reviews the basic principles behind established multi-view modelling
approaches. These concepts are outlined in order to provide a review of the well
established methods applied in frame cameras. In particular the self-calibrating bundle
adjustment is outlined with consideration of its current state of the art (see section
4.1.). Subsequently fundamental elements of LSE theory are given to provide the
basis for problem analysis as well as development (see section 4.2.). The chapter
provides the background in modelling perspective cameras from the photogrammetric
standpoint, covering the aspects of mathematical model formulation, self-calibration
and initialization (see section 4.3.). Following the well established background of
perspective approaches, the affine sensor is presented in the contexts of existing
methods originating from the computer vision literature (see section 4.4.). The chapter
concludes with a review of the datum problem (see section 4.5.), image network
geometry (see section 4.6.) as well as quality control (see section 4.7.); core concepts
in photogrammetric analysis.

4.1. Bundle adjustment method

The bundle adjustment is a very old method well known in photogrammetry whereas
gradually adopted within the vision community. Triggs et al. (2000) define: bundle
adjustment is the problem that refines a visual reconstruction in order to optimize
jointly 3D structure and viewing parameter estimates. It is a geometric statistical
estimation problem of simultaneous intersections of image rays linking 2D to 3D
spaces through cameras poses (positions and orientations) integrating 3D object space
positions (3D coordinates) with the potential to allow camera calibration (recovery of
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interior orientation elements). It is conventionally formulated as a non-linear LSE
problem that minimizes a quadratic form cost function of the feature reprojection
errors between observed and computed image observations with the potential to
enable robust outlier detection and elimination within the method.

4.1.1. Background

The bundle method has its roots in LSE theory which in combination with the
evolution of computers in the fifties and continuous technological developments is
today utilized as a robust tool in photogrammetry and vision applications (see section
4.1.3.) Figure 4.1 illustrates a diagrammatic form of the historical development
behind the method of bundle adjustment. The fundamental principle of the bundle
method developed by Schmid’s single photo least squares resection based on the
collinearity condition (see section 4.3.2.) whilst the complete theory was set by D. C.
Brown (Brown, 1974). It has its roots at large scale aerial-triangulation problems, its
basic measurement unit is the bundle of image rays and in the close range it is termed
as network adjustment or phototriangulation. The bundle method follows the
developments in image processing tasks which are key to image least squares
matching (LSM) and robust statistics methods allowing its ability to add-in self-
diagnosis in order to reach its main focus today; and this is large volume data

processing as well as system automation.

Development of a bundle method entails a set of issues: the minimization of the cost
function (see section 4.2.1.); starting value estimation (see section 4.3.5.); solving
large normal equation systems considering matrix structure and sparsity; datum (or
gauge) definition (see section 4.5.); quality control (see section 4.7.). These critical
issues can be designed at the stage of method implementation whilst satisfying
problem requirements and purpose of application.
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Figure 4.1: Development of the bundle method (source: Triggs et al., 2000).

In photogrammetry a routine application of bundle adjustment systems comprises the
3D measurement of engineering structures. These systems have their roots on
established robust strategies already reported in Brown (1971), Clarke & Fryer (1998)
and Granshaw (1980) whilst employing internal calibration models with extended
parameter sets (Fraser, 2001) (see section 4.3.4.). Regarding model formulation and
structure (see section 4.3.2.), these can be modified in the context of implementation
of linear features as measurement entities (Hrabacek & Van den Heuvel, 2000),
employment of different sensor models such as panoramic cameras (Parian, 2007) or
enforcement of camera constraints as in cases of combined stereo-imaging geometries
(King, 1995). Although modifications regarding method implementation and
treatment exist, it is generally accepted that bundle approaches are optimal in that they

offer robust solutions for system treatment.

In vision, Tsai (1987) proposes a two stage calibration technique for 3D vision
metrology that recovers the camera’s exterior orientation as well as camera constant,
radial lens distortion and image scanning parameters (shear and aspect ratio) by
applying a set of four geometric constraints obtained from the implemented model
parameters. A flexible camera calibration technique for planar patterns based on an
initial closed-form solution and a subsequent non-linear maximum-likelihood
estimation refinement modelling focal length, radial lens distortion and aspect ratio
has been suggested by Zhang (1999). In fact this tool can be found online.
Additionally, Triggs (1998) developed a self-calibration approach of a moving

projective camera from five views of a planar pattern treating recovery of parameters
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up to a scale factor. Another example is proposed by Mayer (2005) who employs a
strategy based on point extraction and LSM for precise point estimation combined
with a projective bundle adjustment (Pollefeys et al., 2004) and applied to wide-based

Image sequences.

4.1.2. Main attributes

The main reasons for selecting the method of bundle adjustment as an appropriate
approach for multi-view modelling are its flexibility, efficiency and quality control
(Cooper & Robson, 1996; Luhmann et al., 2006; Triggs et al., 2000).

1. Flexibility: Refers to the ability to implement different information elements
regarding camera models, 3D features (points, lines and surfaces), geometric
constraints, sources (2D, 3D features and intensities) and error models.

2. Efficiency: Indicates the method’s capacity to utilize economical and
convergent numerical methods that take advantage of the problem’s
sparseness.

3. Quality control: Indicates the evaluation of accuracy, precision and reliability
measures (see section 4.7.). Statistical error modelling is critical to the analysis
of the estimated parameters.

Close range bundle adjustment, as opposed to the ‘classical’ aerial triangulation,
softwares are advantageous in that they can, for example, deal with often difficult
image configurations, arbitrary coordinate systems and a variety of camera systems.
In addition they can handle complex, structured, large systems of normals equations.
In this sense the bundle method can be considered a highly universal solution. Thus it
provides a simultaneous and very effective solution to sensor modelling as well as 3D

object measurement.

4.1.3. State of the Art

Further to its wide application in standard photogrammetric case studies, the method
of bundle adjustment has now reached the stage of automation; therefore it comprises
a very active topic of interest within the vision community. To make this point clear

some examples are reported. Pollefeys et al. (2004) employed uncalibrated image
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sequences acquired with a hand-held camera and computed 3D structure based on a
multi-view stereo matching approach. Strecha et al. (2008) exploited image based
modelling with a focus on benchmarking®* which in their case was performed in
relation to ground truth reference scan data. Some examples of evaluation datasets for
both camera calibration, stereo and multi-view stereo can now be found on-line
(ISPRS, 2009). Prior considerations of bundle adjustment implementation are related
to parameterization, error models, linearization, optimization (utilizing the sparse
structure of the normals equations coefficient matrix) and robustification techniques.
PC-based commercial software packages and tools are available and widely utilized
for photogrammetric applications tasks (Kruck’s software BINGO; Geodetic, 2009;
iwitness, 2009; Photomodeler, 2009; VMS, 2009). An open camera calibration
toolbox for Matlab has been released from Bouget (2009) and has been included in
the open source computer vision library distributed by Intel and can be found online
(Intel 2001; Intel, 2009). Another tool is Zhang’s algorithm applied in planar patterns
which can be found online at Microsoft’s webpage (Zhang, 2009). A recently
developed open source generic sparse bundle adjustment has also been distributed, an
updated version of which can be found in Lourakis & Argyros (2009). Further,
Lourakis & Argyros (2005) run through benchmark tests to address performance with
relation to speed and reprojection errors. In Dickscheid et al. (2008) a complete
benchmarking scheme for assessment of automatic bundle adjustment results is
proposed to assess orientation frame parameters in a statistical manner based on a well
defined coordinate system. A good critical review on bundle adjustment methods with

references in photogrammetry and vision can be found in Triggs et al. (2000).

4.2. Least squares estimation

The basic error model utilized in a bundle adjustment scheme is LSE. The method
seeks in principle to derive a unique set of estimates of variables of certain properties
minimizing the cost function of the weighted sum of squared residuals. The

background conceptual scheme starts from a mathematical model™ that approximates

4 Benchmarking schemes require the definition of a reference dataset with superior precision and a set
of statistical measures extracted from covariance analysis. A report on performance evaluation and
benchmarking can be found in Foerstner (2005).

13 The mathematical model is composed of the functional (describing the deterministic properties of
the physical situation) and stochastic (describing the nondeterministic properties of the variables)
(Mikhail, 1976).
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the physical problem to be solved. This model then enters the LSE technique where
on completion statistical testing is applied to the derived results to judge whether or
not the initial model approximates the reality based on certain assumptions and rules
or remodelling is needed. For a comprehensive coverage of the LSE theory the reader
is guided in standard textbooks and reports (Cooper, 1987; Dermanis, 1990; Mikhail,
1976; NPL, 2001). Following the notation described in Appendix A, the least squares

estimation formulation is given below.

4.2.1. Least squares mathematics
The functional model that connects the observations | (n x 1) with the unknown

parameters to be estimated x (m x 1) is considered to be given as f(x,1)=0 (4.1)

(where f: denotes the total functions) with a stochastic model given as C,. Now

expressing the previous relationship for the associated true values this becomes:
f(x,1)=0 (4.2)

The functional model is non-linear. These equations must be linearized, they need to
be replaced by their approximations which are derived from the Taylor series
expansion (linearization scheme). With regards to the measurements | and parameters

to be estimated x, equation (4.3) is derived to first order accuracy as follows:

f(x, 1) =F(Xg, lg) +A(X—Xg) +B(1-1,) =0 (4.3)
Where:

f(Xq, l5) = functional vector of the first order approximations

A = (ﬁj = design or Jacobian matrix of the unknowns to be estimated
(cxu) \OX Jq

= (qj = design or Jacobian matrix of the observations
(exm) ol Jg

X, | = true values that fit the functional model exactly

Xg, | = first order approximations to x, |
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X—Xg = vector of true minus approximate values for the unknown parameters

I -1, = v=vector of residuals, corrections to measurements necessary to satisfy the

functional model exactly.

By substitution of:

v=I-ly, X=%x=Xy and b=—F(X,,lp)

The linearised form is obtained to be equivalent to: Ax + Bv= b (4.4). It is noted that
linearization formulation is treated for the model’s observations, parameters and

constants.

- = VAAN
The unique least squares estimates of X, | , denoted as X, |, are those that satisfy the

least squares criterion which in the general case is written as follows:
o(V)= VIWV > min => ¢(v)= v'Wv + 2k" (Ax+Bv-b) > min (4.5)

Where:
W= weight matrix

AN AN
k= vector of Lagrange multipliers®® (introduced in order the estimates of x and v can

be found).

VANIVAN AN
Subsequently the estimates x, vand | are given as follows:

A 4.6
x=[ATw B 1A AT BWBT) b (49)

1o |agrange multipliers are utilized to find the extrema (maximum or mimimum) of a multivariate
function f (X, Xy,...,Xn) Subject to the constraint g(xy, X, ..., x,)=0, where f and g are functions with

continuous first order derivatives on the open set containing the curve g(Xy, Xo, ..., x,)=0, and Vg #0 at

any point in the curve (where V is the gradient) (Wolfram, 2009a).
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N 4.7
v=w1BTew B -aAaATew BT AT AT BW B b (47)

(4.8)

VAN VAN
l=1l+v

Expressing the functional relationships between measured and unknown elements to
be explicit in the measured elements poses least squares more flexible. Hence,
equations (4.1) and (4.4) become respectively:

f(x,)=f(x)-1=0 (4.9
Ax=lg—f(Xg)+V (4.10)

Equation (4.10) together with W (representing the stochastic model of the
observations) comprises a special case known as the linearized observation equations
case. For uncorrelated image observations the weight matrix W, is the inverse of the

covariance matrix C™* and it is of diagonal form with weights w; calculated as:

2 (4.11)

Where cg,oiz are the variance of unit weight and a priori variance of observations

respectively. Hence, the linearized observation equations follow the Gauss Markov
theorem which states that for linear models least squares result in the Best (of
minimum variance) Linear Unbiased Estimator (BLUE). It follows that minimization
of the cost function ¢(v)= v'Wv > min results in the calculation of the normal
equations N= ATWA (4.12). Assuming that the normals equations matrix is of of full
rank'’, that is N is non-singular, the following equations are obtained:

N 4.12
ATWAX =ATWI (4.12)

A 4.13
x=(ATWA)*ATWI (4.13)

7 Rank is the order of linearly independent rows or columns of a matrix. The statement that matrix N is
of full rank refers to the condition where the number of parameters to be estimated is equal to the
parametric order of the system and that these parameters contain the necessary system information.
Matrix N is invertible when W is a positive definite matrix.
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A2 (4.14)
C, =co(ATWA)™
X
, AT A (4.15)
A v Wv

Where:

AN
X = a posteriori parameters vector

C = aposteriori covariance matrix of parameters to be estimated

X

o, = a posteriori variance factor given a priori variance factor o’

r= degrees of freedom

Applying the law of propagation of covariances in the estimation procedure the

covariance matrix of the estimated observations C and residuals C can be obtained.

| v

It has been shown that the least squares principle is associated with a stochastic
model. However it does not require any a priori knowledge of the residuals’
distribution. In the special case where observations are normally (Gaussian)
distributed the least squares will present similar properties to the maximum
likelihood'® method. Approaches based on LSE will require being capable of handling

of starting values, convergence criteria as well as large volumes of data.

4.3. Perspective camera sensor

The geometric sensor model of digital camera systems is derived from the central
perspective projection and it is fundamentally formulated based upon the principle of
collinearity. Based on this, the functional model of the bundle method is demonstrated
(see section 4.3.2.). An alternative mathematical formulation in the form of direct
linear transform (DLT) is given (see section 4.3.3.). In addition, the issues of self-
calibration (see section 4.3.4.) as well as starting value estimation (see section 4.3.5.)

are addressed.

18 The maximum likelihood method calculates the value of a set of parameters for a given statistic that
results in a maximum likelihood distribution.
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4.3.1. Basic definitions

From the geometric viewpoint, the basic tasks behind camera modelling can be
considered as transformations between image and object spaces. Particularly these
relate to 2D-2D, 2D-3D or 3D-3D transforms. This text restricts the discussion to the
concepts of orientation, calibration, self-calibration and 3D similarity transform. As a
result the following definitions are given:

1. Orientation: Refers to the recovery of the elements of the interior and exterior
orientations.

1.1. Interior orientation (10): Comprises the interior (inner) camera geometry;
that is principal point and camera constant (Xo, Yo, C). Extended model
parameters may include radial lens distortion parameters (dR) and
additional decentering (dD), together with in-plane affinity and
orthogonality terms (as, a,) (See sections 3.2.2. and 4.3.4.).

1.2. Exterior orientation (EO): Determines the object space coordinates of the
perspective centre and the 3D orientation angles. Position (X, Yo, Z,) and
orientation R(w, ¢, ) or quaternions (a, b, ¢, d) which are recovered with
resection procedures (see section 4.3.5.).

2. Calibration: Determines the 10 parameters. It models systematic errors
(defined as physical deviations from the mathematical model) of all cameras
included within a calibration network.

3. Self-calibration: Is an additional parameter estimation procedure. It accounts
for the model’s systematic errors (including the 10 parameters) simultaneously
with the system’s EO and 3D point locations parameters (usually treated in a
bundle estimation approach) (see section 4.3.4.).

4. 3D similarity transform: Is a seven parameter transform between two
coordinate systems that spatially registers two 3D point sets. In the general
case the independent transformation parameters are given through a rotation
matrix R(o, ¢, k), a translation vector (Tx, Ty, T,)" and an isotropic uniform
scale factor (A). Estimation with three full (X, Y, Z) known reference CPs
results in a least squares solution with a redundancy of two degrees of freedom
whereas in the case of one height and two full CPs a closed form solution can

be obtained.
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4.3.2. Mathematical model

The bundle method is formulated as a system of equations. It is derived from
perspective collineation connecting 2D image and 3D object spaces through the
parameters to be estimated and it is expressed as a component pair of equations
(4.16). In geometric terms the collinearity condition can be described as the
parametric representation of a line in 3D constrained by the orthogonal distance of the
image plane from the camera’s image center, that is the focal length (Weinhaus &
Devich, 1999). The scale specifies the distance from the projection center along the
imaging ray through the point on the image that hits the 3D object point with the
rotation matrix describing the direction of this line. This mapping models the
elements of the 10 and EO parameters, or otherwise the camera’s position and
orientation (pose), in a 3D coordinate system (datum). Analytically the collinearity

condition is given as the X, y pair of equations:

I R (X=X)+n,(Y-Y,)+1,(Z-2,) | (4.16)
w (X=X )+ 15, (Y = Y,) +14(Z-Z,) |

_ L (X=X,)+ 1, (Y =Y,) +1,5(Z-Z,)
w (X=X ) +1,(Y =Y,) +15,(Z2-Z,) |

Where:

X, y= image measurements (mm)

Xo, Yo= principal point locations (mm)

c: camera constant of CCD frame (mm)

u, v, w= numerator and denominator components in the collinearity condition
X, Y, Z= object point coordinates (mm)

Xo, Yo, Zo= projection centre OS coordinates (mm)

rij= (i, j = 1-3) elements of 3D rotation matrix R
Here, in these equations the elements rij (where i, j= 1-3) express the relative
orientation between the image space and the object space coordinate systems. These

are the elements of the 3D orthogonal rotation matrix R representing the applied
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rotations per view (or frame) related to the 3D object space co-ordinate system. The
rotation matrix expressed with regards to its trigonometric functions is given in
Appendix A. The functional system of equations can now be formed considering a set
of j views (frames or photos), i object points and k cameras within the image network.
The bundle method is structured after the notation given in Brown (1974), Granshaw
(1980) and Dermanis (1991). Equation (4.17) provides a vector-matrix representation
considering one view (six EO parameters), one control point (three spatial
coordinates) and one camera (five or more 10 parameters) within the functional

model.

[8X, (4.17)
OX OX OX OX OXx 0OX dY,
X' —x° X, Yy 0Z, oo 0 ox| |8Z,
= +
Y-yl | Y Y Y Y Y|
Xy Yy 0Z, 0w 0O¢p Ok jik 3¢
| oK Jj
_ 8%, ]
OX OX  OX S5X X OX X X Ox 5
& & & aXO ayo oc akl 8k3 yo VX
+ 3Y | + 3¢ | +
¥ ¥ ¥ v oy oy oy oy vy o
oL |, 8Ky ji
oX oY Azl |ox, dy, oc oky kg |
) _6k3_k
Where:

x’, y’: image measurements (mm)

x°, y°: approximate values to the image measurements (mm)

Xo, Yo: principal point image locations (mm)

c: camera constant of CCD frame (mm)

ks, ka: 1% and 3" order radial lens distortion’s coefficients (unitless)
Xo, Yo, Zo: €xterior orientation elements (mm)

X, Y, Z: 3D point co-ordinates (mm)

®, ¢, k: 3D rotations (degrees)
The structure of the basic arrays (vectors and matrices) is considered as follows:

b (n x 1): Is the vector of the reduced (observed minus computed) image observations.

A (n x (6j+3i+(5++)K)): Is the desing or Jacobian matrix.
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X ((6j+3i+(5++)k) x 1): Is the vector of unkown parameters.

It is noted that the fundamental model arrays are implemented according to structure
modelling (parameterization and sparsity of arrays) as well as geometric factors

(object space constraints and datum deficiencies).
In symbolic vector form equation (4.17) becomes:

------ (4.18)

Where:

bji= image measurements vector

Aji ,Aji A= design matrix of EO, XYZ and 10 parameters

Xj,Xi,x = vector of exterior, 3D positions and interior parameters

b= image measurements vector
A= design matrix
x= vector of parameters to be estimated

v=residuals vector

4.3.3. Direct linear transform

The collinearity condition is the most flexible analytical functional model. Yet, an
alternative is offered by the DLT method (Abdel — Aziz & Karara, 1971). Main
advantages comprise the method’s ability to handle uncalibrated cameras as well as its
independency related to the recovery of starting values. As a result, the projective
DLT model has gained ground in general purpose or consumer market CCD video
cameras fitted with variable focus and zoom optics, as broadly utilized in computer

vision applications. The projective equations of the DLT method are given as follows:

Xt AX = LX+L,Y+L,Z+L, (4.19)
L X+L,Y+L,Z+1

Y+ Ay = LX+LY+L,Z+L,
L X+L,Y+L,Z+1
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Where:
X, y= 2D image (mm) or pixel coordinates

Li-...-L11= algebraic parameters (unitless)

In this equation parameters L; (where i= 1-11) express the algebraic equivalents of the
EO (6 parameters) and 10 parameters (3 calibration and 2 affine parameters) and can
be calculated by decomposition of the eleven parameter transformation matrix. These,
according to Wrobel (2001), can result in high numerical stability when the
calculation is based on the knowledge of principal point coordinates and focal length.
The model can be treated as a direct or iterative estimation procedure (McGlone,
1989) and can additionally allow treatment of orthogality constraints within the model
(Bopp & Krauss, 1978). Its direct, non-iterative implementation can offer a fast
computation stage for starting value generation through space resection (see section
4.3.5.) as an example. The offset of this problem is the demand for an increased and
well distributed number of CPs (6 per image) and the demand for an increased
number of correspondences. In self-calibration problems the DLT is computationally
expensive regarding numerical stability and convergence when compared to the
collinearity model (Fraser, 2001). It is recalled here that a comparison of the
perspective and projective models has been given in section 3.4.1.1. It is generally
accepted that the potential for robust estimation, good behaviour in the presence of
noise and high precision levels within the bundle method are held responsible for its

preference over direct estimation procedures.

4.3.4. Self-calibration

Self-calibration simultaneously estimates 10, EO and 3D object space point
coordinates by relatively orienting all bundles of rays without the requirement of any
a priori 3D object space knowledge (point coordinates or scale) (Gruen & Beyer,
2001). The model behind self-calibration is an extended parameter bundle estimation

method.

A simplified internal projection model is considered to include the 2D image
coordinates of the principal point, the camera constant as well as the radial lens

distortion terms. These parameters form the 10 parameters of a CCD frame as defined
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above (see section 4.3.1.). Any departures from ‘ideal’ projection may result in a
systematic error budget which needs to be compensated within the system. It has
already been reported (see section 3.2.3.) that camera stability is critical in camera
calibration, noting in particular that in CCD systems temporal variations can emerge
in principal point location (due to warm up effects), camera constant as well as lens
distortion with a change in focus settings; factors that reduce the camera’s stability as
a result. It follows that selection of the additional parameter model is key as this is the
‘natural” model representation. However, it can be sensitive to over-parameterization
which is held responsible for ill-conditioning or singularities in normal equation
systems. Computation of self-calibration parameters within a bundle method is
rigorous and flexible but factors of network geometry and scale variation play a
significant role.

4.3.4.1. Additional parameter model

Self-calibration demands the definition of a ‘physical model’ that describes the
internal camera geometry error sources. This is achieved by augmentation of
equations (4.16) by a pair of departure functions Ax and Ay which are critical to the
self-calibration success and need to be determinable in a given network configuration.

A general description of these is given according to the following equations:
Xijk = Xojk = _Cjkfijxk + AXiy (4.20)
Yiik = Yo = _Cjkfijyk +AYj

Where:

ijk= number of points, photos (views, frames), cameras

Xijk, Yij= image measurements (mm)

Xojk, Yojk= principal point locations (mm)

Cjk: camera constant of CCD frame (mm)

ik, Pij= numerator and denominator components of collinearity condition

AXijk, Ayijk= departure functions (mm)
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Gruen & Beyer (2001) provide a self-calibration model for close range camera
calibration. Here, the adopted self-calibration model (utilized for the purpose
initialization, pre-measurement and generation of reference image networks) is the
one deployed within the in-house photogrammetric bundle adjustment tool (VMS
8.0). This model is based on a ten additional parameter set which can be optionally

extended to handle up to twenty internal parameters and it is given as follows:

4.21
x:x+(§)dR+de+aly+a2x (421)
r

y = y+(%)dR +dDy

Where:

X, y= 2D image measurements with regards to the principal point location (mm)
r= «sz +y? = radial distance with regards to the principal point location (mm)

dR= radial lens distortion computation model. Polynomial accommodates the 3", 5™
and 7™ power order terms (mm expressed in um)
dDx and dDy= x and y components of decentering lens distortion (mm)

a1, a,= orthogonality and affinity terms of the image correction systems (unitless)

In most CCD camera systems where point location is undefined, the affinity (scale) x
factor (attributed to imprecise sensor element spacing) and orthogonality (shear) may

be present; hence these equations are expected to be effective.

4.3.4.2. Implementation of additional parameter model

Treatment of self-calibration is based on model purpose (e.g. 3D object location,
position and orientation of a moving camera as well as systematic error analysis). It is
noted that the system applied here allows inclusion or exclusion of specific terms
within the calibration file by adjustment of a parameter’s standard deviation (one
standard deviation, normal distribution 68%) to a binary value of 1 for parameter
estimation or 0 to fix a parameter within the system. In situations where insignificant
parameters are observed, these need to be removed from the system and to

subsequently check whether their removal reduces the overall network precision in a
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progressive approach. To avoid a quasi-column rank deficiency of the design matrix
(noting that the identified weights decide the degree of the constraints) Gruen &
Beyer (2001) treat additional terms as observed variables. It is common that the
additional terms are tested through the analysis of the a posteriori matrix of
correlations (see section 4.7.1.). High correlation coefficients (for example those that
present correlations p>0.9) can be damaging if they occur between additional
parameters and object space coordinates; such an indication points that these
parameters need to be removed from the system. In addition, it is useful to examine
the trace of the 3D locations covariance matrix. It is noted that in the case where
suppression of a parameter results in an overall RMS increase, this parameter will

need to be re-instated.

4.3.5. Starting values

Least squares approaches require knowledge of starting values of the unknown
parameters to be estimated. Starting value estimation is critical to the success of the
implemented algorithm; however there is not an absolutely correct answer. The nature
of starting value estimation is problem dependent. For example starting values can be
derived to match a desired answer but fail severely under difficult conditions (e.g.
geometric situations of collinearity and coplanarity). It is generally considered that in
bundle solutions weak starting values can be absorbed by subsequent estimations.
However, it is advisable to avoid such assumptions as similar computations can
potentially lead to a slow convergence or extreme solutions. Starting values can be
derived based upon initial orientation devices as well as assumptions initiated from
geometric considerations; however it is common to utilize sub-estimations (e.g. space
resection and forward intersection methods) that base their calculations on a minimum
subset or search through the observations. An ideal goal of starting value estimation is
system automation. However this is not achieved in generic terms, hence it comprises

a very attractive research topic.

4.3.5.1. Space resection and forward intersection

Common initialization procedures refer to the initialization of cameras pose as well as
estimation of 3D point coordinates. For perspective sensors these are rendered
through classical space resection and forward intersection approaches. The process of
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space resection is a 2D to 3D orientation computation of the defined EO parameters
(see section 4.3.1.). One example is to perform a closed form estimation from a
minimum number of 3 non-collinear CPs. This generally results in four real out of
eight discrete solutions (positive and negative) located symmetrically on either side of
a plane passes through the given CPs (Wrobel, 2001). To resolve the ambiguity and
obtain a unique, correct solution a fourth point is introduced in the computation.
Regarding forward intersection, this calculates the 3D object point coordinates given
the knowledge of the orientation parameters (IO and EO). The minimum requirement
is a pair of two views resulting in a redundancy of one and it is commonly treated as
an iterative estimation procedure. Initialization is an old geometric problem; however
it has gained attention in the computer vision literature. In fact Dickscheid et al.
(2008) utilize a RANSAC™ sub-procedure to eliminate wrong correspondences and to
generate orientation estimates which form the basis of benchmark tests with real

bundle adjustment data.

4.3.5.2. Estimation of exterior orientation and 3D point coordinates
To initialize the bundle adjustment an approach based on a three-stage procedure,
utilizing an initial EO, a Zeng-Wang (ZW) resection and a forward intersection, has

been followed here (see Figure 4.2).

—» Initial EO

L

Update intersections
> & reject points on residuals
& error ellipsoids

BA
computation

Yes, LS Back-projection on
intersection resection

Zeng-Wang resection

A

Points:
Intersected?
> 3 views

Views:
Orientated?

Figure 4.2: Summary of initialization strategy within the VMS 8.0 tool.

The EO parameters are estimated in a local coordinate system which is defined from

the measured CPs applying an initial EO estimation which is subsequently updated by

¥ RANSAC (RANdom Sample Consensus) algorithm: Originally developed to interpret or smooth data
contaminated by gross errors and utilized to solve the Location Determination Problem (LDP) (Fischler
& Bolles, 1981).

-101 -



4. Modelling from multiple views

a resection algorithm (Zeng & Wang, 1992). The stage of forward intersection is

initialized as a geometric solution which is updated by a least squares estimation

procedure. It is noted that resection and intersection computations use an L1%° norm

robust estimation to reliably remove outliers in the target image measurements. A

description of the main stages of the initial exterior orientation (stage 1), Zeng-Wang

resection (stage 2) and forward intersection (stage 3) are described as follows:

Stage 1 - initial exterior orientation: The process is a modified closed form
solution that demands a minimum number of three valid CPs in the data. It
outputs the initialized EO parameters (Xo, Yo, Zo, o, ¢, k) and a successful
solution allows transfer to the subsequent stage.

Stage 2 - Zeng-Wang (ZW) resection: It starts from a subset of four CPs
locations. The solution is based on three points, utilizing the fourth to resolve
the best root ambiguity (storing all answers on a stack). The LSE resection is
an L2 norm procedure. As a rejection criterion for outlier rejection, it utilizes
either a constant factor (which is set by the user) or a factor scaled to the RMS
image residual. A successful solution exports a .log file which updates the EO
parameters similarly with the ‘stage 1’ described above, the average image
measurement residual RMS and a summary of the computations (successful,
failure, insufficient, non-convergent).

Stage 3 - forward intersection: A forward intersection procedure is performed
estimating the 3D target locations as a combination of a geometric solution
which is based on two rays intersection and a subsequent L2 norm least
squares multi-view algorithm. The least squares method utilizes an outlier
rejection factor based on the image residuals (by default set to 5.0 within the
software tool). Implementation of the solution returns a convergent, non-
convergent or an erroneously RMS evaluated solution. Forward intersection
outputs a .log file which includes the 3D point coordinates with their
associated precisions (X, Y, Z, X, Y, oZ) as well as a descriptive summary
of the target counts per view and average RMS residuals per view (frame or
photo).

21 norm solution utilizes the magnitude (absolute values) of the residuals, whereas the L2 norm
solution minimizes the sum of squares of the residuals.
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4.4. Affine camera sensor

A geometric description of the affine camera has been given in section 3.4.2. It is a
camera initially introduced by the computer vision community and it establishes the
Image to object space correspondence linearly. Common treatment has been based
upon the homogeneous notation of the involved matrices. Whilst linear algorithms
impose assumptions into the projective model, reducing for example solution stability,
affine systems are closer to the Euclidean reconstruction. As a result, it can be
considered that their linearity allows for ‘simpler’ system implementation. In addition,
affine-based processing has attracted interest in image analysis with focus on
automation. Further, in problems that approximate a surface by a plane and in cases
where perspective effects are typically small on a local scale, the affine model can

provide a good modelling solution.

4.4.1. Background methods

To report methods that implement the affine sensor the following examples are given.
Koenderink & Doorn (1991) utilize a geometric approach based on local coordinate
frame estimations from a set of known points whereas Tomasi & Kanade (1992)
propose a non-local coordinate frame method that utilizes the total number of points
within the scene but their solution needs to calculate cases related to rank
requirements of matrices. Coordinate datums are defined as the geometric centroid of
the cluster of points. Shapiro (1995) extends the previous approaches to a multiple-
view solution that it is based on SVD of the matrices involved within the system.
From the photogrammetric standpoint the affine sensor has been utilized to initialize
orientation (resection) procedures based on the properties of the rotation matrix (Kyle,
2004) or performs long range measurements (Ono et al.,, 2004) as examples.
Weinhaus & Devich (1999) more interestingly utilize a hybrid joint perspective and
parallel projection mathematical model, of homogeneous and non-homogeneous
equations, that can be optionally adapted (between perspective and affine) for the
absolute purpose of mapping textures onto planar polygons. Finally in image analysis
Mikolajczyk et al. (2005) give an overview of the methods that perform affine

covariant region®! detection. It has been shown that whilst the affine regions are

2 Region: Is a set of pixels on any image subset. According to Mikolajczyk et al. (2005) region
boundaries need not to correspond to changes in colour or texture.
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variant, the normalized image pattern they cover together with the derived feature
descriptors are typically invariant. In particular, the authors studied a number of six
methods for detecting such regions on images and they subsequently assessed their
performance related to texture, different transforms, variation in viewpoint as well as

illumination.

4.4.2. Mathematical model

In non-homogeneous vector notation the affine sensor model recovers the image to
object space correspondence through a mathematical relation (see section 3.4.2. -
equation (3.5)) that can be thought of as a simplified collinearity condition (see
equation (4.16)). In these equations no principal point exists; the projection centre is
located at infinity. The mathematical model involves the parameters: 2D projective
translations (tx, ty), 3D photo rotations (®, ¢, ), and scale factor (s) regarding
orientation and 3D point coordinates (X, Y, Z) regarding object space recovery. It is
linear in relation to the unknown parameters and it can be derived from the standard
collinearity condition by substitution of the variant image scale with an invariant scale
factor which is the approximation of the system’s nominal magnification factor. The
initial mathematical formulation for the affine sensor can be augmented to
accommodate departures from the ideal projection. To initially build and test the
model, a simplified third-power radial lens distortion polynomial term (see section
3.2.2.1)) is inserted for the purpose of camera calibration. The model is implemented
as a system of multiple views that are arranged in a network configuration in order to

process the bundle algorithm.

