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Abstract 

In photogrammetry, sensor modelling with 3D point estimation is a fundamental topic 

of research. Perspective frame cameras offer the mathematical basis for close range 

modelling approaches. The norm is to employ robust bundle adjustments for 

simultaneous parameter estimation and 3D object measurement. In 2D to 3D 

modelling strategies image resolution, scale, sampling and geometric distortion are 

prior factors. Non-conventional image geometries that implement uncalibrated 

cameras are established in computer vision approaches; these aim for fast solutions at 

the expense of precision. The projective camera is defined in homogeneous terms and 

linear algorithms are employed. An attractive sensor model disembodied from 

projective distortions is the affine. Affine modelling has been studied in the contexts 

of geometry recovery, feature detection and texturing in vision, however multi-view 

approaches for precise object measurement are not yet widely available. 

 

This project investigates affine multi-view modelling from a photogrammetric 

standpoint. A new affine bundle adjustment system has been developed for point-

based data observed in close range image networks. The system allows calibration, 

orientation and 3D point estimation. It is processed as a least squares solution with 

high redundancy providing statistical analysis. Starting values are recovered from a 

combination of implicit perspective and explicit affine approaches. System 

development focuses on retrieval of orientation parameters, 3D point coordinates and 

internal calibration with definition of system datum, sensor scale and radial lens 

distortion. Algorithm development is supported with method description by 

simulation. Initialization and implementation are evaluated with the statistical 

indicators, algorithm convergence and correlation of parameters. Object space is 

assessed with evaluation of the 3D point correlation coefficients and error ellipsoids. 

Sensor scale is checked with comparison of camera systems utilizing quality and 

accuracy metrics. For independent method evaluation, testing is implemented over a 

perspective bundle adjustment tool with similar indicators. Test datasets are initialized 

from precise reference image networks. Real affine image networks are acquired with 

an optical system (~1M pixel CCD cameras with 0.16x telecentric lens). Analysis of 

tests ascertains that the affine method results in an RMS image misclosure at a sub-

pixel level and precisions of a few tenths of microns in object space. 
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Περίληψη 

Σηε θσηνγξακκεηξία ν πξνζαλαηνιηζκόο ηεο θάκεξαο θαη ν πξνζδηνξηζκόο 

ηξηζδηάζηαησλ ζεκείσλ απνηειεί ζεκειηώδεο εξεπλεηηθό ζέκα. Πξννπηηθέο θάκεξεο 

πξνζθέξνπλ ηε καζεκαηηθή βάζε ησλ αιγόξηζκσλ πνπ εθαξκόδνληαη ζε επίγεηεο 

εθαξκνγέο. Νόξκα απνηειεί ε εθαξκνγή ζπζηεκάησλ ζπλόξζσζεο ηεο δέζκεο γηα 

ηνλ ηαπηόρξνλν πξνζδηνξηζκό ησλ παξακέηξσλ πξνζαλαηνιηζκνύ θαη ηξηζδηάζηαηεο 

κέηξεζεο ζεκείσλ. Σε ζηξαηεγηθέο πνπ βαζίδνληαη ζηε δηδηάζηαηε πξνο ηε 

ηξηζδηάζηαηε αληηζηνηρία ε αλάιπζε ηεο εηθόλαο, ε θιίκαθα ηνπ ζέλζνξα, ε 

δεηγκαηνιεςία επηθαλείαο θαζώο θαη ε γεσκεηξηθή δηαζηξνθή απνηεινύλ βαζηθνύο 

παξάγνληεο. Με ζπκβαηηθέο εηθνλνιεπηηθέο γεσκεηξίεο πνπ εθαξκόδνληαη ζε κε-

βαζκνλνκεκέλεο θάκεξεο είλαη εδξαησκέλεο  ζε εθαξκνγέο ηεο όξαζεο ππνινγηζηώλ; 

απηέο απνζθνπνύλ ζε επηιύζεηο πςειήο ηαρύηεηαο επηβαξύλνληαο ηνλ παξάγνληα ηεο 

αθξίβεηαο. Η πξνβνιηθή θάκεξα πξνζδηνξίδεηαη ζε ζπζηήκαηα νκνγελώλ 

ζπληεηαγκέλσλ όπνπ εθαξκόδνληαη γξακκηθνί αιγόξηζκνη.  Έλαο ζέλζνξαο 

ηδηαίηεξνπ ελδηαθέξνληνο είλαη ν αθηληθόο, ν νπνίνο είλαη απαιιαγκέλνο από 

πξνβνιηθέο δηαζηξνθέο. Αθηληθέο κέζνδνη έρνπλ κειεηεζεί ζην πιαίζην ηεο 

αλαθαηαζθεπήο γεσκεηξίαο, εμαγσγήο ζεκείσλ θαη ηεο δεκηνπξγίαο πθώλ ζηελ 

όξαζε ππνινγηζηώλ; σζηόζν πνιπ-εηθνληθέο κέζνδνη γηα κέηξεζε αληηθεηκέλσλ κε 

πςειή αθξίβεηα δελ είλαη αθόκα επξέσο δηαζέζηκεο.  

 

Απηή ε κειέηε εξεπλά ην αθηληθό πνιπ-εηθνληθό πξόβιεκα από ηελ 

θσηνγξακκεηξηθή ζθνπηά. Έλα λέν αθηληθό ζύζηεκα ζπλόξζσζεο ηεο δέζκεο έρεη 

αλαπηπρζεί γηα δεδνκέλα κέηξεζεο ζεκείσλ πνπ παξαηεξνύληαη ζε επίγεηα δίθηπα 

εηθόλσλ. Τν ζύζηεκα επηηξέπεη βαζκνλόκεζε, πξνζαλαηνιηζκό θαη ππνινγηζκό 

ζεκείσλ ζην ρώξν ηνπ αληηθεηκέλνπ. Επεμεξγάδεηαη σο ειαρηζηνηεηξαγσληθή 

επίιπζε κε πςειή πεξίζζεηα παξέρνληαο ζηαηηζηηθή αλάιπζε. Αξρηθέο ηηκέο 

αλαθηώληαη κέζσ ζπλδπαζκνύ έκκεζσλ πξννπηηθώλ θαη άκεζσλ αθηληθώλ ξνπηηλώλ. 

Η αλάπηπμε ηνπ ζπζηήκαηνο εζηηάδεη ζηνλ ππνινγηζκό ησλ παξακέηξσλ 

πξνζαλαηνιηζκνύ, ζπληεηαγκέλσλ ζεκείσλ αληηθεηκέλνπ θαη εζσηεξηθήο 

βαζκνλόκεζεο κε ηε δπλαηόηεηα λα πξνζδηνξίδεηαη ην ζύζηεκα αλαθνξάο 

(εμσηεξηθέο ή εζσηεξηθέο δεζκεύζεηο), ηεο θιίκαθαο ηνπ ζέλζνξα θαη ηεο αθηηληθήο 

δηαζηξνθήο. Η αλάπηπμε ηνπ αιγόξηζκνπ ππνζηεξίδεηαη κε πεξηγξαθή ηεο κεζόδνπ 

κε δεδνκέλα πξνζνκνίσζεο. Υπνινγηζκόο αξρηθώλ ηηκώλ θαη εθαξκνγή ηνπ 
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αιγόξηζκνπ εθηηκώληαη κε ζηαηηζηηθνύο δείθηεο, ζύγθιηζε ηνπ αιγόξηζκνπ θαη 

ζπζρέηηζε ησλ παξακέηξσλ. Ο ρώξνο ηνπ αληηθεηκέλνπ ειέγρεηαη κε αμηνιόγεζε ησλ 

ζπληειεζηώλ ζπζρέηηζεο γηα ηα ζεκεία ηνπ ρώξνπ θαη ησλ ειιεηςνεηδώλ ζθάικαηνο. 

Η θιίκαθα ηνπ ζέλζνξα ειέγρεηαη κε ζύγθξηζε ζπζηεκάησλ θάκεξαο κε κέηξα 

εζσηεξηθήο θαη εμσηεξηθήο αθξίβεηαο. Γηα ηελ αλεμάξηεηε αμηνιόγεζε ηεο κεζόδνπ, 

έιεγρνο εθαξκόδεηαη κε ζπκβαηηθό ζύζηεκα κεζόδνπ ηεο δέζκεο κε παξόκνηνπο 

δείθηεο. Ο ππνινγηζκόο ησλ αξρηθώλ ηηκώλ ησλ πεηξακαηηθώλ δεδνκέλσλ έρεη 

πξνέιζεη από αθξηβή δίθηπα εηθόλαο αλαθνξάο. Αιεζή αθηληθά δίθηπα εηθόλσλ 

ιακβάλνληαη κε έλα νπηηθό ζύζηεκα (~1Μ pixel CCD θάκεξεο νπιηδόκελεο κε 0.16x 

ηειεθεληξηθό θαθό). Αλάιπζε ησλ ειέγρσλ επηβεβαηώλεη όηη ην αθηληθό κνληέιν 

απνδίδεη απνηειέζκαηα κε RMS ζθάικα εηθόλαο ππνςεθηδηθήο ηάμεο θαη αθξίβεηαο 

ηεο ηάμεο ησλ κεξηθώλ δεθάδσλ κηθξώλ ζην ρώξν ηνπ αληηθεηκέλνπ.   
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1. Introduction 

Photogrammetry is primarily focused on camera calibration, orientation and object 

reconstruction. Since its origin, perspective-based imaging sensors have been widely 

utilized particularly in industrial, archaeological and medical applications. In 

principle, the main aim of photogrammetric processing is accuracy. The norm is to 

apply robust bundle adjustment tools for both parameter estimation and object 

reconstruction. A similar sensor-based discipline is computer vision which is 

generally open in variant imaging geometries focusing on the implementation of 

uncalibrated cameras and automation. The projective camera is defined in 

homogeneous terms and linear algorithms are employed. Current state of the art is 

system automation and often fusion of intensity and range imaging sensors. Thus, 

integration of photogrammetry and computer vision approaches is a fact, particularly 

when considering their significant overlap in close range applications. 

 

This research reports on the investigation and development of the affine sensor model 

adopted from the computer vision community. It offers a processing framework in the 

context of multi-view modelling from affine images. Specifically a new bundle 

adjustment system has been developed and applied in close range images arranged in 

strong convergent network configurations. The developed system allows calibration, 

orientation and three dimensional (3D) point estimation in a photogrammetric 

approach. This implies that the system is processed as a least squares solution with 

high redundancy and that it provides statistical analysis of the achieved quality. To 

introduce the research covered within this thesis, the following sections are outlined 

to provide the context (see section 1.1.), motivation (see section 1.2.), problem 

statement (see section 1.3.), research objectives (see section 1.4.) and tools (see 

section 1.5.) as well as a summary of the thesis structure (see section 1.6.).   

 

1.1. Context 

Photogrammetric modelling and measurement approaches are highly dependent on 

correct camera calibration and orientation. Frame perspective-based sensors are 

typical in established close range systems (Maas, 2008). In industrial applications 

such systems are calibrated based on routine self-calibrated bundle adjustment 

strategies with quality assessment (Brown 1974; Granshaw, 1980; Clarke and Fryer 
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1998; Triggs et. al., 2000; Gruen and Beyer, 2001; Fraser, 2001). In fact processing 

usually implies the establishment of geometrically strong (wide baselines, angle of 

convergence and intersection rays) imaging networks. Planar or volumetric arrays, 

artificial high contrast or natural signalized point features, controlled illumination and 

stable calibration conditions are some of the physical requirements. It is natural that 

these are aspects concerning the algorithmic framework within which calibration and 

orientation are implemented. 

 

Besides the establishment of camera calibration and orientation, applications in 

architecture, cultural heritage and medicine, the main areas of close range 

photogrammetry, generally require the production of complete (without voids) 

textured 3D models. Image based approaches applied in such instances are based on 

stereo or multi-image matching strategies (Remondino and Zhang, 2006). At larger 

mapping scales alternative techniques combine images with laser scan range data. The 

accuracy achieved is dependent on the registration and texture mapping methods (El 

Hakim et. al., 1998). Where data registration is concerned this can relate to a 

geometric transform between different sensors, views or temporal variations (Zitova 

& Flusser, 2003). Approaches that are based on intensity and feature correspondences 

are typical; yet they result in seamless pairwise problems that are propagated within 

the final model and reduce the quality as a result (El-Hakim et al., 2004). Subsequent 

texturing may rely on a projective transform between for example the triangle plain 

(of a model) and the texture (of an image). However, significant distortions can be 

visible at triangle edges particularly regarding radiometric differences, even if correct 

calibration and orientation are considered (Grammatikopoulos et al., 2005). Object 

geometry and texture, as well as metric requirements, dictate the approach followed at 

different instances. 

 

In close range imaging the perspective sensor can present strong scale variation, non-

consistent sampling as well as inner geometric distortions. In fact applications that 

focus on fine object detail measurement of objects that occupy volumes of a few 

centimetres in object space, scale recovery becomes critical. An alternative imaging 

situation is the affine projection which connects image and object spaces through 

parallel lines of sight.  It is characterized by an invariant scale factor and given the 
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parallelism of observation lines no perspective projection is involved. As a result, the 

image plane can be positioned anywhere along the optical axis while oriented 

orthogonally to the imaging rays. The affine is a generic sensor model which is closer 

to the Euclidean reconstruction, it was firstly introduced by the computer vision 

community and it can thus be found in associated literature. 

 

In structure from motion problems the affine sensor has been implemented with 

geometric approaches based on local coordinate frame methods (Koenderink and Van 

Doorn, 1991). Tomasi and Kanade (1992) proposed a non-local coordinate frame 

method applied in the total scene points, but problems regarding rank considerations 

have been observed. Definition of a coordinate datum is based upon the centroid of 

targets cluster. Shapiro (1995) follows an extended multi-view approach based on a 

singular value decomposition (SVD)
1
 solution. In image analysis Mikolajczyk & 

Schmid (2004) outline a series of interest detection methods which are invariant under 

scale and affine transforms with main objective the performance evaluation of these 

methods. From the photogrammetric standpoint the affine sensor has been employed 

in mathematical problems that for example explore initialization of orientation 

procedures (Kyle, 2004) or perform long distance measurements (Ono et. al., 2004). 

El-Hakim et al. (2004) apply image-based registration methods based on an affine or 

projective model
2
 for the purpose of image mosaicing. In fact, in mapping 

applications orthoimage generation is the result of aircraft or satellite imagery in the 

aerial processing domain or architectural mapping in the close range. This can be 

regarded as a special case of image resampling where the spatial resolution of the 

source image in combination with the resolution of the digital elevation model (DEM) 

in digital photogrammetric workstations (DPW) identify the final quality of the 

product (Agouris et al., 2004). Where texturing is concerned, Weinhaus & Devich 

(1999) have demonstrated a hybrid projection model based on a unified perspective 

and affine projection model that can be optionally adapted for the purpose of mapping 

textures onto planar polygons. 

                                                 
1
 Singular Value Decomposition (SVD): If A is a mxn real matrix with m>n, then matrix A can be 

written based on the SVD form: A=UDV
T
 (Wolfram, 2009b).  

2
 An affine transform involves six parameters and it is generally composed of translation, rotation, 

scale and orthogonality (scaling direction) parameters. The affine transform can be upgraded to 

projective by incrementing the transformation parameters by two. The resultant eight parameter 

projective transform will generally map parallel lines to convergent. 
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1.2. Motivation 

Imaging projection is the process that connects a two dimensional (2D) image with 

3D object space to recover geometry. From the close range viewpoint, affine images 

have not been widely utilized in practice. A primary reason for this is the fact that 

such real images are acquired with dedicated machine vision systems which are not 

general purpose cameras. In fact these sensors are characterized by a limited imaging 

footprint and range with a simultaneous increase in image scale. Nevertheless, 

minimal geometric distortion, as well as consistent image sampling, can significantly 

enhance the quality of modelling (for instance in a multi-view framework) from pure 

affine images. In the context of establishing a close range convergent network of 

affine images the modelling task becomes the intersection of the 2D to 3D lines of 

sight in order to calibrate, orientate the employed sensor and coordinate points in 3D. 

Photogrammetric processing of such data requires the ability to include full error 

propagation within the system for statistical analysis.  

 

This thesis presents a new multi-view modelling algorithm for the processing of point 

based data structures measured on affine images in the close range. The method is 

appropriate for close-range convergent image networks acquired with an affine 

machine vision system. System initialization is performed from a set of artificially 

high contrast signalized geometric structures. The algorithm is processed in the form 

of a bundle adjustment system supported with statistical analysis. Both stages of 

initialization and bundle adjustment processing are evaluated in a methodological 

approach starting from a simulation project and subsequent testing with real world 

datasets. Assessment is extracted at each stage with statistical indicators, correlation 

analysis as well as independent checks according to the demands of testing. It is noted 

that the employed datasets are purpose built geometric structures of varying geometry 

and that they are implemented in order to evaluate practical aspects of the method. 

 

This work focuses on the investigation and implementation of an affine multi-view 

modelling framework which can be seen as an initial research work towards complete 

3D modelling from pure affine sensor imagery. In this context, and as far as affine 

multi-view modelling is concerned, the method can be applied in any application 
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where non-contact fine object detail measurements are required such as metrology, 

archaeology and medicine (see section 2.2.). 

 

1.3. Problem statement 

This research work seeks the answers to the following fundamental questions: 

 

- Is it realistic to generate, measure and process real affine multi-view images 

within a modelling framework in the context of deriving precise close range 

object measurements? 

- In the context of such a framework, how do sensor geometry (parallel 

projection rays, invariant scale factor and calibration) as well as local 

coordinate frame (datum) influence method precision and 3D point estimation 

(object geometry)? 

- What is the quality of affine multi-image modelling in comparison to 

established photogrammetric solutions? 

 

1.4. Research objectives 

Built upon the problem statement the main objectives of this thesis are formulated as 

follows: 

 

1. To investigate the affine sensor model for the multi-view imaging case from 

the photogrammetric standpoint. On this basis the main aim is to develop and 

propose a framework that offers the potential to accommodate sensor 

calibration, orientation and 3D object measurement. In addition the method 

needs to be capable of catering for full covariance matrices and therefore to 

provide measurable outcomes with regards to the method’s quality evaluation. 

It is stated that affine sensor development involves both study of theoretical 

aspects (e.g. starting value derivation, algorithm design and method 

development with simulation data) as well as treatment of practical aspects 

(e.g. method application for real world test data acquired with an affine 

system). 
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2. To assess the method intrinsically in the aspects of (a) model parameters 

estimation (b) algorithm convergence behaviour and (c) consistency of 

parameters correlation. 

2.1. Model behaviour refers to method initialization (reference measurements 

and affine starting value estimation) as well as overall bundle adjustment 

results. To achieve this, evaluation measures include implicit statistical 

indicators (e.g. number of iterations, redundancy, a posteriori precision 

factor and RMS image misclosure), 3D point precisions, residual vectors 

and histograms visualizations, radial lens distortion profiles as well as 3D 

check measurements. 

2.2. Convergence behaviour assesses the aspects of algorithm convergence as 

well as quality of convergence. Estimation and visualization of the change 

in model parameters between successive pairs of iterations is one derived 

measure for this purpose. Additional measures are model parameters 

precisions and their visualization as well as the mean of absolute 

differences between successive iteration pairs. 

2.3. Consistency of parameter correlations are evaluated with inspection of the 

correlation coefficient matrix patterns for different bundle adjustment runs 

(e.g. external or inner constraints datum, control and tie point data 

implementation and inclusion or exclusion of radial distortion parameter). 

In addition, individual solutions are selected to illustrate correlations of 

parameters where these are significantly large (the term large here denotes 

correlation coefficients that are greater than 0.75 and 0.90 in magnitude). 

3. To assess the method extrinsically in the aspects of (a) object space evaluation, 

as well as (b) system scale invariance. 

3.1. Object space evaluation refers to evaluation of bundle adjustment results 

for datasets of different image sensor and quality, object geometry and 

point data contribution (network geometry and point visibility). Measures 

utilized to assess this aspect can include the method’s statistical indicators, 

absolute 3D correlations with point proximity as well as 3D error 

ellipsoids for the estimated point data. 