The mathematical system is formed considering j views (frames or photos), i points
and k cameras. Let b (n x 1) be the vector of reduced (observed minus computed)
image observations, A (n x 5j+3i+2k) be the design or Jacobian matrix and X
(5j+3i+2k x 1) be the vector of unknown parameters. In vector-matrix representation

the affine mathematical model is given as follows:
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ax ax o o] [8] [ (4.22)
x=x’| |05 o 0p ox| |8 . Stx th} .\
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Where:

X, y= image measurements (mm)

x°, y°= approximate values of the image measurements (mm)
s= scale factor (unitless)

®, ¢, k= 3D rotations (degrees)

tx, ty= 2D projective translations (mm)

X, Y, Z= 3D point co-ordinates (mm)

ks= 3" power term of radial lens distortion polynomial (unitless)

Vyx, Vy= X, y components of vectors of residuals (mm)

This is the basic formulation behind the affine sensor model. It is noted that to
implement the bundle algorithm in an iterative LSE approach (see section 4.2.) the
design matrix is formed from the partial derivatives of the parameters to be estimated.
The calculation of these is given in Appendix A. Regarding model structure as well as
method development and implementation these comprise the core theme of chapter 5

where they will be studied extensively.

4.5. Datum constraints

From the photogrammetric standpoint, image networks perform on pure image
measurements. As a result, it is generally required that a datum is determined from
seven coordinate system parameters (see Figure 4.3 for an example of a datum

definition for a small cluster of points).
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Figure 4.3: Local datum of a geometric centroid (red: CPs, green: TPs, blue: scales).

Particularly in the case where no configuration defects are present within a
photogrammetric system, datum defects can be resolved by computation of the
following coordinate system parameters:

A= isotropic scale (unitless)
Xo, Yo, Zo: 3D translations of the origin (mm)
®, ¢, k: 3D orientation angles (degrees)

Datum identification is a problem of a 3D similarity transform (see section 4.3.1.). In
particular it results in a linear dependence of the columns of the design matrix A and
thus in a linear dependence of the columns with the rows in the normal equations
matrix. To solve the datum problem minimum, inner or stochastic (external)
constraints are introduced in the functional model. For example minimum constraints
generally require fixation of two control points (X, Y, Z) with an additional point
known in the depth direction (Z) that form what is termed a zero variance reference
base (Cooper & Robson, 1996). Inner constraints, which are considered as a special
case of minimum constraints, define the seven datum elements with a geometric
centroid (Xg, Ye, Zg) (see section 4.5.1.) whereas stochastic or external constraints
augment the observation equations with a set of pseudo-observations which are
formed from the identified control, the quality of which is given by their stochastic

model (see section 4.5.2.).
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4.5.1. Inner constraints

The inner constraints method (Granshaw, 1980; Cooper & Cross, 1988; Cooper &
Cross, 1991) identifies a geometric centroid to be the center of mass of the defined
control point data. The constraint equations augment the functional model by seven

additional equations. Particularly the 3D centroid is identified as follows:

X; \% Z. (4.23)
2oy =2, 7z, =350
n G n G n

Xg =2
Where:

Xa, Ye, Zc = 3D coordinates of the datum centroid (mm)
Xi, Yi, Zi= 3D coordinates of point i (mm)

n= number of CPs

The constraint equations state:

1. Constraint-position: The position of the centroid remains constant.
2. Constraint-rotation: The average direction of all points from the centroid

remains constant.

3. Constraint-scale: The average distance of all points from the centroid remains

constant.

In mathematical form:

28%; =0, 28Y; =0,%8Z; =0 (4.24)
Y(Z;8Y; - Yi8Z;) = 2(X;8Z; — Z;5X;) = 2(Y;8X; — X;8Y;) =0 (4.25)

Subsequently, the constraint matrix G is constructed by linearization of the seven

datum (3 translations, 3 rotations, 1 scale) equations as follows:
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Where:

X1, Y1, Z1, ..., Xp, Yp, Zp= 3D coordinates of CPs (mm)

The linearized form is now given:

AL Azlxg] I (4.28)
GT o LJ—M
Where:

A= design or Jacobian matrix corresponding to 3D point coefficients
A,= design or Jacobian matrix corresponding to exterior orientation
G'= constraint matrix

X;= vector of the unknown 3D point parameters within the model

Xo= vector of exterior orientation parameters within the model

I= observations vector

The resultant normal equations matrix N is symmetric but not positive definite. Inner
constraints demand appropriate routines for inverse matrix computation (see section
5.5.2.2.). The generalised matrix inverse known as the Moore-Penrose inverse or
pseudo-inverse offers the solution to this problem (Cooper & Cross, 1991). Inner

constraints result in the minimization of the trace of the a posteriori covariance matrix

C

e
X

4.5.2. External constraints
The method of external constraints requires that a set of control point data is known

with a high degree of precision. Such reference data can be derived from a
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measurement procedure that is considered to be of high order precision (such as a

prior robust bundle estimation or CMM measurement).
Given the following definitions:

Xp= X prior vector of control point data.

Cxp= covariance matrix of control point data.

x%=vector of approximate values (pseudo-observations) of control point data.

Equation (4.29) is now formed as follows:

et el

Xp 0 QXP

Where:

An= design matrix of new elements

Ap= design matrix of prior estimated elements

Xn= vector of new elements

Xp=vector of prior estimated elements

xp’= vector of approximate values of prior estimated elements

I= observed minus computed vector (reduced observations vector)

Qxp= cofactor matrix associated to the covariance matrix Cyp

The normals equations matrix N is positive definite (see section 5.5.2.2) and in the
first iteration, the right-hand vector of the pseudo-observations for control points
(formed by the first order increments to the approximate values) becomes null. It is
noted that identification of control is considered as highly critical in the precision
aspect; precision can be degraded for poorly identified control point data.

4.6. Image network geometry

Image network geometry design is the problem of planning the camera’s locations,
image and object space configurations enclosing the object of interest in order to

generate accurate measurements. Figure 4.4 illustrates an example of a convergent
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image network geometry that is formed for six views imaging a 3D volume for the

perspective camera sensor.

Figure 4.4: Representation of a close range image network.

4.6.1. Network geometry factors

The main factors that govern the design of an imaging network relate to: geometric
strength (such as base-to-depth (B/D) ratio, angle of convergence, scale recovery),
object space properties (such as spatial resolution, visibility, occlusions, incident
viewing angle on features), image space properties (such as resolution) as well as
number of intersected angles and redundancy factors. Design of image networks is an
established problem and it is commonly treated with heuristic simulation (Fraser,
1996). To avoid singularities and instabilities several approaches exist and these may
include utilization of expert systems (Mason, 1995) or establishment of optimal
configurations such the discrete camera placement based on a viewing sphere for
example (Sakane et al., 1987). Fraser (1996) follows the classification of the basic

orders of network design as introduced by Grafarend (1974):
1. Zero order design (ZOD): Is related to the establishment of a datum given a

configuration matrix (design matrix) associated with its stochastic model

(covariance matrix).
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2. First order design (FOD): Defines a configuration matrix (design matrix), that
for a given weight matrix, yields a cofactor matrix which satisfies specified
precision criteria.

3. Second order design (SOD): Is related to the optimization of the image
observation precision problem.

4. Third order design (TOD): Refers to the densification problem.

Given an image measurement system and its precision, the network geometry is
initialized to test the configuration and the achieved degree of precision. The network
is tested against its requirements and in case of failure the covariance matrix is re-
scaled or the configuration (FOD design) is modified to resolve the ambiguity,

otherwise redesign is required.

4.6.2. Network geometry examples

Design ‘rules’ for optimal network geometry usually refer to geometric stability (see
section 3.2.3.), wide baselines, wide-angled lenses and large CCDs in order to
enhance object space coverage and measurement precision. Additional requirements
relate to increased point redundancy and four imaging rays visibility to ensure high
internal reliability over the three views case; as four rays enable detection and
localization of gross image measurement errors. 3D test-fields imaged under strong
convergent geometries are considered as optimal; however not absolutely established.
In instances where convergent geometries do not hold, 3D arrays are essential for the
recovery of the camera constant (Gruen & Beyer, 2001). In high resolution, controlled
imaging engineering cases, convergent image networks within an imaging cone of 45°
centred on the object and supported from 90° rotated views on their optical axis are
usually built. In such cases typical accuracies at the order of 1:100,000 of the object’s
primary dimension are reported (Fraser et al., 1995). A range of practical network

design examples can be found in El-Hakim et al. (2003).

In most instances practical limitations like physical obstructions (occlusion, visibility,
direction of lines of sight with relation to features location and features distribution)
and imaging constraints (resolution, DOF and FOV) can bound the network

configurations to empirical establishment. For example in architectural large scale

-111 -



4. Modelling from multiple views

projects (Van den Heuvel, 2003) where buildings are composed of planar primitives,
corner images are acquired to tie and strengthen the sub-networks particularly when
overview images are included in the computations. In sequence projects Guidi et al.
(2003) utilize for example free-form objects placed on a turntable applying controlled
imaging configurations. An example of such a measurement object is given in Figure
4.5 where an alabaster sculpture is illustrated (see section 2.2.2.). Image network
geometry configurations that were designed for the purpose of method development
and testing will be outlined throughout chapter 6 whereas some descriptive networks

are given in section 6.2.2.4.

Figure 4.5: An alabaster sculpture located on a turntable.

4.7. Quality control

To assess the quality of adjustment problems a series of tests that evaluate the
goodness of the solutions are usually performed. In the case of LSE cost functions,
quality estimation is related to three fundamental considerations; these are defined as

follows:

1. Accuracy: This term refers to the degree of closeness of an estimate to its
parameter. In conventional terms, accuracy is considered as the degree of
closeness to the ‘true’ value (Mikhail, 1976). As a result, accuracy is
connected with the degree of systematic error sources, if any, in the data.
Measures that address accuracy are usually expressed with regards to ground
truth (e.g. high precision reference data). VDI/VDE 2634 guideline comprises
such an example for accuracy evaluation of optical 3D measuring systems. It
is composed of parts 1, 2 and 3 that correspond to the imaging systems with
point by point probing, optical-based scanning systems and multiple view
area-based scanning systems respectively (VDI/VDE, 2009). Within this text
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accuracy measures are determined according to the purpose of assessment and
they are given with regards to reference measurements.

2. Precision: This term refers to the degree of conformity among a set of
observations of the same random variable. The spread (or dispersion) of the
probability distribution is an indication of precision (Mikhail, 1976). As a
result, it is linked with the presence of random errors in the measurements and
it is associated with the covariance matrix analysis. The direct estimator
associated with precision is the variance or standard deviation of a random
variable. The a posteriori covariance matrix of the estimated parameters is a
highly rich source of quality information and allows the assessment of model
precision as well as detection of systematic errors within the system. Within
this text the term precision (or quality) denotes the standard deviation of the
associated entity.

3. Reliability: This term refers to the presence of gross errors (blunders) in the
data (Cooper & Robson, 1996). Such errors are difficult to detect due to the
nature of the minimization of the quadratic cost function (see section 4.2.). For
example if a gross error occurs in the measurement data this will contaminate
the measurements in order to minimize the target function, posing its
identification difficult. Internal reliability relates to the ability of performing
self-consistency checks for outlier detection. External reliability specifies the
degree to which undetected outliers can affect the estimated parameters.
Within this work outlier detection and elimination have not been part of the

up-to date implemented algorithm (see section 5.5.).

The above three factors are critical to the evaluation and the applicability of the
solution applied to a measurement problem; hence a set of sufficient measures are
commonly computed and analyzed to ascertain accuracy, precision and reliability as
reported in section 4.7.1. It is stated that this text follows the terminology followed in
photogrammetry. For clarification purposes two additional definitions are given:
‘Robustness’ is referenced with regards to the presence of outliers within a system and
‘consistency’ characterizes an estimator when it is said to converge in probability to
the parameter. However these terms have been used only in implicit terms (without an

explicit utilization or derivation of associated measures) throughout this text.
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4.7.1. Quality indicators

A review on the quality indicators and performance evaluation applied in bundle
adjustment methods is given in Triggs et al., (2000) and Foerstner, (2005). Here the
problem of quality assessment metrics is discussed outlining the typical estimators

obtained from a LSE procedure.

Accuracy is addressed through measures that ensure that systematic effects are not
present in the data. Examples of accuracy evaluation measures are the residual vectors
(their magnitude and direction need not to present undesirable systematic patterns). A
measurement is considered as ‘accurate’ with relation to a reference dataset, hence
comparative differences need to refer to standards designed for this purpose (see for
example VDI/VDE, 2009).

Precision is expressed as a quality measure associated with the covariance matrix
analysis. Starting from the model formation an a priori variance factor o,” is defined
to be commonly equal to unity; this implies that the contribution of the image
measurements in the estimation procedure is pointed by their stochastic model o;°. An
example of the order (magnitude) of this value is given in the bundle software VMS
8.0 where image networks are processed with a specified image observations quality
2= 0.25um (oi= 0.5um => o;?= 0.25um). The a posteriori variance factor can then be
evaluated (see section 4.2.) to check if the a priori stochastic model meets the
requirements. This test refers to the T statistic (T=v'Wv) that tests the null hypothesis
where the variance factor is equal to unity against an alternative hypothesis. If the null
hypothesis is rejected the precision of the measurements has not met the design, there
is a gross error on at least one measurement or a systematic error occurs (Cooper &
Robson, 1996). In the absence of gross and systematic errors the a posteriori
covariance matrix scales the computed a posteriori covariance matrix of the estimated
parameters. This is a significantly self-contained matrix in that it encloses highly rich
information for quality evaluation. It describes each of the components that constitute
a camera problem such as additional internal parameters, external camera elements
(position and attitude) and finally 3D point coordinates. Sub-matrices can be easily

derived if each of these three components need to be considered. To evaluate object
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space quality the square root of the mean variance is calculated from a set of 3D

points within the image network according to:

(4.30)
(trace C A—j

L Xi
G, = —3
Xi I

Where:

o, = mean a posteriori standard deviation of a number of i 3D CP data

XI

C =aposteriori covariance matrix of a number of i 3D CP data

xi

In addition, object space can be inspected from the ratio of the largest to the smallest
eigenvalue (Amax/Amin) in relation to unity. The 3D standard error ellipsoid can be
calculated from the eigenvalues (magnitude) and eigenvectors (directions). In an
alternative case computation of the 2D point ellipses from an algebraic calculation is
performed. Regarding the internal calibration parameters, these can be checked
against their significance from zero based again on the T statistic. If over-
parameterization occurs then potential insignificant parameters need to be removed
from the data and LSE needs to be re-evaluated. Further to these, analysis of the
matrix of correlation coefficients is highly important in that it indicates the mutual
variation between two random variables. Parameters that present high correlation

coefficients (>0.9.) will need to be removed from the model.

Sy _pX=EC) (y=ED)y (4.31)

Pxy =

Where:
pxy= correlations coefficient of parameters X, y (unitless)
Oxy= Covariance between two parameters x, y (mm; converted in pm)

ox= standard deviation of parameter x (mm; converted in pum)
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oy= standard deviation of parameter y (mm; converted in um)

Reliability measures usually refer to the detection and elimination of outliers from the
system. Flagging image measurements that are affected by gross errors is one
possibility but alternative approaches are implemented by applying a down-weighting
scheme followed by statistical tests that check the a posteriori variance factor,
subsequent measurements corrections and re-estimation. This procedure is repeated
until the a posteriori variance factor is unity and all contaminated measurements have
been assigned with large standard deviations that in effect minimize their contribution
in the LSE process. The method of outlier elimination based on residuals testing is

known as data snooping (Baarda, 1968).

4.8. Summary

In summary this chapter reviews the method of multi-view modelling from the
photogrammetric perspective. It starts with an overview of the bundle adjustment
method supported by its main features related to the method’s background, main
attributes as well as state of the art. Subsequently the least squares estimation and
associated mathematics are given. The perspective camera sensor is presented from
the geometric viewpoint linked with the important aspects of self-calibration and
starting value estimation. Subsequently the affine camera sensor which comprises the
central topic of this thesis is covered with a brief description of background methods
and its mathematical model formulation. The chapter additionally covers three
important considerations for modelling multi-view problems; that is the aspects of

datum, image network geometry and quality control.
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This chapter presents the ‘affine multi-view modelling’ algorithm developed within
this research work. The chapter is organized into six main sections starting with a
general overview as well as method description. Subsequently, the implementation
tasks are listed in a methodological approach as the key stages of the algorithm are
developed covering model structure, derivation of starting values and bundle
adjustment framework in detail. Finally, the chapter closes with the design and

initiation of the implemented method reporting a simulation example.

5.1. Method overview

The algorithm presented here is concerned with the investigation of the affine sensor
in the close range. It is designed and developed for the multi-view case that solves the
fundamental photogrammetric tasks; that is (a) calibrates, (b) orientates the cameras
and (c) simultaneously estimates 3D point geometry. The algorithm needs to be
capable to allow statistical error propagation and therefore to assess the method with
the typical quality measures utilized for the purpose of performance evaluation (see
section 4.7.). It is developed for close range convergent imagery arranged in a
network configuration (see section 4.6.) and it is based upon the assumption that
initialization is performed from sparse, artificially targeted, point-based geometric
structures prior to method processing and evaluation. In the contexts of design,
development and implementation of such a multi-view framework, there are some key

considerations that need to be accommodated; these are formulated as follows:

1. Input data handling: Is related to the reading of the input data files with
regards to affine sensor modelling as well as the design of the basic model
structures.

2. Algorithm modelling: Depicts the ability of the algorithm to accommodate
camera modelling factors (internal calibration and external orientation
parameters) and to deal with a number of geometric factors which arise from
point data treatment such as visibility handling, point coordinates contribution

(CPs or TPs) in the network computations, particularly in the geometric datum
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estimation (see section 4.5.). These are the primary geometric factors that are
related to the 3D object positioning problem from multiple viewpoints.

3. Affine sensor modelling: Signifies the ability of the algorithm to represent,
given its theoretical basis, the physical reality, particularly regarding model
scale and internal camera geometry.

4. Checking and interpretation: Are issues related to the ability of the system to
incorporate statistical error propagation within the method which will
subsequently enable data quality assessment through the associated quality

measures.

Overall decomposing this chapter, the above factors are addressed by firstly
illustrating an outline of the developed algorithm in a methodological approach (see
section 5.2.). Method description is followed by four fundamental sections. The
structure of the model is described with the affine model formation and stochastic
model initialization (see section 5.3.). Noting that the key factors presented above are
valid given that the method has been initialized with ‘good’ starting values, another
issue is the investigation of starting value derivation based on direct or indirect
estimation procedures (see section 5.4.). Subsequently, the bundle adjustment %
framework, which is the core method of this thesis, is presented with its implemented
intermediate stages (see section 5.5 and subsections). The chapter closes with a
description of the implemented method based upon a simulation example that was
created for the purpose of initial model formation and development. This synthetic
example also supports theoretical proof of the method based upon three geometric
viewing cases; that is two-view, three-view and seven-view geometric arrangements

that are covered in sections 5.6.2., 5.6.3. and 5.6.4.

5.2. Method description

The method of multi-view modelling was treated in the context of developing a
bundle adjustment framework that seeks the answers to the primarily stated key
questions (see section 1.3.). It is restated here that prior concern is (a) to derive
precise 3D object measurements, (b) to check the effect of parallel projection, scale

factor modelling and local coordinate frame definition within the method and (c) to

22 Within this text the term bundle adjustment is denoted as BA only in tables of results.
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assess method quality over precise conventional reference measurements. The bundle
adjustment starts from a set of input data that are generated externally to the
developed method (see section 6.4.1.). For the purpose of initialization a set of sparse
3D targeted structures can be utilized provided that they present sufficient content
(intensity) as required from the employed 2D image measurement method as well as
that they are highly geometric in their nature to avoid potential geometric
degeneracies. In addition, the significant matters of point visibility, redundancy within
network geometry are key to the problem as they affect the strength and adaptation of
the algorithm developed here to the application of complex object measurement, for

example.

First consideration is the initialization of the method through the derivation of suitable
approximate values that are optimal in that they assist the algorithm to converge
rapidly and closely to its true answer. Next, the affine bundle adjustment is run
accounting for modelling issues like visibility, validity, parameter inclusion (scale and
interior orientation parameters). The iterative process terminates when the
appropriately set criteria have been reached. Consequently, the successful solution
extracts an overall report derived from the algorithm providing the affine sensor

parameters accompanied with their statistical estimators.
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Figure 5.1: Descriptive overview of affine multi-view algorithm.

Figure 5.1 illustrates an outline of the overall method description according to its
design, development and implementation applied within this research work. It is
composed of three building blocks. The first, initialization of the method, stage starts
from three general steps that read input data files, compute starting values and on
success update the initialization data files. Subsequently, the key steps of the new
affine bundle adjustment algorithm involve input data file handling, datum definition,
internal checking of entities (visibility and validity), model parameter set-up,
calculations and set up of sensor scale and simplified interior orientation, iterative
weighted least-squares estimation procedure, convergence checking and finally output
of the associated method report.

To develop and implement the affine algorithm a set of data were read as input or

exported as output (.log files). These data files were of ASCII format and a sample of
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these can be found in Appendix B. Supported menus that draw the processing
framework have been outlined in the same Appendix B. Accordingly, the individual
stages of the algorithm regarding initialization strategy as well as bundle adjustment
will be addressed analytically in the following sections (see section 5.4. and section
5.5.).

The algorithm has been designed, developed, implemented and subsequently tested
for the purposes of this research work. It is noted that no similar method that
processes multi-view data generated from affine imagery in the close range is
currently available. This point emerges the significance of the initial investigation and
successive algorithm treatment presented here, for a potential future complete
modelling method from affine images. It is re-iterated here that image measurement
and initialization were performed in the in-house photogrammetric processing tool
VMS 8.0 (see section 1.5.) externally to the developed framework. For the purpose of
this research work code has been developed in C/C++ within Microsoft Visual Studio
2005 (subsequently upgraded to Visual Studio 2008).

5.3. Model structure

On the basis of implementation of a multi-view algorithm for the purposes of camera
calibration and orientation and simultaneous location of sparse targeted 3D objects
with statistical error propagation, algorithm structure and model geometry are of key
significance. Model structure is related to the organization of the main model arrays
for data population and location as well as treatment of model geometry. As a
reminder, the fundamental mathematical model behind the affine sensor model has
already been given in the section that renders a descriptive overview of affine camera
modelling methods (see section 4.4.2. for mathematical model formation). This
section provides the design of the affine model structure in relation to its fundamental

arrangement.

5.3.1. Affine model structure

The prior objective of such a multiple-view task is to intersect in 3D space the lines of
sight generated from imagery acquired with an affine close range camera sensor. A

simplified example of such an imaging network is illustrated in Figure 5.2. This
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example utilizes six views that were generated from an affine camera for the
particular case that its scale factor is equal to unity. To structure the affine model in a
bundle adjustment framework of prior importance is the design matrix structure. It is
noted that the input data are organized as four data files (see Appendix B) that
correspond to the input 3D target data, calibration data, photo orientation data and
observations data initialized at a prior stage to the main developed framework (see

section 5.3.3 for data structures outline).

Figure 5.2: Multi-view intersection of affine images. Parallel lines of sight link 2D image and
3D object spaces. Notation: PQ= object points, po-ps: photo, — photos, pi.gi= image
measurements, oxyz= 3D coordinate system of camera.

Following the structure of the input data, the model was structured starting from the
population of the number of physical cameras k within the model followed by the
number of views (images or frames) j and then by the number of targets (given their
initialized 3D coordinates) i that contribute within the image network. Whilst the
general problem requires that the parameters are populated and located on the
mathematical basis of the affine sensor model (see section 4.4.2.), a key issue is the
choice of the system parameters that correspond to the physical reality and do not for
example result in an over-parameterized system. As a result, here the affine sensor is
modelled accommodating a simplified interior orientation model (third power term of

radial lens distortion polynomial).

The parameters to be estimated are grouped according to their type in order to assist

population of the required arrays in a columnwise order. The parameters are grouped
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together as pseudo-exterior orientation parameters, that is projective equivalents of the
principal point components (tx;, ty;) populated per view (two parameters per view j)
and 3D orientation angles (wj, j, k;) populated again per view (three parameters per
view j). The next group of parameters includes the 3D target coordinates (X, Yi, Z;)
which are populated according to their visibility on each view (frame or image) (three
parameters per target i). In cases where a target is not visible or its measurement is
absent from an image its associated location is left void. In addition, the system is
populated with one global scale factor (sx) and the third-power term of the radial lens
distortion polynomial (ksx) which is modelled centrally from the computed image
centre (tx, ty) per camera k. These are image invariant parameters provided that one
physical camera system has been employed for data acquisition. It follows that scale
factor and additional interior sensor geometry parameters are camera specific. It is re-
iterated here (See section 4.4. and section 4.5.) that the model structure of the design
matrix A for any set of j views (frames or photos), i points and k cameras is
formulated as: A [[(2*]*1*K) + ¢ (where: C= 7(inner_datum) OF 3*CP (external_datum))] X [(2*])
+ (3*%) + (3*1) + (1*k) + (1*Kk)]]. The outline of the model parameters is drawn in
Figure 5.3 whereas the structure of the design matrix (see Appendix A) with regards
to parameter location for a specific example is illustreated in the subsequent Figure
5.4.

Photo orientation parameters 3D point coordinates Scale | ADP

o b abc o || AR ahc[ Ak || ol | o
Phj=m | OtX dto | ote | ot OX | oY | oz ds | Ok,
Too | OV Tay oy oty |y oy ay oy | oy
oty oo | Ote | otk oX | oY | oz os | oK

Figure 5.3: Affine sensor parameters.
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Figure 5.4: Design matrix structure - inner datum (left) and external datum (right).

Specifically Figure 5.4 illustrates the design matrix configuration for a synthetic small
sample of j= 10 views, i= 10 3D targets and k= 1 cameras to illustrate model
parameter location and structure. For this set the inner constraints method is
composed of a data size of 207 equations x 82 unknown parameters [A (207 x 82)]
whereas the external constraint datum is comprised of a data size of 221 equations x
82 unknown parameters [A (221 x 82)]. The matrix visualizes the numerical data in a
binary representation. Where for example data exist the selected location is plotted in
white (intensity value= 100) whilst black indicates absence of data (intensity value=
0), hence the corresponding targets are not visible on the specified image (the targets
are occluded or missing). For example the presented data demonstrate minimum
visibility where one image contains seven measured points (for initialization and
computation of photo locations) whereas ten point data are visible or otherwise
located in two views (for initialization and computation of 3D point locations).
Maximum visibility is present in the case where seven images include nine measured
point targets noting that nine point target data are viewed and hence located from
seven views. These numbers are specific to this example. It becomes apparent that the

model needs to be flexible with regards to its adaptation to include or exclude those
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parameters that may have a physical effect on sensor modelling (sensor scale and

internal geometric distortions) affecting recovery of 3D geometry.

The model is also capable of dealing with the important datum issue. The inner
constraints method (see section 4.5.1.) augments the system’s equations by seven
additional rows whilst the external constraints method (see section 4.5.2.) extends the
system’s equations by three (where the index three corresponds to the known number
of 3D coordinates for example) multiplied by the number of valid CPs pre-set
(flagged) for datum definition. In the example presented here seven CPs have been
assumed, resulting in twenty-one additional equations. It is further noted that
population needs to treat the implemented arrays with validity checks; that is to check
the number of flagged CPs and TPs that are valid according to their measurement for
example in a minimum set of two views (forward intersection requirement). Flagging
for parameter inclusion or exclusion within the system as well as identification of data
type (CP flag = 7 or TP flag = 0) are central to the sections 5.4. and 5.5. where these
will be addressed.

5.3.2. Stochastic model initialization

In the case of implementing 2D image measurements, the applied measurement
method (see section 3.3.) is key to the initialized stochastic model. Although, in
general there exists the ability to use natural point features within the method, testing
within this work was performed on high contrast retro-reflective or passive white
target features which were illuminated to enable high contrast measurement (see
section 6.2.2.3. for a sample of target data quality). In similar image network
computations, the input data quality is regarded to be characterized with a standard
deviation of 6= 0.5 um (which is the default precision in VMS 8.0 tool). With regards
to the presence of blunders, it is noted that the method is treated with pre-processed
data to ensure that the data are clean from any erroneous point correspondences as
outlier detection and elimination is not part of the up-to-date solution. It follows that,
a priori data quality is dictated by the empirically set image quality factor which can
be optionally adjusted to the testing requirements. It is apparent, that considering
magnification factor (see section 3.4.2.1.) as an inherent affine sensor property as well

as projection distortions, these factors are likely to additionally affect the success of
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image measurement and hence input data quality. For example it will be shown that a
typical target diameter for close ranged image targets can reach the order of 36 pixels
In image space under affine projection when 2 mm in diameter object space targets
are imaged for measurement purposes (see section 6.2.2.3.).

The affine model implements the a priori precisions as set for the input image
measurements. These form the stochastic model that weights the least squares
estimation procedure (see section 4.2.). In the case of an inner constraints datum, the
weight matrix is augmented based on the normalized precision factor (6i=1.0) whilst
external constraints utilize the control point data quality to form the augmented
weight matrix (o; pointed by 3D targets precision). The quality of the 3D targets is
pointed by their pre-measurement method which in general needs to generate high
order precision reference measurements. It is noted that estimation of the a posteriori
o, gives an overall fidelity check of the initialized stochastic model. It is recalled here
that Gauss-Markov based procedures are evaluated with the extracted a posteriori
quality measures; here quality evaluation is extracted from the scaled to the o,
(standard deviation) a posteriori covariance matrix. Stochastic modelling is key to
quality assessment (see section 4.7.1.) particularly in order to determine method
precision and reliability measures that truly reflect the quality of the computed
elements and can support further analysis.

5.3.3. Data structure outline

For clarification purposes it is stated that the following set of input data are handled
within the computations. Specifically 3D target coordinates (.tar data file), camera
calibration information (.cal data file), exterior orientation parameters (.pho data file)
and 2D image observations (.obs data file) when these are attributed to the perspective
sensor model whilst ORIENT data (.pho data file) and similarly 3D target data (.tar
data file) point to the affine sensor model. Here, the following notation TAR, CAL,
PHOTO, OBS and ORIENT apply to the utilized data structures a description of
which is given in Appendix B. In addition, two structures were designed for problem
handling. The first PHOTO_ORTO structure is required for the definition of the photo
pseudo-exterior orientations entities that in the case of the affine sensor enclose the

positions and orientations of the photo parameters (tx, ty, s, o, ¢, k) and the second
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structure is needed for least squares problem solving (1D and 2D arrays) (see

Appendix B for a description).

5.4. Derivation of starting values

A prior task to the bundle adjustment algorithm is the estimation of starting values in
order to initiate the process. Initialization procedures for the established multi-view
problems met in photogrammetry have been reported earlier (see section 4.3.5.).
Analytical approximate value estimation can be derived from direct (without the
requirement of a priori estimates) or through iterative solution. Retrieval of
orientation parameters is a highly critical subject and entails significant research
interest in photogrammetry. Good starting values are those that ensure high stability
in full parameter space. It is essential that starting value procedures provide
knowledge on the critical configurations of 3D points and that they define cases of
indeterminacy, instability or multiplicity which are accommodated within the derived
solutions. Here, the approximate values are retrieved from a combination of
established perspective-based and derived affine based solutions that have been
investigated for the purpose of this research work. Since starting values are recovered
photogrammetrically and not through external methods (e.g. orientation devices or
coordinate system transformations) it is important that both perspective and affine
cameras cover simultaneously an identical patch of the 3D volume to be measured.
Such an imaging geometry is illustrated in Figure 5.5 where a joint projection model
(affine and perspective sensors) recover the image space to object space

correspondence relation and locate an object volume in 3D.
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Figure 5.5: Two-view geometry of a pair of affine and perspective views.

-127 -



5. Affine multi-view modelling

5.4.1. Initialization structure

For the purpose of this work the problem of parameter initialization was treated as a
combination of procedures through established perspective solutions regarded here as
indirect procedures as well as two affine procedures one direct and one iterative
written specifically for this purpose. Figure 5.6 demonstrates a general description of

the initialization structure procedure.

PERSPECTIVE MODEL AFFINE MODEL
TAR CAL PHOTO OBS ORIENT
FILE FILE FILE FILE FILE
(.tar) (.cal) (.pho) (.obs) (.pho)
| | | | |
v
GENERATE 2D N OE:EEIT
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Figure 5.6: Affine model initialization.

The method starts from a set of reference control which is known in the object space.
Whilst it is made clear that the subject of minimum control requirements for starting
value recovery has not been investigated as part of this work, it is emphasized that this
is critical in order to avoid situations of geometric degeneracies that for example can
originate from indirect estimation procedures (and associated assumptions) or weak
cases regarding geometry (image to object space recovery under parallel projection).
However, repeated tests proved that a minimum number of nine well distributed CPs
are required to result in a successful estimation of orientation angles (see section
6.4.1.2.). These data together with their associated precisions (.tar file) are inserted
with the defined (.cal file) in the software tool VMS 8.0 where a set of image
measurements are generated according to the method described in section 3.3.
Applying established perspective procedures for initialization, requires that the
physical affine sensor is approximated by an equivalent perspective sensor. This
approximation is achieved based on the assumption that a perspective camera with a
very long focal length is a good approximation to a parallel camera. Here it is
assumed that such a guess is realized considering a nominal value for the focal length
to be equal to 100,000mm which is significantly large over the measured volumes
noting that the physical cameras footprint is a few tenths of mm (~40mm) in the
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object space. This step is therefore completed by derivation of the 3D orientation
angles (o, ¢, ) applying the initialization methods. The output of this procedure is a
set of ASCII data files target data (.tar), calibration data (.cal), photo orientations data
(.pho) and image observations data (.obs) that have been updated and filled with the

input required data (see Appendix B for a detailed format description).

Subsequently, these data are read in the bundle adjustment framework where two
procedures take place. The first generates the 2D projective photo locations directly
from the affine camera sensor through back-substitution (see section 5.4.2.2.) in the
ideal case (absence of any internal distortions). On completion this procedure updates
the orientation file (.pho) which now includes, and in this particular order, the 2D
projective translations (tx;, ty;), nominal scale factor (s;j) and 3D orientation
parameters (wj, ¢j, kj) for each measured valid view. These can then be inserted into
the next step which computes the 3D target locations through an iterative weighted
least squares procedure which is written for the affine sensor model (see section
5.4.3.). On convergence the process outputs the 3D target coordinates with their

associated precisions and updates the 3D file (.tar file).

Derivation of approximate values for the affine sensor model required the design and
implementation of a new structure that identifies the required members and it is for
this purpose embedded within the available header file (see Appendix B for further
outline). The formats of the ASCII files described and utilized here are also given (see
again Appendix B). It is again stated that the problem of starting value derivation has
been theoretically given in section 4.3.5. (with initial approximations for model

formation are given in Appendix A).

5.4.2. Pseudo—exterior orientation parameters: Stage 1

The pseudo-exterior orientation parameters are recovered as a first stage of the overall
initialization method. The method is comprised of two steps that estimate the 3D
orientation angles (o, ¢j, ;) indirectly through perspective (see section 5.4.2.1.)
followed by estimation of projective translations through back-substitution (tx;, ty;) as

a direct approach from affine projection (see section 5.4.2.2.).
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5.4.2.1. Indirect 3D orientations

To initialize the orientation angles (o, ¢, k) a modified Zeng, Wang closed form
resection procedure (Zeng & Wang, 1992) is applied (see section 4.3.5.2.) on the
assumption that a perspective camera with a very long focal length (e.g. assumed
nominal focal length f=100,000 mm) is a good approximation to the affine camera.
Prior to the established resection an initial exterior orientation procedure, again
utilizing the same assumed focal length, is computed to enable initial estimation of the
exterior orientation parameters as input to the resection procedure. It is therefore
understood that resection acts as a refinement of the initialized estimation. The
procedure demands an initial set of known CPs in the object space that are well
distributed in 3D to avoid for example geometric degeneracies that can be the result of
employment for example of coplanar or collinear configurations. A description of this

procedure is given here.

Step 1 - Generate 3D orientations:
- Start with a set of sparse reference target point (CPs). These provide reference
control and simultaneously establish the datum for subsequent computations.
- Estimate 3D rotations from an initial exterior orientation procedure updated by
a modified closed form resection assuming a physical perspective camera with
a very long focal length (e.g. here: f~100,000mm).

On success, the utilized resection procedure outputs the 3D orientation angles (o, o,
k) together with an overall mean image measurement residual RMS (in um) and mean
valid target image observations (see Appendix B for output files). The exterior
orientation parameters regarding the 3D photo positions will be subsequently (see
section 5.4.2.2.) updated by the computed affine model parameters and hence their
initial determinations from this step will be ignored.

5.4.2.2. Projective translations through back-substitution

The 2D projective translations (equivalents of the well known principal point located
on perspective sensors) are estimated on the knowledge of the partial exterior
orientation given above (step 1). In particular, this back-substitution procedure starts
from the input observations list (OBS data) where for each valid photo (search on
PHOTO data identifiers (IDs)) the target points (TARGET data) that sit on each photo
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are found. Provided that a point acts as a CP and that it is measured on at least two
views (four rays are generally preferred), tx and ty are calculated as the accumulated
sum of the reduced observations vector which is subsequently divided by the number
of valid rays. This is performed per view, noting that the reduced observation vector is
calculated as the observed minus computed image measurements. Computed
observations are regarded those that are estimated from the affine mathematical model
initialized from the starting values of the parameters and in the absence of any internal
camera distortions (ideal geometric case). It is noted that this procedure is executed
for each valid photo; that is when at least three rays have fallen on it (formed by valid

CPs). The computed parameters update the orientations data file.

Step 2 - Mathematical formulation:

_ ZXOBS —Xcomp (5.1)

X

t

NRAYS

ZyOBS ~Ycowmp
'[y =

NRAYS

Where:

tx, ty= 2D projective translations (mm)

Xogs, Yors= 2D observed image coordinates (mm)

Xcomp, Yeomp= 2D computed image coordinates (from the affine sensor model) (mm)

Nravs= Number of rays occurring per photo (counted from the valid CPs)

Step 2 - Projective translations through back-substitution:
- Back-substitute the 2D projective translation parameters utilizing the affine

camera model and update the orientations data file.

5.4.3. Object space 3D coordinates: Stage 2

To derive 3D target coordinates, a forward intersection procedure for the affine sensor
model was written. This was implemented on the knowledge of the recovered pseudo-
exterior orientation parameters (see section 5.4.2.) and in the absence of any internal
geometric camera distortions. The procedure starts with two basic checks to obtain the
number of rays that correspond to each target (checking on TARs against OBS) and
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views (checking on PHOTOS against OBS). Next the 3D target centroid is estimated
from the total number of control point data similarly to the calculation of the 3D
centroid that has been described in the inner constraints method (see section 4.5.1.).
Subsequently, the starting values for all 3D control and tie point data are set to be
equal to the (X, Y., Zc) coordinates of the 3D centroid. A weighted LSE (forward
intersection) procedure for the affine sensor model recovers the 3D point coordinates.
This procedure minimizes the cost function in the object space and it results in the
computation of the 3D control and tie point coordinates together with their 3D
precisions. The tolerance of the intersection procedure is pre-set at 10um in object
space whereas minimum target visibility for the intersection is two rays by default
unless otherwise modified. On convergence the original 3D target file is updated by
the intersected 3D coordinates and their associated precisions (see Appendix B for a

sample data file).

Stage 2 - Object space 3D coordinates:
- Perform a multi-view forward intersection (weighted LSE) procedure to
coordinate new 3D points (CPs and TPs). The intersection closure tolerance is

pre-set at 10pum in the object space for the 3D target coordinates corrections.

5.5. Bundle adjustment framework

It has already been stated (see section 4.1.) that a bundle adjustment framework
provides an optimal method for processing multi-view problems to simultaneously
estimate calibration, orientation parameters and 3D object geometry. To answer the
question of selecting a least squares bundle approach to process universally such a
linear model such as that of the affine sensor, it is recalled here that the choice of a
least-squares solution (see section 4.2.) is attributed to its ability to produce a unique,
unbiased and objective solution resulting in the minimum variance of estimated
parameters. Moreover it delivers a quantifiable quality assessment and embeds full
covariance matrix analysis within the system. To make this statement relevant to the
multi-view problem examined here it is highlighted that, for instance, to combat noise
derived from corresponding point measurement even the case of a direct approach

should produce a least squares solution from redundant information.
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To design such an iterative adjustment system, there are some important practical
considerations that need to be considered which are outlined here giving an overview
of the algorithm at the outset. Subsequently analysis of the intermediate steps
according to design and implementation are reported.

5.5.1. Framework structure overview

The structure of the affine bundle adjustment framework is outlined in Figure 5.7. The
method will be described from the stage where the input data (specifically target,
calibration, photo and observations data; see section 5.3.3.) initialized from
perspective-based procedures have been read within the process. Additionally, it is
assumed that the explicitly generated data based on the affine-sensor model
(specifically orientations and updated 3D target data) have been already initialized as

previously described. For initialization of data structures see section 5.4.

PERSPECTIVE MODEL AFFINE MODEL

TAR CAL PHOTO OBS ORIENT
FILE FILE FILE FILE FILE

(.tar) (.cal) (.pho) (.obs) (.pho)

ORIENT
FILE

(.pho)

GENERATE 2D
PHOTO LOCATIONS

A

v

GENERATE 3D POINT
COORDINATES

STARTING VALUES
RECOVERY

v

SET DATUM
- EXTERNAL (FLAGGED 3D CONTROL, o)
- INNER (CENTROID 3D CONTROL, 6= 1)

CHECKING
- VISIBILITY & VALIDITY
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0.04*(00=1)" 01y
v

BUNDLE (.log) FILE
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estimates &
statistical indicators

BUNDLE METHOD

Figure 5.7: Affine multi-view model processing.
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The implemented bundle method is blocked into three main parts, each one
representing an implementation stage. The first stage requires that the datum is
defined in order to enable data processing on either an external or inner datum
definition. Next the measurement data are inserted within a list of checks related to
issues like data visibility and validity, parameter set-up for inclusion or exclusion
from the system (scale factor and radial lens distortion coefficient). The final stage
involves the implementation of the iterative multi-view least squares estimation
process. Here the issues of array handling for inversion as well as convergence criteria
are reported. On convergence the algorithm outputs a descriptive report listing, on a
statistical basis, the initial as well as estimated parameters together with their

associated quality factors.

5.5.2. Algorithm implementation

Implementation of the algorithm is detailed according to the three individual stages
given above. The affine bundle adjustment is described as a series of algorithmic
steps: (a) prior to the iterative process (see section 5.5.2.1.), (b) least squares
estimation process (see section 5.5.2.2.), (c) convergence (see section 5.5.2.3).
Sections 5.5.3 and 5.5.4 outline the closure criteria and quality estimates.

5.5.2.1. Prior to the iterative process

Step 1 - Datum definition:

- Set up datum for coordinate system definition. Two options are provided.
External constraints establish the 3D datum based on the identified CPs
(datum_flag= ’e’) where CPs are considered those targets that are indexed
with a flag= 7. Alternatively, inner constraints (datum_flag= ’i’) establish the

3D datum based on a 3D centroid identified again from the flagged CP data.

Step 2 - Visibility:
- The total number of target points is checked against their occurrence onto the
valid number of images within the image network to retrieve the total number
of rays corresponding to each target point. This derives the point visibility

from photos.
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- The total number of photos is checked against the valid image observations to
retrieve the total number of rays corresponding to each photo. This derives the
number of target points measured on each photo.

- The total number of photos is checked against the number of physical cameras.
It is noted that each physical camera specifies a camera calibration set of

parameters.

Step 3 - Validity:
- The number of image observations that are valid within the model are obtained
and stored in a counter (n_obs).
- The number of target points (CPs and TPs) that are valid within the model are
obtained and stored in a counter (n_targ).

Step 4 - Starting values:
- The system is initialized with the pre-determined starting values
corresponding to photo orientations (PHOTOS), 3D target coordinates (TARS)
and additional parameters (ADPS).

Step 5 - Set up scale factor:

- Scale factor is specified from the nominal scale factor associated with the
camera sensor (image invariant factor). Scale estimation is embedded within
the system according to an identified flag. Particularly, scale_flag= 1 includes
the scale factor within the system computations and scale_flag= 0 excludes the
scale factor from the system estimations.

Step 6 - Parameter locations:
- The individual parameter locations are set for the 2D projective translations,
3D orientation angles and 3D target coordinates with an implemented check.

Step 7 - Parameter estimations:

- Calculation of the estimated parameters is based upon the valid system

parameters.
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Step 8 - Constraints:

This step performs a calculation of the number of constraints for both datum
methods. The external constraints will augment the system by a number of
three (3D coordinates) times the number of valid CPs, whereas the inner

constraints will augment the system by seven additional equations.

Step 9 - Radial lens distortion:

Where:

The active image frame (maximum extent) is calculated from the image
observations within the system. Accordingly, the frame radius is estimated
from the equations given below (see equations (5.2) and (5.3)). Subsequently
the additional parameter set (here the third power term of the radial lens
distortion polynomial) is calculated from a function initialized for the radial
lens distortion part only (without the inclusion of the extended parameters
model that compensates for example affinity and orthogonality terms). It is
evident that the simplified radial lens distortion is calculated from the valid
image observations that clearly identify the active image frame extents as

opposed to utilization of the total frame (given in pixels within the .cal file).

frame = /X% +y? (5.2)

o frame (5.3)

i

frame= active image frame calculated from the image observations X, y; (mm)

r=image radius for radial lens distortion estimation (mm)

5.5.2.2. Least squares estimation process

Step 10 - Iterative process:

The standard LSE arrays are populated within the main LSE loop. Within this
implementation, the algorithm sets up the ADPs, computes the reduced
(observed minus computed) vector of observations and it calculates and
locates the partial differentials that correspond to the model parameters within

the design matrix (see Appendix A).
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Step 11 - Derivation of system normals:

This step first populates the weight vector given the input image observation
precisions. It then populates the augmented arrays for the external or inner
constraints datum cases (augmented design matrix and observations vector).

The normal equations matrix N= ATWA and normal equations vector A"Wb
are successively obtained with the inversion problem % treated on the
vectorized normal equations matrix as required from the available inversion
routines. It is noted here that the inner constraints inversion method has the
property that the resultant covariance matrix has a minimum trace and hence
the standard deviations of the object points are estimated with minimum
quantities. The 3D centroid becomes the origin of the datum which is a fixed
point with a standard deviation equal to unity. The inverted array is back-

stored as a matrix for subsequent extraction of the quality measures.

Step 12 - Estimation of parameters:

Subsequent population of the corrections to the parameters vector allows
assignment of the final parameters (2D projective translations, rotations,
targets, scale and Ks).
The parameter data are reset according to the starting values derived from the
estimated parameters (again given here as 2D projective translations, rotations,
targets, scale and k3).

5.5.2.3. Convergence

Step 13 - Convergence:

The iterative procedure terminates when the convergence criteria have been
reached (see section 5.5.3.). This is performed by a partial check of the
individual absolute correction values parameter set (2D projective

translations, rotations, targets, scale and ks) over the defined criteria scaled to

2 The inversion method applied in the external constraints case utilizes a Cholesky decomposition
sub-routine which is suitable for positive symmetric matrix inversion whereas the inner constraints
method utilizes a general matrix Moore-Penrose subroutine based on the Gauss Jordan elimination.
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a pre-set unit weight of unity for the convergence check (c0= 1) times the

corresponding parameter precisions.

Step 14 - Termination:
- If the convergence criteria are met then the process stops and the solution is
guided to the output stage. The LSE loop has reached to its end; the quality

estimates output is given in section 5.5.4.

5.5.3. Closure criteria

As in every iterative adjustment process, the developed bundle method terminates
when appropriate criteria have been reached. In theory, such an iterative process may
converge to the desired solution, diverge, oscillate or repeat in certain cycles. Unless
the system is degenerate, or for example erroneously established, convergence can be
quickly achieved provided numerical instabilities are not encountered. In
measurement applications it is important that the best precision is achieved. Best
precision is that which derives an answer as close to the theoretical solution up to
potential insignificant discrepancies (due to modelling as well as machine precision
factors). At the same time the obtained solution needs to ensure an economical
answer. For example an iterative procedure that would perform numerous iterations
for a relatively small gain in accuracy is considered as impractical and therefore tends

to be avoided.

Given the above considerations the selected criteria need to be representative of
indicators of convergence and evaluate the precision of the system. Therefore, the
strategy applied here groups different types of parameters according to the expected
precision levels in terms of convergence. Specifically, the convergence limits for
photo orientations are set to 0.1xocOxc; whereas the 3D target coordinates and
additional parameters are ascribed a tolerance of 0.04xc0xo; (where o; is the

associated parameter precision). These limits are given as follows:
- Tolerance for orientation parameters: crit_photo (= 0.1) * 60 (= 1) * 6pHoTO

- Tolerance for 3D point parameters: crit_tar (= 0.04) * 60 (= 1) * o1ar

- Tolerance for additional parameters: crit_adps (= 0.04) * 60 (= 1) * 6apps
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Checking based on these tolerances is performed on the corrections to the estimated
parameters. The reason for generally scaling the photo orientations at a larger limit is
that photo orientations are generally weakly determined and they can in some
instances lead to an oscillating solution presenting convergence difficulty. These
empirical factors are equivalent to those used within a conventional robust bundle
adjustment that has been primarily tested with simulated and real data (within the
VMS 8.0 tool).

5.5.4. Quality estimates output

On a successfully convergent solution the algorithm exports a report that includes an
analytical description of the estimated parameters together with a set of statistical
quality measures. In summary, the report outputs the initiated parameters grouped as
initial photo parameters (2D positions in mm and 3D orientations in degrees) and
initial target locations (in mm) with associated precisions (in um). Next a set of
synoptic descriptors are given to describe numerically the estimation procedure. These
include the number of equations, number of unknowns, iteration of convergence,
redundancy and a posteriori standard deviation (c,). The computed image residuals (X,
y and mean in pm) are given as well as the radial lens distortion profile for camera
calibration (that corresponds to the simplified calibration model). Subsequently, the
updated orientations parameters (in mm and degrees) are provided with their
estimated precisions (in um) as well as the updated target locations (in mm) again
with their corresponding precisions (in um). Calculated ray visibility and point flags
for data identification (e.g. indexed CP or TP data) are additionally supported. An
update of additional parameters with associated precisions is given, including an
indication of their significance (where significance= correction / precision).
Successively, a summary of the 3D target precisions (in um) as obtained from the a
posteriori covariance matrix is exported. Finally, the report is completed with the
extracted full correlation coefficients matrix as this is considered as highly useful for
further analysis and evaluation of the calibration and measurement outcome. A
sample of the generated report (.log file) for both the inner and external datum cases
can be found in Appendix B.
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5.6. Method description by simulation

Evaluation of a novel bundle adjustment algorithm for close range photogrammetric
measurement, requires that design by simulation is performed at a first development
stage. The problem of network design which is well established has been reported
earlier (see section 4.6.). Here, the theoretical model description and therefore method
initialization is assessed by design of a simulation project to enable analytical method
development. In parallel, the goal of this section is to provide an evaluation of the

developed bundle adjustment method.

The simulation framework is built upon the assumption that a synthetic volumetric
array comprises the test object in the object space (see Appendix C) and that it is
measured from incremented viewpoints and wide intersection angles chosen for this
purpose. Particularly, a cube occupying a volume of 10 x 10 x 10 mm in object space
(with a specified 3D precision of 25um) observed from two-viewpoints, three-
viewpoints and subsequently seven-viewpoints was designed (see sections 5.6.2.,
5.6.3. and 5.6.4. accordingly). A descriptive diagrammatic form of the simulation
process is provided in Figure 5.8.

Pseudo random noise

Input

. Process e Mean=0 um Output

e 3D Contol Point Data —— — — .

e Orientations Data e Ideal Camera Model e Stdev=0.5um e 2D Observations Data

e Normal Distribution

1 "
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Figure 5.8: Descriptive simulation diagram applied to a synthetic cube dataset.

The simulation process starts from known CP geometry in the object space as defined

by the eight cube vertices and its centroid (X, Yi, Zi, where i=1-9). Subsequently the
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3D data points are measured from each viewpoint as specified per imaging case to
generate the photo orientation locations (tx;, ty;, Sk, ®j, ¢j, kj, where j= 2, 3 and 7 as
associated with the three equivalent projects and k (= 1) the number of physical
cameras within the system). Next 3D target and orientation data are inserted into the
ideal affine camera model in the absence of internal camera distortions to generate a
set of 2D image observations. A next step increments the extracted observation data
by a randomly initiated set of corresponding standard deviations that follow the
normal distribution (where: Mean= 0.0um and Stdev=0.5um). Successively, the
bundle adjustment is processed with the set of input CP (TAR), calibration (CAL),
orientation (ORIENT) and observations (OBS) data. It is noted that the system is
based upon a local datum which is defined from the designed CPs (external datum
method). A detailed representation of the simulation process is given below (see
Figure 5.9).

Input:

3D Point Data
Calibration Data L Bundle Adjustment:

Orientation Data - External Constraints
Observations Data

Output:
- Estimated parameters
- Quality Control

Figure 5.9: Bundle adjustment framework for simulation data.

5.6.1. Input model parameters

The input model parameters were identified to be equivalent with those that
correspond to the real sensor parameters of the 1M pixel Kodak Megaplus ES1.0
camera with MVO® TMLTM/0.16x lens (see sections 3.1.2.1. and 3.1.3.2.). This
system has been used for the purposes of system testing and application (see Chapter
6). It follows that the defined virtual camera is characterized by a scale factor of s=
0.16 (which identifies the image magnification), a pixel size of 9.0um and a format
size of 1,008 x 1,018 pixels. Considering the precision levels encountered in close
range image networks, the stochastic model was initialized with an image observation
quality of o= 0.5um and a 3D point coordinates precision of o= 25um in all
simulation tests. It is re-iterated here (see section 5.5.3.) that the convergence criteria
were set to 0.1xo0xo; for the photo orientations whereas for the 3D point coordinates
and the additional parameter a tolerance of 0.04xc0xa; was ascribed (noting that c0 is

by default set to 1 and o; is the a posteriori parameter precision). The input model
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parameters that were utilized to set up the simulation projects are given in the

following Table 5.1.

Image scale Pixel size (um) Image size (pixels) RMS,, (nm) Oxyz (um)

0.1600 9.0 1,008 x 1,018 0.5 25
Table 5.1: Input model parameters in the simulation processing tests.

5.6.2. Case A: Two-view geometry

The two-view imaging geometry is covered with two cases by altering the direction of
the lines of sight intersections with the X axis direction (as defined by the local
coordinate system). In particular this section examines two instances that involve two
virtual viewpoints, the first one having a basis nearly parallel to the X axis and the
second one forming a basis nearly vertically to the direction of the X axis
respectively. The scale factor is equal to 0.16, as described above, and the image
observations are generated with identical noise (see Figure 5.8 for associated
histogram). The image network geometries are drawn in Figure 5.10 and the

associated parameters for both datasets are given in Table 5.2.

z z

Figure 5.10: Imaging configuration of two-view geometry case. Geometry with near parallel
basis to X datum axis configuration (left) and near vertical basis to the X datum axis (right).
XYZ system is visualized in red, green and blue respectively.

Photo tx (mm) | ty (mm) S o (degrees) | o (degrees) | « (degrees) | Rays
1000_h | 0.1423 -4.6332 | 0.16 | -74.7258 -32.3675 -64.8622 9
1001_h | 1.6584 11229 | 0.16 | -116.3754 24.5694 133.2145 9
1000 v | -2.0177 | -3.8078 | 0.16 | -71.7631 -10.9171 -33.7956 9
1001_v | 3.3984 -2.5645 | 0.16 | -105.0204 -17.8026 -137.9776 9

Table 5.2: Orientation parameters for the two-view geometry case.
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The bundle adjustments were processed based upon an external constraints datum as

defined from the determined CPs (see Table 5.3 for a summary of results).

Dataset | lter. R. Scale K, O, RMS,, Oxyz (Lm)
(Oscale) (0) (Um)

s 0.16h 2 24 0.1600 -1.5721x10° 0.50 0.14 6.83
(0.0887) | (1.3655x107)

s 0.16h 2 24 0.1600 5.4044x10° 0.31 0.09 4.42
(0.0636) (2.2152x10)

Table 5.3: BA statistics for the two-view geometry case. Table notation: Iter.= number of
iterations, R.= redundancy, Scale= scale factor, ,= unit weight, RMS,,= image misclosure,
oxyz= 3D object space precisions.

In the case of the first dataset (near parallel basis to the X axis; s_0.16h) the solution
results in an a posteriori o, of 0.50, whereas in the second dataset case (near vertical
basis to the X axis; s_0.16v) the associated o, is 0.31. It is evident that these figures
are not significantly different. Again, in the first case (s_0.16h) the RMS back-
projection error is larger in a direction orientated nearly parallel to the basis resulting
in a value of 0.25um (1/30™ of a pixel) as opposed to an RMS of 0.04um (1/225" of a
pixel) which is the equivalent value in the y direction. The situation in the second case
(s_0.16v) results in balanced RMS image residuals of 0.09um (1/100™ of a pixel) in
both x and y directions. The 3D point location precisions vary within 6.83um and

4.42um for each first and second imaging cases respectively.
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—t—{ mm L mm

Figure 5.11: Image observation residuals for the two-view geometry case. S_0.16h (top) and
s_0.16v (bottom) (magnification plot 25x).

A display of the image residuals for both imaging cases (see Figure 5.11) shows that
these follow a systematic pattern in a direction parallel to the basis of the geometric
configuration. This is a factor of the weak geometry recovery from two views and
demonstrates that there is a geometric correlation of the two-views geometric case
with the estimation of 3D point coordinates (equivalent to the perspective case). The

residual plots are shown with a magnification factor of 25x for visualization purposes.

5.6.3. Case B: Three-view geometry

Analysis of the three-view geometry case is made to examine model behaviour when
altering the scale factor. The initial set scale of 0.16 is changed to 0.5 and 1.0 while
preserving the orientations of the photos and the 3D target positions as initially set.
Figure 5.12 illustrates the geometric arrangement of the three-view geometry case and

Table 5.4 indicates the orientation parameters of the designed dataset.
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Photo tx ty (mm) ® [0) K Rays
(mm) (degrees) | (degrees) | (degrees)

1000 0.1425 | -4.6334 0.16; 0.5; 1.0 -74.7258 -32.3675 | -64.8622 9

1001 -3.0773 | 0.1897 0.16; 0.5; 1.0 -82.7854 7.4404 30.1569 9

1002 1.6582 | 1.1229 0.16; 0.5; 1.0 -116.3754 | 24.5694 | 133.2145 9

Table 5.4: Orientation parameters for the three-view geometry case.

zZ

Figure 5.12: Three-view geometry configuration.

All three tests were processed with an external constraint datum based on the pre-

defined CP data. Processing the image observations data makes it apparent that tuning

the scale factor to the pre-set values results in a change in the generated 2D image

observations by the associate magnification factor. The bundle adjustment converges

with an aposteriori o, of 0.8. This indicates that the increased number of viewpoints

strengthens the ray intersections as well as the system redundancy when compared to

the two-view imaging case reported above (see section 5.6.2.). The RMS image

misclosure is 0.26um (~1 /30™ of a pixel) and the mean precision of 3D points is

10um in the object space. These figures are given in Table 5.5 whilst Figure 5.13

illustrates that the random residual patterns indicate the absence of systematic errors

from the system.

Dataset | lter. R. Scale K3 Co RMS,, Oxyz (Um)
(Gscale) (GK3) (“m)

s 016 | 2 | 37 | 0.1600 -1.7485x10” | 0.79 0.26 10.26
(0.1368) | (1.8235x107)

s 050 | 2 | 37 | 0.5000 -1.6905x10" | 0.79 0.26 10.08
(0.4120) | (5.8004x107)

s 100 | 2 | 37 1.0000 -5.1918x10° | 0.79 0.26 10.05
(0.8137) | (5.0392x10%®)

Table 5.5: BA statistics for the three-view geometry case.
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—— mm

Figure 5.13: Image observation residuals for the three-view geometry case. S_0.16
(magnification plot 25x).

It is noted that when the ‘complete’ bundle adjustment method is run, here the term
‘complete’ refers to the inclusion of the radial lens distortion coefficient within the
computations; it is likely that the estimated radial lens distortion profiles are
erroneously determined. This is reasonable considering that the simulated project
comprises an approximation of the physical reality and hence presents a weakness in

the recovery of the internal camera geometry factor.

5.6.4. Case C: Seven-view geometry

The third case involves testing with a greater number of views in relation to the
minimum intersection requirements as examined in the previous cases (see sections
5.6.2. and 5.6.3.). The seven-view geometry is designed in a wide-angled network
arrangement as shown in Figure 5.14 with corresponding orientation parameters as
indicated in Table 5.6.

- 146 -



5. Affine multi-view modelling

Z

Figure 5.14: Imaging configuration of seven-view geometry case.

Photo | tx (mm) | ty (mm) S o (degrees) | o (degrees) k (degrees) | Rays

1000 0.1423 -4.6332 | 0.16 -74.7258 -32.3675 -64.8622 9

1001 | -2.0177 -3.8078 | 0.16 -71.7631 -10.9171 -33.7956 9

1002 | -3.0772 0.1895 | 0.16 -82.7854 7.4404 30.1569 9

1003 | -0.9284 2.1266 | 0.16 -93.8974 20.6170 89.8087 9

1004 1.6584 1.1229 | 0.16 | -116.3754 24.5694 133.2145 9

1005 3.3984 -2.5645 | 0.16 | -105.0204 -17.8026 -137.9776 9

1006 2.7517 1.3587 | 0.16 | -111.5494 6.2445 153.3023 9

Table 5.6: Orientation parameters for the seven-view geometry case.
Dataset | Iter. | R. Scale ks O RMS,, | oxvz (um)
(Gscale) (GK3) (Hm)
s 016 7 | 2 89 0.1601 -2.1261x10”° | 0.81 0.27 10.37

(0.1371) | (1.4594x10°)

Table 5.7: BA statistics for the seven-view geometry case.

The bundle adjustment converged after two iterations (see Table 5.7) with a o, of
0.81um whereas the RMS image misclosure is 0.27um (~ 1/ 30" of a pixel) and the

mean precision of the 3D points is estimated to be equal to 10.37um in the object

space. It is evident that increasing the number of viewpoints from three to seven does

not have a significant effect on the solution behaviour. Figure 5.15 supports the

extracted residual vectors where again the random residuals patterns provide a further

proof that the system is freed from any systematic biases within the computations.
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Figure 5.15: Image observation residuals for the seven-view geometry case. S_0.16_7,

(magnification plot 25x).
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Besides residuals display and evaluation of their magnitude, another useful measure is
to check their distribution patterns. From observation of the histogram plots from the
bundle adjustment image observation residuals (see Appendix C), it follows that the
residuals tend to follow the normal distribution while increasing the number of
geometric viewpoints ranging from two views up to seven views. It is evident that
while the three-view case results in a near normal residual distribution the seven-view
case provides a normal distribution with associated statistics (see Figure 5.16). This
evidence proves that the implemented functional model is correct. It is now expected
that incrementing the number of images for the m-view case would lead to an
optimized solution whereas the designed and implemented model provides a good

solution to modelling the affine multi-view sensor.

— T T T : :
H x (microns) | [y (microns

0 0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 08 1 -0.6 -0.4 -0.2 0 0.2 04 06 0.8
stdev x (microns): 0.3868 stdev y (microns): 0.2869
mean x (microns): 0.3244 mean y (microns): 0.2235

Figure 5.16: Histograms of BA residuals for the seven-view case. The extracted statistics are
given per image coordinate direction x: stdev= 0.39um, mean= 0.32um and y: stdev= 0.29um,
mean=0.22um.

5.7. Summary

In summary this chapter provides descriptions of the affine method design,
development and implementation with simulated data. The chapter starts with an
overview of the method which is subsequently linked with the fundamental model
structure for algorithm treatment. Key consideration to the algorithm is the issue of
derivation of approximate values based on a combination of implicit perspective and
explicit affine procedures. The developed bundle adjustment framework outlines a set
of factors (datum definition, visibility checks, validity checks, starting values
determination, handling of scale factor, parameter locations, parameter estimation,

constraint evaluations, radial lens distortions computations), least squares estimation
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(iterative procedure, derivation of system normal equations, parameter estimation) and
convergence criteria as well as the aspects of closure and extracted analytical
indicators. Handling of these considerations within the algorithm is essential for
flexibility in image-network based measurement. Subsequently, the chapter closes
with analysis and design of the new affine-based multi-view framework through a
simulation method that computes the implemented solution for three geometric
imaging cases. The problem is decomposed with the two-view, three-view and seven-
view geometry cases and the evaluation of the derived results.

The reader is now directed to Chapter 6 ‘Results and analysis’ for method assessment
with real data. Particularly the affine multi-view modelling method will be tested
extensively through a series of real image-network measurements all designed,
initiated, implemented and analyzed for the purpose of this research work. Method
assessment is performed for each subsequent stage of the method with variant
geometric data structures which are always linked with practical considerations that
are expected to be encountered in real world applications.
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To assess the affine multi-view bundle adjustment algorithm a set of tests were
performed. The objective was to evaluate the developed approach in the aspects of (a)
method correctness and (b) effectiveness in practical situations. This goal is achieved
with application of the method on a series of test datasets that were designed for

testing of each of the individual algorithm stages as well as full algorithm treatment.

6.1. Main objectives

To assess the correctness of the algorithm the following considerations will be
asserted:
1. Initialization of the method. Starting values were recovered from a
combination of starting value generation approaches.
2. Bundle adjustment algorithm. The algorithm recovers orientation parameters,
3D point coordinates and internal calibration with the ability to define a datum
(external or inner constraints), sensor scale and radial lens distortion model (ks

term).
To evaluate practical model behaviour the following factors will be handled:

1. Assessment in object space and 3D point estimation.

2. Invariance of sensor scale within the system.

3. Independent evaluation with reference measurements. Sparse 3D reference
measurements are provided by high order precision datasets. These datasets
were generated from strong, convergent, redundant image networks acquired
with high resolution digital SLR cameras and subsequently processed with a
robust perspective bundle adjustment implemented within the software tool
VMS 8.0.

The above comprise core objectives for the purpose of methodological testing.
However, it is important to make it clear that the developed bundle adjustment

framework was implemented based upon two assumptions:
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1. Starting values were generated from implicit perspective (based on the
geometric assumption that a perspective sensor with a long focal length is a
good approximation to the parallel sensor) and explicit affine approaches
(based on the assumption that the 3D orientation rotations have been
previously recovered successfully).

2. Data processing was implemented on the hypothesis that no outliers were

present in the system (based on significant pre-processing).