3.2. System scale assessment relates to method evaluation for test datasets 

acquired with different sensors. Prior measures applied for this purpose 
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involve the method’s statistical indicators. Further absolute differences can 

be employed over external independent length measurements whereas 

absolute differences between estimated and reference point data can be 

considered as highly useful. 

4. To assess the method quality aspect in relation to corresponding established 

photogrammetric approaches. This aims on the evaluation of the developed 

affine multi-view solution with regards to a well tested and well understood 

perspective-bundle adjustment. Besides bundle adjustment statistical results, 

3D point error ellipsoids and 3D point (control and tie point data) can be 

utilized for the purpose of independent evaluation. 

 

1.5. Research tools 

To develop and implement the method that is demonstrated here a set of tools have 

been utilized. The mathematical model was written and implemented in Microsoft’s 

Visual Studio 2005 in C/C++ (Press et al., 2005) and was subsequently upgraded in 

Visual Studio 2008. In support of implementation and analysis of the developed 

multi-view framework additional tools were utilized. Particular mathematical model 

testing and partial graphical output in some instances was performed in the 

Mathworks Matlab environment (Mathworks, 2009). Initialization, image 

measurement and reference data processing were implemented in the in-house 

photogrammetric tool VMS 8.0. Additional educational and open source tools were 

utilized to underpin experimental analysis and methodological testing. 

 

1.6. Structure summary 

This thesis is composed of seven main chapters supported by the references and the 

associated appendices (see Figure 1.1). Chapters 2 - 4 form the core background to 

this research work, Chapter 5 refers to the proposed modelling methodology 

developed and implemented for the purposes of this research work, Chapter 6 

analyzes and outputs the results and finally Chapter 7 summarizes the main 

conclusions and discusses directions for future research.  
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Figure 1.1: Thesis outline. 

 

In more detail the thesis contents are outlined as follows: 

 

Chapter 2: Non-contact object measurement in the close range 

This chapter provides the thesis’ context. The main concepts of photogrammetry and 

computer vision are covered with reference to basic calibration and orientation 

procedures whilst covering examples of close range measurement applications. Prior 

to the analysis of any multi-view problem a first concern is to understand the digital 

image formation process. This is the central topic of the subsequent chapter. 

 

Chapter 3: Digital close range image formation 

This chapter emphasizes the fundamental issues governing digital images presented as 

a literature review. Aspects relating to close range image acquisition systems, digital 

image characteristics in relation to quality and geometry, as well as measurement 

methods are covered. The chapter closes with the fundamental camera calibration 

models. 

 

Chapter 4: Modelling from multiple views 

This chapter is initiated from the starting point of a bundle adjustment overview to 

place the current state of the art in modelling of frame cameras. Subsequently it 

reviews the least squares technique and fundamental modelling of perspective 

cameras, covering the aspects of self calibration and starting value estimation. It 

introduces the affine sensor linked with a description of approaches found in the 

literature. The concepts of datum constraints, network geometry and quality control 

are additionally given. 
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Chapter 5: Affine multi-view modelling 

This chapter presents the proposed method, starting from the point of model 

initialization to the full implementation of the affine multi-view framework. The 

description of the method is given in analytical terms regarding its subsequent 

implemented stages. In support of algorithm development the method is presented 

from the standpoint of simulation. In this regard a synthetic test object is treated for a 

subset of two, three and seven view geometry cases to describe the method. 

 

Chapter 6: Results and analysis 

This chapter covers the research results and provides analysis of the developed 

method. Starting from a descriptive viewpoint of the designed test objects and image-

sets, this chapter addresses the developed method through a series of extensive test 

cases where ad hoc aspects are evaluated. Particularly, the demonstrated approach is 

investigated in relation to model behaviour, object space analysis, sensor scale 

analysis as well as independent assessment. The test-data are initialized and 

premeasured from precise reference measurements. Statistical quality and accuracy 

measures are given for each of the test cases. 

 

Chapter 7: Conclusions and future research 

This chapter summarizes the findings of the research illustrating the central 

conclusions and proposes future research work directions regarding algorithm 

improvements as well as practical extensions of the developed approach. 

 

The thesis is completed with the enclosed references and appendices that support the 

methods and data processing where this is critical. 



 

 

2. Non-contact object measurement in the close range 

This chapter is organized as a background chapter starting from the main areas of 

interest which are relevant to this thesis (see section 2.1.). Subsequently some 

application examples are given linked with an outline of some typical problems in the 

close range (see section 2.2.). These topics are covered in the aspect of non-contact 

object measurement in the close range in order to provide the thesis context. 

 

2.1. Areas of interest 

The central application areas of close range photogrammetry are industrial metrology, 

cultural heritage and medicine. Nowadays a range of different approaches can be 

applied dependent on the requirements, specifications and accuracy levels of the end 

product, as well as employed sensors, tools and algorithms capabilities to name a few 

factors. Figure 2.1 comprises an attempt to provide a diagram of the approaches that 

find wide applications in studies of close range object measurements. Following the 

structure of the diagram, these disciplines are referred to as sensor-based, subdivided 

as photogrammetry and computer vision. In the antipode, geometry-based infer 

computer graphics methods. The processes behind these areas present differences 

related to accuracy, processing and cost as key factors but they share overlapping 

interest in their suitability for registration and surface reconstruction tasks. 

 

 

Figure 2.1: Overview of approaches applied in close range object measurement. 

 

Close Range Approaches

Photogrammetry Computer vision

· Wide – separated views

· Convergent image networks

· Registration

· 3D Surface reconstructiom

· High accuracy

· Close – separated views

· Orientation: automation
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· 3D Surface reconstructiom

· Fast, real time
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Computer graphics

· Pair wise registration

· 3D surface reconstruction (graphics)
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· High cost. Non - commercial

· Fast
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· Fast
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Considering the image formation process, the image on a camera sensor is 

intrinsically 2D and its pattern represents the geometric correspondence between 2D 

image and 3D object spaces. In other words the two dimensional image is the 

projection pattern of a perspective-based camera and this forms the basis of the 

established processing approaches within photogrammetry. Computer vision aims at 

robust solutions (with regards to the presence of outliers) and it is open in more 

general cameras and uncalibrated cases following, for example, algebraic approaches. 

A unified goal of both photogrammetry and computer vision today is to automate 

solutions in the context of the specific application’s requirements.  Within this 

research the main objective is to investigate the affine sensor model originating in 

principle from the computer vision areas but to develop and implement a multi-view 

processing framework from the photogrammetric standpoint. In this regard, there 

exists the necessity to firstly introduce these areas of interest, in particular to revise 

key aspects linked with some applications and approaches. A good overview of the 

core connections, as well as differences, of the subject areas of photogrammetry and 

computer vision can be found in the literature (Foerstner, 2002; Hartley & Mundy, 

1993). 

 

2.1.1. Photogrammetry 

Introducing photogrammetry the following definition is chosen: 

 

Photogrammetry and Remote Sensing is the art, science, and technology of obtaining 

reliable information from non-contact imaging and other sensor systems about the 

Earth and its environment, and other physical objects and processes through 

recording, measuring, analyzing and representation.  

 

ISPRS Statutes and Bylaws (ST&BL) - Definitions (ISPRS, 2004) 

 

Photogrammetry aims to derive accurate, precise and reliable measurements of the 

world with prior focus on camera calibration, stereo measurement, 3D object 

modelling and navigation. It typically focuses on high accuracy levels with classical 

processing having its roots on geometric approaches. In close range applications there 

is a particular focus on the creation of efficient measurement systems that are able to 
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deliver precise measurements. In fact the increased use of Charge-Coupled Device 

(CCD) and video based cameras have resulted in a broad use of uncalibrated cameras 

which opened the area to new applications. Main implementation strategies are based 

upon the fundamental basis of perspective sensor modelling (see section 4.3.2.) and 

processing involves robust self-calibrated bundle adjustment systems (which is the 

central topic of Chapter 4). Standard photogrammetric treatment utilizes direct 

minimal or iterative least squares estimation solutions (see section 4.2.). The essential 

problem of starting value evaluation (see section 4.3.5.) is recovered on the 

assumption that the correspondence problem is solved, however automation in this 

area is limited. Whilst, in many applications, the direct linear transform (DLT) (see 

section 4.3.3.), the essential matrix (originating from the principles of stereo 

geometry) and the spatial similarity transform can provide sufficient solutions, bundle 

adjustments offer highly robust solutions with full statistical analysis which is critical 

to photogrammetric processing and assessment.  

 

2.1.2. Computer vision 

Introducing computer vision the following statement is chosen: 

 

Computer vision has at least two aspects. It is an engineering discipline aiming at 

working solutions and it is a natural science discipline aiming at understanding the 

human visual system. 

 

Computer Vision and Remote Sensing - Lessons Learned (Foerstner, 2009) 

 

Computer vision is a field strongly connected with areas of mathematics and 

computer science and loosely connected with physics. It focuses by concept on the re-

invention of silicon-based vision to imitate or even replace biological vision. 

Geometric computer vision refers to the description of the way the appearance of 

objects changes when viewed from different viewpoints as a function of the object’s 

shape and the camera’s orientations (Hartley & Zisserman, 2004a). Computer vision 

presents a close relation to the fields of image processing, pattern recognition and 

scene analysis (Trucco & Verri, 1998). In Gruen (1996) it is stated that computer 

vision addresses the theory and fundamental algorithms of image and scene analysis 
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whereas machine vision is linked with the sensor models and the associated systems 

including hardware issues. Horn (1986) specifies that the central issue of machine 

vision is to generate a symbolic description (output) from one or more images (input) 

as illustrated in Figure 2.2. 

 

 
 

Figure 2.2: A machine vision system’s task (source: Horn, 1986). 

 

In practice, 3D computer vision shares one common task with photogrammetry and 

this is geometry. Its main goal is to compute 3D properties of the world from image 

sequences, namely recovering the cameras pose and 3D structure of the scene 

(structure from motion problem). The studied scenes can be geometric in shape and 

position (static) or include moving parts (dynamic). The typical norm is to utilize 

uncalibrated cameras particularly where there is no a priori knowledge about the 

camera (unknown internal camera geometry or interior orientation) or the cameras are 

equipped with zoom optical systems. For example, in robotics applications, a robot 

may be moving while zooming and unzooming in the absence of any internal or 

external camera parameters. The key advantage of employing uncalibrated cameras is 

that they allow exploitation of projective geometry in full.  In computer vision the 3D 

to 2D mapping is expressed as a linear mapping of homogeneous coordinates
3
. 

Solutions based on linear systems are employed with the DLT method being the most 

straightforward solution (see section 4.3.3.). Regarding minimal solutions more robust 

techniques are usually employed. In the context of computer vision-based strategies, 

self-calibration starts from uncalibrated cameras aiming on a projective or better an 

upgraded subsequent Euclidean reconstruction. Algorithmic performance is usually 

assessed with error analysis. 
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2.1.3. Comparison of photogrammetry and computer vision 

Photogrammetry and computer vision present a common interest in geometry and 

statistics. Close range photogrammetry usually involves highly controlled imaging 

situations with known camera calibration (although this is not the case in intelligence 

applications) and concentrates on a consistent global geometric description of objects. 

Computer vision on the other hand is more flexible regarding imaging geometries and 

implementation of uncalibrated cameras but usually achieves lower accuracy levels. 

However, in consideration of the average projection error this is small compared to 

the projective error from an incorrect calibration model, for example. Moreover, 

computer vision is view-centred based on algebraic solutions utilizing homogeneous 

coordinates. It is fast (real time applications) utilizing linear-based algorithms at the 

expense of precision. Common application paradigms are robot navigation as well as 

control of autonomous vehicles. On the contrary photogrammetry is world-centred, 

usually based on robust, error model propagated solutions aiming at high precision 

object measurements. Object measurement and performance evaluation of 

photogrammetric approaches usually require assessment over high order precision 

reference measurements (with the establishment of benchmarks as an example). 

 

2.2. Applications examples 

It is reiterated here (see section 1.2.) that as far as affine multi-view modelling is 

concerned the developed approach can be extended towards its application in any 

field that focuses on fine object detail measurement such as industrial metrology, 

cultural heritage and medicine, typical application areas of close range 

photogrammetry. Within this scope, such application examples are subsequently 

given. Particularly these are supported in the context of providing some cases that 

could potentially offer their measurement data acquired for application of the method. 

The measurement data reported here have been acquired with passive (e.g. cameras) 

or active (e.g. laser scanners) systems, as follows. 

 

                                                                                                                                            
3
 Homogeneous coordinates represent a point in 3D as a four-vector X=(X,Y,Z,T)

T
 which represents 

the point (X/T, Y/T, Z/T)
T
 in non-homogeneous terms and in image space a three-vector x=(x,y,t)

T
 

representing the point (x/t, y/t)
T
 in the associated non-homogeneous representation.  
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2.2.1. Spatial measurements with passive systems 

In close-range engineering applications it is often the case to select the tools 

(hardware and software) and engineer the object of interest to make it compatible with 

the available measuring procedure. Figure 2.3 illustrates such a measurement example, 

where sparse image data are required for the purpose of digital image recording. In 

particular, the image on the left illustrates a geometric object with distinctive digitized 

natural details, whereas the image on the right shows a 3D calibration structure with 

coded and retro-reflective targets that cover an equivalent measurement volume in 

3D. 

 

  

Figure 2.3: 3D object measurements. Measurement object of constructivist sculptor Naum 

Gabo (left) and calibration object of UCL laboratory (right) (images supplied by Tate Britain, 

October 2007). 

 

In this example (see Robson et al., 2008) the object of interest is a geometric 3D 

structure with key characteristics being the object’s transparent and plastic material 

which primarily mean that no natural features (textured areas) can be utilized for point 

identification and measurement. Yet, the object’s physical geometry; that is geometric 

sections and edges (linear discontinuities in intensities values) could make it ideal for 

methods that for example utilize linear-based processing (Heuvel, 2003). For 

derivation of a sparse point-cloud with photogrammetric processing, the Hasselblad 

H2D and H3D were employed. These high resolution systems offer an analysis of ~39 

M pixels (pixel size: 6.8μm and format: 7,216 x 5,412 pixels). Both objects of interest 

and calibration volume were located on a turntable, illuminated with controlled lights 

and marked with purpose-built artificial white markers, retro-reflective and coded 

targets (see section 3.3.1.) in order to achieve high contrast measurement features in 

image space. As a result the objects were imaged from a systematic range of 
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viewpoints including subsets of rolled images about their optical axis (imaging range: 

~0.5cm). Data processing has been performed with a set of 3D technologies (cameras 

and laser scanners) and available software tools (VMS 8.0 and Geomagic Studio 7.0) 

that have been applied for the purpose of 3D measurement. Consequently, the applied 

multi-image bundle adjustment resulted in sparse point-cloud estimation, providing 

calibration, orientation and measurement parameter estimation as well as associated 

precisions (3D target precision= ~15.8μm; relative precision for the image network= 

~1:40,000). In this particular selected example the object’s lack of natural textures as 

well as the combination of data acquisition with the data processing chain (based on 

commercial systems) precluded the followed methodology from delivering fully 

textured 3D models. The main limitation of this approach was the conjunction of the 

noisy laser point data (given the object’s transparent surface) together with the 

registration mismatches (due to software inability to handle 3D registration between 

different coordinate systems). 

 

2.2.2. Spatial measurements with active systems 

Quality assessment of small or large industrial products, monitoring and recording of 

historical monuments or organic objects in medicine and multimedia or realistic 3D 

models for virtual modelling in archaeology and heritage are some of the relevant 

applications where active laser sensors are employed. Such spatial measurements 

focus on the modelling of clouds of points in 3D delivering geometry or intensity 

values. The modelling procedure is bound to a set of processing steps (registration, 

modelling, texturing, visualization) that at each stage can present key deficiencies. A 

problem of prior significance is the 3D to 3D registration mismatches due to 

limitations in standard or commercial approaches usually based on a 3D similarity 

transform. In most cases such a transform is implemented with strategies based on the 

iterative closest point (ICP) algorithm and modifications (Besl & McKay, 1992). 

Systems utilized for spatial data processing are generally classified as triangulation or 

time of flight. Triangulation-based systems are applicable in ranges varying between 

0.1-1m and their operational principle relies on the projection of a light spot or profile 

onto an object’s surface which is subsequently recorded by one or two CCD cameras. 

Time of flight systems are applicable in ranges between a few centimetres to several 

kilometres and they record the range to the object by the estimation of the time that 
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light needs to travel from the sensor to the object and return (roundtrip). A relatively 

recent overview of typical active systems can be found in the literature (Blais, 2004). 

 

The case example given here demonstrates a set of data acquired with a Metris 

handheld CMM
4
 laser scanner. Figure 2.4 illustrates an experimental alabaster 

sculpture scanned with the Metris laser scanner and its derived raw point cloud which 

has been visualized in Raindrop Geomagic software (Geomagic Studio 7.0, 2006). 

Another form of data has been acquired and presented in the same figure where a 

wooden object has been scanned with the same system and subsequently triangulated 

providing a crude visualization of a local detail of the object (visualized in the 

Pointstream 3D Image Suite software). 

 

 
 

  

Figure 2.4: Laser scan data. Point cloud of alabaster sculpture (top) and triangulated irregular 

network of wooden object (bottom) (data acquired in May 2006). 

 

The Metris tool is a triangulation system which hosts a red laser light (wavelength 

670nm). It projects a profile line (2D) by means of a CCD camera which forms an 

angle of 30
o
 to the laser plane. The returned reflection is a function of the object’s 

surface as well as the intensity of the laser line. It is particularly important to note that 

there exist particular measures that aim on system acceptance and reverification of 

                                                 
4
 Metris handheld CMM hosts the LC50 laser scanner. The scanner has a FOV 50mm, a data 

acquisition range of 100 mm and collects 19,200 points per second.  
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such optical 3D measuring systems relying on measurements of calibrated artefacts. 

As an example the three dimensional length measurement error which is evaluated 

from the difference between measured and calibrated distances between two 

distinctive points is reported. Specifically, the definition of the quality parameter 

length in such measuring systems is similar to that in ISO 10 360-2
5
, which is now 

monitored in the guidelines VDI/VDE 2634
6
 (see section 4.7.). Problems encountered 

with such systems are related to the sampling (see section 2.2.4.3.) and resolution of 

the data points as well as data voids due to surface occlusion problems. In order to 

generate clean, complete and registered data from scanning systems significant post-

processing is required.  

 

2.2.3. Related measurement examples 

In the context of covering some case studies related to close range object 

measurement and applications this section reviews key paradigms that can be found in 

the literature. 

 

Gruen et al. (2003) and Gruen et al. (2001) follow a data processing strategy 

(including phototriangulation, image matching for surface model generation, point 

cloud editing and view-dependent texture matching) applied into particularly difficult 

situations regarding surface structure and complexity with the ultimate goal being the 

production of textured 3D models. Whilst the authors show that their method is robust 

for datasets sensitive to blunders, the employed image matching method presents 

failure cases in imagery with large scale differences. Thus the authors applied a 

weighted averaging scheme to reduce the effects of radiometric differences in 

adjacent images. Pollefeys et al. (2003) and Pollefeys et al. (2004) proposed a very 

similar 3D recording approach employing an uncalibrated approach (a change in the 

focal length and remaining interior parameters in the video sequences is allowed) 

based on pixel matching, bundle adjustments and 3D model texturing. Results prove 

                                                 
5
 Established in 1994 the international standard ISO 10 360 ‘Acceptance and reverification tests for 

coordinate measuring machines (CMM)’ describes test procedures for CMM applications including 

length measurement, form inspection, use of rotary table etc (ISO10360, 1994).  
6
 The VDI / VDE 2634 guideline was drafted by the technical committee “Optical 3D measurement of 

the Society for measurement and automatic control (GMA) and by the working group ‘Close Range 

Photogrammetry’ of the German Association for Photogrammetry and Remote Sensing (DGPF). 
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that incorrect camera motion and calibration computations may enforce a global bias 

on the model reconstruction. Yet the method can deal with object complexity which is 

key, particularly where a high degree of realism is demanded, and can therefore be 

used as a scale model for generation of reference measurements (derivation of 

absolute localization and scale). Moreover, Gruen & Acka (2005) treat the registration 

problem as a surface matching task which in essence is based on a generalization of 

the least squares matching process allowing for the analysis of the final quality 

through statistical tools. A recent overview of the registration methods highlighting 

some key problems regarding mainly the 2D to 3D and 3D to 3D based approaches 

for object measurement in the close range can be found in (Remondino et al., 2009). 