These two assumptions comprise the main weaknesses of the designed method.
Firstly, the recovery of starting values lacks a more generalized approach where
starting values would be recovered in full from pure implementation of the affine
sensor mathematical model. Secondly, system implementation with significant editing
ensures that the system is freed from outliers. A more realistic implementation would
be to embed within the system a robust outlier detection and elimination scheme

based on residuals testing adopted from conventional approaches (see section 4.7.1.).

System assessment and analysis are performed based on a set of statistical indicators
that were extracted utilizing the measures reported earlier (see section 4.7.).
Particularly statistical indicators will assess system accuracy and precision with most
measures extracted from the a posteriori covariance analysis. Aspects of model
assessment, algorithm convergence, parameter correlation, 3D object space point
correlation with range, error ellipsoids, sensor scale invariance as well as accuracy
checks will be part of the testing and analysis. The test datasets were generated from a
series of camera systems and geometric objects; these were treated as (a) test, (b)
high-order precision reference, or (c) independent test datasets. The design, set-up and
data acquirement of close-up image datasets were performed at the UCL’s calibration
laboratory. Some published results from method development and testing can be
found in Rova et al. (2008a), Rova et al. (2008b) and Rova et al. (2009).

6.2. Test datasets

The test datasets are decomposed in three sub-sections according to their (a) design,

(b) components and (c) datasets as follows (see sections 6.2.1., 6.2.2. and 6.2.3.).
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6.2.1. Design

To design a set of test datasets for method assessment and analysis the following

aspects were considered:

e Sensor scale: To address algorithm behaviour in the aspect of scale recovery
within the system, a set of different camera systems were utilized.

e 2D image quality: To generate high contrast image data, artificial signalized
markers, specifically white markers on a black background and retro-reflective
targets were utilized. It is recalled that (see section 3.3.) the employed image
measurement method affects the input quality of the image targets. In addition,
the invariant affine sensor scale factor resulted in large blobs that significantly
reduced image quality (see section 6.2.2.3.). As an example 2mm diameter
targets in object space produce 36 pixel diameter blobs under affine
projection.

e Image network geometry: Network configurations were designed to ensure
geometric strength, convergence and redundancy (see section 4.6.).
Particularly wide-angle viewpoints, strong intersection angles and wide
separated views were designed. Redundant datasets were generated with sets
composed of 17 to 85 views and a number of targets ranging between 20 and
178 targets (see section 6.2.3.).

e 3D point geometry: Point targets were arranged in a sparse 3D distribution
following the 3D object geometry, reduce occlusion problems and ensure high
redundancy when imaged from variant geometric viewpoints.

e Object space recovery: To recover 3D geometry and scale, a number of
different geometric structures were utilized. Specifically these will enable
method assessment in 3D space and evaluation of geometry and scale recovery

factors.
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6.2.2. Components

The basic components that characterize the test datasets are defined as follows:

e The test objects are of geometric 3D type and they are defined with their size,
shape and measurement markers (see section 6.2.2.1.).

e The camera systems are characterized by their sensor elements and the
attached optical lens that realizes the image to object space projection®* (see
section 6.2.2.2.).

e The image measurement quality is affected by the imaging systems, controlled
illumination as well as measured white markers and retro-reflective targets
(see section 6.2.2.3.).

e The image networks are acquired to be as highly convergent, dense and

geometrically strong as possible (see section 6.2.2.4.).

6.2.2.1. Test objects

Figure 6.1 and Table 6.1 provide a descriptive outline of the test objects that were
utilized to generate the test datasets. These are ordered as A, B, C, D and E in a
chronological order starting from the most recently acquired datasets. Their design
demonstrates the representation of the different geometric test cases. In fact these are
utilized to assess the method and extract useful analysis of results.

2 Within this text image space and object space are denoted as IS and OS only within tables of results.
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S: 100mm
e

Figure 6.1: Measurement structures per dataset.

The geometric structures ‘lego’, ‘pyramid’, ‘centroid’, ‘lego’, and ‘centroid’
correspond to the datasets A, B, C, D and E respectively. The objects are targeted with
sparse signalized retro-reflective or white markers of varying diameter that range
between 0.5 and 2.0mm in the object space. The general design requires that the

targets cover the 3D geometry in full for object measurement (tie points) with CPs
located at the objects’ edges.
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Object [‘y] Geometric structure Datasets
Size (mm) Dwm (MM)  Bgr (MmM) R (mm)
Lego [‘09] 89x104x89 05,10 - 175 A
Pyramid [08] 35x40x35 0.5 - 175 B
Centroid [‘08] 45x18x45 0.5,1.0 2 175 C
Cube [’08,°09] 100x100x100 0.5,1.0 - 350 C A
Lego [‘07] 59x20x59 1.0 - 175 D
Centroid [‘06] 45x18x45 - 2 175 E

Table 6.1: Measurement structures per dataset. Table notation: [‘y]= year, @ww= White
marker diameter, @rr= retro-target diameter and R= imaging range.

Following the listed objects a detail description is given here:

- Datasets A and D: The test object is of ‘lego’ construction structured as a
stepped 3D volume that covers up to double the dimensions of a single frame
and is sparsely targeted to delineate its planar sub-surfaces.

- Dataset B: The test object is a square based pyramid which covers a geometric
volume of 35x40x35mm and similarly sparse targeted.

- Dataset C: The test object is a cube, designed as a calibration array to enable
pre-calibration and measurement. It is a 3D wireframe (volume:
100x100x100mm) composed of six square faces, eight vertices and twelve
edges. Each vertex is represented as a sub-cube (6x6x6mm) that hosts three
0.5mm diameter targets at the three front square faces leaving the remaining
three to support the linking edges.

- Datasets E and C: The test object comprising datasets E and C is of centroid
type. Following the definition after Wolfram (2009a) a geometric centroid is
defined as the centre of mass of a 2D planar closed form surface with a given
mass and density. The point data are distributed in order to cover the footprint
of the test systems (field of view: ~40mm) and they are arranged in 18mm in

depth (depth of field: ~20mm) according to specifications.

6.2.2.2. Camera systems
Data acquisition and testing were implemented with five different camera systems
(see section 3.1.2.1. and section 3.1.3.2.). Convenient codes for the systems are given

in the following table.
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Camera-lens system Sensor Code
Nikon D100 DSLR, Nikon DX format 23.7x15.6mm, RGB CAM_P1
[Nikkor f=28mm] CCD, 7.8um, 3,008 x 2,000 pixels, USB

interface
Kodak Megaplus ES1.0 Progressive scan, monochrome, 9.0um, 1,008 x CAM_P2
[Fujinon TV / f=12.5mm] 1,018 pixels, RS-422 interface
Kodak Megaplus ES1.0 Progressive scan, monochrome, 9.0um, 1,008 x CAM_A3
[MVO® TMLTM/0.16X] 1,018 pixels, 8 bits / pixel 20MHZ, RS-422

interface
Sony DFW-5X900 Progressive scan, colour, 4.78um, 1,024 x 768 CAM_P4
[Switar/ f=10mm] pixels, 24 bits / pixel, firewire interface
Sony DFW-SX900 Progressive scan, colour, 4.78um, 1,024 x 768 CAM_A5

[MVO® TMLTM/0.16x] pixels, 24 bits / pixel, firewire interface

Table 6.2: Technical characteristics of camera systems.

The coded systems CAM_P1 (Nikon D100 fitted with a 28mm Nikkor lens),
CAM_P2 (Kodak Megaplus ES1.0 fitted with a 12.5mm Fujinon lens) and CAM_P4
(Sony DFW-SX900 fitted with a 10mm Switar lens) are perspective-based. They are
utilized to generate high order precision photogrammetric measurements for the
purposes of pre-calibration, pre-measurement, data initialization, generation of
reference measurements and independent testing. It is recalled here that the term
‘photogrammetric measurements’ denotes sparse data generation through robust
bundle adjustment computations within the in-house photogrammetric software tool
VMS 8.0.

Equivalently, the coded systems CAM_A3 (Kodak Megaplus ES1.0 fitted with an
MVO® TMLTM/0.16x lens) and CAM_A5 (Sony DFW-SX900 fitted with a MVO®
TMLTM/0.16x lens) were utilized to generate the affine image datasets required for
method testing. It is stated here that the deployed telecentric optical system is the
physical approximation of the affine camera sensor in the close range, resulting in a

40mm footprint in the object space at a 0.16x nominal image scale.

6.2.2.3. Image quality

Image quality factors as well as target measurement method are critical to image
acquisition. Image capture, transmission and processing can affect the critical image
factors (such as noise, dynamic range, sharpness, contrast, distortion, vignetting,
exposure and artefacts) (see section 3.2.1.2.). Here, to achieve uniform illumination

external high frequency fluorescent ring lights were utilized with simultaneous control
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on the imaging settings (aperture, focus, exposure, gain, brightness, gamma and
stability) on each camera system and accompanied software. In such a measurement
environment, the imaged point features are affected by illumination at acquisition
time in case these are white markers whereas retro-reflective targets present high
contrast images when illuminated from the camera’s viewing direction. Image quality
was controlled externally to the developed method; as a result the data were generated
without applying any image pre-processing method. However, data generation
resulted in a variation of the point data per dataset. According to Figure 6.2, the
targets are displayed under perspective and affine image projections where it is shown
that differences in resolution, imaging conditions, object space target diameters and
projection scale affect 2D image measurement quality. To make this point clear, Table
6.3 gives a description of some extracted image characteristics that correspond to

these target data.
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Figure 6.2: Perspective and affine image targets. Figure notation: RT= retro-reflective, WM=
white marker, KD= Kodak sensor, NK= Nikon sensor, SN= Sony sensor.

Camera PP | AP PP AP | PP AP
Target @ (f) (drer) (1) (e) (rcB)

@ (pixels) 16 36 10 8 8 34

FB 255 255 175, 188, 232 207 166 236, 251, 232
BB 37 37 17, 23, 35 33 37 23, 25, 22

Table 6.3: Signalized target image characteristics. Table notation: @= target diameter, PP=
perspective projection, AP= affine projection, FB= foreground brightness, BB= background
brightness, (a), (f), (drep), (i), (¢) and (jres)= coded image targets.

Overall, the employed point types are of 2mm (retro-reflective targets), 0.5mm and
1mm (white markers) diameters in object space. Individual target images range within
4-16 pixels under perspective and 17-36 pixels under affine projection respectively. It

- 158 -



6. Results and analysis

is evident that the white markers present low contrast whilst the retro-reflective
targets are saturated. For example it is evident from Table 6.3 (examples (e) and (a))
that the intensity value of the centroid equals 166 in the case of the selected white
markers, whereas in the case of the shown retro-reflective targets the associated

intensity value equals 255.

Besides characterizing target intensity, typical problems are sharpness and shape loss.
Particularly, where a target fails to be located within the depth of field, the imaged
blob appears blurred, reducing image and measurement quality. In cases, where the
imaged surface is located nearly parallel to the viewing direction, circular targets
appear as ellipses. These characteristics are given by an illustration of an additional
set of targets with their associated histograms (see Figure 6.3). It can be particularly
seen that target B is projected as an ellipse when imaged under affine projection
showing the effect of the deviation of the viewing projection rays from the surface
normal where its sharpness loss is attributed to its location outside the depth of field.
A further description of some extracted targets that were selected to describe image
quality can be found in Appendix C.

Mean: 57.4 Mean: 54.7

Stdev: 42.7 Stdev: 41.6
Median: 43.0 Median: 38.0
PP Mit,.l L aald L A
—_—
Mean: 93.5 Mean: 102.8
Stdev: 53.4 Stdev: 70.3
Median: 77.0 Median: 68.0

L

Figure 6.3: Signalized image target pairs of perspective (PP; left) and affine (AP; right) views
and associated brightness histograms.

Image measurements were initialized within the software tool VMS 8.0. It has already
been reported (see section 3.3.2.) that the software applies a set of point-based
methods (manual, centroid, correlation, least squares matching). Particularly target

measurement was performed with a combination of methods including manual point
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digitization and centroid estimation with the features of epipolar drawing and
backdriving turned on. Dependent on the target image quality (content), the centroid
estimation method was empirically adapted to set optimal centroid measurement
parameters with geometric tests that allow sub-pixel point measurement. Table 6.4
gives the empirically set parameters for the selected sample of targets (for a further

description see Appendix C).

Target | @ (pixels) IW (pixels) LM TT S GT
B [PP] 6 20 x 20 w_centroid | histogram | circular on
B [AP] 17 40 x 40 ellipse_fit | histogram | circular on
C [PP] 8 36 x 36 w_centroid | histogram | circular on
C [AP] 18 38 x 38 w_centroid | histogram | circular on

Table 6.4: Measurement method parameters within VMS 8.0. Table notation: @ = target
diameter, IW= image window, LM= location method, TT= threshold type, S= shape, GT=
geometric tests.

The software produced successful results in areas with significantly small features
(diameter less than 5 pixels) and symmetrical homogeneous patterns and even in more
difficult cases with dominant blurred points. However close-up network
characteristics (such as imaging range, strong intersection angles, viewing direction,
projection scale and depth of field) significantly increased target image diameter and
degraded image quality. As a result, in cases of poor target image detection it was

necessary to manually measure the point target data.

6.2.2.4. Image networks

The image networks were acquired in strong convergent configurations from multiple
viewpoints in consideration of the imaging conditions, object geometry, point
distribution, visibility and redundancy factors. Figure 6.4 visualizes a sample of three
selected perspective and affine image networks as a 3D lattice of points and

observations.
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Figure 6.4: Image networks configured under perspective and affine views (green cones:
photo location, blue lines: observations).

Particularly the coded datasets B1, D1 and E1 describe the geometry of the
perspective image networks whereas the coded datasets B2, D2 and E2 describe the
geometry of the corresponding affine image networks. It is evident that perspective
and affine image networks were designed as far as possible to form consistent

imaging geometry for further processing and testing.

6.2.3. Datasets

Within this work twelve different datasets were designed for processing and checking.
These are grouped utilizing the selected codes A, B, C, D and E according to object
type (see section 6.2.2.1.). Table 6.5 tabulates these datasets in consideration of the
employed camera systems (see section 6.2.2.2.) which are now described in relation to
the designed image networks (see section 6.2.2.4.) with the associated views and

targets that contribute in the subsequent data measurement and testing.
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Dataset Camera system Views  Targets
Al CAM_P1 44 178
A2 CAM_A3 49 122
A3 CAM_A5 85 86
Bl CAM_P4 33 65
B2 CAM_A5 23 44
C1 CAM_P2 46 61
C2 CAM_P2 41 25
C3 CAM_A3 45 29
D1 CAM_P2 45 52
D2 CAM_A3 24 20
El CAM_P2 43 89
E2 CAM_A3 17 54

Table 6.5: Processed datasets for testing.

Specifically, dataset C3 is designed to evaluate the method’s behaviour regarding full
bundle adjustment treatment. Assessment is based on the extracted typical quality
indicators, measures that assess the behaviour of convergence and the consistency of
parameter correlations. Datasets B2, D2 and E2 are utilized to assess the method in
relation to object space recovery. This test utilizes measures based on analysis of
correlation behaviour with range as well as a visualization of the error ellipsoids.
Image networks A2 and A3 are utilized to test the system’s scale for two different
camera systems again based on standard statistical indicators as well as object space
accuracy checks. Finally, dataset C3 is selected to independently test the method
compared to the results obtained from dataset C2 which is processed with a
perspective bundle adjustment implemented within the software tool VMS 8.0. Again
assessment is performed utilizing the standard statistical indicators as well as
evaluation of 3D discrepancies.

6.3. Practical aspects

The application experiments focus on method assessment and analysis, particularly in
evaluation of aspects of both method’s benefits as well as defects. Whilst practical
issues will be conditionally dependent on each sequential testing step from the data
acquisition to the data processing phase, here all tests were performed for very close-

up imaging situations.

Particularly, the method’s working range is limited to some hundreds of millimetres
(imaging range= 175mm) with a significantly small depth of field (depth of field=
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+19.7mm) tolerance. Whilst these ranges set some practical limitations, network
geometry and targeting design will need to allow high precision measurements. It is
generally expected that small diameter targets will generate a few-tenths of pixel
target images which will in effect suffice for perspective and affine imaging. However
the smallest selected target size was designed as non retro-reflective 0.5mm diameter
white marker due to physical construction limitations. These point targets result in 17
pixel diameter target images when for example imaged with the affine Sony camera

system.

Image network geometry varies per object-case according to the requirements of
object coverage, visibility and occlusion as well as strong intersection rays. In
addition, projection magnification and scale invariance within the image frame in
relation to the sensor’s small field of view constrain object size. Specifically the test
objects (see section 6.2.2.1.) had to be highly local with sufficient characteristic
features and density that allowed measurement and simultaneously produced a sample
that could be used to extract useful model behaviour and assessment. Natural textured
objects or surfaces with point-based features were not available for testing. In fact
such datasets would not introduce significant information in the scope of testing the
developed approach. However datasets of different nature (e.g. dense point clouds
generated from photogrammetry or laser scanning) could act as good reference

datasets for independent system evaluation.

Regarding object measurement is such cases where the dimensions of an object
occupy a volume larger than the camera’s field of view there will be additional
requirements regarding initialization as well as tie point location for object coverage
and measurement. As a result, these demands increase cost related to image datasets
volume, pre-processing and editing. Further issues that emerge from data quality,
initialization or data processing of the test data will be addressed in the subsequent

sections as these may vary per experimental case.

6.4. Model assessment

This section assesses model behaviour in the aspects of method initialization, datum

constraints and calibration parameters within the system. Method assessment is
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evaluated with application of the method on datasets C (see section 6.2.3.) utilizing
the extracted statistical indicators, system convergence analysis and correlation

measures.

6.4.1. Initialization

To initialize the method two steps were followed. First the generation of the reference
image measurements is given which is subsequently followed by the stage of
derivation of starting values for the affine image dataset.

6.4.1.1. Reference measurements

The first aim is to provide reference measurements. To achieve this goal the
convention is to acquire perspective image data in strong, convergent, redundant
image network arrangements which are subsequently processed with established
robust bundle adjustments.

Figure 6.5: Image network geometry of reference dataset.

Figure 6.5 illustrates the designed image network geometry for dataset C1 which is
composed of 46 convergent images, 61 point targets (20 CPs and 41 TPs) and 6
measurement scales that were defined for correct object scale recovery. The input data
quality (for CPs and scales) was considered to be equal to 25um after a target-to-
target edge measurement of points with the available digital callipers. In object space
the target data vary between 2mm diameter retro-reflective and 1mm white markers.
Although control is distributed in a highly 3D configuration, image quality in

conjunction with the imaging direction of the lines of sight (some targets are
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occluded) result in an inability to fully locate control in 3D in some views. As a result,
the control volume is reduced from 3D to 2D (control lie on a plane). This loss is
tackled ensuring highly redundant measurements and introduction within the system
of six object space scales (four located on the top plane and two located on the base).

The data processing framework involves a series of iterative passes. Given the
knowledge of control these involve initial exterior orientations updated by resection
approaches that estimate the exterior orientation parameters. Subsequent forward
intersections coordinate the tie point data in 3D. When it is considered that sufficient
(as complete and redundant as possible) data are measured, a bundle adjustment is
processed on the final estimation step. The bundle is processed with the inner datum
method and an additional parameters model which includes only the first two radial
lens distortion terms (k3 and ks) according to their significance within the system (see
Appendix C). The solution converged after 4 iterations with an RMS image residual
of 1/10™ of a pixel (~0.91um) (see Table 6.6). In object space the 3D targets are
estimated with a precision of 10.75um and a relative precision for the image network
of 1:17,000. Within this thesis, relative precision is estimated as the mean estimated
coordinate standard deviation divided by the maximum 3D dimension (usually
bounding box diagonal) in the network. In other words, it follows that for a cube of
side a= 10cm, its calculated diagonal (where diagonal is given as: axsqrt(3)) equals
17.321cm, resulting in a 2D image precision of 10.20um which confirms the above

quoted result.

Dataset | Iter. R. o RMS,, oxyz (um) | Relative | RMS scale (um)
(um) precision
IS 0S

| c1 | 4 |2667] 100 | 091 | 1075 | 1:17,000 | 101.32 |

Table 6.6: BA statistical indicators - dataset C1. Scales: 6, ADPS: X,, Yo, C, Ka, ks, constraints:
inner. Table notation: Iter.= iteration, R.= redundancy, ,= unit weight, RMS,,= image
misclosure, oxyz= 3D points standard deviation, RMS scale residual= RMS residuals in OS
scale.
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Figure 6.6: BA image residuals with highlighted CPs (left) and error ellipsoids (CPs: blue and
TPs: green) (right).

An additional check is obtained from observation of the distribution patterns of the
bundle adjustment residuals; their magnitude (0.91um ~1/10" of a pixel) and random
distribution assure the correctness of the conventional BA solution (see Figure 6.6
left). Moreover, significant is the fact that the inner constraints datum generally
results in a uniform quality precision (uniform error ellipsoid shape) with their large
semi axes pointing towards the centroid of the cloud of points and vertical axis

indicating the error in the viewing direction (see Figure 6.6 right).

The introduction of the scale measurements within the image network result in a small
decrease in precision for the control points which are specifically located at the base
of the cube as these are coordinated from fewer viewpoints. However control is
limited; this in combination with its poor quality pose scale implementation within the
bundle adjustment necessary to restore scale in the object datum. To analyze the 3D
target quality it is useful to check the distribution of the 3D precisions in the ‘XZ’
(planimetric) and ‘Y’ (depth) directions. Figure 6.7, Figure 6.8 and Table 6.7 provide
a description of the a posteriori precisions of the data. The mean precisions are
estimated to be equal to oxz= 15.52um and oy= 29.27um for the CP data and oxz=
5.52um oy= 7.54um for the TP data. It is indicated (from the highlighted point data)
that the worst achieved precision in the viewing direction (Y) is 98.00um for the CPs
and 9.70um for the TPs. In fact maximum standard deviations occur in CP104 (count
5) and CP105 (count 6) which are located on the base plane of the calibration cube

and they are coordinated from 4 viewpoints, whereas minimum standard deviations
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occur in CP500 (count 18) which is located on the top plane of the cube and it is
coordinated from 43 viewpoints. Maximum and minimum standard deviations in the
case of TP estimation were observed in TP7004 (count 23) which is located on the
external ring of the centroid (2mm diameter retro-target) coordinated from 30
viewpoints and minimum standard deviations in TP5001 (count 8) which is located on
the top, inner plane (Imm diameter white marker) coordinated from 39 viewpoints.
These numbers indicate the measurement quality of the reference data. Particularly
they play a critical role as they characterize the input data quality; that is they
initialize the stochastic model in the subsequent processing stage (See section
6.4.1.2.).
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Figure 6.8: BA a posteriori 3D precisions - TPs.
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Control points Tie points
oX(um) | oY (um) | oZ(um) | oX(um) | oY (um) | oZ (um)
Mean 15.82 29.27 15.23 5.60 7.54 5.44
Max 54.90 98.00 43.00 7.30 9.70 7.10
Min 7.30 8.80 7.50 4.00 5.90 3.90

Table 6.7: BA a posteriori 3D precisions - dataset C1.

6.4.1.2. Affine starting values estimation

The pre-measured centroid object is now utilized to generate and subsequently
process the affine image dataset. Specifically ‘dataset C3’ is composed of 45 images
(22 front views, 18 top views and 5 views oriented on their optical axis), 9 control
points (6 located on the exterior basis and 3 located on the top plane of the centroid)

and 20 tie points.

Network view count

0 1 2 3 4

Network target count

Figure 6.9: Affine image network geometry (left) and data visibility (right).

From Figure 6.9 it can be seen that the image network is geometrically strong,
convergent and redundant with high target visibility. For example worst visibility case
is the point TP10004 which is observed in 18 views. It is re-iterated here (see section
5.4.) that data initialization is recovered from the generated CP data (and their
associated precisions) based on an initial exterior orientation and resection approaches
that estimate the 3D orientation rotations. This outputs an orientation file with the 3D
photo rotations and the nominal image scale (s= 0.16) for the affine sensor. Next, a
direct closed form back-substitution on the affine functional model estimates the 2D
projective translations and updates the orientation file. 3D target coordinates are
estimated from an affine-based intersection approach. This updates the control and

locates all new tie point data (TPs). The results of the intersection procedure are given
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in Table 6.8 from where it is evident that the method converged after 2 iterations with

a posteriori sigma of 3.18 and a mean 3D point precision of 2.31um.

Dataset R. Iter. Oo Oxyz (Lm)

C3 2,017 2 3.18 2.31
Table 6.8: 3D intersection statistical measures - dataset C3.

Illustration of the residual vectors of both stages of resection and intersection (see
Figure 6.10) makes it evident that the combination of the residuals magnitude and

their random distribution indicate the correctness of the initialization approach.

Figure 6.10: Residuals. Resection CPs (left) and intersection - CPs and TPs (right).

6.4.2. Affine bundle adjustment results

Bundle adjustment performance is assessed in the aspects of evaluation of method
behaviour as well as convergence with parameter estimation. Assessment is obtained
utilizing the typical statistical indicators and additional measures that are defined at
each test case. It is however important to note that where precisions have been used,
these are extracted from the a posteriori covariance matrix which is scaled to the a

posteriori standard deviation.

6.4.2.1. Model assessment
In this experiment (dataset C3) a comparative set of bundle adjustments was run to
assess both external and inner constraint datum methods. Particularly the different

runs were coded after point initialization (CP or TP) and datum implementation
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(external or inner) with the calibration model (inclusion or exclusion of k3 term) also
implemented within the different runs. For comparative assessment all bundle
adjustments were processed with identical calibration, orientation and 3D target data.
To maintain datum as defined at its initial set up, the 3D control data were set to their
pre-determined coordinates together with their associated precisions as these were
identified from the reference image network (mean oX= 15.82um, oY= 29.27um,
oZ= 15.23um) (see section 6.4.1.1.). It follows that the remaining tie points were
updated from their intersected 3D target coordinates whereas a uniform precision of
5um was set in the target file. Table 6.9 summarizes the statistical indicators of the
bundle adjustment results. The solutions converge with an a posteriori sigma of ~2.00
which indicates that the initialization of the stochastic model is potentially over-
estimated. It is additionally noted that the default input quality of the image
observations is set to oy,= 0.5um, whereas the 3D precisions of the control (external
constraint datum) can be considered as too optimistic. The overall bundle adjustments
converge rapidly after 2-3 iterations with an RMS image residual of 1/11™ pixel
(RMSy,= 0.8-0.9um for the 9.0um pixel size Kodak sensor).

C3 lter. | R. Scale kex10* | o, | RMS, 6X,cY, cZ
(0::X10°) (um) (um)

CTPE | 3 [1813] 0.611 1.3048 |[226| 0.79 5.44,7.66, 5.39
(0.0000) | (6.0521)

CTPE | 3 |[1814| 0.1613 - 253 | 0.88 6.10, 8.59, 6.05
(0.0000)

CPE 3 [1203] 0.1611 1.1834 |224| 0.77 3.94,5.78,3.90
(0.0000) | (7.1455)

CPE 3 [1,204| 0.1613 - 248 | 0.85 4.36, 6.41, 4.33
(0.0000)

CTPI 2 [1791] o0.1611 1.3012 | 226 | 0.79 | 252.42,253.24,252.41
(0.0002) | (6.0730)

CTPI 2 [1,792] 0.1613 - 2.54 | 0.88 | 283.20,284.12, 283.20
(0.0002)

CPI 2 [1156| o0.1611 1.1749 | 226 | 0.77 | 125.87,126.39, 125.89
(0.0001) | (7.2265)

CPI 2 [1,157| o0.1613 - 2.50 | 0.85 | 139.61,140.19, 139.63
(0.0001)

Table 6.9: Affine BA statistical indicators - dataset C3. Model parameters: tx, ty, o, ¢, K, X,
Y, Z, s, ks. Table notation: CTPE= control, tie points, external constraints, CPE= control
points, external constraints, CTPI= control, tie points, inner constraints, CPI= control points,
inner constraints.

-170 -



6. Results and analysis

The 3D targets are coordinated with an increased o in the viewing direction (Y)
between 5.78um and 8.59um for the solutions processed with the method of external
constraints and between 126.36pum and 284.12um for the solutions processed with the
method of inner constraints. It follows that there is a significant difference in 3D
precision between external and inner constraints. In fact, the inherent 3D object scale
within the inner constraints method reduces precision due to a potential correlation of
the uniform sensor scale with the datum scale factor which can pose inner datum scale
as impractical within the system. A trial to remove object space scale from the datum
equations resulted in an inversion problem of the normal equations matrix, hence this
problem was not investigated further. In detail (see Table 6.9) the external method
results in a mean 3D precision of 6.16um (CTPE solution) and 4.54um (CPE
solution). Yet, inner datum resulted in a mean 3D precision of 252.69um (CTPI
solution) and 126.08um (CPI solution). The image residuals present random patterns
and a visual inspection of their histograms shows that they follow the normal
distribution. Figure 6.11 illustrates an example view (CPE and CPI solutions) with
their associated histograms (residuals grouped in 10 bins with associated statistics:
Solution CPE: stdevy= 1.00um, meany= 2.24um; stdevy= 1.03um, meany= 1.82um and
Solution CPI: stdevy= 1.00um, meany,= 1.26um; stdevy= 1.03um, meany,= -0.42um).

Figure 6.11: Affine BA residuals and histograms - CPE (top) and CPI (bottom).
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Considering system calibration, both external and inner constraints solutions decrease
3D target precision when not-accommodating for the ks term (see Table 6.9 for
estimated ks parameter and associated precision). The radial lens distortion profiles
(see Figure 6.12 left) estimate a radial distortion of dr= 8.3um (positive, pincushion
distortion) at a maximum radial distance of r= 4mm of the image format which agrees
with the telecentric system specifications (maximum distortion < 0.3%). In addition,
the fact that these patterns are similar for both datum cases provides the confidence

that the functional model is correct.
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Figure 6.12: Radial lens distortion profiles (left) and 3D distances (right) - CTPE.

Finally with regards to accuracy evaluation nine checks were performed on selected
3D distances and their corresponding estimations from the bundle adjustment
solutions. ‘Ground truth® was generated with measurements obtained with a digital
calliper considering a measurement uncertainty of £25um, noting though that a more
realistic precision would be equal to o= £50um (empirical value given the manual

measurement uncertainty). The calculated 3D differences (true against evaluated from
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the bundle adjustment) appear to be consistent for all processed solutions varying
between 35.02um and 250.53um. Figure 6.12 (right) illustrates the linear 3D
differences between true and evaluated dimensions as vertical error displacements
(red lines) on the associated distances (cyan lines) for one selected solution (coded
CTPE). For example, the 3D displacement of the distance ‘H’ is 0.16mm (it is scaled
to 15.6 mm for the purpose of visualization) and it is displayed over a length of
33.97mm. The observed large discrepancies in the data can be attributed to the
initialization of the stochastic model for the intersected 3D target data (oxyz=
20.11um for CPs and oxyz= 5um for TPs) that contribute and hence tie the
measurements to the defined datum. In addition these significant differences can

result from the uncertainty in measurement precision of the available callipers.

6.4.2.2. Convergence behaviour

In particular demanding situations that for example require processing of large
datasets an additional aspect of bundle adjustment processing is to ensure the
method’s algorithmic efficiency. Here the algorithm is run as an iterative method with
inversion treated with the external and inner constraints routines that have already
been referenced (see section 5.5.2.2.). The test datasets were processed ensuring that
no outliers were present in the measurements. The bundle adjustments converged

rapidly after 2-3 iterations presenting high numerical stability.

To evaluate model behaviour with convergence, two fully controlled solutions (CPE
and CPI) were utilized (see Table 6.9). The first utilized measure is the normalized
span of model parameters which evaluates the change in model parameters between
successive pairs of iterations (iteration n+1, iteration n) scaled to the magnitude of
model parameter at iteration (n+1) (see equation (6.1)) and which is visualized over

the model parameter count in the following figures.

ABS(Pn+1 — Pn) (6 1)
|P

n+1l |

NSMP =

Where:

NSMP= normalized span of model parameters
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Pn+1= parameter value at iteration n+1

Pn= parameter value at iteration n

Figure 6.13 illustrates the derived NSMP between iteration pairs 1 and O for the

overall parameters that correspond to the CPE solution (external constraints with full

control).
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Figure 6.13: Normalized span of model parameters (full). CPE - Iter. 1-0.

To illustrate in detail model behaviour, Figure 6.14 provides the derived figures for
the model parameters excluding the ks term from the visualization of the NSMP
values as in the first pair of iterations NSMPks= 1.0, enhancing as a result the inter-
structure of the derived pattern. It can be seen that this indicator presents a relatively
stable behaviour up to 0.02. Extreme values (highlighted points in the graph) that
deviate from the average pattern behaviour were observed for two rotation elements
®1025= -53.2453 degrees where NSMP(w1025)= 0.020 and mio3s= -131.4346 degrees
where NSMP(w103s)= 0.082. The indicator for the scale factor s=0.1600 is given as
NSMP(s)= 0.007.
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Figure 6.14: Normalized span of model parameters (-ks). CPE - Iter. 1-0.

Accordingly Figure 6.15 and Figure 6.16 illustrate the convergence behaviour
between iterations 2 and 1 as well as iterations 3 and 2. It can be seen that the model
presents relatively stable behaviour in terms of data agreement. In the case of the
iteration pair 2 and 1, the previous extreme cases are now given as NSMP(w1g25)=
3.05x10™ and NSMP(w1038)= 6.28x10™ for the above observed rotations whereas the
equivalent index for the scale factor is now NSMP(s)= 6.32x107 and radial lens
distortion ks term is NSMP(k3)= 5.52x10™. In the subsequent iteration pair 3 and 2 the
associated values are given as NSMP(w1g25)= 8.71x10”, NSMP(w1035)= 1.15x107,
NSMP(s)= 6.21x10™° and NSMP(ks)= 2.37x10°°. It is again noted that these figures
are shown in the graphs as highlighted points.
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Figure 6.15: Normalized span of model parameters (full). CPE - Iter. 2 - 1.
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Figure 6.16: Normalized span of model parameters (full). CPE - Iter. 3 - 2.