Finally, Betham et al. (2009) present a 3D free-form surface measurement system 

built upon a strategy employing stereo-image matching with focus on the 

measurement of dynamic surface deformations. The implemented strategy is flexible 

in that it handles the problem of visibility and occlusions on the knowledge of object 

shape and position in 3D. Common factors to the success of the employed approach 

are related to the application’s requirements (specified point density and accuracy) 

and limitations (object size, surface condition and surface characteristics like shadows 

and occlusions). 

 

2.2.4. Typical problems in close range object measurement 

Considering the referenced applications examples (see section 2.2.) it follows that the 

problems dominating close range object measurement have their source in the 

physical formation process. The image formation process starts from a light source 

which emits light energy falling onto an object’s surface (irradiance given in Wm
-2

) 

and is back reflected to act as an incoming ray (radiance given in Wm
-2

sr
-1

) through 

the angular aperture of the optical system hitting the image plane where the camera’s 

photosensitive device is located. Figure 2.5 illustrates the fundamental imaging process 

drawing a vector of incident light (I), the surface normal vector (N) as well as the 

vector of which forms the direction of the scene irradiance (R) at an object’s surface 

point (P). For example the radiance of opaque objects (e.g. mirror and carbon black) 

that do not emit their own energy depends on the strength, position, orientation, type 

(point or diffuse) of the light sources, and ability of the object surface to reflect 

energy as well as the local orientation of the surface (with relation to the surface 
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normal). Radiometry is fundamental to the imaging procedure, however it is regarded 

as complex and numerically instable. The reader is pointed to further literature for 

detailed coverage of the critical concepts of radiometry and associated methods (see 

Sonka et al., 1999c as an example) as here the main approach and hence research 

focus is driven by geometry. 

 

 

Figure 2.5: Illustration of the fundamental imaging process.  

 

The main practical problems in the imaging process can arise from the system’s 

optical parameters (e.g. lens, focal length, FOV and angular properties in the case of a 

photogrammetric camera), photometric properties (e.g. illumination, reflectance and 

physical effects of the sensor) and geometric parameters (e.g. camera projections, 3D 

pose and geometric internal distortions). Additionally to these, equally fundamental 

factors include the discrete nature and quantization of the intensity scale (see section 

3.1.1. for imaging sensors). Viewing projections, scale and sampling are three 

concepts that are fundamentally linked with the geometric transformation between 2D 

and 3D space (see sections 2.2.4.1., 2.2.4.2. and 2.2.4.3.). A key factor is however 

how these properties interact with real objects that can often present high geometric 

complexity, occlusions, shadows or surface reflections. 

 

2.2.4.1. Viewing projections 

A digital image is a discrete 2D array of numbers (light intensities or distances). 

When considering the imaging sensor, besides its geometric and radiometric 

characteristics, a prior factor that identifies data processing and method 

implementation is projection. In geometric terms projection is the result of the image 

acquisition process. Following the classification of cameras after Mugnier et al. 
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(2004), and assuming that the image to object space correspondence is realized 

through a definite projection center, the following definitions are given (see Figure 

2.6). An Euclidean camera, the typical camera met in photogrammetry, is generally 

identified with a principal point and it can be reduced to a normalized camera which is 

given with a principal distance c=1 and the rotation matrix being the identity matrix 

(R=I). An ideal camera is subsequently a camera ascribed with its camera constant 

considering that the image coordinate system coincides with the principal point. 

According to the same author, the basic property of an affine or projective coordinate 

system camera is the invariance of straight lines including optionally a principal point 

offset, a shear and a non-isotropic differential scaling. Finally the concept of the 

general camera is introduced as a camera that does not preserve any straight lines and 

additional parameters may be incorporated for modelling additional sensor distortions.  

 

 

Figure 2.6: Camera models (classification follows Mugnier et al., 2004). 

 

Imaging an object with a perspective based sensor will in general introduce geometric 

distortions (due to convergence imaging geometries, large object surface slopes and 

differences in depth) (see section 3.2.2.) which can be significantly large in the close 

range and will necessitate appropriate sensor modelling. The alternative affine sensor 

has a projection centre at infinity. It is the generalization of orthographic, scaled 

orthographic or parallel projection cameras and it realizes the image to object space 

correspondence minimizing perspective distortions. However, this projection does not 

connect image and object spaces in a one-to-one relation; the projection is realized 

through a constant scale factor. In fact a real affine camera can include identical 
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physical parameters when a natural camera is considered (Hartley & Zisserman, 

2004b) (see section 3.4. for a detail reference of camera models). 

 

Figure 2.7 provides an overview image of an alabaster object together with two close-

ups of a selected object detail and their associated projections when imaging a 3D 

volume (drawn as a cube). The test alabaster object has been imaged with one affine 

and one perspective sensor from an identical range (~175mm). The employed affine 

system in this case is a Sony DFW-SX900 (pixel size: 4.78μm, format: 1,024x768 

pixels) fitted with an optical telecentric system (MVO® TMLTM/0.16x lens) whereas 

the perspective system is comprised of the same Sony sensor fitted with a Fujinon, 

f:16mm lens (see sections 3.1.2. and 3.1.3. for technical systems characteristics).  

 

  

 

 

Figure 2.7: Image data of an alabaster sculpture. Affine and perspective image sensors (top 

left and top right respectively) and corresponding projections (bottom). 

 

Considering the Sony sensor characteristics as well as the need to establish an 

identical imaging viewpoint, these views illustrate the differences in object coverage 

and perspective distortion between the two lens types. It is evident that the affine view 

has a significantly constrained footprint as well as depth of field which would pose it 

impractical in instances of measuring objects of large sizes exceeding for example the 

viewing capabilities of the utilized sensor. Particularly the selected detail covers an 

area of 41.67mm x 31.28mm (blue framed) when imaged with the perspective sensor 

and it is reduced to 23.81mm x 17.87mm (green framed) when this view is acquired 
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with the affine sensor (complete object covers a 3D volume of 246mm x 223mm x 

40mm). As a trade-off the parallel projection image can be apparently ideal for local 

object modelling due to its uniform magnification factor. As can be seen, the 

perspective sensor (besides its geometric distortion particularly at the edges of the 

image) can not enhance very fine object details (small in size) that could be otherwise 

modelled with an affine camera. An example of objects presenting very fine details 

are given in (Remondino & Zhang, 2006), where it has been shown that stereo or 

multi-image least squares matching approaches can be applied but again these are 

based on the established perspective sensor geometry. 

 

2.2.4.2. Scale 

Scale is key factor in every projection problem particularly recovering the 2D to 3D 

image space to object space relation. In close range object measurement it is usually 

the case to present the inability to recover 3D scaled models or link 3D model space 

with a 3D object space coordinate system. In pure geometric terms scale is in essence 

the product of the transform acting between different processing spaces. Scale factor 

calculation for perspective sensors is given by the ratio 1 / k = c / h (where: k= scale 

factor, c= camera constant and h= range measured from the mean object’s depth).  

 

To illustrate image scale in the 2D image formation process the typical 2D system is 

illustrated as follows (see Figure 2.8). Origin of this system is the upper left corner 

whereas the restitution of the relation between the image space coordinate systems is 

given in Appendix A. 

 

 

Figure 2.8: Digital image coordinate system. 
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CCD based cameras (see sections 3.1. and 3.2.) generate a NxM numerical array of 

pixels (where: N= rows and M= columns). The location of a point in image plane can 

differ when this is measured with CCD elements (image pixels). More precisely it is 

noted that n/N and m/M (where: n= horizontal light sensitive photosensors and m= 

vertical light sensitive photosensors, in a nxm CCD rectangular grid) are not the only 

parameters that are held responsible for a different scaling of the image with respect 

to the CCD array in both horizontal and vertical directions. The same effect is realized 

due to the ratio of the horizontal to vertical sizes of the CCD array (Trucco & Verri, 

1998). This parameter is the aspect ratio or affinity which is usually modelled as the 

in plane distortions (see section 3.2.2.3.). 

 

Within a system, scale recovery relates to the design of the employed algorithms to 

recover scale. For example 2D approaches are vision-based and 3D approaches are 

graphics-based (see section 2.1.). In image analysis scale is highly important 

especially in methods based on edge detection (see for example the typical Canny 

edge detector) or multiple scale description (Sonka et al., 1999a) specifically in 

strategies that make use of the reduced resolution datasets (image pyramids). 

Operations on the image scale space (Koenderink, 1984) apply Gaussian filters with 

varying standard deviations which can be very useful to extract features by isolating 

them for example at lower resolutions (processing at individual description levels) 

and subsequently locate then at higher layers (Agouris et al., 2004). Implementing 

image pyramids in image matching has already been discussed in Baltsavias (1991). 

To place scale in context particularly implementation on a fine to coarse analysis 

basis, it is pointed that in the direction of decreasing value of standard deviation large 

scale events are localized (Sonka et al., 1999a). Shape invariants (e.g. cross ratio) and 

invariant descriptors are beyond the scope of this text. The reader can find more 

information on these topics in the computer vision literature (e.g. see Sonka et al., 

1999b for an overview). 

 

2.2.4.3. Sampling 

In the spatial quantization process of image formation (see section 3.2.1.1.) whilst 

uniform aspect ratio is usually assumed the resultant pixels will in general be 

rectangular. The sampling theorem specifies the highest spatial frequencies vc 
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(vc=1/2d, where: d= distance between adjacent CCD elements) whereas the diffraction 

theory states that spatial frequencies vc’ exceeding vc’ = α /λf (where: α= linear size of 

the angular aperture, λ= wavelength of light, f= focal length) are filtered out not 

contributing to the spatial spectrum of the image. With spatial frequencies vc nearly an 

order of magnitude less than vc’, aliasing effects can be present in the case where the 

imaged pattern contains spatial frequencies exceeding vc (Trucco & Verri, 1998). In 

detail the concepts of image formation and sensor characteristics will be given in the 

subsequent chapter. 

 

2.3. Summary 

In summary this chapter introduces the reader to non-contact object measurement in 

the close range. First the areas of interest, in particular photogrammetry and computer 

vision, with some key principles, methods and solutions have been introduced. 

Subsequently, some application examples are reported, firstly linked with case studies 

from the current literature, as well as some ad-hoc to this work are reported at a 

following stage. These pose the context of the developed method in relation to object 

measurement applications. In addition typical problems that occur in relevant 

situations (characterized by the viewing projections, scale and sampling) are 

illustrated. 

 

 

 

 

 

 



 

3. Digital close range image formation 

Implementing image measurements on digital images requires that the background to 

the imaging process is firstly introduced. This chapter provides a review of the main 

concepts, principles and methods that were utilized as a basis of this work, reviewing 

or pointing where necessary to the related literature. 

 

Although there exist different sensors modalities (photosensitive materials with 

different spectral sensitivities) an image in the context of this text is generated by 

conventional optical means sensed in the visible spectrum (λ= 400-700 nm). The 

camera systems (see section 3.1.) are decomposed with the description of CCD sensor 

technology, close range cameras and machine vision optics. The output of the image 

formation process, the digital image (see section 3.2.) is inherently linked with the 

employed sensor. Its geometry can be reduced as a result of the internal geometry of 

the optical system in combination with physical instabilities within the camera body. 

The resultant digital image is then the fundamental source where measurement 

methods (see section 3.3.) are utilized for data generation and initialization applied to 

artificially signalized point-based data structures. The chapter closes with two image 

projection models (see section 3.4.): the projective and the affine cameras; the 

investigation of which introduces the central topic of this work. 

 

3.1. Digital camera systems 

Developments in sensor technology have resulted in electronic imaging systems that 

utilize CCD and more recently Complementary Metal Oxide Semiconductor (CMOS) 

-based sensors in combination with powerful local Central Processing Units (CPUs) 

to increase performance, particularly flexibility at a lower cost. As a result, digital 

camera systems open new applications in the domain of close range imaging. Figure 

3.1 illustrates the basic functionality of an imaging system outlining its main units. 

The generated analogue image collected at the sensor is converted into digital form by 

an analogue to digital (A/D) conversion taking place within the camera in which case 

a digital interface is utilized (RS422, camera link, USB, firewire protocol). 
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Figure 3.1: Functionality of an electronic imaging system (source of schematic structure: 

Schenk, 1999). 

 

3.1.1. Imaging sensors 

CCD technology was originally developed in 1970 as a memory device by Boyle with 

digital imaging systems based on CCD sensors effectively utilized in the eighties 

when they replaced vidicon tube cameras (Smith, 2009). Since then, CCD electronic 

cameras have been routinely utilized in camcorders, electronic still cameras to the 

more recent machine vision and scientific specific systems. 

 

3.1.1.1. CCD Principle of operation 

Following the comprehensive studies of Lenz (1989), Luhmann et. al. (2006), Robson 

& Kyle (2004), Schenk (1999) and Shortis & Beyer (1996) the operational principle 

of CCDs is described here. Solid state cameras utilize a sensor composed of 

photodiodes (with a positive region beneath the surface layer) or Metal Oxide 

Semiconductor (MOS) capacitors (with a metal or polysilicon electrode layer). The 

building block of the sensor is the semiconductor substrate which is silicon including 

a silicon dioxide insulator layer at its top surface (see Figure 3.2). Light photons with 

greater energy than the band gap energy of the semiconductor can be absorbed below 

the sensor’s surface (depletion region) generating an electron-hole pair at each sensor 

element (photosensitive detector). The electrons are attracted by the positive charge 

and accumulated in the depletion region while the mobile holes move towards the 

electrical ground. The charge accumulates at opposite sides of the insulator and the 

actual charge is proportional to the number of absorbed photons under the electrode. 

In the case of lower energy photons (that exceed the band gap with λ= 1.1μm 

wavelength) these may penetrate the depletion region and absorbed outside resulting 

in a potential that the electron-hole pair may recombine before reaches the depletion 

layer noting that not every photon generates an electron that is accumulated at the 

capacitor side. Hence, a CCD array requires an increased number of capacitors.  

Image capture A/D conversion Short term storage Signal processing

Image transfer Archiving Networking
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Figure 3.2: The fundamental MOS structure (left) and a CCD sensor element (right). 

 

Outside the spectral range of λ= 400-1,100 nm silicon presents an opaque behaviour 

in ultraviolet light and is transparent to infrared. The intrinsic absorption on the 

material is limited with optimal energy to liberate electrons and therefore detect 

radiation in the visible and near-infrared. Dark-current is the result in background 

noise due to thermal effects. Longer wavelength radiation penetrates at deeper levels 

allowing impurities to be introduced within the sensor. The generated number of 

photons is linearly related to the number of electron-hole pairs and hence to the 

charge level. Each sensor type has a finite potential well capacity with the result that 

charge can overflow into the neighbour sensor elements causing blooming (see 

section 3.1.1.2.). This is stopped by isolation of the sensor rows by electrodes, oxide 

steps or channel stops. Sensor elements are typically arranged as one dimensional 

(1D) or 2D arrays. Line sensors connect the active sensor element to a serial read-out 

register to output the generated charge. In contrast, bilinear arranged CCD lines can 

be coupled with two read out registers. The most common matrix-based sensors 

transfer principles are the frame, full frame, interline and time delay integration 

methods (see Figure 3.3). 

 

   

Figure 3.3: CCD sensors architecture (source: Luhmann et al., 2006). 
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 Frame transfer sensors (FT): Are composed of an active array that accumulates 

charges, a storage zone and a horizontal read out register. Charges are moved 

vertically from the sensor to the storage area which is read out serially per line 

to the register. This architecture often utilizes a mechanical shutter that covers 

the sensor during readout to reduce smear (continuous charge integration 

during read out). 

 Full frame transfer sensors (FFT): Are a variation of the FT sensors where the 

sensor consists of an active array (imaging area) and a serial read out register. 

FFT sensors may present significant vertical smearing due to the need for long 

transfer lines. 

 Interline transfer sensors (IT): Comprise one column of active detectors with a 

column of transfer register. The accumulated charges in the sensor columns 

are shifted into the transfer register columns and then read out serially 

(horizontal register). The structure of IT and the discrete nature of sensor 

elements prevent interlacing. Additionally aliasing (high frequency patterns 

imaged at lower frequencies) is reduced by increasing the fill factor of each 

pixel (for example by utilization of microlenses). 

 Time delay and integration (TDI): This sensor follows the forward motion 

compensation logic where the sensor allows electronic linear motion 

compensation. The charge is transferred during an integration interval where 

charge is accumulated continuously during the next interval. On completion 

sequential image read out is performed. 

 

The read out method of a frame array based method can be interlaced as traditionally 

used in television systems where the frame consists of odd and even fields where each 

of these correspond to odd and even lines.  Contrary to the interlaced method 

progressive scan sensors record the whole frame at one instant. Progressive scan 

sensors present higher vertical resolution in the absence of interlace artefacts. 

 

3.1.1.2. CCD main characteristics 

The basic attributes that characterize image sensor performance are related to image 

quality (see 3.2.1.2.), and its reduction mainly due to spurious signals with various 

effects. For example the more dominant effects can be the dark current (thermal 
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generation of electrons generated on the CCD both during illumination and read out), 

blooming (intense light falling causes the generating photons to spill over 

neighbouring capacitors), smear (given by the ratio of the change in brightness above 

or below a bright area which covers the 10% of the sensor extent in the column 

direction) and so forth. The most significant parameters that characterize a sensor are 

summarized as follows (Edmund, 2006; Shortis & Beyer, 1996): 

 

 Quantum efficiency: Is the ratio of the electron flux over the incident photon 

flux and it is characterized by the spectral sensitivity. It depends on the energy 

of the incident photon (dominated by the wavelength λ), the material (usually 

silicon) and method utilized to collect the freed electrons. 

 Resolution: Expressed by the Modulation Transfer Function (MTF) (given by 

the contrast transfer against the resolving power, expressing the degree of 

contrast degradation with spatial frequency) or the Point Spread Function 

(PSF) (showing the dispersion of an imaged point of light through an imaging 

lens). The limiting resolution of a system can be identified by imaging test 

targets of varying or continuous series of frequencies. 

 Fill factor: Is the ratio of the obtainable to the theoretical power or the ratio of 

light sensitive area to the total pixel size. 

 Spectral response: Directed by the quantum efficiency of silicon 

(semiconductor material) and represented as a step function in the ideal case. 

The spectral sensitivity of a CCD sensor can be extended by back side 

thinning and illumination (astronomic applications). 

 Linearity: Expresses the ratio of the maximum departure from linearity over 

the full range of signal level to the maximum signal level. 

 Signal to noise ratio (SNR): Stated as the ratio of the signal and its noise. It is 

expressed in decibels as SNRdB= 20 log10 (s/ζs) (where s is the signal 

amplitude and ζs is the standard deviation of the signal expressing the noise 

caused by photon shot noise, dark current and circuit noise). High SNR is an 

indicative measure of ‘good’ image quality. 

 Dynamic range: Defined as the ratio between the peak signal level and the 

system noise level. Given their large sensor element capacity, FT CCDs with 
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large sensor elements will have greater radiometric sensitivity (increased SNR 

and dynamic range).  

 

3.1.1.3. CMOS sensor overview 

An alternative sensor technology is the CMOS sensor. Contrary to the CCD sensor, 

where each pixel’s charge packet is transferred sequentially to an output structure for 

charge to voltage conversion, buffering and readout, in a CMOS imager the charge to 

voltage conversion is implemented within each pixel. This is the key difference which 

differentiates both technologies with relation to the sensor architecture, its advantages 

and shortcomings. Both CCD and CMOS sensors are equally reliable in consumer and 

industrial applications. The general functionality of CMOS image sensors relies on all 

circuit functions being positioned on a single integrated circuit chip. Timing, signal 

processing A/D conversion interface are placed on the imager chip. As a consequence, 

CMOS-based sensor systems have a reduced size. Main features constitute their 

inherent anti-blooming ability, potential to readout Regions Of Interest (ROI) 

(windowing), increased speed, operation with a single bias voltage and clock level 

and less power consumption (Blanc, 2001; Butler, 2003; Litwiller, 2001; Litwiller 

2005; Seitz et al., 1995). In contrast, CCD technology is characterized by high 

quantum efficiency, low dark current, reduced pixel size, reduced operating voltages 

(power dissipation) and improved signal handling with significant improvements 

regarding performance, power consumption and sensor sizes. 

 

The cost of CMOS imagers (silicon wafer fabrication material) can be considered 

with relation to integration, adaptability and flexibility. The general acceptance that 

CMOS imagers perform better is not always the case at high speeds and cost needs 

always to refer to the application’s purpose. With CCD imagers dominating in general 

purpose applications as well as in high performance applications (scientific, industrial, 

medical, security and aerospace), CMOS are regarded as consumer specific devices. 

CCDs can also be adjusted with relation to their functionalities (readout, speed, 

dynamic range, digitizing depth and so forth) to fit the application’s requirements. 

CMOS-based sensors can be considered as less expensive than CCDs when judged as 

systems regarding circuit functions (timing, biasing, analog signal processing, 
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interface and feedback circuitry) but not at a component level for the image sensor 

function itself. 

 

3.1.1.4. Colour methods 

Acquisition methods for colour images are generally classified as spatial multiplex, 

parallel acquisition, temporal multiplex as well as methods where the sensor is of true 

colour type. The colour cameras utilized within this work are of the first listed type; 

hence greater emphasis is given (see section 3.1.2.1. for camera’s systems 

characteristics).  

 

 Spatial multiplex system is a single exposure system. It utilizes strip or mosaic 

colour filter arrays (CFA) with most common the Bayer mosaic mask, 

typically arranged as GRGB or RGGB. Area sensors are based on pixel 

interpolation where the digital value of the colour band sensed by the photosite 

is assigned directly from the received signal, the other two colours required to 

form the red green blue (RGB) images are derived from the surrounding 

pixels. However, subsequent demosaicing and resampling of pixel intensities 

can reduce image quality. 

 Parallel acquisition system is a single exposure system. It is based on a colour 

filtered prism arrangement or beam splitter that simultaneously projects 

incident light onto three sensors with each sensor registering intensity of one 

colour channel. The generated analogue signals are digitized in parallel. Based 

on the beam splitting principle, these systems are freed from the pixel 

interpolation method at the cost of increased complexity and physical size. 

 Temporal multiplex system is a three exposure system. Colour is recorded 

employing a single sensor introducing a red, green or blue filter into the 

optical system. Temporal sampling of the signal generates the digital RGB 

equivalent of the three colour bands. 

 True colour sensor is a single exposure, single chip system. Foveon X3 sensor 

is a CMOS high resolution colour sensor (Foveon, 2009). It consists of three 

stacked layers each of which has a different spectral sensitivity curve noting 

that different wavelengths of light penetrate silicon at different levels. The 

processed signals are registered to generate the RGB colour. 
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3.1.2. Close range cameras 

The selected camera system is strongly related to the application’s requirements.  The 

Kodak DCS (Digital Camera System) series can be considered as the first high image 

quality single lens reflex (SLR) type cameras employing an area array CCD sensor 

since the early nineties (Graham, 1998). Following the technological developments, 

small format digital single lens reflex cameras (DSLR) with matrix sensors and an 

integrated to the camera’s body storage device are commonly deployed. Close range 

systems can be video (resolution: 780 x 580 - 1,900 x 1,100 pixels), high resolution 

(resolution: 1,000 x 1,000 - 4,000 x 4,000 pixels) or scanning (resolution: 3,000 x 

3,000 pixels - 20,000 x 20,000 pixels) cameras (Luhmann et al., 2006). 

 

3.1.2.1. Systems characteristics 

This section reviews the systems characteristics of three CCD-based digital camera 

systems that were utilized within this research work as illustrated in the following 

Table 3.1. In particular the listed camera systems were employed for the generation of 

datasets utilized for initialization and measurement (Nikon D100 and Kodak 

Megaplus ES1.0 camera systems) as well as for method testing and analysis (Kodak 

Megaplus  ES1.0 and Sony DFW-SX900 camera systems). 

 

 Camera system 

Nikon D100 Kodak Megaplus ES1.0 Sony DFW-SX900 

   
Sensor Nikon DX CCD KAI-1010M CCD ½ CCD 

Transfer, readout IT IT, progressive scan IT, progressive scan 

 

Colour filters Primary GRGB 

[Bayer mosaic] 

Monochrome Colour 

[Bayer mosaic] 

 

Effective pixels 3,008 x 2,000 1,008 x 1,018 1,280 x 960 

Unit cell size (μm) 7.8 x 7.8 9.0 x 9.0 4.65 x 4.65 

Bit depth 12 8 / 10 24 

Frame rate (fps) 

(single channel / 

dual channel) 

3.06 / 5.09 15 / 30 3.75 / 7.5 

Interface USB 1.1 RS-422 IEEE 1394 - 1995 

Table 3.1: Synoptic specifications for CCD-based close range camera systems. 
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The Nikon D100 DSLR camera (introduced in 2002) is appropriate for Nikon F 

mount lenses. It is equipped with a 23.7mm x 15.6mm 12-bit RGB CCD sensor 

rendering 6.1 million effective pixels. Data transfer is based on the interline method 

and the GRGB Bayer mosaic filter (see 3.1.1.4.) is utilized for generation of colour 

imagery (Nikon 2002; Nikon, 2009). As an example of the rapid development in 

DSLR cameras technology, the Nikon D3X 24.5 megapixel camera distributed by 

Nikon in late 2008 is given (see Figure 3.4 left). This camera system is the successor 

of the D3 and D700. Based on a CMOS architecture (sensor size: 35.9 x 24.0 mm, FX 

format, continuous shooting: 5.5 frames per second, lens type: Nikon F bayonet 

mount) its high image quality and good dynamic range render sufficient colour 

accuracy. The second listed camera is the Kodak Megaplus ES1.0 (predecessor of 

Redlake imaging) which is a C mount monochrome video camera. The solid state 

CCD sensor is an interline progressive scan sensor (see 3.1.1.2.) (analysis: 1 M pixel, 

active image area: 9.1 x 9.2 mm) (Kodak, 1996). The camera is utilizing an RS-422 

(Recommended Standard-422) twisted pair bus interface standard for data transfer to 

the host computer. This camera system belongs to the class of high resolution 

Megaplus cameras distributed by Kodak in the late nineties. An example is the Kodak 

Megaplus 1.6i (sensor: Kodak KAF-1600, solid state FFT CCD) (see Figure 3.4 right) 

which is constructed in a rugged, compact design (Robson & Kyle, 2004). Its 1,024 

gray levels (readout method: progressive scan, analysis: 1.6 M pixels, continuous 

shooting: 5.5 fps) and minimal dark current ensure such dynamic range and sensitivity 

that in combination with its square pixels cover the demanding requirements in 

industrial and machine vision applications, particularly when considering the time 

they were manufactured. 

 

  

Figure 3.4: Close range cameras. Nikon D3X (left) and Kodak Megaplus 1.6i (right). 

 

The third camera system is a Sony DFW-SX900 which is a C mount digital video 

colour camera utilizing a ½ type interline progressive scan CCD. Nominal operational 

values for this system are given (pixel size: 4.65μm at full resolution: 1,280 x 960 
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pixels); yet in practice data were captured at a resolution of 1,024 x 768 pixels with 

this sensor (see section 6.2.2.2.). Colour imagery is generated based on the Bayer 

mosaic pattern and there is the ability to adjust the gain of the video signal amplifier. 

Sony’s primary colour filter CCD for colour reproduction and its square pixel CCD 

eliminates the need for aspect ratio conversion in the image sensor (Sony, 2001).  

Figure 3.5 illustrates the typical spectral characteristics curves of the Sony’s CCD 

image sensor in the visible spectrum. Although high speed data transfer rate can be 

realized (IEEE 1394 serial bus interface standard); for the purpose of data generation 

single frame images were obtained. In all three utilized camera systems the raw 

acquired image data were subsequently saved in the camera’s file format as defined 

within the accompanied software.  

 

 

Figure 3.5: Spectral characteristics curves - Sony DFW-SX900 CCD (source: Sony, 2001). 

 

3.1.3. Digital cameras optics 

Optical lenses are a key unit of a camera system. The standard approach is to utilize 

off-the-shelf optics which in most machine vision applications can suffice over their 

customized optics counterparts. The main considerations regarding the selection of an 

optical system are a function of the levels of accuracy and reliability to be directed by 

the application’s purpose. The key factors are related to the FOV (given as a range for 

zoom lenses, angular magnification for lenses working over a range of distances or as 

a fixed value for fixed focal length lenses), the primary magnification (identified as 

the ratio of sensor’s size over the lens’s FOV) and the sensor’s format (specified as a 

maximum format or diagonal that can be covered by the selected lens) which is 

typically identified for the standard 4/3 aspect ratio as 1/4’’, 1/3’’, 1/2’’, 2/3’’ and 1’’ 
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(where ’’: denotes an inch). Additional parameters are the imaging range (measured 

from the front lens’s diameter), resolution and reproduction of contrast levels and 

depth of field (DOF) (specified with a single value from the diffraction limit). 

 

3.1.3.1. Perspective projection lenses 

Most close range optical systems employed utilize standard central perspective 

projection lenses (see Figure 3.6). Their type can vary according to the application’s 

purpose and selected equivalent camera (see 3.1.2.1.). Besides the imaging geometry 

the light source can insert additional geometric distortions (see section 3.2.2.) to the 

image formation process. In this work external electronic ring flash lights, light 

emitting diode (LED) rings and fluorescent high frequency ring illumination (green 

and white) sources were selected to illuminate the scene to be measured. Conventional 

optical systems were selected according to their nominal properties to initialize image 

networks and generate reference measurement data. Table 3.2 summarizes the 

nominal specifications of the utilized camera systems.  

 

  

Figure 3.6: Central projection model. Optical imaging geometry (source: Mugnier et al., 

2004) (left) and principle of collinearity (source: Cooper & Robson, 1996) (right). 
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Model Focal  F# AOV Focus  Mount 

Nikkor AF 28mm 2.8-

22 

N/A ∞-0.25m F 

Fujinon TV 

CF12.5HA-l  

12.5mm 1.4-

22 

1 inch 54
o
13’x42

o
01’ 

2/3 inches 38
 o
47’x29

 o
35’ 

1/2 inches 28
 o
43’x21

 o
44’ 

∞-0.1m 

[A] 

16.07mm 

[B] 

-101mm 

[C] 

C 

Kern Switar 

H16RX 

No. 1066951 

10mm 1.6-

22 

N/A ∞-8’’ [A] C 

Table 3.2: Nominal specifications of employed optical systems. Table notation: focal = focal 

length, F#= aperture range, AOV= angle of view, Focus [A]= front lens diameter, [B]= back 

focal distance in air and [C]= exit pupil position. 

 

The NikkorAF is a 28mm (fixed focal length) wide angle lens. This early lens model 

is a typical F mount lens featuring a bayonet type suited for Nikon’s 35mm SLR 

cameras. The Fujinon TV lens is a 12.5mm lens and the Kern Switar is a 10mm 

similar C mount, fixed focal length lens (no zoom or autofocus) fitted to 1 inch 

sensors. The lens models utilized here are designed following the retrofocus
7
 

principle, which according to Ray (1988) can result in significant geometric 

distortions when compared to the more symmetric optically short focus lenses.  

 

3.1.3.2. Affine projection lenses 

The non-conventional optical configuration which preserves magnification within the 

DOF is referred to as telecentric and it is usually characterized by its telecentricity
8
. In 

the literature three different types appear; namely image-based, object-based and 

double-sided (bi-telecentric) optics (Lenhardt & Kreuznach, 2006). Whilst most 

commercial lenses are object-based, conventional lenses can be converted to 

telecentric by the insertion of an additional aperture (Watanabe & Nayar, 1997). 

Single-sided telecentric lenses maintain their properties according to their fabrication. 

As an example, in the object-sided case the entrance pupil is located at infinity; hence 

the principal rays enter into the lens in parallel to the optical axis (Konrath & 

Schroder, 2002). The image formation is realized under parallel projection. On the 

                                                 
7
 Retrofocus lenses: Resolve the short focus limitation characterized by the small separation between 

the vertex of the rear element of the lens and the focal plane. They can present problems; especially in 

the case of 35mm SLR type bayonet mounts cameras (Ray, 1988). 
8
 Telecentricity: Determines the amount of the magnification variation within the lens’s DOF at the 

specified imaging range (Melles Griot, 2006). 
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contrary, in the image-sided case the exit pupil is placed at infinity, therefore the 

perspective model is maintained whilst the magnification remains constant with 

relation to the placement of the image detector behind the lens. Double-sided 

telecentric lenses can be thought of as a combination of two single-sided lenses. 

Figure 3.7 illustrates an example of two commercial telecentric optical configurations. 

 

  

Figure 3.7: Telecentric optical systems. Techspec silver series (source: Edmund, 2009) (left) 

and telecetric system for contrast transfer function (CTF) measurements (source: 

Optoengineering, 2009) (right). 

 

Table 3.3 lists the main differences between conventional, perspective and non-

conventional, telecentric imaging configurations. 

 

 Optical system 

 Perspective Telecentric 

Projection centre Finite At infinity 

Scale Variable Constant 

Distortion Geometric (extended model) Insignificant (radial) 

FOV Wide (~f) Narrow 

Processing Bundle adjustment (PG) Geometric SVD / affine (CV) 

Applications Measurement, registration, 

texturing, etc. 

Metrology, inspection 

Table 3.3: Comparison of perspective and telecentric optical systems. Table notation: PG= 

photogrammetry, SVD= singular value decomposition and CV= computer vision. 

 

Telecentric optical systems are advantageous in that they offer minimal perspective 

distortions, constant magnification within the image format, image quality 

enhancement and even illumination. However they do not increase DOF and accuracy 

or correct illumination problems which are inherent to the imaging process. In 

practice, object sided telecentric lenses can be utilized in measurements where the 

image space to object space are correlated up to a scale factor. Specifically, 2D 

checking, image quality improvement are a few of the applied on-line or off-line 

metrological examples. Additionally, telecentric lenses can enhance the performance 
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of centroiding algorithms for target identification and measurement. Image sided 

telecentric optics can be effective in the location of three image planes in colour 

sensors as they result in a uniform image space illumination. The reader is directed in 

the literature for further analysis related to some examples of utilization of telecentric 

optical systems (Ahn et al., 1997; Fournel et al., 2003; Watanabe & Nayar, 1997). 

Within this work, a telecentric optical system was selected to approximate the affine 

sensor model, the investigation and analysis of which is discussed throughout this 

thesis particularly for method testing. The employed system was an MVO® 

TMLTM/0.16x (supplied by Edmund Optics in March 2006) and can be now found as 

TECHSPEC® SILVER series telecentric lenses in Edmund (2009). The specifications 

(see Table 3.4) ensure that the telecentric lens is fitted for a maximum CCD sensor 

format of ½ inch (6.4 x 4.8mm) and that according to the nominal values it realizes 

parallel projection imagery under a constant magnification of 0.16x at an imaging 

range of 175mm, allowing variations within a volume of DOF: ±19.7mm. It presents a 

radial pincushion distortion at the order of 0.3% with a 40mm FOV which is limited 

by the 65mm front lens diameter (for example a field of 1000 pixels will image a 

point 3 pixels far from the optical axis). Figure 3.8 illustrates the system which is 

comprised of an MVO® TMLTM/0.16x telecentric lens mounted on a progressive 

scan monochrome Kodak Megaplus ES1.0 camera. The illustrated telecentric lens is 

characterized by the drawn dimensions (where A: maximum outer diameter= 65mm, 

B: mounting diameter= 30mm, C: length= 191mm, D: mounting length= 50mm, E: 

mounting offset= 43mm and F: filter size= M62x 0.75mm). 

 

Magn. Rg. 

 

Res. 

(image@ F10) 

Telec. Dist. 

(Max.) 

DOF 

(10%@20lp/mm) 

Apert. 

(f/#) 

0.16x 175mm >40%@40 lp/mm <0.1
o 

<0.3% ±19.7mm  @ F10 F6-

closed 

Table 3.4: Specifications for TECHSPEC® SILVER telecentric lens series. Table notation: 

Magn.= magnification factor, Rg.= imaging range, Res.= resolution, Telec.= telecentricity, 

Dist.= distortion, DOF= depth of field, Apert.= aperture (source: Edmund, 2009). 
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Figure 3.8: Affine machine vision system. Kodak Megaplus ES1.0 camera with MVO® 

TMLTM/0.16x telecentric (left) and schematic view of telecentric lens (right). 

 

3.2. Digital image characteristics 

The imaging process can degrade the image quality of the generated imagery in both 

radiometric and geometric terms. The digital image characteristics are therefore 

critical to the measurement process and in this context these will be outlined with 

relation to (a) the digital image properties, (b) internal geometric distortions and (c) 

geometric camera stability. 

 

3.2.1. Digital image properties 

This section is concerned with the digital image and its properties. These are 

discussed in the context of two considerations: (a) the digital image formation process 

and (b) the quality of digital images, as follows.  

 

3.2.1.1. Digital image formation 

According to section 3.1.1.1. a sensor forms an image by the collected electrons when 

photons hit a photo-sensitive material. The developed analogue in the sensor is 

subsequently quantized (A/D conversion) for digital reading and processing. The 

continuous image function g(x,y) in a 2D plane, where x, y are its spatial variables 

and the function amplitude is the density, is generated by sampling (each continuous 

sample is assigned an integer value) the spatial variables and quantizing (dividing the 

initial continuous range into k intervals resulting in k=2
b
 brightness levels for b bits 

per gray level) the gray levels (amplitude). Improving sampling and quantization 
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levels achieves a closest approximation of the continuous image function. The data 

structure representing a digital image is a matrix and the corresponding sampling 

point is a pixel usually represented as either square or rectangular cells (in which case 

resulting in different horizontal and vertical resolutions). A pixel collects information 

about the brightness at a specific location in the image. The highest spatial frequency 

that can be preserved without loss of information is defined by Shannon’s sampling 

theorem. According to this, the Nyquist frequency (fN= 1/2ΔxS) states that the 

smallest pixel size should be less than half of the continuous function’s highest 

frequency. Additionally, a practical limitation is that data volume and processing 

times dictate suitable sampling rates to achieve the desirable resolution and accuracy 

(Schenk, 1999). Measurement and processing of digital images are commonly 

implemented with operations that take into account basic measures such as brightness, 

contrast and histogram. 

 

3.2.1.2. Digital image quality 

Digital image quality is a measure of the degradation which can happen during the 

image formation stages of capture, transmission, processing or representation. The 

degree of degradation is assessed by measures that compare a given image against a 

reference image based on mean or absolute differences or correlation methods for 

example (Sonka et al., 1999d). Image quality is affected by factors such as sensor 

dynamic range, contrast, sharpness, geometric aberrations and equally significantly 

photographic effects like vignetting
9
 and exposure settings. Image quality is directly 

related to the utilized sensor, hence its properties (quantum efficiency, resolution, 

SNR) are the main sources affecting the quality of the measured image (see section 

3.1.1.2.). 

 

3.2.2. Internal geometric distortions 

In the geometric context, image formation is the process where the bundle of rays 

travel through an optical lens to reach the image plane. This physical reality is 

modelled with what it is termed in photogrammetry interior and exterior orientations 

                                                 
9
 Vignetting: Is the effect where pixels closer to the image frame borders appear darker due to the 

property of optical rays with large span - off angle from the optical axis to present increased attenuation 

(Sonka et al., 1999a). 



3. Digital close range image formation                                                                                              

- 63 - 

 

(IO and EO) of the camera-lens system. Yet, in the real imaging case the formed 

image can be ‘reduced’ from its theoretically exact model due to aberrations that may 

degrade the image quality or geometric aberrations that can alter the position of the 

image.  These perturbations are a factor of the nature of the camera system and it is 

generally accepted that in CCD-based systems symmetric radial distortion, 

decentering distortion, focal plane unflatness (chip bowing or crinkling) and in plane 

distortions (electronic effects like line jitter) are common (Fraser, 2001). 