It is evident from the above graphics that the individual pairs of iteration passes have
a clear relation. Specifically the NSMP values of iteration pair 2-1 as compared to its
previous iteration pair 1-0 are approximately two orders of magnitude smaller.
Accordingly the iteration pair 3-2 in comparison to the iteration pair 1-0 presents a
five order magnitude difference for the NSMP value. Besides convergence behaviour
it is additionally important to check the precisions of the estimated parameters at the
final iteration stage. Figure 6.17 illustrates the parameter precisions for the CPE

solution as these are extracted at the third iteration stage for the total number of
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Figure 6.17: Precisions of model parameters. CPE - Iter. 3.
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To better describe the above patterns the following graphics display in colour coded

(red, green and blue) representation the parameter precisions. As a result these

graphics isolate the patterns of the sub-groups that correspond to translations (tx, ty)

(see Figure 6.18), rotations (m,9,x) (see Figure 6.19), 3D target coordinates (X, Y, Z)

(see Figure 6.20) as well as scale (s) and additional parameter term (ks) jointly (see

Figure 6.21). It is evident that the precisions of the 2D projective translations vary

between 2.62um and 4.89um whereas the precisions of the 3D orientation angles

range between 0.01ldegrees and 0.03 degrees. The precision patterns present a

consistent variation in the data as these are illustrated for each estimated image (that is

tx, ty and o, ¢, k are illustrated per image).
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3D target coordinates are estimated with precisions that range between 3.33um and
6.81um noting again that these numbers correspond to the CPE solution (see Figure
6.20), whereas scale and k3 term are estimated with associated precisions o= 3.03 x
10 and oys= 7.15x107° (see Figure 6.21).
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Figure 6.20: Precisions of model parameters (X,Y,Z). CPE - lter.: 3.
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Figure 6.21: Precisions of model parameters (s, k3). CPE - Iter.: 3.

By examining the corresponding figures for the inner constraints solution (CPI) (see
Figure 6.22), it can be seen that the NSMP values that correspond to the first iteration
pair 1-0 for the full estimated parameters agree in distribution and range with the

previously reported CPE solution.
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Figure 6.22: Normalized span of model parameters (full). CPI - Iter. 1-0.

To better analyze these data Figure 6.23 presents the corresponding patterns for the
estimated parameters when excluding the radial lens distortion term ks. It is evident
that the NSMP values result in a similar distribution pattern in comparison to the
external datum case (see Figure 6.14). Again the highlighted points
NSMP(®1025)=0.028, NSMP(w1033)=0.073 and NSMP(s) = 0.007 present the most

significant deviations.
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Figure 6.23: Normalized span of model parameters (-k3). CPI - Iter. 1-0.
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For the iteration pair 2-1 (see Figure 6.24) these values are given as follows:
NSMP(w1025)=3.84x10™,  NSMP(01035)=5.40x10*, NSMP(s) = 2.85x10" and
NSMP(ks)= 7.40x10™.
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Figure 6.24: Normalized span of model parameters (full). CPI - Iter. 2-1.
Again it is noted that the two iteration pairs differ in two orders of magnitude while

reaching the final convergence solution. The overall parameter precisions at the

convergence stage of iteration 2 are now illustrated in Figure 6.25.
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Figure 6.25: Precisions of model parameters. CPI - Iter. 2.
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To better highlight the parameter precisions four, additional sub-graphics were
generated. The 2D projective translations precisions Gy range between 21.72um and
24.36um, 3D rotations precisions o, range between 0.04degrees and 0.08degrees,
3D target coordinates precisions ox vy z range between 125.65um and 127.08um and
finally o5 for scale factor and oys for ks term are given as 9.34x10° and 7.23x10°
accordingly. Given the identical configuration in the data between both CPE and CPI
bundle adjustment runs, it is evident that inner constraints reduce significantly the
parameter precisions for the datum dependent parameters (tx, ty, o, 9, k, X, Y, Z, s)
when these are compared with the external constraints solution. These results are
illustrated in Figure 6.26, Figure 6.27, Figure 6.28 and Figure 6.29 in this specific

order as follows.
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Figure 6.26: Precisions of model parameters (tx, ty). CPI - Iter. 2.
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Figure 6.27: Precisions of model parameters (o, ¢, ). CPI - Iter. 2.
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Figure 6.28: Precisions of model parameters (X, Y, Z). CPI - Iter. 2.

0.00010

0.00008

0.00006

0.00004

Stdevs of model parameters

0.00002

0.00000
0 0.5 1 15 2

Model parameter count

Figure 6.29: Precisions of model parameters (s, k3). CPI - Iter. 2.

It is recalled here that all precisions stated above reflect the quality of the method’s
behaviour scaled to the a posteriori standard deviation. It follows that the described
precision patterns will be influenced by the sigma value which is at the order of 2.2
for both CPE and CPI solutions. To provide an additional description of convergence
behaviour for the controlled solutions examined here, the mean of absolute
differences (MAD) for both examined cases are derived. These figures describe the
differences in convergence for the individual pairs of iterations as these were given
above (see Table 6.10).
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Solution Iter. | MADyy, (Mmm) MAD,, , « MADx v 7 MAD, MAD,
(degrees) (mm)

CPE 1 5.08x10° 2.08x107° 6.56x10° | 1.14x10° | 1.18x10™

CPE 2 6.69x10° 1.33x10% | 4.73x10° | 1.02x107 | 6.53x10°

CPE 3 5.41x10° 2.24x107 | 4.37x10° 1x10° | 2.8x10%°

CPI 1 4.98x10° 2.14x107° 6.36x10° | 1.13x10° | 1.17x10™

CPI 2 6.03x10° 1.46x10* 4.58x10° | 4.6x10° | 8.69x10°

Table 6.10: Convergence behaviour of model parameters. Table notation: MAD= mean of the
absolute differences for each iteration in relation to its previous iteration.

It is evident that inner constraints degrade the quality of the model for the datum
variant parameters (tx, ty, o, ¢, x, X, Y, Z and s) but not for the datum invariant
parameter (ks) when these are compared with the corresponding precisions obtained
from the external datum solution. The reduction in precision affects mostly the 3D
target coordinates with a significant decrease in precision by a minimum to maximum
factor of 19 and 38 whereas the reduction factor in precision for the 2D projective
translations ranges between 5 and 8. These are less significant for the 3D rotations
varying between 3 and 4 whereas the precision for the scale factor is reduced by

approximately 3. These results are displayed in Table 6.11.

Solution tx, ty (um) ®,0,k (degrees) XYZ (um) S ks
O max Omin O max Omin Omax Omin GX]-O-S GX10-6
CPE #3 4.89 2.62 0.03 0.01 6.81 3.33 3.03 7.15
CPI#2 24.36 | 21.72 0.08 0.04 127.08 | 125.65 9.34 7.23

Table 6.11: Estimated precisions of model parameters.

6.4.2.3. Correlations consistency

Besides model assessment (see section 6.4.2.1.) and evaluation of convergence (see
section 6.4.2.2.), a useful check is to inspect the correlation coefficient output
comparing the different bundle adjustment runs. Calculation of the correlation
coefficient has been given in equation (4.31) (see section 4.7.1.). Here the correlation
coefficient measure is extracted from the scaled to the a posteriori precision
covariance matrix. For interpretation purposes Figure 6.30 provides the formulation of
the correlation data. This is done for a synthetic set of 2 views and 3 points within the
image network where parameter correlations are blocked in red frames as it is shown

below.
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Figure 6.30: Correlation coefficient matrix structure.

For comparative evaluation the numerical data are visually represented by mapping of
the scalar values within the range 0 (no correlation) to £1 (complete correlation) to the
grayscale range O (black) to 1 (white). Figure 6.31 visualizes this intensity ramp
highlighting the lower triangular part in red framed sub-blocks for better interpretation
of the patterns. The illustrated patterns present the test cases that correspond to the

solutions outlined in Table 6.9 (see section 6.4.2.1).
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CPE CPE_ks

Figure 6.31: Correlation coefficient matrices for model parameters.
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Both external and inner datum solutions present high correlations between parameters
of the same kind; that is 2D projective translations (tx, ty), 3D rotations (o, ¢, ), 3D
target locations (X, Y, Z), scale factor (s) and radial lens distortion term (ks3). External
constraints, in particular, present significant cross correlations between parameters
(tx, ty) and (o, o, ), (tx, ty) and (X, Y, Z) as well as (o, ¢, ) and (X, Y, Z), whereas
inner constraints present minimum correlations between (o, ¢, k) and (tx, ty) as well
as (o, ¢, ¥) and (X, Y, 2).

In fact, the external constraints solutions demonstrate distinctive high correlation
between (tx, ty) and (o, ¢, ). This effect is observed along the diagonal of this sub-
block. To isolate this pattern Figure 6.32 illustrates the correlation matrix for this
particular block extracting the values that are considered to present high correlations;
that is the locations where p>0.7. In addition, to interpret these patterns it is useful to
visualize the image network geometry highlighting those photo locations that present
high correlations (see Figure 6.32 right). Moreover, Figure 6.33 provides the spatial
location of (tx, ty) with (®, ¢, k). Specifically, the 2D projective translations are
illustrated as triangles where the correlation coefficients are plotted as vertical linear
displacements colour coded per rotation (red: o, green: ¢ and blue: k) and drawn in a

left (tx) to right (ty) direction centred from a black index line.

Figure 6.32: Correlation coefficient matrix between tx, ty and o, ¢,  (left) and image
network geometry (right). CPE (p>0.7).
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Figure 6.33: Spatial location of tx, ty with correlations between tx, ty and o, ¢, k.

By observing these figures and provided that the photos contain sufficient CP data
within the image format, the external constraints datum (defined from the CPs) results
in a high correlation between the 2D projective translations and the 3D orientation

angles.

CTPE CTPI

Figure 6.34: Correlation coefficient matrices for model parameters - p> 0.75 (top) and p> 0.9
(bottom).
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To examine further the correlations of the model parameters, the correlation data of
CTPE and CTPI solutions were filtered to derive those parameters that present a
correlation coefficient of p>0.75 and subsequently p>0.90 (see Figure 6.34). These
were visualized as 1 where a correlation exists or 0 otherwise. External constraints
present high correlations for similar types of parameters with no significant cross
correlations between different kinds of parameter pairs. Again some distinctive
correlations are present between 2D projective translations and 3D rotations as well as
some random correlations between 2D projective translations and 3D target
coordinates whereas the correlation coefficients between 3D rotations and 3D target
coordinates are minor. Inner constraints present high correlations between 2D
projective translations and 3D target coordinates showing the clear influence of the
identified datum on the quality of the 3D target data (see 6.4.2.1.). Moreover the
uniform scale factor of the inner constraints method causes significant correlations in
3D space recovery, noting the high presence of correlations between 3D targets as

opposed to the external datum case.

6.5. Object space assessment

To assess object space and 3D point estimation three datasets coded as B2 (pyramid),
D2 (lego) and E2 (centroid) (see section 6.2.3.) were utilized. This check is evaluated
with two performance measures. The first checks the object space proximities by
visualization of the correlation coefficients over the 3D target distances per each X, Y
and Z directions and the second plots the error ellipsoids of the estimated 3D target
coordinates. The processed datasets vary in three aspects and these are target image
quality, object geometry as well as distribution of control and photo orientations
within the image network. These factors affect the quality evaluators utilized here.
This section is covered with the reference measurements results (see section 6.5.1.),
affine bundle adjustment results (see section 6.5.2.), correlations with proximities (see

section 6.5.3.) and error ellipsoids (see section 6.5.4.).

6.5.1. Reference measurements

Initialization of the three test datasets was implemented based on a prior independent

self-calibrating bundle adjustment (perspective, software tool VMS 8.0) similarly to
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the processing method reported above (see section 6.4.1.). The overall results of the

initialized bundle adjustment solutions are illustrated in Table 6.12.

Dataset | Iter. R. Oo RMS,y (um) Oxvz Relative | RMS scale (um)
(um) precision
IS 0Ss
B1 5 1,899 | 1.00 0.26 8.95 1:6,000 125.56
D1 7 2,859 | 1.00 0.63 8.60 1:27,000 286.51
El 7 4,227 | 1.00 0.97 6.28 1:41,000 -

Table 6.12: BA statistical indicators - datasets B1, D1 and E1.

6.5.1.1. Dataset B1 - pyramid

Dataset B1 was measured with a bundle adjustment processed with an inner
constraints datum, fifth and seventh terms of the radial lens distortion polynomial
regarding calibration and 12 scales (measured with a digital calliper) to provide an
accurate object space scale within the network. The solution converged rapidly with a
redundancy of 1,899 after five iterations with an RMS image residual of 1/10" of a
pixel for the Sony sensor (with a pixel size of 4.78um at a resolution of 1,024x768
pixels). In object space the solution results in a relative precision for the image
network of 1:6,000, 3D target coordinates precision of 8.95um and an RMS object
scale equal to 125.56pm.

Figure 6.35: 3D target points (top view - left) and error ellipsoids (front view - right) - dataset

Figure 6.35 gives an example view of the 3D target points located on the pyramid
object together with their error ellipsoids (blue ellipsoids= CPs and green ellipsoids=
TPs visualized in the software VMS 8.0). This illustration additionally describes the

point arrangement; that is CPs are distributed at the edges of each face leaving all
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other target points to be treated as TPs. The error ellipsoids for both CPs and TPs are
not significantly different in magnitude which is a natural result of inner constraints.
The 3D points were coordinated from an average number of 17.5 viewpoints. It is
recalled that the large semi axes of the error ellipsoids point towards the centroid of
the objects whereas the vertical axis indicates the error in the viewing direction. The
fact that the major semi axes points towards the datum shows a weakness in scale
recovery for the pyramid. The ellipsoids present a highly elongated shape noting the
configuration geometry with the point location (the photos were acquired from a top

angle in relation to the object’s four planar facets).

6.5.1.2. Dataset D1 - lego

Dataset D1 was measured with a bundle adjustment processed with an inner
constraints datum, full additional parameters within the calibration model and 7
measured scales in the object space. The bundle converged after seven iterations with
an increased redundancy of 2,859 with an RMS image residual of 1/15™ of a pixel for
the Kodak sensor (with a pixel size of 9.0um at a full resolution of 1,008 x 1,018
pixels). In object space the relative precision of the image network resulted in
1:27,000, the 3D target coordinates precision was estimated to 8.60um and the object

space scale was 286.51 um.

Figure 6.36: 3D target points (top view - left) and error ellipsoids (front view - right) - dataset
D1.

The 3D points are estimated from a mean number of 31.5 viewpoints which is
increased significantly related to the previous image network. The illustrated error
ellipsoids (see Figure 6.36) show that the quality of the estimated 3D target
coordinates for the TPs (green ellipsoids) are of uniform precision for each of three
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planar faces. Similarly, the CPs (blue ellipsoids) that were measured as 3D targets
located on a turntable present a uniform precision which is attributed to the inner
datum. It is noted that points that are located further than the datum origin present
reduced target quality (error ellipsoids are larger). Similarly to the pyramid object (see
section 6.5.1.1.) the major axes of the ellipsoids point towards the datum. This

confirms the weakness in scale recovery within the inner constraints datum.

6.5.1.3. Dataset E1 - centroid

Dataset E1 was similarly processed with a bundle adjustment run with an inner
constraints datum, two radial lens distortion terms within the calibration model and
without the inclusion of any object space scales. In this case the solution that was run
with a redundancy of 4,227 converged successfully at the seventh iteration with an
RMS image residual at the order of 1/10™ of a pixel for the monochrome Kodak
sensor. Object geometry was recovered with a relative precision for the image

network of 1:41,000 and a mean 3D target coordinates precision of 6.28um.
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Figure 6.37: 3D target points (top view - left) and error ellipsoids (front view - right) - dataset
ELl.

The 3D point error ellipsoids confirm the geometric strength of the image network
noting that the estimated targets are coordinated from a mean number of 26.7 image
rays. Specifically (see Figure 6.37) it is evident that the error ellipsoids vary in shape
for the CPs (blue ellipsoids) according to target image quality. This is observed from
the difference in magnitude between the large and small diameter CPs. In the case of
the estimated TPs the ellipsoids (drawn in green) have a uniform shape and are of a
smaller magnitude in relation to the control (these are closer to the origin of the
centroid). In fact it is evident that one target which was coordinated from four
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intersected viewpoints results in a relatively weak 3D precision (ocX=12.7um,

oY=22.3um, 6Z=18.1um) and therefore it is coloured in yellow from the software.

6.5.2. Affine bundle adjustment results

Datasets B2, D2 and E2 were acquired with the affine sensor and processed with the
developed affine bundle adjustment. In this processing test, the affine bundle was run
with the external constraints datum and the third order radial lens distortion term
(calibration model). The stochastic model was initialized with an a priori image
observation quality of 0.5um for datasets B2 and D2. Dataset E2 however presents
very large target diameters in image space (target image diameters are equal to 36
pixels), therefore this dataset was initialized with an a priori image observation quality
of 1.5um. The 3D target precisions were set to 25um for the control point data and to
the associated a posteriori precisions obtained from the pre-measurements of the tie
point data (see section 6.5.1.). It is noted that the signalized point data describe the

objects geometry only in sparse terms.

Dataset | lter. R. Scale ks o, | RMS,, oX, oY, cZ
(03) (m) (nm)

B2 3 | 608 | 0.1656 4.4414x10* | 1.62 | 0.53 7.69, 9.93, 7.28
(1.0632) | (2.5059x107°)

D2 2 | 430 | 0.1614 4.0454x10° | 2.57 | 0.75 | 27.88, 31.52, 28.03
(1.2899) | (8.6230x10°°)

E2 3 [1,287| 0.1651 4.7493x10" | 3.37 | 3.45 | 36.54, 43.81, 36.86
(2.3232) | (3.7241x10®)

Table 6.13: Affine BA results - datasets B2, D2 and E2.

6.5.2.1. Dataset B2 - pyramid

This dataset is composed of 23 photos and 44 target points of which 20 are treated as
control and 22 as tie. To analyze the bundle adjustment results, it is important to
consider the quality of the data. It is noted that the target point data occupy a diameter
of 17 pixels in image space (0.5mm diameter white markers in object space) (see
Appendix C for a sample of target image quality). A primary requirement is that for
photo orientation initialization the control had to be distributed in 3D. In addition, the
minimum visibility requirement for optimal target measurement is four rays (each
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target needs to be coordinated from four viewpoints). The image network geometry
has already been illustrated in Figure 6.4 - network B2 (see section 6.2.2.4.). Figure
6.38 provides an example affine view from this dataset jointly with the visibility
frequencies for the control and tie point data within the image network.

15.0 A CPs

13.0 IPs

Network view count

0.0 1.0 2.0 3.0 4.0 5.0

Network target count

Figure 6.38: Affine (left) and CPs and TPs data visibility (right) - dataset B2.

Regarding control, two CPs were observed from four viewpoints with the best case
being one target observed from 13 viewpoints. Moreover minimum visibility is
reported the case where one tie point was calculated from the intersection of 5 rays
whereas maximum visibility is the case where one tie point is coordinated from the
intersection of 15 rays. Besides characterizing the data according to their visibility it
is important to note that configuring the data for simultaneous initialization (e.g. four
CPs forming a volume) and measurement (e.g. tie point overlap) was difficult. This
was the case particularly considering the object’s planar facets, the object’s small 3D
volume in combination with the physical limitations of affine imaging sensor. In fact
whilst image network geometry is highly convergent, it is relatively sparse again
provided that an increased number of views would be required for increased frame to
frame overlap and full object coverage in the ideal case. Finally the location of the
object’s surface in relation to the photo locations results in an acute angle between the
observation lines and each of the four planes of the pyramid. As a consequence the
image measurement quality of the targets is reduced (targets imaged as elliptical
blobs). This is particularly the case for those targets that do not reside within the
identified (£19.7mm) field of view. The bundle adjustment was processed with a

redundancy of 608 observations and converged rapidly after 3 iterations with a sigma
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nought equal to 1.62 (see Table 6.13). The achieved quality in image space is equal to
0.53um that is 1/9™ of a pixel for the Sony sensor, whereas the 3D targets are
coordinated with a mean 3D precision of oxyz=8.3um (cX= 7.69um, ¢Y=9.93um,
oZ= 7.28um). The calibrated image scale is equal to 0.1656 (with precision
0s=0.1264). The bundle results in a radial distortion of 6.94um at a radial distance of
2.5mm from the image centre. The calculated ks term is equal to 4.44x10™ (with a

precision of oys= 2.5095x10™ and a significance of -0.0069) (see Figure 6.39).

FHAH A A AR AR H
Lens Distortion Profile for Camera Calibration
Units: microns

Radius Value

0.0000 0.0000

0.5000 0.0555
1.0000 0.4441
1.5000 1.4990
2.0000 3.5532

2.5000 6.9398

<< UPDATED ADDITIONAL PARAMETERS DATA (k3) >>
Units: mm

Value Precision Correction Significance
4.441441509e-004 2.5059e-005 -1.7265e-007 -0.0069

HHAHHFHH A A AR AR AR R R R R R

Figure 6.39: Calibration output - dataset B2.

6.5.2.2. Dataset D2 - lego

This dataset is composed of 24 photos, 20 targets of which 10 are treated as control
and 10 as tie. Figure 6.40 illustrates an example affine view together with the data
visibility that characterizes this image network. The point data occupy 18 pixels in
image space (Imm diameter white markers in object space). Control data present
minimum visibility in the case where two targets are measured from eight viewpoints
whereas regarding tie point data only one target is coordinated from 4 viewpoints. The
object geometry points that all target data are sparsely arranged within each frame and
they are located between two (top-bottom) square planes at regular separations.
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Figure 6.40: Affine view (left) and CPs and TPs data visibility (right) - dataset D2.

The bundle adjustment was processed with a redundancy of 430 observations and
converged rapidly after 2 iterations with a sigma nought equal to 2.57 (see Table
6.13). In image space the triangulation misclosure is 0.75um which is equal to 1/12"
of a pixel for the Kodak sensor. In object space the 3D targets are coordinated with a
mean 3D precision of oxyz=29.14um (ox=27.88um, oy=31.52um, 6,=28.03um). The
calibrated image scale is equal to 0.1614 (with precision cs=1.2899 x10™*) whereas the
calculated ks term is equal to 4.0454x10° (with precision o= 8.6230x10° and a
significance of 0.0066) (see Figure 6.41).

FHEF R
Lens Distortion Profile for Camera Calibration
Units: microns

Radius Value

0.0000 0.0000

.5000 0.0051
.0000 0.0405
.5000 0.1365
.0000 0.3236
.5000 0.6321
.0000 1
.5000 1.7345

.0000 2.5891

4.5000 3.6864

<< UPDATED ADDITIONAL PARAMETERS DATA (k3) >>
Units: mm

Value Precision Correction Significance
4.045420537e-005 8.6230e-006 5.6812e-008 0.0066
EE R i

.0923

BwWwWwNhN PP o

Figure 6.41: Calibration output - dataset D2.

6.5.2.3. Dataset E2 - centroid

This dataset is composed of 17 photo and 54 point data (12 CP and 42 TP). Target
image quality is pointed by the 36 pixels in diameter blobs in image space (2mm
diameter retro-reflective targets in object space). To characterize this dataset it is
firstly pointed out that whilst this network was originally designed in a wide separated

three ring arrangement, the selected photos cover the 3D object space in a cone
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arrangement and they are geometrically wide and convergent. This is a highly
advantageous point of this image network particularly when this is compared to the
image networks of datasets B2 and D2 (see Figure 6.4 in section 6.2.2.4.). Contrary to
this, the centroid consists of concentric rings of point data (retro-reflective targets)
with significantly large target diameter (2mm in object space which is equal to 36
pixels in image space) for this particular imaging range (r= 175mm) and sensor
(CAM_AZ3). As a result, the data present a reduced image quality; therefore this image
network was processed with an a priori image quality of 1.5pum.

: : A ! ACPs
16.0 k- R +
14.0 ‘
12.0 + — i
10.0 1 e e s e S b .
7 ) - ‘ '
6.0
40 -
2.0
0.0 + | : i ; i
00 10 20 30 40 50 60 70 80 90

TPs

Network view count

Network target count

Figure 6.42: Affine image network (left) and CPs, TPs data visibility (right) - dataset E2.

Figure 6.42 provides an illustration of the image network geometry and the data
visibility. Both control and tie point data are highly visible and they range between 10
and 17 views (CPs) and 9 and 17 views (TPs) accordingly. The bundle adjustment
was processed with a number of 1,287 redundancies and converged rapidly after 3
iterations with an a posteriori sigma nought of 3.73 (see Table 6.13). The triangulation
misclosure is 3.45um which is approximately equal to 1/3™ of a pixel for the Kodak
sensor in image space. In object space the 3D targets are coordinated with a mean
precision of oxyz=39.07um (ox= 36.54pm, oy= 43.81um, oz= 36.86pum). The
calibrated image scale is equal to 0.1651 (with precision 6s=2.3232x10) whereas the
calculated ks term is equal to 4.7493x10™ (with precision oy3=3.7241x10° and a
significance of 0.0101) (see Figure 6.43). It is noted that for a complete display of the
bundle adjustment results that were obtained from three datasets B2, D2 and E2 the

associated radial lens distortions profiles are provided in Appendix C.
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FhefHHAAHEAA A AR
Lens Distortion Profile for Camera Calibration
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<< UPDATED ADDITIONAL PARAMETERS DATA (k1) >>
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Figure 6.43: Calibration output - dataset E2.

6.5.3. Correlations with proximities

For object space evaluation, the first measure that was utilized checks the relation of
the 3D target correlation coefficients against object space proximity. It is noted here
that the term proximity denotes the Euclidean inter-target distance for each possible
target combination and which is calculated as follows.

Diream = VXK =X+ (Yys =YY +(Z,s =2, (6.2)

n+l

Particularly, this is done by visualization of the target Euclidean distance (x axis) over
the 3D target correlation coefficients (y axis) derived per X, Y and Z direction (RX,
RY, RZ) from the a posteriori covariance matrix. It is noted that the correlation
coefficient vectors RX, RY and RZ were extracted from the upper triangle of the
associated correlation coefficient matrix (absolute values) which for an example for a

5x5 array is given as follows.
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Figure 6.44: Structure of correlation coefficient array.
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6.5.3.1. Dataset B2 - pyramid

Evaluation of the 3D correlations in object space for dataset B2 (pyramid object) is
implemented with visualization of the absolute values of the 3D correlation
coefficients in each direction RX, RY and RZ against the corresponding 3D inter-
target separations (see Figure 6.45). As a result, the generated graphs show the

behaviour for each inter-direction correlation separately.
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Figure 6.45: Correlation coefficients with proximities (red: RX, green: RY, blue RZ) - dataset
B2.

The target-pairs differences range between 4.3mm (minimum separation) and 32.1mm
(maximum separation). Correlations RX, RY and RZ increase inversely with target-
distance. In fact targets that are separated with distance D= 4mm-10mm are highly
correlated in all three directions X, Y, Z (p= ~0.7-1.0) whereas only a few targets
present low correlations in Y (p=~0.3-0.7) and X (p= ~0.5-0.7). In general Z (object
depth) direction presents a smooth behaviour when compared with correlations in X
and Y that present a wider spread between the ranges 10mm-32mm. An interesting
point is that as opposed to the general trend (that is correlations decrease with an
increase in target-separation) there exists a cluster of targets separated between D=

-198 -



6. Results and analysis

~27mm-32mm that tend to have increased correlations. However the magnitude in
correlations is not exceeding 0.3 therefore these can be attributed to potential poor
uncertainty in precision (e.g. low image quality, viewpoint intersection, low

measurement redundancy) and not necessarily a problem in the data.

6.5.3.2. Dataset D2 - lego

Figure 6.46 illustrates the 3D correlation coefficients in each direction RX, RY and
RZ over the corresponding 3D inter-target separations. In the case of dataset D2 the
target-pairs differences range between 9.98um (minimum separation) and 61.97um
(maximum separation). It is evident that similarly to the previous case (see section

6.5.3.1.) correlations RX, RY and RZ increase inversely with inter target-distance.

g ]

Figure 6.46: Correlation coefficients with proximities (red: RX, green: RY, blue RZ) - dataset
D2.

Targets separated between D= ~10mm-20mm present high correlation (p= ~0.7-1.0)
in X with only a few exceptions in directions Y and Z where D=~15mm-20mm with
correlations being just below p= ~0.7. The data follow in general a smooth

arrangement with only a small cluster (D= ~50mm-55mm) presenting correlations
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between (p= ~0.2-0.3) in Y. In addition, correlations between CP4000 and CP4006
(with Dagoo-4006= 61.51mm) as well as CP4000 and CP4009 (with D= 61.97mm)
present an increase in correlations (with px, pz= ~0.1-0.2 and py= ~0.4-0.5) when
these should be reduced in comparison to their counterparts. However the correlation
coefficients are considered as small and the relative increase in the standard

deviations can only be attributed to poor target measurement quality.

6.5.3.3. Dataset E2 - centroid

Similarly to datasets B2 and D2 Figure 6.47 illustrates the absolute 3D correlation
coefficients in each direction RX, RY and RZ over the corresponding 3D inter-target
separations. The 3D target data range between 3.3mm (minimum separation) and

48.7mm (maximum separation).
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Figure 6.47: Correlation coefficients with proximities (red: RX, green: RY, blue RZ) - dataset
E2.

Correlations RX, RY and RZ increase inversely with target-distance similarly to the

results presented above. Significant correlations (p= ~0.7-1.0) occur between D=
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~3.0mm - 10mm in X and Z with a relatively similar behaviour. It is interesting that
correlations RY appear to be reduced in magnitude when these are compared to
corresponding correlation coefficients in X and Z within the range 0-40mm (for
example for distance D= 0-10mm; pxz> ~0.8 and py= ~0.5-0.8, D= 10-20mm; pxz=
~0.4-0.9 and py= ~0.2-0.8, D= 20-30mm; pxz= ~0.2-0.8 and py= ~0.0-0.6, D=30-
40mm; pxz= ~0.2-0.8 and py= ~0.0-0.6). However within the range (D= 40-50mm 3D
targets are correlated within p= ~0-0.2 in X, Y and Z). Moreover two correlation
values at the far end of these figures seem not to follow the decreasing pattern of their
counterparts. Specifically this occurs for the pair CP10000-TP20009 (where
D=48.65mm with px= 0.08, py= 0.26, pz= 0.13) as well as the pair CP10000-
TP20008 (where D= ~48.04 with px= 0.05, py= 0.23, pz= 0.10) but again these
correlation coefficients are considered to be insignificant. It is however pointed that
this repeatable pattern (see sections 6.5.3.1., 6.5.3.2. and 6.5.3.3) observed at the edge
of the image format might result from a potential small uncorrected radial distortion

error within the data measurement.

6.5.4. Error ellipsoids

The second measure that is utilized for object space evaluation is the visualization of
the absolute 3D point error ellipsoids that are derived from the a posteriori covariance
matrix (subblock for 3D targets). Error ellipsoids are considered to be highly useful
for evaluation of bundle adjustment results. In particular they can characterize
network orientation, scale and datum location. Here the error ellipsoids are visualized
for each control and target point that contributes within the image network; these are

ordered as extracted from the target data file.

6.5.4.1. Dataset B2 - pyramid
Figure 6.48 illustrates the location of the measured CP (red triangles) and TP (green
triangles) and Figure 6.49 visualizes the corresponding 3D views of the error

ellipsoids for dataset B2 (pyramid object) within the image network.
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Figure 6.49: Error ellipsoids (external datum) - dataset B2.

The external constraint datum defined the control target coordinates with an overall
3D precision of 6X= 7.69um, 6Y=9.93um, 6Z=7.28um (see section 6.5.2.). From the
ellipsoids pattern, it is evident that error ellipsoids of points that lie on a similar plane
and row present similarities in shape and size. Specifically target points that are
located in the fourth and fifth rows in all four facets present largest error ellipsoids

(counting six rows per facet from the pyramid’s basis to its peak). Such examples are
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targets CP112, CP411, CP413, CP315, CP214, TP316, TP412, TP313, TP111, TP414,
TP415. Opposed to these, targets that are located at the object’s edges or are more
spread (e.g. are coordinated from an increased number of intersection angles) present
uniform and small in size error ellipsoids. Such examples are targets CP110, CP410,
CP416, CP308, CP312, CP211, CP209, TP215, TP210, TP108, TP314, TP408,
TP105, TP106, TP106, TP409, TP309, TP310.

6.5.4.2. Dataset D2 - lego
Figure 6.50 illustrates a pair of two views showing the arrangement of the CP (red
triangles) and TP (green triangles) data within the image network and Figure 6.51

visualizes a 3D view of the corresponding error ellipsoids for dataset D2 (lego object).
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Figure 6.50: Point data distribution (CP: red triangles, TP: green triangles) - dataset D2.
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Figure 6.51: Error ellipsoids (external datum) - dataset D2.