 

3.2.2.1. Radial distortion 

Radial lens distortion is the result of the Seidel aberrations and it is given as an odd-

powered polynomial (see equation (3.1)). Whilst in most instances the third order 

term will suffice, in the case of demanding accuracies or wide angled lenses higher 

order terms are needed to model in full a lens’s potential distortion. Judgement of the 

inclusion of these parameters into the calibration model is a function of their statistical 

significance and performance of correlation checks on the implemented parameters 

(see section 4.3.4.). 

 

3 5 7
3 5 7

2 4 6
r c 2 4 6

2 4 6
r c 2 4 6

2 2
o o

dR k r k r k r

dx x (k r k r k r )

dy y (k r k r k r )

(r (x x ) (y y ) )

  

  

  

   

 

(3.1) 

 

Where: 

dR= radial lens distortion (mm, expressed in μm) 

r= radial distance (mm) 

x, y= image coordinates (mm) 

xo, yo= principal point components (mm) 

ki= i
th

 power terms of radial lens distortion polynomial (unitless) 

 

The radial distortion profile is formed from the set of the distortion values (μm) over a 

range of radial distances (mm) which correspond to the targets coverage within the 
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frame and it can be of Gaussian (when it is referred to the nominal camera constant or 

a specific camera constant for zoom lenses) or balanced form (when obtaining the 

mathematical equivalent of the curve by shifting the camera constant by δc) (Fryer, 

1996; Fraser, 2001). In the balanced radial lens distortion, the influence of the linear 

term kor refers to a uniform change in image scale equivalently to a koc change into 

the camera’s constant. Every point is shifted symmetrically from the principal point 

(dr) hence the points that lie on the same circle have undergone the same radial 

distortion (see Figure 3.9). Calculation of radial distortion at two focus settings (close 

up and infinity) allows the determination of its coefficients at any other focus setting 

(Magill, 1955).  

 

 

Figure 3.9: Radial lens distortion and its effect on an image frame. 

 

3.2.2.2. Decentering distortion 

The misalignment of the lens elements with relation to the optical axis results in a 

geometric effect known as decentering lens distortion having both radial asymmetric 

and tangential components (Mugnier et al., 2004). Decentering distortion is given in 

two components and it is represented by its profile function (see equations (3.2) and 

(3.4)) (Fryer, 1996; Fraser, 2001). Its parameters are highly correlated with the 

principal point components, noting that decentering is an order of magnitude less than 

radial lens distortion (order of a few tens of μm). To resolve this projective coupling 

3D calibration arrays, strong intersection angles and full format coverage are normally 

employed. 

2 2 2
1 2

2
1 2

2
1 2

dD r p p

dDx p (r 2x) 2(p xy)

dDy 2p xy p (r 2y)

 

  

  

 

(3.2) 

dxi

dyi
dri

ri

x

y

xo

yo
t

xi

yi



3. Digital close range image formation                                                                                              

- 65 - 

 

Where: 

dD= decentering lens distortion (mm, expressed in μm) 

dDx= decentering lens distortion x component (mm, expressed in μm) 

dDy= decentering lens distortion y component (mm, expressed in μm) 

p1, p2= decentering distortion coefficients (unitless) 

r= radial distance calculated from the principal point (mm) 

x,y= image meaurements (mm) 

 

3.2.2.3. In plane distortions 

In plane distortions are usually manifested in differential scaling between the 

horizontal and vertical pixel spacing and introduce a non-orthogonality between 

image axes. In other words the affinity (scale factor between x axis and y axis) and 

orthogonality (deviation from 90
o
 between x axis and y axis) terms are usually 

denoted as affine deformations, they are mathematically inserted into the internal 

calibration model and are treated with robust bundle adjustment approaches. It is 

important to note that when employing such extended models, singularities due to 

system overparameterization may occur. To avoid the system’s overparameterization 

the parameters are implemented within the system upon the examination of their 

associated precisions and correlation coefficients. Specifically, insignificant 

parameters are generally suppressed whereas as acceptable correlations are considered 

those that are equal or less than 0.5 within image networks (VMS, 2009) (see section 

4.3.4.). 

 

3.2.3. Geometric stability 

The geometric stability of digital cameras is held responsible for the suitability 

(photogrammetry and vision applications) and the accuracy that can be achieved. As a 

result, understanding the causes that impinge on the geometric stability in 

combination with the models and the measures utilized to accommodate for potential 

geometric instabilities is of high significance. 
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Digital cameras present instabilities related to the fixed CCD array with relation to the 

optical lens. Camera parameters are not considered to be stable due to a number of 

physical causes. Geometric camera stability needs to consider the camera’s features in 

combination with the inserted mechanical influences while operating the camera. The 

main features that can influence the geometric stability of a camera are the resolution, 

zoom, focus and aperture settings. Mechanical effects include gravity (the torque of 

the lens mount is the product of the lens’ weight multiplied by the distance of the 

lens’ centre of gravity from the lens mount) with different viewing directions, camera 

heating due to long image acquisition periods and potential physical strains while 

operating the camera (Hastedt et al., 2002).  

 

3.2.3.1. Stability modelling 

Geometric camera stability needs therefore to consider the degree of influence of the 

above factors to the variations of the calibration parameters over time. The influences 

of geometric instabilities are accommodated with parameterization (image variant 

interior orientation) or mechanical stabilisation (sensor placement within the camera) 

of parameters (Zapp et al., 2009). Parameterization models are based on analytical 

correction methods with most appropriate the self-calibrating bundle adjustment. 

Fundamental elements concern the intrinsic elements camera constant, principal point 

with the geometric distortions measures (see section 3.2.2.). The image variant 

interior orientation parameters are modelled within a bundle adjustment procedure. 

One implementation is to introduce the camera constant and the principal point 

variations as observed unknowns within the adjustment weighted to appropriate 

values. This is advantageous over the model’s over-parameterization and minimal 

correlation effects, especially with relation to the perspective centre. Calibrating an 

image variant interior orientation based on a common parameterization for distortion, 

affinity and shear is one approach. Alternative methods account for a balanced form 

of parameters describing radial symmetric distortion where the remaining image 

errors (e.g. unflatness) in sensor space are modelled using a finite elements correction 

grid
10

 (Tecklenburg et al., 2001).  

 

                                                 
10

 The finite elements correction method is based on a raster type corrections grid, where each of the 

grid points is associated with correction values that are subsequently computed by point interpolation. 
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3.2.3.2. Stability evaluation 

Geometric camera stability is covered in the literature with papers focusing on 

comparative testing of different camera systems, methods and performance measures. 

Camera systems fitted with zoom lenses at variant resolution or compression rate 

settings have been investigated with temporal variations of calibration parameters 

(camera constant, principal point, lens distortions, resolution and influences of zoom, 

focus and aperture settings) extracting estimates that are normalized to the image’s 

width (Labe & Foerstner, 2004). Other comparative camera systems (CCD or CMOS) 

fitted with zoom and fixed lenses have been used to test stability with block invariant 

or photo invariant methods based on internal and external statistical measures (Shortis 

et al., 2006). Line-based calibration procedures for stability evaluation that address 

the degree of similarity between reconstructed bundles using different interior 

orientation parameters over time have also been discussed (Habib & Morgan, 2005). 

Calibration tests to evaluate the object space accuracy and its potential with image 

variant parameters and mechanical stabilization are investigated using a measuring 

testfield designed in compliance to the guidelines for the acceptance and reverification 

of optical 3D measuring systems (Zapp et al., 2009; Zapp et al., 2008). In these 

studies it has been proved that fixation of the focusing tube as well as preventing 

gravitational loads on the lens or the mount yields accuracies that are optimal for high 

precision surveys. The effect of lens movement due to gravity and unstable fixings 

has been studied and mathematically compensated (Haig et al., 2006). It is reiterated 

here that the criteria utilized to assess object space accuracy are based on the quality 

parameter length measurement error (difference between measurement and calibrated 

distances) as monitored in VDI/VDE guidelines that have been referenced in section 

2.2.2. and will be additionally pointed subsequently in section 4.7. 

 

3.3. Image measurement method 

Digital image measurements are generated as the product of the imaging process 

involving the characteristics of the deployed imaging system, the properties of the 

measured features and the reliability of the measurement method. This section deals 

with the aspects of point-based features and applied measurement method utilized for 

sub-pixel target location. 
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3.3.1. Point-based features 

A number of point based features can be utilized for 3D object measurement and these 

must be well identified. These point types can be man-made targets or natural features 

of high contrast and distinctiveness from the background. The quality of digital 

features is linked to the geometric and radiometric characteristics of the sensor and the 

characteristics of the feature (size, shape and texture). Good features are considered to 

be those that have high spatial frequency and are distinct from the background, 

geometrically and radiometrically invariant, interpretable, stable to noise and unique 

(Foerstner & Gulch, 1987). Feature quality is an important subject; dissimilarity 

measures (RMS residuals of mismatches) that enable, for example, judgement of 

feature matching between different frames based on affine motion models have been 

utilized (Shi & Tomasi, 1994). 

 

Besides image-based measurements that utilize natural features (texture content and 

geometry), there are instances where artificial features need to be used. For example 

2D or 3D artificial features can be defined in instances where there are insufficient 

natural locators (points, edges, regions) or where there is a need for unique point 

utilization for the establishment of reference measurements (rotation invariant spheres 

for scanning systems), engineering control or benchmarking, automation systems in 

metrology or accuracy enhancement. Such features can be manual (retro-reflective, 

coded, colour, white diffuse spheres, black on white naturally reflecting targets, 

eccentric, LEDs) or projected light (laser or other type of light projectors) with 

relation to their form and passive or active with relation to their illumination (Clarke, 

1994; Luhmann et al., 2006). Figure 3.10 illustrates a sample of targets utilized for 

close range measurement.  

 

Figure 3.10: Artificial coded targets. Coded targets and exterior orientation devices (top) 

(source: Fraser, 1997) and coded targets example (source: VMS 8.0) (bottom). 
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Manmade point-based features for sub-pixel image measurement would require a 

minimum size of 5 pixels in the image space. Yet circular point features can be 

reduced due to eccentricity effects. Eccentricity is a deficiency in the image space 

where an ideal circle is projected to an ellipse and it can be significant with increased 

image scale and viewing angle. Whilst eccentricity effects can reduce image 

measurement quality, it has been shown that in multi-view processing frameworks 

they are considered to be absorbed within the process (Otepka, 2004).  

 

3.3.1.1. Retro-reflective point features 

A common type of point locators is the retro-reflective. Retro-reflective point features 

are adhesive targets made of retro-reflective material or an array of microprisms. The 

utilized material is called Schotchlite and it is constructed by 3M (Scotchlite, 2009). 

The building block of retro-reflective targets are 50 μm diameter spheres located on a 

layer and they can act as a cat’s eye or as a retro-reflective prism provided they are 

illuminated from the camera’s viewing direction in the ideal case. However, in real 

imaging situations the returned light will not be strictly parallel to the incident light 

due to a number of different factors (geometry of spheres, viewing direction, 

illumination and mechanical stress). Additionally, increasing the viewing angle from 

the normal can occlude the returned illumination by the adjacent spheres. Clarke 

(1994) has reported that for sub-pixel point location the targets will have to be located 

within a range of ±50 degrees on the object of interest and that for highest light return 

the light source can deviate within a cone of 0.5 degrees. Figure 3.11 illustrates a 

sample of different retro-reflective targets of varying diameter in the object space. 

 

 

  

Figure 3.11: Retro-reflective point targets. Single retro-reflective (left) and single masked 

retro-reflective (right) (source: Geodetic, 2009). 

 

Retro-reflective targets return high SNR and given optimal imaging (range, viewing 

direction, illumination) and geometric conditions (perspective image distortion) can 

result in ‘good’ measurements in the image space. Yet, the high cost of these targets 
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can become significant, especially in the case of coded targets or extensive 

signalization to delineate an object’s surface. 

 

Within this work 2mm object space diameter circular retro-reflective targets were 

produced from 7610 type Scotchlite™
11

 high gain reflective sheeting generated with a 

circular hole-puncher. These targets present significant overexposure and saturation 

with changes in aperture settings. Moreover, their limitations regarding physical 

object space deformations and their large image footprints at very close imaging 

ranges under both perspective and affine projections, disabled them from targeting the 

designed structures and hence reduced their usage to sparse target objects mainly for 

reference purposes from sparse data (see section 6.2.2.1). 

 

3.3.1.2. Non retro-reflective point features 

Non retro-reflective point features are considered passive features that do not present 

retro-reflective properties. These can vary from artificial locators, including for 

example circular white markers on a dark background, encoded targets or natural 

features like distinctive edge intersections on high intensity imagery (see Figure 3.12).  

 

   

Figure 3.12: Point feature measurements. White marker on a dark background (left), coded 

target (middle) and natural feature on intersected edges (right). Images acquired with the 

Hasselblad H2D and H3D (f= 50mm, 7,216 x 5,412 pixels, pixel size 6.8μm) camera systems. 

 

Circular point features are usually employed in instances where features of other types 

are impractical due to limitations regarding geometry, radiometry and texture. The 

centre of the target is considered as rotation invariant. However in real imagery 

influences of sensor, model projection and imaging conditions (viewpoint variation 

and imaging range) reduce an ideal circular point location to the determination of the 

                                                 
11

 Scotchlite™ High Gain Reflective Sheeting 7610: This exposed reflective lens with adhesive and 

liner material returns the highest brightness under wide imaging angles. 
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centre of an ellipse and in parallel identify the SNR of the identified locator. Point 

location and quality of location are factors of the employed feature detection method 

(see section 3.3.2.). Within this work the deployed structures are metal or plastic rigid 

geometrical objects that were signalized to achieve distinctive point source 

measurement features. The purpose-built self-adhesive targets constructed in the 

Rhinokeros 4.0 CAD software tool as circular white points (diameter: 0.5mm and 

1.0mm) on a black background which were subsequently printed (onto adhesive laser, 

inkjet paper) and attached on the objects of interest. Figure 3.13 visualizes such a 

target imaged under affine projection geometry within a 40x40 magnification 

window. 

 

  

Figure 3.13: Self-adhesive white marker. Marker on a black background (left) and brightness 

histogram (with two local maxima) (right). 

 

Encoded with a unique point identification number, coded targets are formed by 

patterns (lines, regions) surrounding the central feature point. These patterns are 

specific to the utilized measurement method embedded in the software (VMS, 2009). 

Key characteristics of these locators are their scale invariance, robust detection over 

rotation and model projection for recognition and measurement enabling image 

analysis processing methods (Shortis et al., 2003). They are usually applied in 

automatic orientation procedures, establishment of control and object space scale. 

Natural features rely on local image content and usually occur in applications ranging 

in scale from aerial to close range situations with most common points, lines and 

regions. These features are identified with algorithms based on detectors and 

descriptors; a review of which can be found in Remondino (2006). Here object space 

target occupancy, projection scale, close-up imaging ranges in combination with the 

scope of method testing (algorithm, model and geometry behaviour) excluded coded 

or natural features as a selection for data acquisition and testing. 
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3.3.2. Point-based measurement method 

Feature measurement methods aim at the recognition and location of features in 

digital images based on automatic or interactive approaches for sub-pixel point 

location dependent on the associated application (for example measurement, 

registration, surface generation and texturing). A significant number of interest point 

methods exist in the literature based on detectors that analyze the image’s signal or fit 

the image signal on a template. Here, point-based images were generated as input data 

to the deployed process. It is therefore clear that the employed point-based 

measurement method will be reported in the context of its application on digital 

images for subsequent processing and testing. 

 

3.3.2.1. Centroid location method 

Point-based structures were generated in a photogrammetric measurement tool that 

deploys an embedded centroid location method (VMS, 2009). The tool computes the 

2D centre of an image centroid within a ROI (4-64 pixels) and it leads to a successful 

answer where high contrast target images occur allowing a manual point location in 

an alternative case. Considering that a window of size n x m pixels is placed around 

the target to be located, the centroid of the target is given as follows: 
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Where: 

xn, ym= centroid of the target coordinates (mm) 

xi, yj= pixel coordinates 

i
ij i j

j

x
g digital value of light int ensity at location (x , y )
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n x m= window dimensions 

 

The method follows established approaches that have been similarly reported in 

Fraser (1997) and Shortis et al. (1994). Prior to the actual centroid computation the 
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applied thresholding method classifies pixels as target or background within the ROI.  

The method requires identification of the location method, threshold type and passes 

of relevant geometric tests. In addition a set of empirical factors (sigma value for 

random threshold and ellipse fit, minimum gray level range within the window and 

minimum span of the target image) are identified to apply each of these tests within 

the method. A centroid is identified as binary, weighted, square weighted or ellipse 

fit. The locally identified threshold within the ROI is set as the mean of the intensity 

values between the two peaks (high and low) on the intensity histogram. Besides 

standard thresholding, the tool can utilize an additive (setting a robust threshold in the 

presence of significant background intensities) or a random (on the assumption of 

background image noise) method. The target image is located with a series of 

geometric tests (ratio test for circular targets and target region ratio test) based on the 

knowledge of the location and extent of the target image within the ROI together with 

expected size and shape. 

 

3.3.2.2. Epipolar geometry and back-projection 

Point based measurement generation as input to a multi-view algorithm demands 

establishment of point correspondences. Given the knowledge of a point on an image 

its homologue can be identified along the epipolar line (see Figure 3.14) which is 

usually curved on the presence of large perspective distortions. Correspondence 

solutions utilize search areas close to the points of intersection of epipolar lines and 

can assist the point location method described above (see 3.3.2.1.). 

 

 

Figure 3.14: Epipolar geometry. Notation after (Mugnier et al., 2004): ε(P)=  epipolar plane, 

E’, E’’= epipoles, l’(P), l’’(P)= epipolar lines, b’= baseline, O’, O’’= projection centres and P, 

R= objects points, Q’ R’, Q’’ R’’= imaged points. 
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The measurement method applied here can be listed in the following sequential steps: 

 

1. Establish point correspondences on image data based on centroid or manual 

location assisted by epipolar geometry. 

2. Estimate the camera’s exterior parameters on an initial subset of four control 

point (CP) data (initialize exterior orientation). 

3. Back-project on a set of known points (predetermined CP or pre-triangulated 

tie point (TP) data) to retrieve remaining image measurement locations and 

update camera’s exterior parameters (backproject on resection). 

4. Refine image measurements if necessary to enter the subsequent computation. 

 

This process has been applied throughout this thesis in order to generate the 

implemented datasets, resulting in image networks that handle 17 (minimum) to 85 

(maximum) images where 20 (minimum) to 178 (maximum) target points have been 

measured (CPs and TPs) (see section 6.2.2.). It is recalled here that data generation 

was implemented within the tool VMS 8.0. All data forms were subsequently read as 

ASCII files within the developed method. 

 

3.4. Camera models 

A camera is the medium which performs the mapping that projects 3D spatial 

information onto a 2D plane. The geometric underlying principle which establishes 

the 3D to 2D correspondence is the pinhole model which forms the basis of the 

established central perspective projection. Camera modelling is studied in analytical 

terms utilizing the fundamental elements of Euclidean and projective geometries
12

. 

Algebraic approaches are ideal for automation of image analysis and problems that 

implement direct solutions, computing for example the (SVD) of matrices utilized 

mainly from the computer vision community (Foerstner & Wrobel, 2004). Yet this 

work is looking at the geometry governing the camera in non-homogeneous vector 

terms. The reason for this approach is related to the focus on design and 

implementation of a multi-view problem for the affine projection case which includes 

the ability to apply statistical error propagation. It is noted though that where 

                                                 
12

 Projective geometry overcomes the limitations of Euclidean geometry by placing points, lines and 

planes at infinity as natural entities, unifying transformations such as similarity, affinity under the class 

of projective transformation (Foerstner & Wrobel, 2004). 
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necessary computer vision literature will be reviewed as part of the problem and its 

implementation studied here.  

 

3.4.1. Projective camera 

The projective camera is the most general camera model and it can be considered as a 

generalization of the perspective camera.  Figure 3.15 illustrates the recovery of the 

perspective projection process linking 3D object with a 2D image spaces through the 

projection centre O. 

 

 

Figure 3.15: Perspective projection model. 

 

In Euclidean geometry a 3D point X= (X, Y, Z)
T
 is projected to a 2D image point 

where the line starting from the projection point to the 3D point intersects the image 

plane. If the relationship between 3D space and 2D space is expressed in homogenous 

terms then the projective camera can be written as it is given in equation (3.4).  
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(3.4) 

Where: 

x (3x1)= 2D image coordinates vector (mm) 

P (3x4) = camera projection matrix 
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X (4x1)= 3D object coordinates vector (mm) 

f= focal length (mm) 

p11-…-p34= projection matrix elements 

 

The relationship between homogeneous and non-homogeneous coordinates is given as 

(x, y)
T
= (fX/Z, fY/Z)

T
 expressing the 2D image space vector and (X, Y, Z)

T
= (X/1, 

Y/1, Z/1)
T
 stating the 3D object space vector. The projection matrix P can be 

decomposed into a calibration matrix which includes the intrinsic camera parameters 

together with a rotation and a remaining matrix that are utilized to encode the 

extrinsic orientation parameters. These mathematics are equivalent to the established 

collinearity condition (see section 4.3.2.) used as the fundamental basis of the image-

to-object space correspondence in photogrammetry. Weinhaus & Devich (1999) point 

that the main difference between the projective and the collinearity approach is the 

treatment of the focal length and the camera’s projection center. In the collinearity 

condition the focal length is used as a physical parameter and no special projection 

matrix is required. Additionally, the projection center is maintained as a separate 

vector, allowing the solution of its coefficients, whereas in the homogeneous 

coordinate approach it is folded in the four-dimensional matrix. It is noted that 

intrinsic orientation refers to the elements of interior orientation (principal point and 

camera constant) extended by additional internal geometric terms (see section 3.2.2.) 

the parameters of which can vary for different camera models. The extrinsic 

orientation represents the elements of the exterior orientation of cameras which 

include the camera’s attitude and position in the 3D object space coordinate system. 

According to Hartley & Zisserman (2004) a general projective camera is represented 

by a homogeneous (3x4) matrix of rank 3 with 11 degrees of freedom as scale is 

arbitrary. The rank requisite is essential to define the matrix mapping as an image 

which is a 2D plane and not a point or a line. A projective camera can be reduced to 

the well known perspective projection when the image and 3D object space 

coordinate systems are linked with a rigid transformation (Shapiro, 1995). The 2D to 

3D mapping is a non-linear problem to solve and given the input data handling can 

become computationally expensive. When the perspective projection camera model 
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does not map the true geometry of a camera the problem can be ill-conditioned
13

, 

hence an appropriate camera or sensor model needs to be employed. 

 

3.4.1.1. Comparison of projective and perspective camera 

Considering the main attributes of projective and perspective camera models a 

comparative table is given here (see Wrobel, 2001) representing the underlying 

geometry behind the basic orientation tasks to show in parallel the model suitability.  

 

 Orientation model 

 Projective 

(linear model) 

Perspective 

(non-linear model) 

Model x ' P X
(3x1) (3x4)(4x1)



 

x ' R X T
(3x1) (3x3)(3x1) (3x1)

    

Parameters 11 (projection matrix P) 6 EO per image; 3-5++ IO per 

camera 

Correspondences 6 per image 3 per image 

Behaviour Low stability, critical 

configurations for object space 

planar configurations, focus & 

zoom optics accomodated 

High stability, object space 

stable configurations, stable 

camera & optics 

Table 3.5: Projective and perspective orientation models. Notation: x’= image space 

coordinates vector, X= object space coordinates vector, P= projection matrix, λ= scale factor 

of vector x’, T= object space coordinates of perspective center. 

 

The projective camera model is highly advantageous due to its linearity. Yet its 

instability, increased model parameters (and correspondences) as well as inability for 

lens distortions accommodations can introduce significant limitations in comparison 

to the standard perspective camera model. These are the main reasons for the broad 

utilization of standard perspective models in photogrammetry. In this text, analytical 

modelling of perspective cameras considering only points is discussed further in 

section 4.3. It is however noted that the projective camera model is highly adapted to 

diverse situations and transformations to perspective, posing this as an ideal model in 

different photogrammetric tasks. 

 

                                                 
13

 Ill-conditioning can be a situation where small data variations can cause significant result variations.  
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3.4.2. Affine camera 

An affine camera can be defined as a camera with a projection centre at infinity that 

generalizes parallel projection. The geometric interpretation of the affine image can 

be given considering for example the 3D to 2D image formation of a 3D object point 

onto a 2D image plane. Figure 3.16 provides a 1D illustration of this relationship for 

the perspective, parallel and orthographic projection cases. 

 

 

Figure 3.16: 3D-2D relation. Perspective, parallel and orthographic projections. 

 

The 3D object space is projected onto the image plane following a line passing 

through the projection centre forming its perspective image (denoted as xpersp.). 

Departing from this, the line of sight that hits orthogonally the mean depth object 

plane and then perspectively projected onto the image plane forms a parallel image 

(location xparal.). Different terms for a parallel projection image are the scaled 

orthographic and weak perspective projections. It is evident that in the special case 

where the line of sight enters the image plane perpendicularly, this results in the strict 

orthographic projection with a unit scale. Shapiro (1995) illustrates the imaging case 

where the line of sight enters at an angle θ at the mean depth plane to subsequently 

form an image perspectively on the image plane and names this as a paraperspective 

projection. Figure 3.17 illustrates two close-up views of the parallel and orthographic 

projection models respectively. 
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Figure 3.17: Weak perspective projection (left) and orthographic projection (right). 

 

This work is concerned the affine camera modelling in a multi-view framework with 

statistical error propagation. The model will be treated in the non-homogeneous 

coordinate system case and in this context the model can be derived from perspective 

when adding two assumptions. These form the case where the object of interest 

presents a small FOV and a small depth variation. The affine image can then be 

written as it is given in equation (3.5). 
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(3.5) 

Where: 

x= 2D image coordinates vector (mm) 

s= image scale factor (unitless) 

r11-r23= elements of the (3x3) rotation matrix R 

X= 3D object coordinates vector (mm) 

t= 2D projective translations vector (mm) 

 

An affine camera can be considered as an uncalibrated scaled orthographic camera 

requiring no calibration of internal camera parameters such as camera constant and 

principal point. This property in combination with its ability to preserve parallelism of 

lines enables the utilization of affine epipolar geometry in multi-view location 

problems. An analytical description of the affine camera, its interpretation and 
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algorithmic implementation can be found in the literature (Faugeras & Luong, 2001; 

Hartley & Zisserman, 2004a; Shapiro, 1995; Xu & Zhang, 1996). Model treatment 

and implementation will be the central topics of the subsequent chapters 4 and 5. 

 

3.4.2.1. Magnification 

A particular property of affine projection is its invariant scale factor. This is of 

particular interest as the scale factor plays the role of camera constant in the real 

perspective camera case. Model development, implementation and testing have been 

based on the ability to generate true parallel projection imagery with the deployed 

systems described in section 3.1.2. Following the affine projection formation reported 

above, a plane located parallel to the image at a range z= zo defines the lateral 

magnification between the distance measured in the image (dxI, dyI, 0)
T
 over the 

corresponding distance on the image plane (dxP, dyP, 0)
T
. The magnification factor 

will be uniform for all points that lie on the same plane and this will be estimated as 

m<1 for the general affine case or m=1 in the strict orthographic projection case. The 

magnification is constant when the depth range of the imaged object is relatively 

small in comparison to the range to the camera. The projection equations are thus 

simplified as given in equations (3.6).   
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I I
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(3.6) 

Where: 

x’, y’= 2D image coordinates (mm) 

x, y = transformed coordinates (mm) 

m= magnification factor (unitless) 

 

To prove that the test camera systems generate geometrically true affine images, the 

following example calculates the associated magnification factor. The deployed 

camera system was composed of the available Kodak Megaplus ES1.0 monochrome 

camera (see section 3.1.2.1.) attached with a perspective (Fujinon TV; f= 12.5mm) 

and a telecentric (MVO® TML; m= 0.16x) lens interchangeably (see section 3.1.3.). 

Subsequently, a typical calibration arrangement was designed to enable imaging of a 
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square grid jointly with perspective and parallel projection camera systems. The 

purpose built grid comprises a planar pattern (168 x 168 mm) of 22 x 22 white 

circular markers on a black background. It is noted that the planar pattern (constructed 

in the Rhinokeros 4.0 CAD tool) was printed on a laser printer and attached on a 

planar metal board. To generate measurable image point features in the parallel 

projection imagery (nominal magnification factor= 0.16x), the targets were designed 

with a finite size of 0.5mm diameter in the object space, resulting in 9 pixel blobs in 

image space. Given that the location where the telecentric lens realizes sharp parallel 

projection imagery is a range of 175mm from the front lens diameter, this was set as 

the mean imaging range. The experiment was implemented by shifting the calibration 

grid at regular intervals (1mm separation) within ±30mm from the mean position 

(DOF= ±19.7mm). To illuminate the scene two LED green ring flashlights were 

utilized. These were positioned at near 45
0
 angles from the normal direction for 

balanced directional illumination (see Figure 3.18).  

 

  

Figure 3.18: Single view calibration. Calibration arrangement in a laboratory environment 

(left) and experimental data capture design (right). 

 

To generate a set of 2D image measurements, the acquired data were inserted in VMS 

8.0 where a sequence processing project was initialized. The image measurement 

method involved application of a centroid estimation on a set of four sparse corner 

grid points initializing the photo orientation parameters. Next, a ‘resection on 

backdriving’ backprojects the remaining CPs on the pre-estimated exterior orientation 

and updates the photo locations and rotations on the total measured CPs (see section 

3.3.2.2.). The resection closed with an RMS image residual of 2.78μm. 
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Figure 3.19 illustrates an example of the grid image supported by the selected parallel 

projection image (with its image residuals) to show the result of the sequence 

measurement process.   

 

  

Figure 3.19: Calibration grid pattern. Pattern imaged with the Kodak Megaplus ES1.0 camera 

with Fujinon TV lens / f= 12.5mm (left) and Kodak Megaplus ES1.0 camera with MVO® 

TML 0.16x (right).  

 

The experiment was executed with a set of seven distances (three horizontal and four 

vertical) selected to estimate the magnification factor within the image. According to 

the calculation of this scalar (as defined in equation (3.6)), m equals to 0.15x (nominal 

m= 0.16x) with a mean discrepancy from the nominal equal to 5.74μm (0.6 pixel) in 

the vertical direction and 6.30μm (0.7 pixel) in the horizontal direction. 

 

 

Figure 3.20: Point measurements at near, mean and far ranges. 
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Range Min.(μm) Max.(μm) Mean.(μm) 

Mean:19_tif - Near:10_tif 0.70 4.19 2.47 

Mean: 19_tif - Far:28_tif 0.57 4.10 2.37 

Table 3.6: Absolute differences on selected measured point locations. 

 

Figure 3.20 illustrates the 2D image point locations on the estimation image denoted 

as ‘Mean: 19_tif’ together with the seven length measurements. The additional images 

‘Near: 10_tif’ and ‘Far: 28_tif’ are located at corresponding ranges of -/+ 9mm from 

the mean location given the system’s DOF. To estimate the 2D image discrepancies of 

the mean image position over the near and far range images, the corresponding 

absolute differences were calculated (see Table 3.6). It is evident that the deviations 

from the ‘ideal’ locations range between 0.70-4.19μm in the near range and 0.57-

4.10μm in the far range with a mean discrepancy of 2.40μm. The order of these 

differences can be attributed to the fact that the imaging system deviates from its 

‘optimal’ geometry and radiometry that in effect reduce the image measurement 

locations that would in nominal terms lead to a perfect parallel projection. 

 

3.5. Summary 

This chapter has reviewed the main concepts and principles that form the fundamental 

elements of digital close range image formation. In particular the building block of 

data acquisition and processing has been outlined with relation to the employed sensor 

elements and systems supported by digital image characteristics, their basic geometric 

elements and applied measurement method for data generation, initialization and 

testing. This chapter closed with the two fundamental camera models that establish 

the 3D to 2D correspondence which introduces the subsequent chapters that describe 

the developed methodology and testing for the purposes of this research work. 



4. Modelling from multiple views 

The exploitation of the affine sensor from the photogrammetric standpoint demands 

that the fundamental background of multi-view modelling is introduced prior to the 

analysis of the affine algorithm. In measurement sciences like photogrammetry, 

industrial metrology, geodesy and computer vision it is established to base 

computations on least squares estimation (LSE) theory as a result of its advantage to 

provide statistical analysis for quality assessment. Modelling from multiple views can 

therefore be considered in the contexts of (a) sensor modelling from multiple 

viewpoints, (b) aspects of geometry as well as (c) statistical quality. 

 

This chapter reviews the basic principles behind established multi-view modelling 

approaches. These concepts are outlined in order to provide a review of the well 

established methods applied in frame cameras. In particular the self-calibrating bundle 

adjustment is outlined with consideration of its current state of the art (see section 

4.1.). Subsequently fundamental elements of LSE theory are given to provide the 

basis for problem analysis as well as development (see section 4.2.). The chapter 

provides the background in modelling perspective cameras from the photogrammetric 

standpoint, covering the aspects of mathematical model formulation, self-calibration 

and initialization (see section 4.3.). Following the well established background of 

perspective approaches, the affine sensor is presented in the contexts of existing 

methods originating from the computer vision literature (see section 4.4.). The chapter 

concludes with a review of the datum problem (see section 4.5.), image network 

geometry (see section 4.6.) as well as quality control (see section 4.7.); core concepts 

in photogrammetric analysis. 

 

4.1. Bundle adjustment method 

The bundle adjustment is a very old method well known in photogrammetry whereas 

gradually adopted within the vision community. Triggs et al. (2000) define: bundle 

adjustment is the problem that refines a visual reconstruction in order to optimize 

jointly 3D structure and viewing parameter estimates. It is a geometric statistical 

estimation problem of simultaneous intersections of image rays linking 2D to 3D 

spaces through cameras poses (positions and orientations) integrating 3D object space 

positions (3D coordinates) with the potential to allow camera calibration (recovery of 
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interior orientation elements). It is conventionally formulated as a non-linear LSE 

problem that minimizes a quadratic form cost function of the feature reprojection 

errors between observed and computed image observations with the potential to 

enable robust outlier detection and elimination within the method. 

 

4.1.1. Background 

The bundle method has its roots in LSE theory which in combination with the 

evolution of computers in the fifties and continuous technological developments is 

today utilized as a robust tool in photogrammetry and vision applications (see section 

4.1.3.) Figure 4.1 illustrates a diagrammatic form of the historical development 

behind the method of bundle adjustment. The fundamental principle of the bundle 

method developed by Schmid’s single photo least squares resection based on the 

collinearity condition (see section 4.3.2.) whilst the complete theory was set by D. C. 

Brown (Brown, 1974). It has its roots at large scale aerial-triangulation problems, its 

basic measurement unit is the bundle of image rays and in the close range it is termed 

as network adjustment or phototriangulation. The bundle method follows the 

developments in image processing tasks which are key to image least squares 

matching (LSM) and robust statistics methods allowing its ability to add-in self-

diagnosis in order to reach its main focus today; and this is large volume data 

processing as well as system automation. 

 

Development of a bundle method entails a set of issues: the minimization of the cost 

function (see section 4.2.1.); starting value estimation (see section 4.3.5.); solving 

large normal equation systems considering matrix structure and sparsity; datum (or 

gauge) definition (see section 4.5.); quality control (see section 4.7.). These critical 

issues can be designed at the stage of method implementation whilst satisfying 

problem requirements and purpose of application. 
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Figure 4.1: Development of the bundle method (source: Triggs et al., 2000). 

 

In photogrammetry a routine application of bundle adjustment systems comprises the 

3D measurement of engineering structures. These systems have their roots on 

established robust strategies already reported in Brown (1971), Clarke & Fryer (1998) 

and Granshaw (1980) whilst employing internal calibration models with extended 

parameter sets (Fraser, 2001) (see section 4.3.4.). Regarding model formulation and 

structure (see section 4.3.2.), these can be modified in the context of implementation 

of linear features as measurement entities (Hrabacek & Van den Heuvel, 2000), 

employment of different sensor models such as panoramic cameras (Parian, 2007) or 

enforcement of camera constraints as in cases of combined stereo-imaging geometries 

(King, 1995). Although modifications regarding method implementation and 

treatment exist, it is generally accepted that bundle approaches are optimal in that they 

offer robust solutions for system treatment. 

 

In vision, Tsai (1987) proposes a two stage calibration technique for 3D vision 

metrology that recovers the camera’s exterior orientation as well as camera constant, 

radial lens distortion and image scanning parameters (shear and aspect ratio) by 

applying a set of four geometric constraints obtained from the implemented model 

parameters. A flexible camera calibration technique for planar patterns based on an 

initial closed-form solution and a subsequent non-linear maximum-likelihood 

estimation refinement modelling focal length, radial lens distortion and aspect ratio 

has been suggested by Zhang (1999). In fact this tool can be found online. 

Additionally, Triggs (1998) developed a self-calibration approach of a moving 

projective camera from five views of a planar pattern treating recovery of parameters 
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up to a scale factor. Another example is proposed by Mayer (2005) who employs a 

strategy based on point extraction and LSM for precise point estimation combined 

with a projective bundle adjustment (Pollefeys et al., 2004) and applied to wide-based 

image sequences.  

 

4.1.2. Main attributes 

The main reasons for selecting the method of bundle adjustment as an appropriate 

approach for multi-view modelling are its flexibility, efficiency and quality control 

(Cooper & Robson, 1996; Luhmann et al., 2006; Triggs et al., 2000). 

 

1. Flexibility: Refers to the ability to implement different information elements 

regarding camera models, 3D features (points, lines and surfaces), geometric 

constraints, sources (2D, 3D features and intensities) and error models. 

2. Efficiency: Indicates the method’s capacity to utilize economical and 

convergent numerical methods that take advantage of the problem’s 

sparseness. 

3. Quality control: Indicates the evaluation of accuracy, precision and reliability 

measures (see section 4.7.). Statistical error modelling is critical to the analysis 

of the estimated parameters. 

 

Close range bundle adjustment, as opposed to the ‘classical’ aerial triangulation, 

softwares are advantageous in that they can, for example, deal with often difficult 

image configurations, arbitrary coordinate systems and a variety of camera systems. 

In addition they can handle complex, structured, large systems of normals equations. 

In this sense the bundle method can be considered a highly universal solution. Thus it 

provides a simultaneous and very effective solution to sensor modelling as well as 3D 

object measurement. 

 

4.1.3. State of the Art 

Further to its wide application in standard photogrammetric case studies, the method 

of bundle adjustment has now reached the stage of automation; therefore it comprises 

a very active topic of interest within the vision community. To make this point clear 

some examples are reported. Pollefeys et al. (2004) employed uncalibrated image 
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sequences acquired with a hand-held camera and computed 3D structure based on a 

multi-view stereo matching approach. Strecha et al. (2008) exploited image based 

modelling with a focus on benchmarking
14

 which in their case was performed in 

relation to ground truth reference scan data. Some examples of evaluation datasets for 

both camera calibration, stereo and multi-view stereo can now be found on-line 

(ISPRS, 2009). Prior considerations of bundle adjustment implementation are related 

to parameterization, error models, linearization, optimization (utilizing the sparse 

structure of the normals equations coefficient matrix) and robustification techniques. 

PC-based commercial software packages and tools are available and widely utilized 

for photogrammetric applications tasks (Kruck’s software BINGO; Geodetic, 2009; 

iwitness, 2009; Photomodeler, 2009; VMS, 2009). An open camera calibration 

toolbox for Matlab has been released from Bouget (2009) and has been included in 

the open source computer vision library distributed by Intel and can be found online 

(Intel 2001; Intel, 2009). Another tool is Zhang’s algorithm applied in planar patterns 

which can be found online at Microsoft’s webpage (Zhang, 2009). A recently 

developed open source generic sparse bundle adjustment has also been distributed, an 

updated version of which can be found in Lourakis & Argyros (2009). Further, 

Lourakis & Argyros (2005) run through benchmark tests to address performance with 

relation to speed and reprojection errors. In Dickscheid et al. (2008) a complete 

benchmarking scheme for assessment of automatic bundle adjustment results is 

proposed to assess orientation frame parameters in a statistical manner based on a well 

defined coordinate system. A good critical review on bundle adjustment methods with 

references in photogrammetry and vision can be found in Triggs et al. (2000). 