The error ellipsoids are of similar magnitude and shape for the total number of targets
which is reasonable considering the uniform image quality of the target points and
simultaneously considering that the a posteriori 3D target precision was estimated as
oX=27.88um, cY=31.52um, cZ=28.03um with a relatively increase in Y direction.
Targets CP4000, CP4006 present the largest ellipsoid patterns. Moreover it is
interesting that the error ellipsoids for targets CP4000 and CP4006 as well as targets
CP4003 and CP4009 that are located on the base plane along the diagonals present
high similarity in shape, orientation and magnitude. To check if this results from a
weak orientation in the data (e.g. ray intersection angles) or if it characterizes the
quality of the control data that were utilized to constrain the network, an obvious
check was to re-run the solution with an inner constraint datum (with identical
orientations, photo and target data). The inner datum solution resulted in a uniform
error ellipsoid shape for all target points which proves that the network is highly
homogeneous and strong (see Figure 6.52). As a result, the observed ellipsoid patterns
in the external constraints case are not a function of a weakness in orientation. These

can relate to poor control determination for these particular target points from data
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pre-measurement (see section 6.5.1.2) or affine network computation (see section
6.5.2.2.).

1)
05 -05 05 05 05 -05

Figure 6.52: Error ellipsoids (inner datum) - dataset D2.

6.5.4.3. Dataset E2 - centroid

Figure 6.53 and Figure 6.54 illustrate the distribution of the control and tie point data
within the image network as well as the 3D error ellipsoids of the estimated point
data. The shape, magnitude and direction of the error ellipsoids suggest that no
systematic effects were present within the affine image network. It is recalled here
that the estimated 3D targets were coordinated with an a posteriori quality of 6X=
36.54um, cY=43.81um, 6Z=36.86um (see Table 6.13 in section 6.5.2.). To give some
examples of large error ellipsoid patters; these characterize targets CP10000,
TP20007, TP20008, TP20009, TP20010 that are located in the most outer ring of the
structure as well as targets TP20011, TP20012, CP20013 and TP20014 that are

located in the second ring (counting from the outside).
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Figure 6.53: Point data distribution CP: red triangles, TP: green triangles - dataset E2.

( I ll()lll CP30005 ( PK(I[KI) CP30013 CP20001 CP20005

ST W

o n‘ui n‘ﬂl o1
i a1 o a_g ° ¥ & an B 2
( P20013. .cp mouo _CRa0N02. CPA00DS, roouo
P s, P Sh . o Nt P
ar e ar L et S
o1 o1
0 = [

o o 9 T
_Tl’mm.t . | TPao0oG |

- -

o1 Q1 9 g
TRa00L4,

o ar a
. TR30014. .. JP400IL,

LA 1}

,_rmamﬁ )

a a1

L. TP20010

Qi Qi
.. TP26007 . _

X B
01 o1 0 ° oo O
2
o rmmm i _,_Arm(mm o i _A_.:FP-O(WI.(N».”._ i ',_.lrmmﬁ 2. “_.TP 0009. ..
a5
o1
o

o1 . a a1 °
FRHOND, TP( rm(n Tmrm 10, ‘T_mngu 2 TPANOI3
[ LRSS . = a1 2 . A 7yssei %0 o Mg B
a1 g 1 e c|]\ Ao PRy g w aa S
] % ru"‘ 5 . 3 - o1
a1 o ar a1 a1 a a0 a o P
ar oo EPH0004, . TRAONOS, oy - oo o TRAOOOS, . TR20003,
= 3 e 2 e . :
Q1 R 8]
ot 0 - o 3 mnl P 2
o o ° e a1 ° ar o °
_TR30007, TR30003, _TR3001S, 3
o1 v R G, 3 ST ARG
E .
o1 R o =
e o S Z
a o ¢ o ar ¢ a1 ar a a0 a a °

ER20006, . Tp20015 .- TR20002

e e
a1 o AT

Figure 6.54: Error ellipsoids - dataset E2.

6.6. Scale invariance assessment

To assess sensor scale within the developed system, the bundle method was tested
using two different datasets A2 and A3 acquired with the Kodak sensor (CAM_A3)
and the Sony sensor (CAM_ADb) respectively whereas initialization and target pre-
measurement were performed utilizing dataset Al captured with the available Nikon
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DSLR camera (CAM_P1). Comparative results are obtained from statistical analysis

of the bundle adjustment.

6.6.1. Reference measurements

Dataset Al was established from a strong, highly convergent image network from 44
viewpoints at an imaging range of 400mm. It is noted that the rigid cube frame
occupies a volume of 100 mm?® enclosing the lego structure where 178 point targets
(white markers) were observed (mean target visibility of 15.1) with an image quality
pointed by a target image diameter of 4.5 - 9.0 pixels in image space. Figure 6.55
provides a description of the reference dataset. Specifically it illustrates the reference
calibration object highlighting the control point data (red ellipses) as well as the 10
object space measurements (drawn in blue) that were introduced as scale
measurements in the bundle adjustment (a priori precision of object scales was set to
50um). In addition it illustrates the image network geometry and the

photogrammetrically derived 3D point cloud.

Figure 6.55: Calibration rigid structure (left), image network (middle) and photogrammetric
point cloud (right).

The dataset was processed with the bundle adjustment within the VMS 8.0 tool
defining an inner constraints datum and the internal calibration model (excluding
insignificant decentering and affinity terms). The bundle was implemented with a
redundancy of 4,564 and it converged after 10 iterations resulting in a triangulation
misclosure of 0.37um (that is 1/20™ of a pixel for the Nikon sensor). Object geometry
was recovered with a relative precision for the image network of 1:36,000, a mean 3D
target coordinates precision of 5.66um and an RMS object scale residual of 103.28um

(see Table 6.14).
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Dataset | Iter. R. Oo RMS,, oxyz (um) | Relative | RMS scale (um)
(um) precision
IS (O]

| A1l | 10 [4564] 1.00 | 037 [ 566 | 1:36000 | 103.28 |

Table 6.14: BA statistical indicators - datasets B1, D1 and E1.

6.6.2. Affine bundle adjustment results

Figure 6.56 illustrates a sample perspective view with two inset views acquired from
the two different camera systems with clear differences in footprint and image
content. The main differences of the test datasets are related to sensor characteristics
noting that the key difficulty in this particular test case was the object’s dimension
was larger than the footprint of the imaging system. The acquired datasets were
processed with the pre-measured data and datum as defined above (see section 6.6.1.).
However the object’s dimensions, occlusions and image quality demanded significant
pre-editing in order to remove measurements that were partially occluded in
subsequent images and simultaneously did not present sufficient ray intersection (3 or

4 rays per frame) as an example.

Figure 6.56: Perspective view with affine views - CAM_AS5 (left) and CAM_A3 (right).

The Sony camera system (CAM_AD) is characterized by a highly narrow field of view
as well as limited resolution (see section 6.2.2.2.) when this is compared to the Kodak
sensor footprint (CAM_A3). As a result the number of images required to cover the
object volume increase and the target dispersion within each frame become more
limited. However network design and image acquisition ensured that a minimum
number of control points (4-6 per view) were present for stable frame initialization
and that there was sufficient multi-image coverage (through tie point measurement)
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and redundancy. This consideration is critical for subsequent calibration and network
stability. Table 6.15 provides the comparative bundle adjustment results for datasets
A2 and A3 noting that these were processed with an external datum and the

implemented calibration model.

Dataset | lter. R. Scale K, o, | RMS,, oX, oY, cZ
(Gscalexj-o_s) (GK3) (Hm) (Hm)

A2 3 [1,670] 0.1615 2.6356x10™ | 4.04 | 1.30 | 25.73,30.53,25.71
(7.5282) | (5.3196x10)

A3 3 | 653 0.1659 2.2805x10” | 2.07 | 0.56 | 17.75, 34.83, 15.94
(3.4151) | (2.3532x10)

Table 6.15: Affine BA results (external datum) - datasets A2 and A3.

6.6.2.1. Dataset A2 - Kodak sensor

In the case of dataset A2 the image network was processed with 35 CP, 87 TP and 44
photo data. The measurements present a minimum number of 4 rays (for all target
points) and a maximum number of 26 and 18 visibilities (for control and tie points
respectively) (see Figure 6.57). Initialization was performed with the approach
described in the previous test cases (see section 6.4.1. as an example). Resection
computes an RMS image measurement residual of 1.52um (to define the 3D
orientation angles). A subsequent closed form back-substitution estimates the
remaining 2D projective translations. The 3D target coordinates for the control were
obtained from the reference measurements (see section 6.6.1.) therefore the datum

was defined from the identified 35 control point data.
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Figure 6.57: Image network geometry (left) and data visibility (right) - dataset A2.
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The system was run with a redundancy of 1,670 observations and converged rapidly
after 3 iterations with an a posteriori sigma nought of 4.04 and a triangulation
misclosure of 1.30pum (1/10™ of a pixel). Object points were estimated with a mean a
posteriori 3D precision of 27.32um (6X=25.73um, cY=30.53um, 6Z=25.71um). The
sensor scale is equal to 0.1615 (with a precision of 7.5282x10°) whereas the radial
lens distortion was calculated as ks= 2.6356x10™ (with a precision o= 5.3196x10°°
and a significance (where: significance= correction / precision) of -0.0024 which
result in a correction of 1.28x10°® for the radial lens distortion term).

6.6.2.2. Dataset A3 - Sony sensor

Dataset A3 is processed with 78 CP, 8 TP and 85 photo data. The data visibility
ranges between 3 (for CP data) and 16 rays (for CP and TP data) with a mean number
of valid target image observations of 5.72 within the image network. For complete
object coverage this particular dataset presented some significant difficulties that are
worthy of mention. The Sony sensor presents a very narrow field of view when used
with the telecentric lens and the point data are highly sparse for these particular
magnified close-ups. As a result and to stitch the images through point data
measurement (given that there is significant overlap and control for frame
initialization and subsequent datum definition) the image network was designed to be
highly ‘systematic’ (with regards to the imaging range) with relatively closed
separated viewpoints (narrower bundle of rays) (see Figure 6.58). The resulting 85
views within the image network ensured sufficient geometric strength and redundancy

for data processing.

A | A CPs |

TPs |

Network view count
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Network target count

Figure 6.58: Image network geometry (left) and data visibility (right) - dataset A3.
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Initialization was implemented similarly to the Kodak sensor (see section 6.6.2.1.)
with a mean resection image measurement residual of 1.22um and a closed form
estimation of the 2D projective translations. The system was run with a redundancy of
653 observations and converged rapidly after 3 iterations with an a posteriori sigma
nought of 2.07 and a triangulation misclosure of 0.56pm (1/9" of a pixel). 3D object
coordinates were estimated with a mean a posteriori 3D precision of 22.84um
(6X=17.75um, cY=34.83um, 6Z=15.94um). The sensor scale was estimated to be
equal to 0.1659 (with a precision of 3.4151x107) whereas the radial lens distortion
was calculated as 2.2805x10™ (with a precision c,3=2.3532x10°°, a significance which
is equal to -0.0256 and a resultant correction of -6.03x107). Although redundancy,
image quality and network geometry are reduced when compared to dataset A2, the
bundle results show that this dataset provides an improvement in both estimating
RMS image misclosure as well as 3D point precision. This is an obvious outcome
considering the 78 control point data that were utilized to tie this image network

(stable datum definition).

6.6.2.3. Object scale

To provide evidence of the system’s ability for object scale recovery with both
employed sensors (Kodak and Sony) two additional checks are given. The first
measure calculates the absolute difference of five key distances over the estimated
distances that were obtained from the bundle adjustments (see Figure 6.59 for

illustration of data arrangement).

Figure 6.59: Object scales and point data arrangement.
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It is evident that in comparison to dataset A3, dataset A2 is closer to truth (denoted by
S which stands for scale) by 5.45um in the case of distance Dagos-2006 (Where the
maximum discrepancy occurs) and 16.07um in the case of distance D2ogs-2009 (Where

the minimum discrepancy occurs) (see Table 6.16).

Distance ADs az) (1m) AD(s a3 (um)
D1000-1005 47.44 67.34
D100s-1015 76.49 90.87
D2000-2003 99.23 110.99
D2003-2006 128.06 133.51
D206-2009 36.42 52.49

Table 6.16: Distance checking - datasets A2 and A3. Table notation: AD= absolute difference,
S=scale, A2= dataset A2, A3= dataset A3.

The second check calculates the mean absolute discrepancy in 3D directions X, Y and
Z between the reference measurements (dataset Al) that initiated the control data
from premeasurement of dataset Al and the estimated point coordinates for the
individual datasets A2 and A3. In Table 6.17 these are grouped for the different object
planes (coded plane1000, plane2000 and plane3000 starting from base to top plane) as
well as the points located at the intermediate corresponding sides (coded pts10000,
pts20000, pts30000).

Dataset A2 A3
MAD MAD. MAD, MAD MADy MAD,
(um) (um) (um) (um) (um) (um)
Plane1000 14.05 18.90 11.77 8.23 12.70 7.78
Plane2000 5.07 7.00 5.23 7.34 6.66 11.82
Plane3000 4.76 7.25 3.87 6.65 23.68 11.13
Pts10000 13.03 25.45 10.65 59.03 83.89 23.73
Pts20000 10.43 21.57 11.23 8.92 11.14 8.95
Pts30000 4.23 11.96 6.82 10.89 16.60 7.92

Table 6.17: Object space discrepancies - datasets A2 and A3. Table notation: MADy v 2=

mean of the absolute discrepancies between reference measurements and estimated point data.

It is evident that the most significant discrepancies in both instances occur in the Y
(viewing) direction. The Kodak sensor coordinates results to a mean 3D discrepancy
of MADxyz= 10.73um (MADx = 8.59um, MADy=15.35um, MADz=8.26um)
whereas the Sony sensor results in a 3D discrepancy of MADxyz= 18.17um (MADx =
16.84um, MADy=25.78um, MADz=11.89um). The closure of the estimated

discrepancies in relation to the reference data is attributed to the geometric strength,
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redundancy and image quality of the Kodak sensor as well as the significant control of
its competent Sony sensor. 3D points appear to be closer to the reference
measurements for the data which are located in the middle and top planes of the lego
structure (coded plane2000) which is a natural expectation considering geometric
strength (wide ray intersection angles), increased visibility and frame coverage.
Finally points that lic on the lego structure’s faces (coded Pts10000 - Pts30000)
present reduced accuracy due to their poor image quality (image targets vary in
diameter between 9-18 pixels for the Kodak sensor and 17-33 pixels for the Sony
sensor) as well as visibility (targets are occluded in relation to the network
viewpoints) and therefore less redundancy in their successive measurement frames. It
Is noted that point targets that lie on the three planes (coded Plane1000 - Plane3000)
present an improved accuracy. This is attributed to the image quality considering
direction of illumination and geometric viewpoint location as well as uniform target
dimensions (image target diameter of 18 pixels for Kodak sensor and 33 pixels for

Sony sensor).

6.7. Independent testing

To independently test the affine bundle adjustment algorithm, the developed method
is compared over a conventional bundle approach utilized within the software tool
VMS 8.0. For this reason three datasets were acquired; the first provides reference
measurements for point data initialization (dataset C1), the second is used for
processing of the perspective bundle adjustment (dataset C2) and finally the third is
generated for affine bundle adjustment processing (dataset C3) (see section 6.2.3.). It
is re-iterated here that processing of dataset C1 has already been given earlier in the
model assessment test case (See section 6.4.1.1.).

6.7.1. Bundle adjustment results

Both datasets were processed based on a similar processing framework. Specifically
dataset C2 was processed with 47 images, 18 CP and 7 TP data and dataset C3 was
processed with 45 images, 18 CP and 11 TP data. For comparative evaluation both
datasets were run with identical control; that is the datum was initiated from the

identified reference image network.
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6.7.1.1. Image networks

Figure 6.60 provides a comparative illustration of the perspective and affine image
network geometries together with two selected views per case. It can be seen that both
image networks were acquired in a two-ring strong convergent configuration. In
addition, to extract useful evaluation of the affine image dataset over the available
bundle adjustment (within the software tool VMS 8.0) it was ensured that the point
data covered identical volume in 3D object space. As a result and besides the sparse
point data arrangement in the case of the perspective image dataset the targets occupy
nearly 1/4 of the image frame, however these are located in the middle as far as
possible for sufficient point estimation as well as calibration parameters. Regarding
point visibility in the case of dataset C2 maximum visibility ranges between 40 and 32
views (two CPs are coordinated from 40 views and one TP is coordinated from 32
views) and minimum visibility ranges between 25 and 22 views (one CP is
coordinated from 25 views and one TP is coordinated from 22 views). For dataset C3
the corresponding data are given: maximum visibility ranges between 45 (one CP)
and 38 views (one TP) whereas minimum visibility lies between 29 (one CP) and 18

(one TP) views (see Figure 6.61).

Figure 6.60: Image network geometry and views - dataset C2 (top) and dataset C3 (bottom).
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Figure 6.61: Data visibility - dataset C2 (PP: perspective projection) and dataset C3 (AP:
affine projection).

6.7.1.2. Results

Dataset C2 was processed with 47 images, 18 CP and 7 TP data with an external
constraints datum and full calibration parameters. Similarly dataset C3 was processed
with 45 images, 18 CP and 11 TP data with an external constraints datum and
inclusion of the implemented radial lens distortion term (ks). The comparative bundle

adjustment results are given in Table 6.18.

Dataset | lter. R. Go RMS,, (um) oX, oY, cZ (um)

IS 0S
C2 4 11343 | 1.00 0.78 8.92; 10.46, 8.94
C3 3 11,838 2.23 0.79 19.14; 21.93; 19.20

Table 6.18: Bundle adjustment statistical indicators - datasets C2 and C3.

In the case of dataset C2 initialization was implemented with a resection procedure
(for the 47 photo data) producing an RMS image measurement residual of 0.74um
(with a mean valid target image observation number of 13.17) and a subsequent affine
forward intersection procedure with oxyz= 5.23um. However on the final estimation
stage control was updated by its reference 3D coordinates (and their associated
standard deviations) to ensure that the datum remains as it was originally defined. The
bundle adjustment converged after 4 iterations with a number of 1,343 redundancies
resulting in a triangulation misclosure of 0.78um (~1/12™ of a pixel). In object space
the bundle estimates 3D points with a mean precision of 9.44um (cX=8.92um,
oY=10.46um, cZ=8.94um) whereas the relative precision for the image network is

equal to 1:5000. Calibration is recovered with the 10 parameter self-calibration model
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embedded within the software and the radial lens distortion at a radial distance of

3.5mm estimated to be equal to -44.65um for the Kodak sensor.

Initialization of dataset C3 was based upon 18 control point data (reference
measurements). The resection procedure (of the 45 photos within the network)
resulted in an RMS image measurement residual of 1.37um (with a mean valid target
image observations of 13.45). The subsequent affine forward intersection procedure
was run with a number of 2,011 redundancies resulting in a sigma nought of 6,= 2.99
and a oxyz= 2.18um after 2 iterations. To keep the datum defined at its initial set up
the control data were set to their initial reference measurements. The affine bundle
adjustment (dataset C3) converged after 3 iterations with a number of 1,838
redundancies and an RMS image misclosure of 0.79um (~1/12" of a pixel) presenting
high similarity over dataset C2. In object space the bundle estimates 3D points with a
mean precision of 20.09um (6X=19.14um, oY= 21.93um, cZ= 19.20um). Here the
camera system which employs the Kodak fitted with the telecentric lens is calibrated
with a scale of 0.1611 (o= 1.4401x10™), radial lens distortion is 8.45um at a radial
distance of 4.00mm (ks=1.3204x10, 6,3=6.0180x10®, significance= 0.0150).

6.7.1.3. Object space

For object space evaluation two measures are calculated. The first provides a visual
display of the 3D target error ellipsoids for both datasets C2 and C3. Specifically
Figure 6.62 visualizes the 3D target error ellipsoids for dataset C2 (CPs coloured in
blue and TPs coloured in green) with an ellipse scale factor of 10.3 (within the
software tool VMS 8.0). The error ellipsoids in the case of the affine dataset C3 are
displayed with a default scale of 1.0 and they are listed according to their order
(obtained from the input 3D target file and labelled in blue: CPs and green: TPs). It is
noted that 3D error ellipsoids present uniform shape, magnitude and orientation with
regards to object geometry — location, point type and precision. As a result the 3D
points present uniform quality (as obtained from the scaled a posteriori covariance
matrix) which is confirmed by the tabulated results (see Table 6.19).
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Figure 6.62: 3D target error ellipsoids - dataset C2 (Ieft) and dataset C3 (right).
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Dataset oX (um) oY (um) oZ (um) oX (um) oY (um) oZ (Um)
C2 8.89 10.26 8.94 8.99 10.93 8.89
C3 19.11 21.61 19.22 19.16 22.44 19.17

Table 6.19: 3D target precisions - datasets C2 and C3.

Firstly dataset C2 estimates 3D target points with a precision which is improved by
10um in three (X, Y, Z) directions in comparison to dataset C3 considering that the
affine bundle scales the 3D point precisions to an a posteriori sigma nought of 2.23. In
both cases the error ellipsoids of the control present similar shape and magnitude per
concentric ring (from the outer towards the inner target rings). Particularly, CP4003
(which presents minimal oz, 31 and 25 rays in ‘C2” and ‘C3’ respectively) and
CP4004 (with minimal ox, 31 and 26 rays in ‘C2’ and ‘C3’ respectively) as well as
CP5001 (with minimal oy and 40 rays in C2) and CP5002 (which presents minimal
oy Wwith 44 and 40 rays in ‘C2’ and ‘C3’ respectively) are examples of small error
ellipsoid shapes. TP10000 is an example of reduced quality (coordinated from 25 and
36 views and estimated with 3D precisions oxyz= 10.27um and oxyz= 21.16pm in C2
and C3) whereas TP10001 is given as an example of a better quality (coordinated
from 24 and 35 views and estimated with 3D precisions of oxyz= 8.83um and oxyz=
17.73um in C2 and C3 accordingly).

To evaluate accuracy Table 6.20 summarizes the mean of the absolute discrepancy
values for the control point data within the image network. It can be seen that the
affine image network derives a good comparative solution in comparison to the
perspective dataset. In fact given its geometric strength as well as complete point

coverage within the image frame, it results to an agreement of 6.27um with the
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reference data against an absolute discrepancy of 6.42um that occurs in the case of

dataset C2 (3D discrepancies of control over reference point data).

Dataset MADy (um) MADy (um) MAD; (um)

C2 6.64 4.55 8.08
C3 6.55 6.36 5.90
Table 6.20: Control point discrepancies - datasets C2 and C3. Table notation: MADy y 7=
mean of the absolute discrepancies between reference measurements and control point data.

6.8. Summary

In summary this chapter provides an extensive assessment of the developed affine
multi-view algorithm in the context of close range object measurement. The employed
tests were designed in order to test and evaluate the method in relation to both
considerations of correctness as well as effectiveness in practice. In particular the tests
have derived method behaviour in the aspects of initialization, bundle adjustment
algorithm, object space recovery, invariance of model scale as well as independent
evaluation with reference data. Assessment has been performed utilizing the typical
statistical indicators extracted from the bundle adjustment as well as measures that
evaluate specific aspects of the method and which have been given analytically at
each separate experimental case with regards to precision and accuracy aspects. The
implemented bundle adjustments were run on an Intel® Core ™ Duo CPU, 2.80GHz,
1.59GHz, 1.96GB of Random Access Memory (RAM). Table 6.21 summarizes the
performance characteristics of the overall datasets that were utilized to test the
method. It is evident that the data sizes of the processed bundles are relatively small;
these are given in the context of complete method description and not for purposes of

evaluation of the method’s performance.

Dataset CPU time Memory usage VM size
(hr:min:sec)

C3 (#CTPE) 0:00:30 23,432K 17.576K
C3 (#CTPI) 0:00:33 25,996K 21,116K
B2 0:00:06 18,304K 11,888K
D2 0:00:04 13,752K 7,320K

E2 0:00:12 19,536K 13,396K
A2 0:01:19 93,872K 87,720K
A3 0:00:52 117,056K 110,856K
C3 0:00:24 22,512K 16,132K

Table 6.21: Comparative performance characteristics.
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Model assessment has proved that the affine method converges rapidly (in the absence
of outliers) with a triangulation misclosure of 1/10™ - 1/11™ of a pixel for the
employed camera systems (C mount progressive scan cameras fitted with an MVO®
TMLTM/0.16x telecentric lens). Object space is recovered with a 3D precision which
varies within a few tenths of microns for the six different affine datasets when the
bundle is run with an external constraints datum and the implemented internal
calibration model. Inner constraints result in a significant reduction of 3D point
precision which has been concluded that this is attributed to modelling of inner
constraints datum for this scale invariant sensor model. In addition it has been shown
that inner constraints degrade model quality for the datum variant parameters
(projective translations, 3D rotations, 3D point coordinates and scale) but not for the
datum invariant parameter (third power term of the radial lens distortion polynomial).
The correlation analysis check has proved that significant correlations occur between
parameters of the same kind with some distinctive correlations between 2D projective
translations and 3D rotations as well as 3D target coordinates. Yet inner constraints
present high correlations between 2D projective translations and 3D target coordinates
which result from definition of the centroid datum with a simultaneous increase in

correlations of 3D target coordinates as opposed to the external datum case.

Evaluation of the 3D point coordinates correlation coefficients over the corresponding
3D target separation has shown that targets present high correlations inversely with
their 3D inter-target distance. Moreover, the 3D point error ellipsoids provide a good
indicator of the achieved quality in 3D space; in fact it has been shown that the
estimated points are in good agreement with similar type of precisions achieved from
well-known reference photogrammetrically derived measurements (through robust

bundle adjustment implementation).

Testing with camera systems that employ two different sensors (Kodak Megaplus
ES1.0 monochrome and Sony DFW-SX900 colour cameras fitted with the employed
MVO® TMLTM/0.16x telecentric lens) has shown that the method derives accurate
results at the order of 10-20pum in comparison to reference measurements. Finally an
independent check has evaluated the method over a perspective-based image network

that was run with the available in-house bundle adjustment tool (VMS 8.0) for
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comparative assessment purposes. It has been proved that the affine bundle
adjustment results in a very close quality agreement with the perspective bundle
adjustment in the aspects of RMS image space (with a misclosure of 1/12™ of a pixel),
3D point estimation (with a 3D precision of ~10-20um and a sigma nought of 1.0 and
2.23 for perspective and affine image networks accordingly) as well as accuracy (3D
discrepancies over reference measurements range within 10-20um). The central
conclusions derived from development and implementation of the affine multi-view

method are given in the subsequent Chapter 7.
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This research has investigated the problem of affine multi-view modelling for the
purpose of close range object measurement. A multi-view framework has been
designed, developed and tested against simulated and real datasets. This chapter first
presents a summary of the approaches presented in this thesis (see section 7.1.),
subsequently provides the central conclusions (see section 7.2.) and finally suggests
directions for future research (see section 7.3.) and closes with a final research point

(see section 7.4.).

7.1. Summary

The main focus of this research has been the investigation and development of a new
method for the purpose of system calibration, orientation and 3D measurement from
affine image networks. This is treated in the context of addressing the fundamental
questions that have been presented in the problem statement section (see section 1.3.)

and are re-iterated as follows:

- lIs it realistic to generate, measure and process real affine multi-view images
within a modelling framework in the context of deriving precise close range
object measurements?

- In the context of such a framework, how do sensor geometry (parallel
projection rays, invariant scale factor and calibration) as well as local
coordinate frame (datum) influence method precision and 3D point estimation
(object geometry)?

- What is the quality of affine multi-image modelling in comparison to

established photogrammetric solutions?

In these aspects the thesis starts with the investigation of the research context (Chapter
1). This is done with formulation of the background in the concepts of non-contact
object measurement (Chapter 2), digital close range image formation (Chapter 3) as
well as multi-view modelling in the photogrammetric aspect (Chapter 4). The thesis
can be considered in terms of: (a) method development and (b) application and
assessment of the system. System development focuses on starting value recovery as

well as design and implementation of the bundle adjustment algorithm (Chapter 5).
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Application of the method considers each development stage and provides extensive
assessment through testing with the designed experimental cases (Chapter 6). In the
contexts of development, testing and application of the affine system, this work dealt
with the aspects of starting value estimation (see section 7.1.1.), bundle adjustment

algorithm (see section 7.1.2.) and application of the algorithm (see section 7.1.3.).

7.1.1. Starting value estimation

The problem of starting value generation has been recovered from a combination of
implicit and explicit approaches to the affine sensor. Initialization is implemented on
the assumption that a perspective sensor with a very long focal length is a close
approximation to the affine sensor. Given this hypothesis the process starts from a set
of well defined control points in the object space where an initial exterior orientation
updated by a resection routine is applied to initialize the 3D orientation angles.
Subsequently closed form back-substitution is applied on the affine model to estimate
the 2D projective translations of the photo locations. In cases where there is
insufficient knowledge of 3D point geometry in the form of control and inadequate tie
points coordinated through pre-measurement (e.g. from prior robust perspective
bundle adjustment), there is the option to run a least squares forward intersection
procedure that estimates 3D points from the affine sensor model. This is performed
with the initialized orientation estimates and in the absence of any internal geometric

distortions (e.g. for calibrated cameras).

7.1.2. Bundle adjustment

The affine bundle adjustment approach is novel to this research work and has been
designed in order to be able to handle a number of significant factors and issues.
Firstly the developed framework reads a set of starting data grouped as target,
calibration, photo, orientation and image observation data that are used to populate
data structures needed for algorithm development. The method is implemented as a
multi-view bundle adjustment with a stochastic model initialized from the input

weights of image observations.
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The algorithm is able to identify the datum for the system with either external or inner
constraint methods. In the case of external constraints the stochastic model is
initialized from the weights of control point data. Alternatively an inner constraint
datum can be chosen; this calculates the centroid of data points from the identified
control and ascribes a normalized precision to the point data that contribute in the
image network. The system is also capable of handling variable target and photo
occlusions. This is achieved by counting the number of valid image observations,
control and tie points as well as photos in the network. Sensor scale factor is handled
for optional inclusion or exclusion within the estimation procedure. In consideration
of internal sensor distortions, a simplified radial lens distortion model constitutes the

calibration model.

The system is run as an iterative least squares observation procedure; it converges
when appropriate empirical criteria are satisfied (tested over the orientation, target and
calibration parameters). A successful solution provides a statistical analysis of the
method. Outputs include the initial and estimated parameters together with the
associated quality measures as extracted from the a posteriori covariance analysis.
The developed system has been evaluated at each stage of its development. As a
result, both algorithm considerations (stochastic model, datum, visibility, data points,
parameter, scale factor and calibration model) as well as aspects of geometry (sensor
scale invariance, internal calibration and 3D object point recovery) have been

addressed.

7.1.3. Application of the algorithm

Practical assessment of the method in the aspect of performance evaluation and
modelling has been carried out through testing with real datasets. Specifically, twelve
image network datasets have been acquired with both perspective and affine sensors.
The employed perspective camera systems have been utilized for the goals of
initialization, pre-measurement and generation of reference measurements; the
datasets have been processed with an established robust bundle adjustment tool.
Affine image networks have been acquired with an off the shelf machine vision
system that utilizes a telecentric MVO® TMLTM/0.16x lens attached on two
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different C mount (Kodak Megaplus ES1.0 and Sony DFW-SX900) camera bodies

that have been available for testing.

The developed approach firstly tested model behaviour and evaluated initialization,
overall bundle adjustment results, convergence behaviour and consistency of
correlation checks with statistical quality measures (see section 6.4.). At a subsequent
stage, it addressed object space behaviour based on reference image networks that
provide initial 3D coordinates (see section 6.5.). Parallel projection image networks of
varying geometry are processed to derive comparative bundle adjustment results
which are evaluated with typical statistical indicators as well as correlation analysis in
3D object space. The problem of sensor scale evaluation and its invariance is treated
employing the two different camera systems which are again initialized, tested and
assessed with typical measures in image and object spaces with additional accuracy
checks (see section 6.6.). Finally, the affine multi-view approach is assessed over
conventional robust bundle adjustments, initialized and consequently processed
independently of the method presented here (see section 6.7.). In every test case,
assessment has been extracted with specified quality and accuracy metrics. The tests
have proved that the method can produce sub-pixel measurement precisions which are

comparable to established photogrammetric methods (see section 7.2.).

7.2. Conclusions

This section outlines the central conclusions of this research that explicitly satisfy the
prior objectives of this research (see section 1.4.). Therefore this section addresses
modelling (research objective ‘2°), object space and sensor scale (research objective
‘3”) and independent assessment (research objective ‘4’) considerations. The central

conclusions of this research are formulated as follows:

7.2.1. Modelling analysis

The performance of the bundle adjustment algorithm has been assessed in relation to
model, convergence as well as correlation behaviour. To obtain representative results
tests have been run as comparative bundle adjustments with different calibration
(inclusion and exclusion of radial distortion model), point data (control and tie) and

datum (external and inner constraints) implementation (see section 6.4.).
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1. Results prove that bundle adjustments converge rapidly (2-3 iterations) with
stability offering sub-pixel image measurement precisions of the order of
1/10™ of a pixel. Visual inspection of the residuals has demonstrated random
patterns; these together with their normal distribution suggest that the
functional model is correct and that no systematic effects are present within
the system.

2. The sensor is calibrated effectively with the inclusion of the implemented
internal calibration model (ks= 1.3048x10™, 6,3=6.0521x10® with an external
datum solution with CP and TP data) and estimates a positive radial lens
distortion (dr= 8.3um at a maximum radial distance r=4mm for the Kodak
Megaplus ES1.0 sensor). Encouragingly the radial lens distortion curves are
consistent for both external and inner datum cases. Moreover, exclusion of the
calibration model from the estimation reduces 3D point data precision (at the
order of a few microns). This result is also valid for conventional perspective
bundle methods provided that the functional model compensates systematic
effects through additional parameter handling and no over-parameterization
occurs; that is the additional parameters represent the physical reality.