 

4.2. Least squares estimation 

The basic error model utilized in a bundle adjustment scheme is LSE. The method 

seeks in principle to derive a unique set of estimates of variables of certain properties 

minimizing the cost function of the weighted sum of squared residuals. The 

background conceptual scheme starts from a mathematical model
15

 that approximates 

                                                 
14

 Benchmarking schemes require the definition of a reference dataset with superior precision and a set 

of statistical measures extracted from covariance analysis. A report on performance evaluation and 

benchmarking can be found in Foerstner (2005). 
15

 The mathematical model is composed of the functional (describing the deterministic properties of 

the physical situation) and stochastic (describing the nondeterministic properties of the variables) 

(Mikhail, 1976). 
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the physical problem to be solved. This model then enters the LSE technique where 

on completion statistical testing is applied to the derived results to judge whether or 

not the initial model approximates the reality based on certain assumptions and rules 

or remodelling is needed. For a comprehensive coverage of the LSE theory the reader 

is guided in standard textbooks and reports (Cooper, 1987; Dermanis, 1990; Mikhail, 

1976; NPL, 2001). Following the notation described in Appendix A, the least squares 

estimation formulation is given below. 

 

4.2.1. Least squares mathematics 

The functional model that connects the observations l (n x 1) with the unknown 

parameters to be estimated x (m x 1) is considered to be given as f (x, l) 0 (4.1)

(where f: denotes the total functions) with a stochastic model given as Cl. Now 

expressing the previous relationship for the associated true values this becomes:  

 

f (x, l) 0  (4.2) 

 

The functional model is non-linear. These equations must be linearized, they need to 

be replaced by their approximations which are derived from the Taylor series 

expansion (linearization scheme). With regards to the measurements l and parameters 

to be estimated x, equation (4.3) is derived to first order accuracy as follows: 

 

o o o of (x, l) f (x , l ) A(x x ) B(l l ) 0       (4.3) 

Where: 

o of (x , l ) = functional vector of the first order approximations 

(cxu) o

f
A

x

 
  

 
= design or Jacobian matrix of the unknowns to be estimated 

(cxm) o

f
B

l

 
  

 
= design or Jacobian matrix of the observations 

x, l
 

= true values that fit the functional model exactly 

o ox , l = first order approximations to x, l 
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ox x


 = vector of true minus approximate values for the unknown parameters 

ol l v


  = vector of residuals, corrections to measurements necessary to satisfy the 

functional model exactly. 

 

By substitution of:  

ov l l


  , ox x x


 
 
and o ob f (x , l )   

 

The linearised form is obtained to be equivalent to: Ax + Bv= b (4.4). It is noted that 

linearization formulation is treated for the model’s observations, parameters and 

constants. 

 

The unique least squares estimates of x, l
 

, denoted as x, l
 

, are those that satisfy the 

least squares criterion which in the general case is written as follows:      

 

φ(v)= v
T
Wv  min => φ(v)= v

T
Wv + 2k

T
 (Ax+Bv-b)  min (4.5) 

 

Where: 

W= weight matrix 

k= vector of Lagrange multipliers
16

 (introduced in order the estimates of x and v
 

can 

be found). 

 

Subsequently the estimates x, v and l
  

 are given as follows: 

 

T 1 T 1 1 T 1 T 1x [A (BW B ) A] A (BW B ) b


      
(4.6) 

                                                 
16

 Lagrange multipliers are utilized to find the extrema (maximum or mimimum) of a multivariate 

function f (x1, x2,…,xn) subject to the constraint g(x1, x2, …, xn)=0, where f and g are functions with 

continuous first order derivatives on the open set containing the curve g(x1, x2, …, xn)=0, and g ≠0 at 

any point in the curve (where  is the gradient) (Wolfram, 2009a). 
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1 T 1 T 1 T 1 T 1 1 T 1 T 1v W B (BW B ) {I A[A (BW B ) A] A (BW B ) }b


          
(4.7) 

l l v
 

   
(4.8) 

 

Expressing the functional relationships between measured and unknown elements to 

be explicit in the measured elements poses least squares more flexible. Hence, 

equations (4.1) and (4.4) become respectively: 

 

f (x,l) f (x) l 0    (4.9) 

o oAx l f (x ) v    (4.10) 

 

Equation (4.10) together with W (representing the stochastic model of the 

observations) comprises a special case known as the linearized observation equations 

case. For uncorrelated image observations the weight matrix Wl is the inverse of the 

covariance matrix C
-1

 and it is of diagonal form with weights wi calculated as: 

 

2
o

i 2
i

w





 
(4.11) 

Where 2 2
o i,   are the variance of unit weight and a priori variance of observations 

respectively. Hence, the linearized observation equations follow the Gauss Markov 

theorem which states that for linear models least squares result in the Best (of 

minimum variance) Linear Unbiased Estimator (BLUE). It follows that minimization 

of the cost function φ(v)= v
T
Wv  min results in the calculation of the normal 

equations N= A
T
WA (4.12). Assuming that the normals equations matrix is of of full 

rank
17

, that is N is non-singular, the following equations are obtained: 

 

T TA WA x A Wl


  
(4.12) 

T 1 Tx (A WA) A Wl


  
(4.13) 

                                                 
17

 Rank is the order of linearly independent rows or columns of a matrix. The statement that matrix N is 

of full rank refers to the condition where the number of parameters to be estimated is equal to the 

parametric order of the system and that these parameters contain the necessary system information. 

Matrix N is invertible when W is a positive definite matrix. 
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2
T 1

o

x

C (A WA)



    

(4.14) 

T
2

o
v W v

r

 


   

(4.15) 

Where: 

x


= a posteriori parameters vector 

x

C

= a posteriori covariance matrix of parameters to be estimated 

2

o



 = a posteriori variance factor given a priori variance factor 2

o
  

r= degrees of freedom 

 

Applying the law of propagation of covariances in the estimation procedure the 

covariance matrix of the estimated observations 
l

C


 
and residuals 

v

C

can be obtained.  

It has been shown that the least squares principle is associated with a stochastic 

model. However it does not require any a priori knowledge of the residuals’ 

distribution. In the special case where observations are normally (Gaussian) 

distributed the least squares will present similar properties to the maximum 

likelihood
18

 method. Approaches based on LSE will require being capable of handling 

of starting values, convergence criteria as well as large volumes of data. 

 

4.3. Perspective camera sensor 

The geometric sensor model of digital camera systems is derived from the central 

perspective projection and it is fundamentally formulated based upon the principle of 

collinearity. Based on this, the functional model of the bundle method is demonstrated 

(see section 4.3.2.). An alternative mathematical formulation in the form of direct 

linear transform (DLT) is given (see section 4.3.3.). In addition, the issues of self-

calibration (see section 4.3.4.) as well as starting value estimation (see section 4.3.5.) 

are addressed. 

 

                                                 
18

 The maximum likelihood method calculates the value of a set of parameters for a given statistic that 

results in a maximum likelihood distribution. 
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4.3.1. Basic definitions 

From the geometric viewpoint, the basic tasks behind camera modelling can be 

considered as transformations between image and object spaces. Particularly these 

relate to 2D-2D, 2D-3D or 3D-3D transforms. This text restricts the discussion to the 

concepts of orientation, calibration, self-calibration and 3D similarity transform. As a 

result the following definitions are given: 

1. Orientation: Refers to the recovery of the elements of the interior and exterior 

orientations. 

1.1. Interior orientation (IO): Comprises the interior (inner) camera geometry; 

that is principal point and camera constant (xo, yo, c). Extended model 

parameters may include radial lens distortion parameters (dR) and 

additional decentering (dD), together with in-plane affinity and 

orthogonality terms (a1, a2) (see sections 3.2.2. and 4.3.4.).  

1.2. Exterior orientation (EO): Determines the object space coordinates of the 

perspective centre and the 3D orientation angles. Position (Xo, Yo, Zo) and 

orientation R(ω, φ, κ) or quaternions (a, b, c, d) which are recovered with 

resection procedures (see section 4.3.5.). 

2. Calibration: Determines the IO parameters. It models systematic errors 

(defined as physical deviations from the mathematical model) of all cameras 

included within a calibration network. 

3. Self-calibration: Is an additional parameter estimation procedure. It accounts 

for the model’s systematic errors (including the IO parameters) simultaneously 

with the system’s EO and 3D point locations parameters (usually treated in a 

bundle estimation approach) (see section 4.3.4.). 

4. 3D similarity transform: Is a seven parameter transform between two 

coordinate systems that spatially registers two 3D point sets. In the general 

case the independent transformation parameters are given through a rotation 

matrix R(ω, φ, κ), a translation vector (TX, TY, TZ)
T
 and an isotropic uniform 

scale factor (λ). Estimation with three full (X, Y, Z) known reference CPs 

results in a least squares solution with a redundancy of two degrees of freedom 

whereas in the case of one height and two full CPs a closed form solution can 

be obtained. 
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4.3.2. Mathematical model 

The bundle method is formulated as a system of equations. It is derived from 

perspective collineation connecting 2D image and 3D object spaces through the 

parameters to be estimated and it is expressed as a component pair of equations 

(4.16). In geometric terms the collinearity condition can be described as the 

parametric representation of a line in 3D constrained by the orthogonal distance of the 

image plane from the camera’s image center, that is the focal length (Weinhaus & 

Devich, 1999). The scale specifies the distance from the projection center along the 

imaging ray through the point on the image that hits the 3D object point with the 

rotation matrix describing the direction of this line. This mapping models the 

elements of the IO and EO parameters, or otherwise the camera’s position and 

orientation (pose), in a 3D coordinate system (datum). Analytically the collinearity 

condition is given as the x, y pair of equations: 

 

11 o 12 o 13 o
o o

31 o 32 o 33 o

21 o 22 o 23 o
o o

31 o 32 o 33 o

r (X X ) r (Y Y ) r (Z Z )u
x x c x c

w r (X X ) r (Y Y ) r (Z Z )

r (X X ) r (Y Y ) r (Z Z )v
y y c y c

w r (X X ) r (Y Y ) r (Z Z )

     
     

     

     
     

       

 

 (4.16) 

 

Where: 

x, y=  image measurements (mm) 

xo, yo= principal point locations (mm) 

c: camera constant of CCD frame (mm) 

u, v, w= numerator and denominator components in the collinearity condition 

X, Y, Z= object point coordinates (mm) 

Xo, Yo, Zo= projection centre OS coordinates (mm) 

rij= (i, j = 1-3) elements of 3D rotation matrix R 

 

Here, in these equations the elements rij (where i, j= 1-3) express the relative 

orientation between the image space and the object space coordinate systems. These 

are the elements of the 3D orthogonal rotation matrix R representing the applied 
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rotations per view (or frame) related to the 3D object space co-ordinate system. The 

rotation matrix expressed with regards to its trigonometric functions is given in 

Appendix A. The functional system of equations can now be formed considering a set 

of j views (frames or photos), i object points and k cameras within the image network. 

The bundle method is structured after the notation given in Brown (1974), Granshaw 

(1980) and Dermanis (1991). Equation (4.17) provides a vector-matrix representation 

considering one view (six EO parameters), one control point (three spatial 

coordinates) and one camera (five or more IO parameters) within the functional 

model. 

 

o

o
o

o o o o

o
jik

o o o jik

j

o o

i
jik

X

Yx x x x x x

X Y Zx x Z

y y y y y yy y
X Y Z

x x x xx x x X
x y cX Y Z

Y
y y y

Z
X Y Z

 
 
        

          
     
                       

 
 

        
        

               

o

o
x1 3

y jik
1

o o 1 3 jik
3 k

x
x

y
vk k

c
vy y y y y

k
x y c k k

k

 
   

      
      
                    

 

(4.17) 

Where: 

x’, y’: image measurements (mm) 

x
o
, y

o
: approximate values to the image measurements (mm) 

xo, yo: principal point image locations (mm) 

c: camera constant of CCD frame (mm) 

k1, k3: 1
st
 and 3

rd
 order radial lens distortion’s coefficients (unitless) 

Xo, Yo, Zo: exterior orientation elements (mm) 

X, Y, Z: 3D point co-ordinates (mm) 

ω, φ, κ: 3D rotations (degrees) 

 

The structure of the basic arrays (vectors and matrices) is considered as follows: 

 

b (n x 1): Is the vector of the reduced (observed minus computed) image observations. 

A (n x (6j+3i+(5++)k)): Is the desing or Jacobian matrix. 
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x ((6j+3i+(5++)k) x 1): Is the vector of unkown parameters. 

 

It is noted that the fundamental model arrays are implemented according to structure 

modelling (parameterization and sparsity of arrays) as well as geometric factors 

(object space constraints and datum deficiencies). 

 

 In symbolic vector form equation (4.17) becomes:  

 

ji j ji iji jib A x A x A x v b Ax v
     

      
 

(4.18) 

Where: 

bji=  image measurements vector 

ji jiA ,A ,A
  

= design matrix of EO, XYZ and IO parameters 

j ix ,x ,x
  

= vector of exterior, 3D positions and interior parameters 

b= image measurements vector 

A= design matrix 

x= vector of parameters to be estimated 

v= residuals vector
 

 

4.3.3. Direct linear transform 

The collinearity condition is the most flexible analytical functional model. Yet, an 

alternative is offered by the DLT method (Abdel – Aziz & Karara, 1971). Main 

advantages comprise the method’s ability to handle uncalibrated cameras as well as its 

independency related to the recovery of starting values. As a result, the projective 

DLT model has gained ground in general purpose or consumer market CCD video 

cameras fitted with variable focus and zoom optics, as broadly utilized in computer 

vision applications. The projective equations of the DLT method are given as follows: 

  

1 2 3 4

9 10 11

5 6 7 8

9 10 11

L X L Y L Z L
x x

L X L Y L Z 1

L X L Y L Z L
y y

L X L Y L Z 1

  
  

  

  
  

  
 

 

(4.19) 
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Where: 

x, y= 2D image (mm) or pixel coordinates 

L1-…-L11= algebraic parameters (unitless) 

 

In this equation parameters Li (where i= 1-11) express the algebraic equivalents of the 

EO (6 parameters) and IO parameters (3 calibration and 2 affine parameters) and can 

be calculated by decomposition of the eleven parameter transformation matrix. These, 

according to Wrobel (2001), can result in high numerical stability when the 

calculation is based on the knowledge of principal point coordinates and focal length. 

The model can be treated as a direct or iterative estimation procedure (McGlone, 

1989) and can additionally allow treatment of orthogality constraints within the model 

(Bopp & Krauss, 1978). Its direct, non-iterative implementation can offer a fast 

computation stage for starting value generation through space resection (see section 

4.3.5.) as an example.  The offset of this problem is the demand for an increased and 

well distributed number of CPs (6 per image) and the demand for an increased 

number of correspondences. In self-calibration problems the DLT is computationally 

expensive regarding numerical stability and convergence when compared to the 

collinearity model (Fraser, 2001). It is recalled here that a comparison of the 

perspective and projective models has been given in section 3.4.1.1. It is generally 

accepted that the potential for robust estimation, good behaviour in the presence of 

noise and high precision levels within the bundle method are held responsible for its 

preference over direct estimation procedures. 

 

4.3.4. Self-calibration 

Self-calibration simultaneously estimates IO, EO and 3D object space point 

coordinates by relatively orienting all bundles of rays without the requirement of any 

a priori 3D object space knowledge (point coordinates or scale) (Gruen & Beyer, 

2001). The model behind self-calibration is an extended parameter bundle estimation 

method. 

 

A simplified internal projection model is considered to include the 2D image 

coordinates of the principal point, the camera constant as well as the radial lens 

distortion terms. These parameters form the IO parameters of a CCD frame as defined 
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above (see section 4.3.1.). Any departures from ‘ideal’ projection may result in a 

systematic error budget which needs to be compensated within the system. It has 

already been reported (see section 3.2.3.) that camera stability is critical in camera 

calibration, noting in particular that in CCD systems temporal variations can emerge 

in principal point location (due to warm up effects), camera constant as well as lens 

distortion with a change in focus settings; factors that reduce the camera’s stability as 

a result. It follows that selection of the additional parameter model is key as this is the 

‘natural’ model representation. However, it can be sensitive to over-parameterization 

which is held responsible for ill-conditioning or singularities in normal equation 

systems. Computation of self-calibration parameters within a bundle method is 

rigorous and flexible but factors of network geometry and scale variation play a 

significant role. 

 

4.3.4.1. Additional parameter model 

Self-calibration demands the definition of a ‘physical model’ that describes the 

internal camera geometry error sources. This is achieved by augmentation of 

equations (4.16) by a pair of departure functions Δx and Δy which are critical to the 

self-calibration success and need to be determinable in a given network configuration. 

A general description of these is given according to the following equations: 

 

x

ijk ojk jk ijk ijk

y

ijk ojk jk ijk ijk

x x c f x

y y c f y

    

    
 

 

 (4.20) 

Where: 

ijk= number of points, photos (views, frames), cameras 

xijk, yijk=  image measurements (mm) 

xojk, yojk= principal point locations (mm) 

cjk: camera constant of CCD frame (mm) 

f
x
ijk, f

y
ijk= numerator and denominator components of collinearity condition 

Δxijk, Δyijk= departure functions (mm) 
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Gruen & Beyer (2001) provide a self-calibration model for close range camera 

calibration. Here, the adopted self-calibration model (utilized for the purpose 

initialization, pre-measurement and generation of reference image networks) is the 

one deployed within the in-house photogrammetric bundle adjustment tool (VMS 

8.0). This model is based on a ten additional parameter set which can be optionally 

extended to handle up to twenty internal parameters and it is given as follows: 

 

1 2

x
x x ( )dR dDx a y a x

r

y
y y ( )dR dDy

r

    

  
 

 (4.21) 

Where: 

x, y= 2D image measurements with regards to the principal point location (mm) 

2 2r x y  = radial distance with regards to the principal point location (mm) 

dR= radial lens distortion computation model. Polynomial accommodates the 3
rd

, 5
th

 

and 7
th

 power order terms (mm expressed in μm) 

dDx and dDy= x and y components of decentering lens distortion (mm) 

a1, a2= orthogonality and affinity terms of the image correction systems (unitless) 

 

In most CCD camera systems where point location is undefined, the affinity (scale) x 

factor (attributed to imprecise sensor element spacing) and orthogonality (shear) may 

be present; hence these equations are expected to be effective.  

 

4.3.4.2. Implementation of additional parameter model 

Treatment of self-calibration is based on model purpose (e.g. 3D object location, 

position and orientation of a moving camera as well as systematic error analysis). It is 

noted that the system applied here allows inclusion or exclusion of specific terms 

within the calibration file by adjustment of a parameter’s standard deviation (one 

standard deviation, normal distribution 68%) to a binary value of 1 for parameter 

estimation or 0 to fix a parameter within the system. In situations where insignificant 

parameters are observed, these need to be removed from the system and to 

subsequently check whether their removal reduces the overall network precision in a 
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progressive approach. To avoid a quasi-column rank deficiency of the design matrix 

(noting that the identified weights decide the degree of the constraints) Gruen & 

Beyer (2001) treat additional terms as observed variables. It is common that the 

additional terms are tested through the analysis of the a posteriori matrix of 

correlations (see section 4.7.1.). High correlation coefficients (for example those that 

present correlations ρ>0.9) can be damaging if they occur between additional 

parameters and object space coordinates; such an indication points that these 

parameters need to be removed from the system. In addition, it is useful to examine 

the trace of the 3D locations covariance matrix. It is noted that in the case where 

suppression of a parameter results in an overall RMS increase, this parameter will 

need to be re-instated. 

 

4.3.5. Starting values 

Least squares approaches require knowledge of starting values of the unknown 

parameters to be estimated. Starting value estimation is critical to the success of the 

implemented algorithm; however there is not an absolutely correct answer. The nature 

of starting value estimation is problem dependent. For example starting values can be 

derived to match a desired answer but fail severely under difficult conditions (e.g. 

geometric situations of collinearity and coplanarity). It is generally considered that in 

bundle solutions weak starting values can be absorbed by subsequent estimations. 