3. The affine adjustment method successfully estimates 3D target coordinates
and their quality. Results have demonstrated that the achieved 3D target
precisions are of the order of ~5-7um in the case of external constraints and
~126-283um in the case of inner constraints. These figures are scaled to the a
posteriori standard deviation (c,= ~2). Moreover, it has been repeatedly
proven that even when employing strong convergent and redundant image
networks, target coordinate precision is reduced by a magnitude of ~2 units in
the viewing direction for both datum methods. Particularly reduction of 3D
point precision in the case of inner constraints highlights potential
‘correlation’ between object scale and invariant sensor scale.

4. Accuracy assessment is naturally performed with comparisons over
independent measurements generated from high order quality (resolution and
precision) systems (photogrammetric cameras, laser scanners or CMMS).
Accuracy checks have been shown a general agreement in geometry (point
data) when these are compared with manual key measurements (acquired with

a digital calliper). However, these results can not be considered as decisive
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and further tests using full independent coordination of targets would be
required to provide a rigid outcome.

5. The tests examined within this thesis have been acquired under controlled
laboratory conditions; that is using systematic rotation and translation imaging
stages to acquire regular geometric networks of images. In this regard difficult
geometries or missing data have not been a part of testing. Investigation of the
method’s convergence has shown that successive iteration pairs result in high
agreement for the estimated parameters. Some random extreme variations
have been particularly observed in the case of 3D photo orientations. In fact,
this check has demonstrated that the inner constraints method degrades the
quality of the model for the datum variant parameters (2D projective
translations, 3D photo rotations, 3D target positions and sensor scale factor)
but not for the datum invariant parameter (radial lens distortion term).

6. Analysis of parameter correlations has shown that both datum methods present
high order correlations between parameters of the same kind. In particular it
has been highlighted (see section 6.4.2.3.) that the external datum presents
distinctive correlation patterns between 2D projective translations and 3D
orientation angles whereas inner constraints are dominated by minimal

correlation between 3D targets and 3D photo rotations.

7.2.2. Object space analysis

To assess object space recovery from the affine bundle adjustment the method was
tested with three datasets (of different object geometry) that were initialized from
reference measurement data (perspective bundle adjustments). The method was run
with an external constraint datum and the calibration lens model. Besides the typical
statistical indicators, assessment was obtained utilizing two measures that illustrate:
(@) 3D point coordinates correlation coefficients (in X, Y and Z directions) over the
inter-target proximities as well as (b) 3D error ellipsoid patterns (see section 6.5.).

1. Results show that the bundle adjustments in this test converged rapidly (2-3
iterations) with an a posteriori standard daviation ranging between c,= ~2.0
and 3.0. Considering the difference in input image quality between the

different datasets B2, D2 and E2 image point diameters range between 17
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pixels, 18 pixels and 36 pixels for each case; the a priori observation precision
was set to 0.5um for ‘B2’ and ‘D2’ whilst 1.5um was used for ‘E2’. The RMS
image misclosures were estimated at 1/9™, 1/12™ and 1/3 of a pixel whilst 3D
points have been coordinated with precisions of 8.30um, 29.14pm and
39.07um again per test case. As a result, RMS image misclosure is at a sub-
pixel level whereas object points are estimated with precisions in the order of a
few microns.

2. Evaluation of the absolute values of the 3D correlation coefficients in each
direction RX, RY and RZ against 3D inter-target separations has shown
repeatability within the different datasets; that is 3D correlation coefficients
increase inversely with target-distance. Particularly dataset B2 (pyramid
structure) presents a smoother distribution in Z in comparison to X and Y
directions. Moreover dataset E2 (centroid structure) has shown correlation
coefficient values of reduced magnitude in Y as opposed to correlation
coefficients in X and Z directions that present similarities in magnitude and
which are separated with inter target distances within the range 0-40mm. In
addition it has been observed that small clusters of targets tend to increase in
correlation when their inter target distance is increased but their magnitudes
are insignificant and hence have not been investigated further.

3. Visualization of the error ellipsoids (described by their magnitude, shape and
orientation) show the achieved precision levels of the affine bundle
adjustment. These have indicated the influence of the input target image
quality, image network geometry (strength, visibility and redundancy) as well
as 3D control point quality for the external constraints datum. The
homogeneous nature of the observed ellipsoids builds the confidence (together
with the random pattern of the residual vectors) that the functional model is
correct. An additional bundle adjustment check with an inner constraints
datum (dataset D2) resulting in a uniform error ellipsoids shape, has proved
that the image network is highly homogeneous and strong. As a consequence,
the observed ellipsoid patterns in the external datum case are not related to

potential orientation weaknesses but to potentially poor control determination.
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7.2.3. Sensor scale analysis

To assess the effect of scale within the system, the bundle method has been tested
with two different camera systems (telecentric lens MVO® TMLTM/0.16x attached
to a Kodak Megaplus ES1.0 as well as a Sony DFW-SX900). The utilized test object
occupies a 3D volume larger than the sensor footprint. Initialization has been
implemented from prior reference photogrammetric measurements. The test image
networks were processed with pre-defined control data (to maintain the 3D coordinate
datum definition) and associated 3D precisions set to 25um. Assessment has been
derived utilizing the bundle statistical indicators and recovery of object scale has been
evaluated with calculations of 3D absolute discrepancies (see section 6.6.).

1. Results have shown that the bundle adjustments converge after 3 iterations
with an a posteriori 6,= ~2.0 - 4.0, a triangulation misclosure of 1/10™ - 1/9™
of a pixel and a 3D point precision up to 30um. The calibrated image scale
has been recovered to 0.1615 (with a precision of os= 7.53x10™) and 0.1659
(with a precision of os= 2.35x107) for each camera system which show the
difference in scale recovery when using the two Kodak and Sony sensors.

2. Object scale has been evaluated with calculation of the absolute differences
(between externally measured and derived from the bundle computation
distances) which reach the order of 130um. Most significantly the overall
mean 3D absolute discrepancy (between reference datum measurements and
estimated 3D point coordinates) has proved to be equal to 10.7um (Kodak
camera system) and 18.2um (Sony camera system). The small magnitude of

these discrepancies can be attributed to image network geometric strength.

7.2.4. Independent evaluation

Final experimental case comprises testing of the bundle adjustment algorithm in
comparison to a perspective bundle adjustment within the software tool VMS 8.0.
Initialization has been recovered through pre-measurement at a prior stage of testing
whereas processing has been implemented with identical control and precisions (oxyz
= 25um). Here, assessment has been performed utilizing two measures, the first
visualizes the 3D point error ellipsoids and the second the 3D absolute discrepancies

for the common control data (see section 6.7.).
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1.

Results have demonstrated a triangulation misclosure of 1/12™ of a pixel on
convergence in both network cases. In fact a posteriori standard deviation and
3D points are estimated as c,= 1.0 and oxyz= 9.44um (perspective dataset)
and o,= 2.2 and oxyz= 20.09um (affine dataset) which provide a first evidence
that the data given their input quality estimate 3D point coordinates with a
good agreement.

The visualized error ellipsoids have shown that their patterns present similar
shape and magnitude for the control located at each concentric ring whereas
the error ellipsoids of tie points show the influence of the a posteriori 3D
precision.

Regarding accuracy evaluation, the mean absolute 3D discrepancies for the
control data have resulted in an agreement of ~6um (6.27um for the
perspective dataset and 6.42um for the affine dataset) against the initially
identified reference photogrammetric measurements. Consequently the affine
bundle adjustment algorithm has shown to provide results of similar quality
with the well known and well understood perspective case under controlled
test conditions with significant repeatability within the various tests reported

within the subsequent test cases.

7.2.5. Critical assessment

Following the concluding remarks presented above, a critical evaluation of the

principal defects that characterize the developed approach is now demonstrated.

Use of target measurements: The current framework is initialized from
discrete point features of high contrast (retro-reflective targets and white
markers on a black background). In practical terms natural textured objects
could be employed but such test objects would not insert any additional
information for test purposes. In addition, image measurements have been
initiated within the in-house bundle adjustment software externally to the
developed framework. A key limitation to this process is that the affine images
require significant manual digitization and processing given the sensor
magnification factor in combination with the limited capabilities of object

targeting. As a result, there is a significant data pre-processing cost which
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makes the method inefficient. A more sophisticated, automated initialization
procedure based on automatic feature extraction would be required in an ideal
case.

e Orientation value estimation: In the aspect of modelling difficult and non-
controlled image network configurations, the current initialization approach
can be considered as suitable for network geometries utilized within this
thesis. The system is built upon geometric assumptions that relate to the 3D
orientation angles recovery through perspective as well as pre-knowledge of
3D control. A complete exploitation of the affine sensor model for direct
initialization considering degenerate cases has not been considered.

e Tie point initialization: A more dedicated 3D intersection procedure
regarding algorithm implementation would be required in an ideal case. The
current method coordinates targets in 3D through forward least squares
estimation directly from affine projection provided the sensor is externally
oriented and internally calibrated.

e Inner constraints datum: Inner constraints significantly reduce system
precision as a result of a unified object space scale. Inherent lack of scale
variation within the affine image when compared to the perspective case has
resulted in a weaker network solution. Thus, an issue of alternatively
modelling scale in the case of inner constraints remains open.

e System calibration: The implemented calibration model has been proved to
calibrate the sensor successfully (at the level of ~1/10 of a pixel); an additional
issue is whether a different affine system would demand an augmented
additional parameter estimation model.

e Outlier detection: The current least squares approach minimizes the cost
function in the feature re-projection error and provides the statistical quality of
results. Yet an open issue remains due to the fact that the method is prone to
blunders. This inability is a key problem as in real world measurement tasks it
is expected that common users do not have absolute control over the
implemented data unless an expertise operator is assumed. Outlier detection
and automation are essential parts of algorithm design as they enhance system
reliability and practical usability; therefore an outlier detection method could
be adopted within the affine method.
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7.3. Future research

This research has presented an affine multi-view approach in the context of close
range object measurement. This comprises a joint calibration, orientation and
measurement problem and as such it can be extended to further processes that on their
core implementation rely on the 2D to 3D geometric recovery. In the scope of areas of
application, the presented system can be applied to any close range measurement task
(such as in industrial metrology, archaeology and medicine) that aims to measure or
recover fine object detail. Suggestions for future research are reported here in terms of
optimization of the current algorithm that would for instance increase or improve
modelling as well as extend the current framework in the context of method

application.

7.3.1. Method extension

e Initialization: The developed method can be extended further in order to
optimize starting value estimation from pure affine projection. This includes
estimation of orientation angles through space resection as well as
investigation of minimum conditions and critical geometric configurations for
the absolute purpose of processing parallel projection images.

e 3D point estimation: Whilst the current forward intersection method is
another form of least squares multi-view solution suitable for calibrated
cameras it would be of great benefit if 3D point estimation would have been
treated by a refined solution. Such an approach would be for example to
perform a geometric closed form solution that minimizes the ray intersections
as a first stage updated subsequently by a multi-view solution that minimizes
the reprojection error in image space to calculate 3D point positions. These
problems are considered as solved for the fundamental perspective case and
thus a more sophisticated solution can be similarly applied for the affine case.

e OQutlier detection: An outlier detection and elimination tool that applies
system self-diagnosis would be desirable. Such robust approaches are typically
implemented utilizing statistical testing or a down-weighting scheme. As an

example, statistical tests are applied to check the a posteriori sigma nought and
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re-estimation stops when all contaminated measurements have been removed
from the system and the a posteriori sigma nought becomes unity.

Sensor calibration: The internal calibration model could subject to alternative
system requirements (different affine sensor) demand a more sophisticated
treatment. An obvious solution to this issue would be to embed an additional
parameter set (radial lens, tangential lens distortions as well as affinity and
orthogonality terms), statistically checked and accepted or rejected within the

system.

These considerations are critical in that they would open the method in the aspects of

implementation, automation regarding robustness and efficiency as well as practical

usability.

7.3.2. Application extension

Following the results presented in section 7.2. sub-pixel recovery of affine projection

image sequences is possible to a level appropriate for applications such as texture

mapping, sensor fusion or feature automation.

Texture mapping: In physical terms, the sensor by virtue of its optimal
parallel projection presents minimal internal geometric distortion and a more
consistent image sampling over an object surface when compared to a
perspective imaging system. This combination can offer the potential to
optimize the image quality of discrete signalized point targets. As a result,
texture mapped models from real affine image sequences can be possible
provided that correct multi-view registration and surface approximation have
already been recovered. This could be of specific interest to the measurement
and visualization of fine object detail where typical perspective-based
modelling and texturing procedures can be ineffective. Standard algorithms
can fail to capture very fine object details or can be error-prone to significant
sensor distortions.

Sensor fusion: The method could be extended to generate a hybrid system
that will integrate perspective and affine sensors in a joint adjustment.
Although such a solution has been crudely investigated within the course of
this research in experimental terms, this approach has not been exploited
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further in algorithmic and practical terms. An effective solution could
potentially introduce geometric constraints between photo orientations
provided that both sensors view the same 3D volume. As a consequence a
bundle adjustment would be processed similarly to methods that process
convergent stereo-pairs.

e System automation: A final promising application of an affine bundle
adjustment would be to integrate automatic feature extraction within the
system. In particular, given the inherent invariant sensor scale, it would be
beneficial to further investigate the method in the aspect of automatic feature
or line extraction directly from real affine imagery. This approach could
possibly enhance automation given the minimal geometric distortion and thus
optimize the automatic correspondence between different image frames which

on success would enter the multi-view modelling algorithm presented here.

7.4. A final point

At the outset of this research it was unknown whether affine projection images would
offer sufficient content and allow the establishment of a new close range approach.
This research has successfully shown that the affine sensor offers a good alternative to
the well-understood and well-established perspective sensor for the purpose of close
range object measurement. It is possible to utilize, develop and implement more
theoretical camera models that are closer to metric reconstruction and often adopted
from the computer vision community. This thesis contributes in the development of a
new affine bundle adjustment system applied to convergent imaging networks.
Current state of the art is focused on fast algorithms as well as automation and
implementation of advanced intensity and range imaging systems. Thus, such topics
could be potentially embedded and applied in the case of processing affine imagery.
The research community focuses on system automation; it is however expected that
sensor modelling and 3D measurement will still be very active topics of research in

the field of photogrammetry.
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Appendix A: Essential elements for affine model

formation

This appendix gives the basic elements needed for the development of the affine
sensor model. Particularly the following are listed: Coordinate system definitions (see
section A.1.), rotation matrix (see section A.2.), numerical first order derivatives of
the affine camera model (see section A.3.), notation for least squares adjustment (see

section A.4.) as well as camera model arrangement (see section A.5.).

A.1. Coordinate system definitions

The coordinate systems applied in the image formation process are illustrated as
described accordingly (see Figure 1). It is pointed that x,y is the photo - coordinate
system (given in mm) and N, M is the associate digital image coordinate system
(given in pixels). The digital image coordinate system is linked with the photo-

coordinate system through an affine transform (see equations (A.1) and (A.2)).

AY W
[ Ky
I e
44 H
- >
X
5y X

vM

Appendix A - Figure 1: The relation between digital and photo coordinate systems.

N M (A1)
X =V, (N-2%) & y =, (M——)
2 2
M A.2
N=i+&&M=—l+—y ( )
v, 2 u, 2

Where:
X,y= photo-coordinate system (mm)

Xpps Ypp= Principal point location (mm)



Appendix A: Essential elements for affine model formation

N,M= image-coordinate system (pixels)
NXx, My= image size (pixels)

Vx,ly= pixel size in x and y (mm)

For the purpose of the affine-sensor model development, image measurements were
initialized externally to the developed method within the software tool VMS 8.0. The
structure of the .obs file within the system is given as: ‘Photo id, Target id, x
coordinate (mm), y coordinate (mm), standard deviation in X (mm), standard deviation
in y (mm), residual in x (mm), residual in y (mm) and measurement flag (O or -1)’

(see Figure 2).

HH R R R R

# VMS Project: Photo data output

# Sunday, March 22, 2009

#

# Project name: legonikon

#

#2749 Photo Obs

# Photo Target X(mm) Y(mm) sdx sdy resx resy

#

#

# Used image measurements - at last adjustment
1026 2011 2.05289 1.73421 2.2064 2.2064 -0.4873 -0.1646 O
1025 1000 3.03020 2.51099 2.2064 2.2064 -0.2899 0.7698 O
1025 1019 2.97068 1.91054 2.2064 2.2064 -0.0492 0.4871 O
1049 20049 -0.72281 -1.44884 0.2167 0.2167 0.0159 -0.8476 O
1033 400 6.81271 1.32663 0.4983 0.4983 -5.5208 -1.1356 -1

#

# Unused and rejected image measurements - at last adjustment

#

# End of file

HH R R R R R R R

Appendix A - Figure 2: Sample of .obs file in VMS 8.0.

As a result, within this work system implementation (computations and modelling)
was treated directly on the photo-coordinate system (defined in mm) without the

requirement for any system-image transformation.

A.2. Rotation matrix

The 3*3 rotation matrix that establishes the relationship between image and object
space coordinate systems with its elements defined as trigonometric functions of the

three rotations angles omega (o), phi (¢) and kappa (k) is given as follows.

- 252 -



Appendix A: Essential elements for affine model formation

COS(QCOSK  SIN®SINQCOSK +COS®SINK  —COS®SINQCOSK + SIN®SIiN K (A.3)
R =|—cospsink —sinmsin@sink+CoS®COSK  COS®SIN @SIN Kk + Sin ®COS K
sing —sinmCcos @ COS®COS @

A.3. Affine camera model: numerical first order derivatives

The partial derivatives of the simplified collinearity condition function f(x) with
respect to the model variables (tx, ty, o, ¢, x, X, Y, Z, s, k3) are calculated according

to the following equations A.4 - A.23.

oMy (A4)
otx
MX_, (A5)
oty
Ay (A5)
otx
Ay (A7)
oty
%:s*(COSm*sin(p*COSK—sinoa*sinK)*Y+ (A.8)
Otw
+s*(sinm*sin@*cosk + cosm*sink)*Z
. : A9
?=S*(—SII’](p*COSK)*X+S*(SInQ)*COS(p*COSK)*Y+ (A9)
¢
+S*(—Ccosm*Ccosp*Ccosk)*Z
ofx . . . i (A.10)
P =S*(—cosp*sink)* X +s*(—sin ®*sin @*sin Kk + COS®*COS k) *Y +
K
+s*(cosw*sinp*sink+sinm*cosk)*Z
: : : All
gtﬂ:S*(—COSCO*SIn(p*SInK—SII‘]O)*COSK)*Y+ ( )
()
+S*(=sin®*sin @*sin Kk +COS®*cos k) * Y
: . . . A.12
?:s*(sm(p*smK)*X+s*(—smm*cosq>*smK)*Y+ ( )

+s*(cosmw*cosp*sink)*Z
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otk
+s*(cosw*sinp*cosk —sinm*sink)*Z

ofx
— =5*(Cos@*CcoS Kk
X (cos¢ )

ofx . . .
v =S*(SIn ®™*sin @*C0oS K + COS ®*SiN k)

ofx . . .
— =S8*(—C0oS®™*sin @* oS k +Sin ®*sin k)
oZ

ay =s*(cosp*sink)

oX

y =S*(—sin ®*sin @*sin Kk + COS ®* COS k)
oY

% =S$*(CosS®*sin @*sin kK +SiN ®*CoS k)

ofx . . .

P = (cosp*cosk)* X+ (Sin®*sin@*Ccosk +CoSm*sink)*Y +
S

+(—cos@*sinp*cosk +Sin®*sink)*Y

gﬂ =(—cosp*sink)* X+ (—sinm*sin @*sin Kk +CoS®*Cosk) *Y +
S

+(coso*sine*sink+sinm*cosk)*Y

ofx ) 2N s
—=(X"+ X
8k3( y°)

ay _

—X2+2*
X, (X“+y)*y

=8*(—CoSP*CoSK)* X +S*(—Sin®*SiNP*CcoSK —COS®*SiNk)*Y +

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)
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A.4. Notation for least squares adjustment

The notation of symbols utilized within the least squares adjustment procedure is

given below.

Notation of symbols used within the least squares adjustment

Vector of observation variables

True values of the vector of observation variables

Vector of least squares estimate of observation variables (1)
True values of the vector residuals

Least squares estimate of v
True values of the vector of parameters; mean value

Approximate values of x

o
| I

X X XI<> < =>
Il

True values of the corrections to x°, x = x — x°

= Least squares estimate of x
n= Number of observations
m=  Number of parameters
= Design or Jacobian matrix (n rows, m columns)
= Weight matrix (n rows, n columns)
C=  Covariance matrix (m rows, m columns)
= Normal equations matrix (m rows, m columns)
Appendix A - Table 1: Notation of symbols utilized within the least squares adjustment.

A.5. Camera model arrangement

Considering a test set of j=10 views, i=10 point targets and k=1 camera the design
matrix is populated with the partial derivatives given above. It is noted that the
exemplary design matrix has been structured for the inner constraints datum case;

hence it is augmented with seven additional datum rows (see section 4.5.1.).
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ofx ofx
ax ety
ay ofy
o Ay

o E oK
om a oK

|

X oY a7
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1L

Appendix A - Figure 3: Design matrix arrangement for a sample of j=10 views, i= 10 point

data and k= 1cameras.
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This appendix describes the input and output data files of the implemented processes.
Data measurement and initialization have been treated within the VMS 8.0 software
tool (see sections B.1. and B.2.) whilst affine multi-view modelling has been

implemented within the developed framework (see section B.3.).

B.1. VMS 8.0 software settings

VMS 8.0 software for network adjustment requires that the user adjusts three types of

settings given here:

e Image measurement parameters: For 2D location (measurement) of point-
based target data.

e Adjustment settings: For data handling within the initialization procedures
(resection and intersection).

e Network adjustment settings: For data handling within the network adjustment

procedure.

- Image measurement parameters:

Image Measurement Method
" Manual (Left Mouse Click) ' Centroid (Left Mouse Click)

Centroid Measurement Parameters

Target image window size (pixels): X 20 @

Target image window size (pixels): Y [20—

Location Method ( Binaty Centroid & Weighted Centroid
" Square Weighted " Ellipse fit

Thieshold Type  © Addtive @ Histogram " Random Noise

Shape @ Cicular © Hoiiz. Line ¢ Vert. Line

Grey Level Constant for Additive Threshold Grey Level [30—
Sigma value for random threshold and efiipse fit [3_
Minimum Grey Level Range in Window [52—
Minimum Span of Target Image (pixels) E—

Geometric Tests
Ratio Test for Circular Targets v Critical Value |3

Target Region Ratio Test (Jccupancy within Bounding Box) ¥
Target image appearance

Targets are black on white B
Stereo Matching

Do not use stereo matching with manual measurement «
Use stereo matching before the operator measures @
Use stereo matching after the operator measures R

Epipolar ine tolerances

Tolerance for a comect match (pixels squared) 2.25
Minimum epipolar line length (pixels) f10—

Appendix B - Figure 1: Image measurement parameters menu in VMS 8.0.
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Adjustment settings:

# | Individual Adjustment Parameters (X

Maximum Iterations 10
Rejection factor for outliers |5

- Resection

Use all available targets ¢ All available implies all images of
known targets on a photo will be

Use only control targets & used for resections

~ Intersection -

Use all available photos (¢ All available implies target images
from all photos with known

Use only resected photos orientation will be used for
intersections

™ Use intersection tolerance (microns) |10

Minimum number of rays per intersected target |2

Appendix B - Figure 2: Adjustment parameters menu in VMS 8.0.

Network adjustment settings:

Network Adjustment Parameters

Datum Definition

Free network (intemal constraints) @ Update
Control data (extemnal constraints) ® _
Aditional Parameter Set

Fix all additional parameters 9

Lens distortions only @

Lens distortions and affinity terms «

Extended additional parameter set (%
Photo-invariant principal point L

- Adjustment Settings -
Default Precision of Image (g5
Measurement (um)
Minimum number of rays 4
per target

Delete targets with minimum images and large residuals [~
Force default standard deviation r
Compute full covariance matrix on final iteration r

Appendix B - Figure 3: Network adjustment parameters menu in VMS 8.0.
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B.2. VMS 8.0 software data files

The VMS 8.0 software’s data files are given below.

B.2.1. Input VMS 8.0 data files

The input data files of the perspective sensor model follow the format identified

within the VMS 8.0 software. Example data files are given below:

e Target file (.tar): Contains the 3D targets co-ordinates.

e Calibration file (.cal): Contains the internal camera geometry (interior
orientation).

e Photo file (.pho): Contains the cameras positions and orientations (exterior
orientation).

e Observations file (.obs): Contains the 2D image observations.

TARGET FILE INPUT FORMAT (.tar):
H R R R R R R
# VMS Project: Target data output
# Tuesday, March 24, 2009
#
# Project name: legonikon
#
# 178 Targets
# Targets in millimetres, precisions in 1000*millimetres
#
#  Target X Y Z flag sdx  sdy  sdz
#
20045 65.5735 75.5262 23.4447 0 3.8866 4.6782 6.4878

200 2.4575 100.0290 3.3735 7 10.7861 5.8654 10.1860

107 -05143 27531 96.7073 7 135413 192530 11.4413
#
# End of file
HH T R R R

CALIBRATION FILE INPUT FORMAT (.cal):

R e R R R R R R R
# VMS Project: Camera data

# Tuesday, March 24, 2009

#

# Project name: legonikon

#

# This file contains information on 1 cameras

# Parameters : 1=PPx,2=PPy,3=PD,4-6=radial,7-8=decentring,9=orthogonality,10=affinity
1

#

# Calibration parameters for camera 1
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0.1137  0.0020

0.0404  0.0073

29.5784  0.0048
-1.8822e-004 2.6425e-006
2.2259e-006 1.1925e-007
-2.0575e-008 1.4543e-009
0.0000e+000 2.6565e-006
7.7070e-006 2.8038e-006
0.0000e+000 8.5655e-006
10 3.8332e-005 1.0764e-005

OCoOoO~NOoOOUThWN P

#
# x and y pixel size in mm and x, y image size in pixels
0.00780 0.00780 3008 2000
#
#
# Fiducial Mark Data
# Camera Point Ref X RefY StdX StdY ObsX ObsY StdX StdY
#
# No fiducial information for this camera
#
# End of file
HHHHHHHH R R

PHOTO FILE INPUT FORMAT (.pho):

M

# VMS Project: Photo data

# Tuesday, March 24, 2009

#

# Project name: legonikon

#

# This file contains information on 52 photos

# Exterior orientation parameters for photo: 1000

# Photo X Y Z Omega Phi Kappa Camera
1000 33.6101 404.4008 354.6350 -45.2831 -0.8795 91.52191
1002 0.0000 0.0000 0.0000 0.0000 0.0000 0.00001

1051 -256.4724 401.4178 82.2784 -81.4259 -445892 15.80171
#
# End of photo orientation file
HHHHHHHE A R

It is noted that where the orientation parameters are assigned with zero values, these
indicate that that the associated photo has not been measured and will be discounted

from the calculations.
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OBSERVATIONS FILE INPUT FORMAT (.obs) :

R R R R R R R R R R R R R

# VMS Project: Photo data output

# Tuesday, March 24, 2009

#

# Project name: legonikon

#

# 2745 Photo Obs

# Photo Target X(mm) Y(mm) sdx sdy resx resy

#

#

# Used image measurements - at last adjustment
1026 2011 2.05289 1.73421 0.4035 0.4035 -0.2650 -0.0584 0
1033 400 6.81271 1.32663 0.4035 0.4035 -3.1485 0.2948 -1

1032 30025 2.69271 0.71370 0.4035 0.4035 -0.2079 0.6499 0

#

# Unused and rejected image measurements - at last adjustment
#

# End of file

HEHHHHH R

It is noted that where the observation flag is -1, this indicate that the associated

observations has been rejected from the system and will be not used in the subsequent

computations.

B.2.2. Output VMS 8.0 data files

The output data files of the VMS 8.0 software under the ‘photogrammetry’ processing

menu are listed here:

e The initial exterior orientations file: Outputs the exterior orientations data

(.1og) of the initializations procedures.

e The resections file: Outputs the updated exterior orientations data (.log) of the

resection procedures.

e The intersections file: Outputs the 3D targets coordinates (.log) of the

intersections procedures.

e The network adjustment file: Outputs the bundle adjustment report (.log) of

the bundle adjustment procedures.
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INITIAL EXTERIOR ORIENTATIONS FILE (.log):

HHHHHHH ]
*** \ision Measurement System (VMS) Initial Orientation Solutions ***

Version 8.0 - Stuart Robson and Mark Shortis - August 2008

Project name : legonikon
VMS initial orientation log file legonikon_init_orient.log written on Thu Mar 12 20:55:14 2009

Only measured control point targets (those with a known location) used for initial orientation
computation

Photo Camera X Y Z Omega  Phi Kappa
(millimetres) (Degrees)
1000 1 34.7101 387.3291 338.7801 -45.0838 -0.8447 91.4651
1002 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 insufficient targets imaged:
measure some more!
1051 1 -240.1238 383.7137 86.2845 -81.1419 -45.6671 14.4972
Summary of 52 initial orientation computations
44 computations OK
0 computation failures
8 insufficient image observations
0 non-convergent solutions
*** End of VMS initial orientation log file ***
M TR

It is noted that the software sets zero values to the orientation parameters of the non-

measured and hence excluded from the calculations photos.

RESECTIONS FILE (.log):
B R T R R B R R T R R R R

*** \/ision Measurement System (VMS) Resection Solutions ***

Version 8.0 - Stuart Robson and Mark Shortis - August 2008

Project hame : legonikon

VMS resection log file legonikon_resect.log written on Thu Jun 18 19:46:45 2009

Only measured control point targets (those with a known location) used for resection computation
Maximum iteration count of the solutions: 10

Outlier rejection factor (image residuals) (microns): 5.0
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RMS Image Image Counts
Photo Camera X Y Z Omega  Phi Kappa Residuals Valid Rejected
(millimetres) (Degrees) (microns)
1000 1 37.5575 386.0050 339.8901 -45.1949 -0.5102 91.5658 1.31 4 1
1002 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 0 O0Too
few targets or image area coverage
1051 1 -241.4290 386.3624 809816 -81.4474 -44.3574 157887 842 1 0
Mean resection image measurement residual RMS (microns):  3.7897
Mean valid target image observations:  4.10
Summary of 52 resection computations
44 computations OK
0 computation failures
8 insufficient image observations
0 non-convergent solutions
*** End of VMS resection log file ***

R R R R R R R R R R R R R R R R

It is noted that the software sets zero values to the orientation parameters of the non-

measured and hence excluded from the calculations photos.

INTERSECTIONS FILE (.log):
B R R

*** Vision Measurement System (VMS) Intersection Solution ***

Version 8.0 - Mark Shortis and Stuart Robson - August 2008

Project name : legonikon

VMS intersection log file legonikon_intersect.log written on Wed Mar 18 21:26:40 2009

All target coordinates are unconstrained (free network or internal datum)

All photographs with a known location/orientation (resection) will used in the solutions
Maximum iteration count of the solutions: 10

Outlier rejection factor (image residuals) : 5.0

Mean Image Image Counts

Target X Y Z Index sX sY sZ Residuals  Valid Rejected
(millimetres) (microns) (microns)
X

20045 65.3209 64.8550 284933 0 251 252 134 5896 884 2 1
200 21541 99.8931 34229 7 146 219 150 13.00 1223 40 O

107 -08992 31723 965628 7 1285 1893 617 597 904 5 0
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Mean 215 373 223 256 215 147

Summary of 183 intersection computations
183 computations OK
0 computation failures
0 insufficient image observations
0 incomplete solutions
0 solutions over tolerance
Summary of Target Images by Photo
Photo Target RMS Residuals
Counts  (microns)
1000 50 3.15
1001 58 3.95
1051 63 4.40
Mean 51.7 3.32

*** End of VMS intersection log file ***

R R R R R R R R R R R R R R

NETWORK ADJUSTMENT FILE (.log):
R R R R R R R R R R R R R R R R R R

*** Vision Measurement System (VMS) Self-calibrating Photogrammetric Network Solution ***

Version 8.0 - Mark Shortis and Stuart Robson - August 2008

Project name : legonikon

VMS bundle adjustment log file legonikon_network.log written on Tue Mar 24 12:47:04 2009

<<< Program control variables >>>

Network datum definition type : generalised internal constraints

Additional parameter set type : PP, PD, lens distortion and affinity parameters, block-invariant PP
Maximum iterations for a solution: 10

Default target image precision:  0.40

Minimum images for a network target : 4

Rejection criterion for image errors : 5.0

<<< |nitial Camera Calibration Sets >>>

Units : millimetres

- 264 -



Appendix B: Processing framework space

Calibration set : 1

Parameter Value Precision

1 0.114 1.000

2 0.040 1.000

3 29.578 1.000

4 -1.8822e-004 1.000e+000
5 2.2259e-006 1.000e+000
6 -2.0575e-008 1.000e+000
7 0.0000e+000 0.000e+000
8 7.7070e-006 1.000e+000
9 0.0000e+000 0.000e+000
10 3.8332e-005 1.000e+000

Pixel size in mm  Format size in pixels
X y X y
0.0078 0.0078 3008 2000
<<< Initial Camera Locations >>>

Photo CalSet X Y Z Omega Phi Kappa #lmages
(millimetres) (degrees)

1000 1 33.610 404.401 354.635 -4528 -0.88 91.52 51
1002 1 0.000 0.000 0.000 0.00 0.00 0.00 0 (insufficient images)

1051 1 -256472 401418 82278 -8143 -4459 1580 63

<<< |nitial Targets >>>

Target X Y 4 Index sX sY sZ #lmages
(millimetres) (microns)
20045 65.5735 75.5262  23.4447 7 8
200 2.4575 100.0290  3.3735 7 41
107 -0.5143  2.7531 96.7073 7 5

<<< Initial Survey Measurements >>>

Units (azimuths and angles) : ddd.mmsss and seconds of arc
Units (distances and level differences) : millimetres and microns

RO Targ AtTarg To Targ Measurement  Type Precision Residual Significance Inst
Ht  Targ Ht

1000 1005  74.0250 Slope dist 50.0 0.000 0.000
1005 1010 74.3800 Slope dist 50.0 0.000 0.000

2009 2000 438700 Slopedist ~ 50.0 0000  0.000

<<< |nput Summary >>>

Number of camera calibration sets : 1
Number of target image observations : 2745
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Total number of exposures : 52
Number of exposures in the network : 44
Total number of targets : 178
Number of targets in the network : 178
Total number of survey measurements : 10

Number of survey measurements in the network : 10

*** Results for the Calibration Solution ***

Solution completed successfully after 10 iteration(s)

Unit weight estimate (sigma zero) : 1.00
RMS image residual (microns) : 0.37
Number of rejected target images : 62

Number of observables in the network : 5376
Number of unknowns in the network : 812
Number of redundancies in the network : 4564

<<< Updated Camera Calibration Set : 1 >>>

Parameter  Value Precision Correction Significance Max. Effect

(millimetres) (microns)
1 0.1137 0.0020 0.0000  0.00
2 0.0404 0.0073 0.0000  0.00
3 29.5784 0.0048 0.0000  0.00
4 -1.8822e-004 2.643e-006 2.121e-011  0.00 -88.0
5 2.2259e-006 1.193e-007 2.101e-012  0.00 62.7
6 -2.0575e-008 1.454e-009 -5.009e-014  0.00 -34.9
7 0.0000e+000 2.657e-006 0.000e+000  0.00 0.0
8 7.7070e-006 2.804e-006 1.877e-011  0.00 0.5
9 0.0000e+000 8.566e-006 0.000e+000  0.00 0.0
10 3.8332e-005 1.076e-005 3.409e-010  0.00 0.3

Lens Distortion Profiles for Camera Calibration Set: 1

Units : microns

Radius Radial Distortion Decentring Distortion
Value Precision Value Precision
0.0 -0.00 0.00 0.00 0.00
1.0 -0.19  0.00 0.01  0.00
2.0 -1.44  0.02 0.03 0.01
3.0 -459  0.05 0.07  0.03
4.0 -10.10  0.08 0.12 0.04
5.0 -18.18  0.11 0.19 0.07
6.0 -29.11  0.16 0.28 0.10
7.0 -44.09 0.26 038 0.14
8.0 -66.58  0.63 049 0.18

Correlation Parameters for Camera Calibration Set: 1
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1 1.00

2 0.00 1.00

3 0.03 0.59 1.00

4 -0.03 0.04 -0.10 1.00

5 0.12-0.02 0.07 -0.93 1.00

6 -0.11 0.03-0.04 0.86-0.97 1.00

8 -0.01 0.91 0.40 0.13-0.09 0.08 1.00

10 -0.07-0.15-0.06 -0.09 0.07 -0.07 -0.29 1.00

<<< Updated Camera Location Values and Precisions >>>

Photo Cal Set X Y Z Omega Phi  Kappa sX sY sZ sO sP
sK

(millimetres) (degrees) (microns) (seconds of arc)
1000 1 33.6101 404.4008 354.6350 -45.283 -0.880 91.522 26.0 91.7 859
18.0 514 6.1
1002 Indeterminate - insufficient target images

1051 1 -256.4724 401.4178 82.2784 -81.426 -44.589 15802 85.7 89.8 234
701 20.7 478

<<< Target Image Precisions and Residuals >>>

Units : microns

Mean Precision Mean Residual Max Residual
Photo #Targets #Rej X 'y X Yy X ¥y

1000 51 O 0.40 040 0.30 0.36 0.67 1.11
1002 Indeterminate - insufficient image observations
1051 63 O 040 040 046 035 1.63 1.43
Mean 610 14 040 0.40 0.83 0.73

All 2683 62 19.15 20.03

<<< Updated Targets >>>

Coordinates Precisions Mean Residuals Max Residuals
Target X Y Z Index sX sY sZ X 'y X y #lmages Photo
List (y=yes, n=no, R=rejected)

(millimetres) (microns) (microns)

20045 65.5735 755262 23.4447 7 39 47 65 012 024 023 035 8
NNXXXXXXXXNNNYYyynnnnnnnnnynynnnnnnnnnnnynnnnnnnnnyn

200 2.4575 100.0290 3.3735 7 108 59 102 078 059 122 121 25
YRXXXXXXxXXRRRRRRnNRRRRRRRRyyYyyyyyyyyynyyyyyyyyyyyyRny

107 -0.5143 27531 96.7073 7 135 193 114 085 092 130 143 5
NNXXXXXXXXNNnnnnnnnnnnnnnnnnnnyyynnnnnnnnnynnnnnnnny

Mean 151
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<<< Target Precision Summary >>>
Units : microns

Target sX sY sZ
Minimum 30029 3.96 3.38 1.58
Mean 598 5.08 5.92
Maximum 101 1198 23.32 16.73

Mean precision of target coordinates :

Relative precision for the network 1: 36000

<<< Updated Survey Measurements >>>

Units (azimuths and angles) : ddd.mmsss and seconds of arc
Units (distances and level differences) : millimetres and microns

RO Targ AtTarg To Targ Measurement

Ht  Targ Ht

1000 1005 74.0250 Slope dist
1005 1010 74.3800 Slope dist

2009 2000 43.8700 Slope dist

RMS Residual

*** End of VMS calibration log file ***

Type Precision Residual Significance Inst
50.0 57.6 1.15 0.000 0.000
50.0 -70.9 1.42 0.000 0.000
50.0 -1423 2.85 0.000 0.000

103.28

R R R T R R T R R R R R R R R R R T R

B.3. Framework space

The description of the processing framework is given below.

B.3.1. Data structure

Development and implementation of the affine algorithm required the generation of

two data structures (embedded in the available melb.h header file). These two

structures are given here.

e PHOTO_ORTHO data structure: identifies the photo structure (members for

affine photo data implementation).

e MAT_POINTERS data structure: identifies the matrices structure (1D and 2D

arrays members) for algorithm handling.
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- PHOTO_ORTHO STRUCTURE:
typedef struct  PHOTO_ORTHO_T

{

long m_camera; /I Camera name

long m_photo; //'1D of this photo

long Xsize; [/l width of the digital image in pixels

long ysize; /I height of the digital image in pixels

double pixel_x; I x pixel size in mm.

double pixel_y; /'y pixel size in mm.

/l[double ext_ori[6]; /[Camera location X,Y,Z, and orientation Omega,Phi,Kappa

(meters and degrees dec)

//double ext_std[6]; /I Camera Stdev X,Y,Z and Stdev Omega,Phi,Kappa

double ortho_ori[6]; /[Parallel camera scale, orientations omega, phi, kappa and
translations tx, ty

double ortho_std[6]; /IParallel camera std scale, omega, phi, kappa, tx, ty

double rot_array[9]; /l Rotation matrix stored in row order.

double int_ori[AP_MAX];// Camera interior orientation parameters
Xp,yp,pd,k1,k2,k3,p1,p2,al,a2,extended APs

double int_std[AP_MAX];// Camera interior orientation standard deviations

double int_std file[AP_MAX];// Camera interior orientation initial standard deviations

double int_resJAP_MAX];// Camera interior orientation residuals
xp,yp,pd,k1,k2,k3,p1,p2,al,a2,extended APs

double int_normat[AP_MAX_Q];// Camera interior orientation cofactor matrix

double quality; // Quality value : estimate of unit weight for the photo
double rms; /I RMS image residual for the photo

short  total_rays; /I Total number of rays to this photo

short  used_rays; /I Number of used rays to this photo

short pho_flag; I Flag for photo setup

short  rot_hir; /I Flag for rotation hirarchy

long epoch_id; /I Epoch id

char image_file[CHLIMY];// photo image file name
double min_target _depth;// Depth of the nearest target
double max_target_depth;// Depth of the farthest target
DPOINT dpFootprint[4];// footprint of the photo at the maximum target depth
double coef[16]; Il Coefficients for 10 transformations
char  transf_type; /110 Transformation type //p=16,b=8,a=6,5=4,t=3
/llong photo_count_ortho; //Parallel camera, number of photos - added 01102007
} PHOTO_ORTHO;

-MAT_POINTERS STRUCTURE:
typedef struct MAT_POINTERS_T //matrices allocated in mrscal -added 21092007

double* ans_vec; /IVector of parameters of LSA ans_vec[max_unknowns] (x)
double* corr_ans_vec;  ////\Vector of increments to parameters of LSA
ans_vec[max_unknowns] (x)

double* nor_vec; /INormals array vector nor_vec[max_unknowns] (At*W*b)

double** des_mat_full;  //Design matrix in 2D des_mat_full[equations][unknowns]
(A)//added 25092007

double** nor_mat_full;  //Normals array matrix in 2D nor_mat_full[unknowns][unknowns]
N=(At*W*A)//added 25092007

double* nor_vec_full; /Inormals array vector atwb for the Ise

double* obs_vec_full; /[Correction vector to the observations//added 16102007

double* weight_vec_full; // Weight vector associated with the weight matrix full
double** inv_nor_mat_full;//normals matrix inverse

long** photo_loc; /[Photo station parameter locations
long** trans_loc; /[Translation parameter locations
long** scale_loc; /IScale parameter locations

double** rot; /IRotation matrices for each photograph
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long** targ_loc; /[Target coordinate column locator

//double** ab_bb; [lIntermidiate matrix for LSA solution: ab_bb[n_unk][7]
/[double*** ab_mat; [loff-diagonal sub-matrix for targets: ab_mat[n_targ][n_unk][3]
/l[double** bm_mat; /Inormals vector components for each target:

bm_mat[n_unk|n_targ][3]
//om_mat should be set to n_unk or n_targ, whichever is larger

double* nor_mat; /Inormals array matrix stored columnwise: nor_mat[] N=(At*W*b)
double** photo0; /linitial values for camera stations: photoO[n_photo][6]
double** targ0; /linitial values for target coordinates: targO[n_targ][3]

[llong** pp_para_loc;//pp parameter locations
/ldouble** pp_para0; //initial values for pps

long n_eqns; /ldefault number of equations at allocation time// added 25092007
long n_unks; [ldefault number of unknowns at allocation time

long tar_count; [ldefault number of targets at allocation time

long photo_count; [/default number of targets at allocation time

double* res_vec; [Iresidual vector after Ise adjustment

double** cov_mat_full; //covariance matrix after Ise adjustment
} MAT_POINTERS;

B.3.2. Processing menus description

The menus of the developed framework space are given below:

- Bundle adjustment menu:

Ded st=R &

Parallel Camera
Bundle Adjustment
Settings

[ Nm[

Appendix B - Figure 4: Bundle adjustment framework.
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- Read perspective camera data files (VMS 8.0 format): Perspective camera

menu opens and subsequently saves target, calibration, photo and observations

data files.
BT 0 T
Perspective Camera » Data Files » Open Target Data
Parallel Camera » Initialization » Open Calibration Data
Bundle Adjustment Open Photo Data
Settings 4 Open Observations Data

Save Target Data
Save Calibration Data
Save Photo Data

Save Observations Data

Appendix B - Figure 5: Perspective camera menu.

- Initialize perspective camera procedures: Initialization menu performs initial

exterior orientation, resection and intersection procedures.

Perspective Camera » Data Files > |

Parallel Camera » Initialization » Photo Exterior Orientations
Bundle Adjustment e Resection

Settings » Intersection

Appendix B - Figure 6: Initialization menu.

- Initialize parallel camera procedures: Orientation menu reads and saves
orientations data files. Generate translations: performs 2D cameras locations

calculations. Generate 3D targets points: computes 3D targets coordinates.

(BunoLe
Perspective Camera > |
Parallel Camera > Orientations > Open Orientations Data
Bundle Adjustment Generate Translations Save Orientations Data
Settings » Generate 3D Points l

Appendix B - Figure 7: Parallel camera menu.

B.3.3. Input processing files
The input data files required for the implementation of the parallel sensor model
follow the general format of the perspective sensor model as described above with

modifications. The data files are listed as follows.
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TARGET FILE (.tar)

M R R

# VMS Project: Target data output

# Thursday, April 02, 2009

#

# Project name: sony_sx900

#

# 86 Targets

# Targets in millimetres, precisions in 1000*millimetres

#

#  Target X Y Z flag sdx  sdy  sdz

#
30016 52.0970 94.5440 48.4662 7 1.9000 5.2000 1.8000
1009 72.8786 67.7193 86.6971 7 5.1000 2.7000 8.4000

20020 795663 71.4596 51.8730 7 7.1000 4.1000 1.9000
4
# End of file

R R R R R R R R R R R R R R R R

CALIBRATION FILE (.cal)

HH R R R R A A A
# VMS Project: Camera data
# Friday, May 26, 2006
#
# Project name: SonyCam-SWITAR:10mm
#
# This file contains information on 1 cameras
# Parameters : 1=PPx,2=PPy,3=PD,4-6=radial,7-8=decentring,9=orthogonality,10=affinity
1
#
# Calibration parameters for camera 1
1 0.0000 0.0000
0.0000  0.0000

2
3
4
5
6
7
8
9

100000.0000
0.0000e+000
0.0000e+000
0.0000e+000
0.0000e+000
0.0000e+000
0.0000e+000

0.0000

1.0000e+000
0.0000e+000
0.0000e+000
0.0000e+000
0.0000e+000
0.0000e+000

10 0.0000e+000 0.0000e+000

#
# x and y pixel size in mm and x, y image size in pixels

0.00478 0.00478 1024 768
#
#
# Fiducial Mark Data
# Camera Point Ref X RefY StdX StdY ObsX ObsY StdX StdY
#
# No fiducial information for this camera
#
# End of file
A R R
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It is noted that indirect initialization requires that the camera constant c is set to a
large value such that (c=100,000.0 mm) and the standard deviation of the third power
term of the radial lens distortion polynomial (parameter 4) is set to 1.0 for inclusion in
the calculations.

PHOTO FILE (.pho)

HH R R R R
# VMS Project: Photo data
# Thursday, April 02, 2009
#
# Project name: sony_sx900
#
# This file contains information on 85 photos
# Exterior orientation parameters for photo: 1001
# Photo X Y Z Omega Phi Kappa Camera
1001 0.0000 0.0000 0.1600 -92.1378 -13.9839 -95.3905 1
1002 0.0000 0.0000 0.1600 -91.1046 -14.1578 -90.9038 1
1145 0.0000 0.0000 0.1600 -64.6832 28.5346 49.45931
#
# End of photo orientation file
H R R R R S R R i

It is noted that the first two parameters correspond to the 2D cameras locations the
values of which will be updated after back-substitution from the affine camera sensor.

OBSERVATIONS FILE (.obs)

HH R R R R R

# VMS Project: Photo data output

# Thursday, April 02, 2009

#

# Project name: sony_sx900

#

# 553 Photo Obs

# Photo Target X(mm) Y(mm) sdx sdy resx resy

#

#

# Used image measurements - at last adjustment
1001 1019 -1.84762 0.78812 0.5000 0.5000 -0.5216 0.1714 O
1001 1000 -1.78758 -1.40620 0.5000 0.5000 -0.3189 -0.5313 0

1002 20032 082131 1.00758 0.5000 0.5000 -0.7636 -0.2837 0
#
# Unused and rejected image measurements - at last adjustment
#
# End of file
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B.3.4. Output processing files

The output data files under the ‘parallel camera’ and ‘bundle adjustment’ processing

menus are listed here:

e Generate translations (.log): Outputs the updated orientations file of the back-
substitution procedure.

e Generate 3D points (.log): Outputs the 3D coordinates file of the 3D targets
calculation procedure.

e Bundle adjustment (.log): Outputs the solution file of the bundle adjustment

solution in two modes external datum and inner datum constraints.

GENERATE TRANSLATIONS (.log)

HH R R R A
# VMS Project: Photo data
# This file contains information on 85 photos
# Exterior orientation parameters for photo: 1001
# Photo X Y V4 Omega Phi Kappa Camera
1001 -3.5543 -6.3773 0.1600 -92.1378 -13.9839 -95.39051
1002 -6.2914 -6.3716 0.1600 -91.1046 -14.1578 -90.9038 1

1145 0.9669 -0.2349 0.1600 -64.6832 28.5346 49.45931
#
# End of photo orientation file
B R R R R R R R R R R

GENERATE 3D POINTS (.log).

HH T R R R
#<< Parallel Camera Project - Intersection Solution >>

#Units: mm

#Multi-view intersection converged successfully after 0002 iterations.

#Number of redundancies in the intersection solution: 0846

#s_aposteriori: 69.8041

#<< UPDATED TARGETS LOCATIONS >>

#Units: mm
#Target X Y 4 flag sdx sdy sdz
#

30016 52.1595  94.4384  48.5095 7 66.9488 255.4150 66.9691
1009 72.9971  68.2253  87.1588 7 70.3455 176.4792 84.1095

20020 79.9308 723601 519579 7 258.1666 390.0057 75.2454
4
# End of 3D targets file

R A R R S R R R R R R R R R R R R TR R R R
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BUNDLE ADJUSTMENT (.log).

T R R T R R T T
EXTERNAL DATUM CONSTRAINTS

B R R R R R

<< Parallel Camera Project - Bundle Adjustment >>

<< Network Datum Definition Type: e >>

<< INITIAL PHOTO LOCATIONS>>

Units: mm, degrees

Photo Camera tx ty Scale Omega  Phi Kappa Rays
1001 1-3.554 -6.3773 0.1600 -92.1378 -13.9839 -95.3905 5
1002 1-6.2914 -6.3716 0.1600 -91.1046 -14.1578 -90.9038 6

1145 1 0.9669 -0.2349 0.1600 -64.6832 28.5346 49.4593 5

<< INITIAL TARGETS LOCATIONS>>

Units: mm

Target X Y Z Index sX sY sZ  Images
30016 52.1595 94.4384 48.5095 0 66.9488 255.415 66.9691 11
1009 72.8786 67.7193 86.6971 7 5.1000 2.7000 8.4000 12

<< Number of Equations: 1338 >>

<< Number of Unknowns: 0685 >>

Iteration: 0003

Number of redundancies in the network : 0653
Unit weight estimate (sigma zero) : 2.2600

Image residuals (microns):
X y Mean
0.7296 0.4763 0.6029

Lens Distortion Profile for Camera Calibration
Units: microns

Radius Value

0.0000 0.0000

0.5000 0.0289

1.0000 0.2313

1.5000 0.7805

2.0000 1.8502

2.5000 3.6136

<< UPDATED ORIENTATIONS LOCATIONS>>
Units: Values mm, degrees Precisions microns, degrees
Photo Camera tx ty Scale Omega Phi Kappa stx sty SS SO

sp sk Rays
1001 1-3.7052 -6.6006 0.1659 -92.2531 -13.9763 -95.4445 19.4582 18.1860 0.0000 0.1085 0.1034
0.03295

1002 1 -6.5044 -6.5856 0.1659 -91.1612 -14.1185 -90.9403 8.6938 10.8058 0.0000 0.0580 0.0461
0.0460 6

.1.1.45 11.0109 -0.2579 0.1659 -64.6506 28.5629 49.4359 20.6365 24.9394 0.0000 0.0703 0.0639
0.04115

<< UPDATED TARGETS LOCATIONS >>

Units: mm, microns

Target X Y Z Index sX sY SZ  Images
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30016 52.0975 94.5801 48.4683 0 3.0693 10.5697 3.0819 11
1009 72.8837 67.7244 86.6937 7 3.6725 5.3298 4.8033 12

20020 79.5706 71.4604 51.8676 7 6.4348 75573 2.5350 9

<< UPDATED ADDITIONAL PARAMETERS DATA (k1) >>
Units: mm

Value Precision Correction Significance

2.312710354e-004 2.4014e-005 1.4908e-005 0.6208

<<< TARGETS PRECISION SUMMARY >>>
Mean (microns):

sX sY sZ

10.1599 17.5822 7.7488

<< FULL CORRELATIONS MATRIX>>

1.000 0.047 0.133 0.110 0.014 0.050 0.001 0.019  -0.004 0.011
0.004 0.002  -0.001 0.000  -0.004 0.001  -0.002 0.002  -0.002 0.002
-0.002 0.001 0.001 0.003  -0.000 0.004 0.000 0.004  -0.002 0.004
-0.006 0.004  -0.003 0.019  -0.005 0.016 0.004 0.074  -0.032  -0.008
-0.005

##.f#################################################################################

INNER DATUM CONSTRAINTS

T
<< Parallel Camera Project - Bundle Adjustment >>

<< Network Datum Definition Type: i >>

<< INITIAL PHOTO LOCATIONS>>

Units: mm, degrees

Photo Camera tx ty Scale Omega  Phi Kappa Rays

1001 1-3.5543-6.37730.1600 -92.1378 -13.9839 -95.3905 5

1002 1-6.2914 -6.3716 0.1600 -91.1046 -14.1578 -90.9038 6

1145 1 0.9669 -0.2349 0.1600 -64.6832 28.5346 49.4593 5

<< INITIAL TARGETS LOCATIONS>>

Units: mm

Target X Y Z Index sX sY sZ  Images
30016 52.1595 94.4384 48.5095 0 66.9488 255.4150 66.9691 11
1009 72.8786 67.7193 86.6971 7 5.1000 2.700 8.4000 12

.26020 79.5663 71.4596 51.8730 7 7.1000 4.1000 1.9000 9

<< Number of Equations: 1111 >>

<< Number of Unknowns: 0685 >>

Iteration: 0003

Number of redundancies in the network : 0426
Unit weight estimate (sigma zero) : 2.5279

Image residuals (microns):
X y Mean
0.6861 0.4391 0.5626

Lens Distortion Profile for Camera Calibration
Units: microns
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Radius Value

0.0000 0.0000
0.5000 0.0280
1.0000 0.2239
1.5000 0.7556
2.0000 1.7911
2.5000 3.4983

<< UPDATED ORIENTATIONS LOCATIONS>>

Units: Values mm, degrees Precisions microns, degrees

Photo Camera tx ty Scale Omega Phi Kappa stx sty ss o)

sp sk Rays

1001 1 -3.7040 -6.5922 0.1659 -92.2799 -13.9103 -95.5057 39.5662 28.9734 0.0000 0.2113 0.1751
0.0826 5

1002 1 -6.5067 -6.5635 0.1659 -91.1936 -13.9928 -90.9730 33.4803 29.5572 0.0000 0.18613 0.1544
0.0926 6

11451 0.9844 -0.2906 0.1659 -64.5100 28.5968 49.3478 138.2115 124.4356 0.0000 0.4456 0.3552
018745

<< UPDATED TARGETS LOCATIONS >>

Units: mm, microns

Target X Y Z Index sX sY sZ  Images
30016 52.1110 94.5747 48.4634 0 37.6660 67.5979 42.5347 11
1009 72.8891 67.705186.6932 7 41.4308 85.3256 46.7768 12

20020 79.5739 71.4647 51.8620 7 41.5566 62.8952 37.5903 9

<< UPDATED ADDITIONAL PARAMETERS DATA (k1) >>
Units: mm

Value Precision Correction Significance

2.238894011e-004 2.9664e-005 1.7741e-005 0.5981

<<< TARGETS PRECISION SUMMARY >>>
Mean (microns):

sX sY sZ

57.6372 142.6282 60.5613

<< FULL CORRELATIONS MATRIX>>

1.000 -0.286 0.721  -0.307 0.099 -0.187 0.120  -0.150 0.146  -0.122

-0.129  -0.097 -0.093  -0.084 0.034 -0.101 0.050 -0.142 0.052 -0.136
0.050 -0.133 -0.120 -0.079 -0.130 -0.093 -0.135 -0.109 -0.205 -0.164
-0.228 -0.179  -0.196 0.284  -0.216 0.256  -0.200 0.468 0.063 0.529
0.360

##.f######################################################################## TR
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This appendix provides a supportive description of processed data required for the
critical analysis while decomposing the problem within the successive thesis chapters.
In particular the main sections that will be listed here cover: data implementation for
simulation analysis of the affine sensor model (see section C.1.), numerical target
image quality characteristics (see section C.2.), evaluation of typical camera
calibration parameters (see section C.3.) as well as some comparative radial lens

distortion profiles results from affine bundle adjustment processing (see section C.4.).

C.1. Computed data in simulation analysis
Prior to the implementation of the affine bundle adjustment algorithm a simulation

project was implemented based upon a synthetic 3D cube which was processed for

three different imaging cases (see section 5.6.).

C.1.1. Input 3D target coordinates of synthetic cube

The 3D target coordinates of the synthetic cube were designed as follows.

3D TARGET FILE FOR SIMULATION PROJECT:

T
# VMS Project: Target data output
# Monday, November 24, 2008

#

# Project name: cube_simu_4 4

#

#9 Targets

# Targets in millimetres, precisions in 1000*millimetres

#

#  Target X Y Z flag sdx  sdy  sdz

#
100 4.5000 29.8000 -15.7000 7 25.0000 25.0000 25.0000
101 14.5000 29.8000 -15.7000 7 25.0000 25.0000 25.0000
102 14.5000 39.8000 -15.7000 7 25.0000 25.0000 25.0000
103 4.5000 39.8000 -15.7000 7 25.0000 25.0000 25.0000
104 4.5000 29.8000 -5.7000 7 25.0000 25.0000 25.0000
105 14.5000 29.8000 -5.7000 7 25.0000 25.0000 25.0000
106 14.5000 39.8000 -5.7000 7 25.0000 25.0000 25.0000
107 4.5000 39.8000 -5.7000 7 25.0000 25.0000 25.0000
108 9.5000 34.5000 -10.7000 7 25.0000 25.0000 25.0000

#

# End of file

HEHH R R R R R
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C.1.2. Histograms of bundle adjustment residuals

Bundle adjustment runs for the simulated geometric cases produce the following
residual histograms separated in x and y directions. Here the bundle adjustment
residuals are given for the two-view geometry case (see section 5.4.2.) (red framed
figures), three-view geometry case (see section 5.4.3.) (green framed figures) and

seven-view geometry case (see section 5.4.4.) (blue framed figures).

m

Appendix C - Figure 1: Histograms of residuals - BA solution, simulation project.

C.2. Numerical target image quality characteristics

For analysis of the image measurement quality of the measured targets within the
image network a set of image targets are selected. The first sample illustrates a range
of different targets for both perspective and affine imaging geometries acquired with
the Kodak and Sony camera systems (see Figure 2). Some extracted numerical
properties of the imaged targets are given in Table 1 to draw the characteristics of the

measured image features. The following target images are tabulated as: (a.)= 2mm
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Appendix C: Processing data examples

diameter retro-reflective target (Kodak system), (b.)= 1mm diameter white marker
(Kodak system), (c.)= 0.5mm diameter white marker (Sony system), (d.)= 1mm
diameter (Kodak system), (e.)= 1mm diameter white marker (Kodak system), (f.)=
2mm diameter retro-reflective target (Kodak system), (g.)= 1mm diameter white
marker (Kodak system), (h.)= 0.5mm diameter white marker (Sony system), (i.)=

1mm diameter white marker (Kodak system) and (j.) 1mm diameter white marker

(Sony system).
L
: D - . - ﬂ
|_
(@]
L
7
@ (a) (b.) (c) (d.) (e)
1N}
P
<
(f) 9) (h.) (i) (p)
Appendix C - Figure 2: Signalized point targets (magnification window 40x40 pixels).
Camera PP AP PP AP PP AP PP AP PP AP
Target a f b g |Cros | hree | drea [ e Jre
@ (pixels) 16 36 4 18 6 17 10 8 8 34
FB 255 255 255 255 | 248 193 175 207 166 236
248 193 188 251
248 193 232 232
BB 37 37 60 66 61 28 17 33 37 23
61 28 23 25
61 28 35 22

Appendix C - Table 1: Signalized targets image characteristics. Table notation: PP=
perspective projection, AP= affine projection, @= target diameter, FB= foreground brightness,
BB= background brightness, a - i= coded image targets.

An additional set of target images are displayed as a set of perspective and affine
views (see Figure 3) characterized by their histograms and measurement parameters
(see Figure 4 and Table 2 accordingly).

C,
@~ .

C D D E E
o+ 9O

Appendix C - Figure 3: Signalized image points - perspective (top) and affine (bottom) views.
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Mean: 52.0 Mean: 88.1
Stdev: 53.1 Stdev: 92.4
Median: 27.0 Median: 33.0
Mean: 57.4 Mean: 54.7
Stdev: 42.7 Stdev: 41.6
Median: 43.0 Median: 38.0
s _ R L
Mean: 93.5 Mean: 102.8
Stdev: 53.4 Stdev: 70.3
Median: 77.0 Median: 68.0
M‘_J__ —— L ,l R
Mean: 67.1 Mean: 43.2
Stdev: 54.0 Stdev: 37.0
Median: 49.0 Median: 29.0
aagtao L ] PRE—— T |
Mean: 110.1 Mean: 101.1
Stdev: 98.0 Stdev: 90.7
Median: 38.0 Median: 41.0
Ln_‘_._m TSR T . e, J

Appendix C - Figure 4: Brightness histograms of point pairs (A-E) perspective and affine

views.

Target | @ (pixels) | IW (pixels) LM TT S GT
A [PP] 10 20 x 20 w_centroid | histogram circular on
A [AP] 33 60 x 60 w_centroid | histogram circular off
B [PP] 6 20x 20 w_centroid | histogram circular on
B [AP] 17 40 x 40 ellipse_fit | histogram circular on
C [PP] 8 36 X 36 w_centroid | histogram circular on
C [AP] 18 38 x 38 w_centroid | histogram circular on
D [PP] 8 20x 20 w_centroid | histogram circular on
D [AP] 18 40 x 40 w_centroid | histogram circular on
E [PP] 16 24 x 24 w_centroid | histogram circular on
E [AP] 36 60 x 60 w_centroid | histogram circular off

Appendix C - Table 2: Parameters of measurement method within VMS 8.0. Table notation:
@ = target diameter, IW=image window, LM= location method, TM= threshold type, S=
shape, GT= geometric tests.
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C.3. Computed camera calibration parameters

In the course of the experimental analysis data initialization was implemented through
conventional perspective bundle adjustment estimation (VMS 8.0). The software
embeds an extended additional parameters model to accommodate internal geometric
errors ordered as 1: principal point x component (PPx), 2: principal point y
component (PPy), 3: principal distance (PD), 4-6: radial distortions, 7-8: decentring
distortions, 9: orthogonality, 10: affinity terms. Bundle adjustment processing dictates
parameters inclusion judged by their extracted significance values. The example here
illustrates the output calibration data for the utilized C1 dataset, camera system
CAMP2 (Kodak Megaplus ES1.0; Fujinon TV / f=12.5 mm lens) (see section
6.4.1.1.). The bundle adjustment was processed based on an inner constraints datum
with appropriate 1-5 up to the ks radial lens distortion term internal model parameters.
The derived camera parameters include the updated calibration terms and the
associated correlation coefficients together with the illustrated radial lens distortion

profile (see Figure 5 and Figure 6).

<<< Updated Camera Calibration Set : 1 >>>

Parameter Value Precision Correction Significance Max. Effect

(millimetres) (microns)

1 -0.0626 0.0015 -0.0001 0.04

2 -0.0534 0.0035 -0.0000 0.01

3 12.6806 0.0042 0.0003 0.08

4 -1.1408e-003 1.424e-005 -1.129e-006 0.08 -160.4

5 8.5689e-006 4.537e-007 3.201e-008 0.07 32.6

6 -9.4123e-008 5.302e-008 0.000e+000 0.00 =957

7 -3.8429e-005 1.461e-005 0.000e+000 0.00 =250

8 -2.2393e-005 1.448e-005 0.000e+000 0.00 -0.6

Correlation Parameters for Camera Calibration Set: 1

1 1.00

2 -0.04 1.00

3 0.12 0.70 1.00

4 -0.25 -0.02 -0.29 1.00

5 0.11 0.18 0.31 -0.93 1.00

Appendix C - Figure 5: Camera calibration parameters and correlation coefficients - system
CAM_P2, dataset C1.

Radial distortion (jun)

Appendix C - Figure 6: Radial les distortion profile - system CAM_P2, dataset C1.
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C.4. Comparative radial lens distortion profiles

In chapter 6 (see section 6.5.2.) the affine bundle adjustment was processed in order to
evaluate method behaviour in object space. This was done by application of the
method in datasets B2, D2 and E2. The bundle adjustment was processed with the
external constraints datum and the implemented calibration model (third power term
of the radial lens distortion polynomial). Results from this test have already been
assessed in detail. This section provides a display of the radial lens distortion profiles
for the three implemented datasets B2, D2 and E2 (see Figure 7). It is clearly evident
that the target occupancy varies within the image frame for radial lens distortion

calculation reaching a maximum of 43.3um at a radial distance of 4.5mm.

45.00 - T
A —a—dr_B2

40.00 - : i i e dr_D2

35.00 - —a—dr_E2
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15.00 ~

10.00 -

K o
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Appendix C - Figure 7: Comparative radial lens distortions — datasets B2, D2 and E2.
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