However, it is advisable to avoid such assumptions as similar computations can 

potentially lead to a slow convergence or extreme solutions. Starting values can be 

derived based upon initial orientation devices as well as assumptions initiated from 

geometric considerations; however it is common to utilize sub-estimations (e.g. space 

resection and forward intersection methods) that base their calculations on a minimum 

subset or search through the observations. An ideal goal of starting value estimation is 

system automation. However this is not achieved in generic terms, hence it comprises 

a very attractive research topic. 

 

4.3.5.1. Space resection and forward intersection 

Common initialization procedures refer to the initialization of cameras pose as well as 

estimation of 3D point coordinates. For perspective sensors these are rendered 

through classical space resection and forward intersection approaches. The process of 
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space resection is a 2D to 3D orientation computation of the defined EO parameters 

(see section 4.3.1.). One example is to perform a closed form estimation from a 

minimum number of 3 non-collinear CPs. This generally results in four real out of 

eight discrete solutions (positive and negative) located symmetrically on either side of 

a plane passes through the given CPs (Wrobel, 2001). To resolve the ambiguity and 

obtain a unique, correct solution a fourth point is introduced in the computation. 

Regarding forward intersection, this calculates the 3D object point coordinates given 

the knowledge of the orientation parameters (IO and EO). The minimum requirement 

is a pair of two views resulting in a redundancy of one and it is commonly treated as 

an iterative estimation procedure. Initialization is an old geometric problem; however 

it has gained attention in the computer vision literature. In fact Dickscheid et al. 

(2008) utilize a RANSAC
19

 sub-procedure to eliminate wrong correspondences and to 

generate orientation estimates which form the basis of benchmark tests with real 

bundle adjustment data.  

 

4.3.5.2. Estimation of exterior orientation and 3D point coordinates 

To initialize the bundle adjustment an approach based on a three-stage procedure, 

utilizing an initial EO, a Zeng-Wang (ZW) resection and a forward intersection, has 

been followed here (see Figure 4.2). 

 

 

Figure 4.2: Summary of initialization strategy within the VMS 8.0 tool. 

 

The EO parameters are estimated in a local coordinate system which is defined from 

the measured CPs applying an initial EO estimation which is subsequently updated by 

                                                 
19

 RANSAC (RANdom Sample Consensus) algorithm: Originally developed to interpret or smooth data 

contaminated by gross errors and utilized to solve the Location Determination Problem (LDP) (Fischler 

& Bolles, 1981). 
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a resection algorithm (Zeng & Wang, 1992). The stage of forward intersection is 

initialized as a geometric solution which is updated by a least squares estimation 

procedure. It is noted that resection and intersection computations use an L1
20

 norm 

robust estimation to reliably remove outliers in the target image measurements. A 

description of the main stages of the initial exterior orientation (stage 1), Zeng-Wang 

resection (stage 2) and forward intersection (stage 3) are described as follows: 

 

 Stage 1 - initial exterior orientation: The process is a modified closed form 

solution that demands a minimum number of three valid CPs in the data. It 

outputs the initialized EO parameters (Xo, Yo, Zo, ω, φ, κ) and a successful 

solution allows transfer to the subsequent stage. 

 Stage 2 - Zeng-Wang (ZW) resection: It starts from a subset of four CPs 

locations. The solution is based on three points, utilizing the fourth to resolve 

the best root ambiguity (storing all answers on a stack). The LSE resection is 

an L2 norm procedure. As a rejection criterion for outlier rejection, it utilizes 

either a constant factor (which is set by the user) or a factor scaled to the RMS 

image residual. A successful solution exports a .log file which updates the EO 

parameters similarly with the ‘stage 1’ described above, the average image 

measurement residual RMS and a summary of the computations (successful, 

failure, insufficient, non-convergent). 

 Stage 3 - forward intersection: A forward intersection procedure is performed 

estimating the 3D target locations as a combination of a geometric solution 

which is based on two rays intersection and a subsequent L2 norm least 

squares multi-view algorithm. The least squares method utilizes an outlier 

rejection factor based on the image residuals (by default set to 5.0 within the 

software tool). Implementation of the solution returns a convergent, non-

convergent or an erroneously RMS evaluated solution. Forward intersection 

outputs a .log file which includes the 3D point coordinates with their 

associated precisions (X, Y, Z, σΧ, σΥ, σΖ) as well as a descriptive summary 

of the target counts per view and average RMS residuals per view (frame or 

photo). 

                                                 
20

 L1 norm solution utilizes the magnitude (absolute values) of the residuals, whereas the L2 norm 

solution minimizes the sum of squares of the residuals. 
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4.4. Affine camera sensor 

A geometric description of the affine camera has been given in section 3.4.2. It is a 

camera initially introduced by the computer vision community and it establishes the 

image to object space correspondence linearly. Common treatment has been based 

upon the homogeneous notation of the involved matrices. Whilst linear algorithms 

impose assumptions into the projective model, reducing for example solution stability, 

affine systems are closer to the Euclidean reconstruction. As a result, it can be 

considered that their linearity allows for ‘simpler’ system implementation. In addition, 

affine-based processing has attracted interest in image analysis with focus on 

automation. Further, in problems that approximate a surface by a plane and in cases 

where perspective effects are typically small on a local scale, the affine model can 

provide a good modelling solution. 

 

4.4.1. Background methods 

To report methods that implement the affine sensor the following examples are given. 

Koenderink & Doorn (1991) utilize a geometric approach based on local coordinate 

frame estimations from a set of known points whereas Tomasi & Kanade (1992) 

propose a non-local coordinate frame method that utilizes the total number of points 

within the scene but their solution needs to calculate cases related to rank 

requirements of matrices. Coordinate datums are defined as the geometric centroid of 

the cluster of points. Shapiro (1995) extends the previous approaches to a multiple-

view solution that it is based on SVD of the matrices involved within the system. 

From the photogrammetric standpoint the affine sensor has been utilized to initialize 

orientation (resection) procedures based on the properties of the rotation matrix (Kyle, 

2004) or performs long range measurements (Ono et al., 2004) as examples. 

Weinhaus & Devich (1999) more interestingly utilize a hybrid joint perspective and 

parallel projection mathematical model, of homogeneous and non-homogeneous 

equations, that can be optionally adapted (between perspective and affine) for the 

absolute purpose of mapping textures onto planar polygons. Finally in image analysis 

Mikolajczyk et al. (2005) give an overview of the methods that perform affine 

covariant region
21

 detection. It has been shown that whilst the affine regions are 

                                                 
21

 Region: Is a set of pixels on any image subset. According to Mikolajczyk et al. (2005) region 

boundaries need not to correspond to changes in colour or texture. 
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variant, the normalized image pattern they cover together with the derived feature 

descriptors are typically invariant. In particular, the authors studied a number of six 

methods for detecting such regions on images and they subsequently assessed their 

performance related to texture, different transforms, variation in viewpoint as well as 

illumination. 

 

4.4.2. Mathematical model 

In non-homogeneous vector notation the affine sensor model recovers the image to 

object space correspondence through a mathematical relation (see section 3.4.2. - 

equation (3.5)) that can be thought of as a simplified collinearity condition (see 

equation (4.16)). In these equations no principal point exists; the projection centre is 

located at infinity. The mathematical model involves the parameters: 2D projective 

translations (tx, ty), 3D photo rotations (ω, φ, κ), and scale factor (s) regarding 

orientation and 3D point coordinates (X, Y, Z) regarding object space recovery. It is 

linear in relation to the unknown parameters and it can be derived from the standard 

collinearity condition by substitution of the variant image scale with an invariant scale 

factor which is the approximation of the system’s nominal magnification factor. The 

initial mathematical formulation for the affine sensor can be augmented to 

accommodate departures from the ideal projection. To initially build and test the 

model, a simplified third-power radial lens distortion polynomial term (see section 

3.2.2.1.) is inserted for the purpose of camera calibration. The model is implemented 

as a system of multiple views that are arranged in a network configuration in order to 

process the bundle algorithm.  

 

The mathematical system is formed considering j views (frames or photos), i points 

and k cameras. Let b (n x 1) be the vector of reduced (observed minus computed) 

image observations, A (n x 5j+3i+2k) be the design or Jacobian matrix and x 

(5j+3i+2k x 1) be the vector of unknown parameters. In vector-matrix representation 

the affine mathematical model is given as follows: 
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(4.22) 

 

Where: 

x, y=  image measurements (mm) 

x
o
, y

o
=  approximate values of the image measurements (mm) 

s= scale factor (unitless) 

ω, φ, κ= 3D rotations (degrees) 

tx, ty= 2D projective translations (mm) 

X, Y, Z= 3D point co-ordinates (mm) 

k3= 3
rd

 power term of radial lens distortion polynomial (unitless) 

vx, vy= x, y components of vectors of residuals (mm) 

 

This is the basic formulation behind the affine sensor model. It is noted that to 

implement the bundle algorithm in an iterative LSE approach (see section 4.2.) the 

design matrix is formed from the partial derivatives of the parameters to be estimated. 

The calculation of these is given in Appendix A. Regarding model structure as well as 

method development and implementation these comprise the core theme of chapter 5 

where they will be studied extensively. 

 

4.5. Datum constraints 

From the photogrammetric standpoint, image networks perform on pure image 

measurements. As a result, it is generally required that a datum is determined from 

seven coordinate system parameters (see Figure 4.3 for an example of a datum 

definition for a small cluster of points). 
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Figure 4.3: Local datum of a geometric centroid (red: CPs, green: TPs, blue: scales). 

 

Particularly in the case where no configuration defects are present within a 

photogrammetric system, datum defects can be resolved by computation of the 

following coordinate system parameters: 

 

λ= isotropic scale (unitless) 

Xo, Yo, Zo: 3D translations of the origin (mm) 

ω, φ, κ: 3D orientation angles (degrees) 

 

Datum identification is a problem of a 3D similarity transform (see section 4.3.1.). In 

particular it results in a linear dependence of the columns of the design matrix A and 

thus in a linear dependence of the columns with the rows in the normal equations 

matrix. To solve the datum problem minimum, inner or stochastic (external) 

constraints are introduced in the functional model. For example minimum constraints 

generally require fixation of two control points (X, Y, Z) with an additional point 

known in the depth direction (Z) that form what is termed a zero variance reference 

base (Cooper & Robson, 1996). Inner constraints, which are considered as a special 

case of minimum constraints, define the seven datum elements with a geometric 

centroid (XG, YG, ZG) (see section 4.5.1.) whereas stochastic or external constraints 

augment the observation equations with a set of pseudo-observations which are 

formed from the identified control, the quality of which is given by their stochastic 

model (see section 4.5.2.). 
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4.5.1. Inner constraints 

The inner constraints method (Granshaw, 1980; Cooper & Cross, 1988; Cooper & 

Cross, 1991) identifies a geometric centroid to be the center of mass of the defined 

control point data. The constraint equations augment the functional model by seven 

additional equations. Particularly the 3D centroid is identified as follows: 

 

i i i
G G G

X Y Z
X , Y , Z

n n n
        

 

(4.23) 

Where: 

XG, YG, ZG = 3D coordinates of the datum centroid (mm) 

Xi, Yi, Zi= 3D coordinates of point i (mm) 

n= number of CPs 

 

The constraint equations state: 

 

1. Constraint-position: The position of the centroid remains constant. 

2. Constraint-rotation: The average direction of all points from the centroid 

remains constant. 

3. Constraint-scale: The average distance of all points from the centroid remains 

constant. 

 

In mathematical form: 

 

     i i iX 0, Y 0, Z 0
 

(4.24) 

i i i i i i i i i i i i(Z Y Y Z ) (X Z Z X ) (Y X X Y ) 0              
 

(4.25) 

i i i i i i(X X Y Y Z Z ) 0        (4.26) 

 

Subsequently, the constraint matrix G is constructed by linearization of the seven 

datum (3 translations, 3 rotations, 1 scale) equations as follows: 
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(4.27) 

Where: 

X1, Y1, Z1, …, XP, YP, ZP= 3D coordinates of CPs (mm) 

 

The linearized form is now given: 

 

     
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     

1 2 1
T

2

A A x l

x 0G 0
 

(4.28) 

Where: 

A1= design or Jacobian matrix corresponding to 3D point coefficients 

A2= design or Jacobian matrix corresponding to exterior orientation 

G
T
=  constraint matrix 

x1= vector of the unknown 3D point parameters within the model 

x2= vector of exterior orientation parameters within the model 

l= observations vector 

 

The resultant normal equations matrix N is symmetric but not positive definite. Inner 

constraints demand appropriate routines for inverse matrix computation (see section 

5.5.2.2.). The generalised matrix inverse known as the Moore-Penrose inverse or 

pseudo-inverse offers the solution to this problem (Cooper & Cross, 1991). Inner 

constraints result in the minimization of the trace of the a posteriori covariance matrix

x

C . 

 

4.5.2. External constraints 

The method of external constraints requires that a set of control point data is known 

with a high degree of precision. Such reference data can be derived from a 
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measurement procedure that is considered to be of high order precision (such as a 

prior robust bundle estimation or CMM measurement). 

 

Given the following definitions: 

 

xP= x prior vector of control point data. 

CxP= covariance matrix of control point data. 

x
o
P=  vector of approximate values (pseudo-observations) of control point data. 

 

Equation (4.29) is now formed as follows: 

 

n ln P
o

P xPP

lx Q 0A A
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(4.29) 

Where: 

An= design matrix of new elements 

AP= design matrix of prior estimated elements 

xn= vector of new elements 

xP=  vector of prior estimated elements 

xP
o
= vector of approximate values of prior estimated elements 

l= observed minus computed vector (reduced observations vector) 

QxP= cofactor matrix associated to the covariance matrix CxP 

 

The normals equations matrix N is positive definite (see section 5.5.2.2) and in the 

first iteration, the right-hand vector of the pseudo-observations for control points 

(formed by the first order increments to the approximate values) becomes null. It is 

noted that identification of control is considered as highly critical in the precision 

aspect; precision can be degraded for poorly identified control point data. 

 

4.6. Image network geometry 

Image network geometry design is the problem of planning the camera’s locations, 

image and object space configurations enclosing the object of interest in order to 

generate accurate measurements. Figure 4.4 illustrates an example of a convergent 
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image network geometry that is formed for six views imaging a 3D volume for the 

perspective camera sensor. 

 

 

Figure 4.4: Representation of a close range image network. 

 

4.6.1. Network geometry factors 

The main factors that govern the design of an imaging network relate to: geometric 

strength (such as base-to-depth (B/D) ratio, angle of convergence, scale recovery), 

object space properties (such as spatial resolution, visibility, occlusions, incident 

viewing angle on features), image space properties (such as resolution) as well as 

number of intersected angles and redundancy factors. Design of image networks is an 

established problem and it is commonly treated with heuristic simulation (Fraser, 

1996). To avoid singularities and instabilities several approaches exist and these may 

include utilization of expert systems (Mason, 1995) or establishment of optimal 

configurations such the discrete camera placement based on a viewing sphere for 

example (Sakane et al., 1987). Fraser (1996) follows the classification of the basic 

orders of network design as introduced by Grafarend (1974):  

 

1. Zero order design (ZOD): Is related to the establishment of a datum given a 

configuration matrix (design matrix) associated with its stochastic model 

(covariance matrix). 

OI

OII

OIII

OIV

OV

OVI

X

Y

Z



4. Modelling from multiple views  

 

 

- 111 - 
 

2. First order design (FOD): Defines a configuration matrix (design matrix), that 

for a given weight matrix, yields a cofactor matrix which satisfies specified 

precision criteria. 

3. Second order design (SOD): Is related to the optimization of the image 

observation precision problem. 

4. Third order design (TOD): Refers to the densification problem. 

 

Given an image measurement system and its precision, the network geometry is 

initialized to test the configuration and the achieved degree of precision. The network 

is tested against its requirements and in case of failure the covariance matrix is re-

scaled or the configuration (FOD design) is modified to resolve the ambiguity, 

otherwise redesign is required. 

 

4.6.2. Network geometry examples 

Design ‘rules’ for optimal network geometry usually refer to geometric stability (see 

section 3.2.3.), wide baselines, wide-angled lenses and large CCDs in order to 

enhance object space coverage and measurement precision. Additional requirements 

relate to increased point redundancy and four imaging rays visibility to ensure high 

internal reliability over the three views case; as four rays enable detection and 

localization of gross image measurement errors. 3D test-fields imaged under strong 

convergent geometries are considered as optimal; however not absolutely established. 

In instances where convergent geometries do not hold, 3D arrays are essential for the 

recovery of the camera constant (Gruen & Beyer, 2001). In high resolution, controlled 

imaging engineering cases, convergent image networks within an imaging cone of 45
o
 

centred on the object and supported from 90
o
 rotated views on their optical axis are 

usually built. In such cases typical accuracies at the order of 1:100,000 of the object’s 

primary dimension are reported (Fraser et al., 1995). A range of practical network 

design examples can be found in El-Hakim et al. (2003). 

 

In most instances practical limitations like physical obstructions (occlusion, visibility, 

direction of lines of sight with relation to features location and features distribution) 

and imaging constraints (resolution, DOF and FOV) can bound the network 

configurations to empirical establishment. For example in architectural large scale 
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projects (Van den Heuvel, 2003) where buildings are composed of planar primitives, 

corner images are acquired to tie and strengthen the sub-networks particularly when 

overview images are included in the computations. In sequence projects Guidi et al. 

(2003) utilize for example free-form objects placed on a turntable applying controlled 

imaging configurations. An example of such a measurement object is given in Figure 

4.5 where an alabaster sculpture is illustrated (see section 2.2.2.). Image network 

geometry configurations that were designed for the purpose of method development 

and testing will be outlined throughout chapter 6 whereas some descriptive networks 

are given in section 6.2.2.4. 

 

 

Figure 4.5: An alabaster sculpture located on a turntable. 

 

4.7. Quality control 

To assess the quality of adjustment problems a series of tests that evaluate the 

goodness of the solutions are usually performed. In the case of LSE cost functions, 

quality estimation is related to three fundamental considerations; these are defined as 

follows: 

 

1. Accuracy: This term refers to the degree of closeness of an estimate to its 

parameter. In conventional terms, accuracy is considered as the degree of 

closeness to the ‘true’ value (Mikhail, 1976). As a result, accuracy is 

connected with the degree of systematic error sources, if any, in the data. 

Measures that address accuracy are usually expressed with regards to ground 

truth (e.g. high precision reference data). VDI/VDE 2634 guideline comprises 

such an example for accuracy evaluation of optical 3D measuring systems. It 

is composed of parts 1, 2 and 3 that correspond to the imaging systems with 

point by point probing, optical-based scanning systems and multiple view 

area-based scanning systems respectively (VDI/VDE, 2009). Within this text 
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accuracy measures are determined according to the purpose of assessment and 

they are given with regards to reference measurements. 

2. Precision: This term refers to the degree of conformity among a set of 

observations of the same random variable. The spread (or dispersion) of the 

probability distribution is an indication of precision (Mikhail, 1976). As a 

result, it is linked with the presence of random errors in the measurements and 

it is associated with the covariance matrix analysis. The direct estimator 

associated with precision is the variance or standard deviation of a random 

variable. The a posteriori covariance matrix of the estimated parameters is a 

highly rich source of quality information and allows the assessment of model 

precision as well as detection of systematic errors within the system. Within 

this text the term precision (or quality) denotes the standard deviation of the 

associated entity. 

3. Reliability: This term refers to the presence of gross errors (blunders) in the 

data (Cooper & Robson, 1996). Such errors are difficult to detect due to the 

nature of the minimization of the quadratic cost function (see section 4.2.). For 

example if a gross error occurs in the measurement data this will contaminate 

the measurements in order to minimize the target function, posing its 

identification difficult. Internal reliability relates to the ability of performing 

self-consistency checks for outlier detection. External reliability specifies the 

degree to which undetected outliers can affect the estimated parameters. 

Within this work outlier detection and elimination have not been part of the 

up-to date implemented algorithm (see section 5.5.). 

 

The above three factors are critical to the evaluation and the applicability of the 

solution applied to a measurement problem; hence a set of sufficient measures are 

commonly computed and analyzed to ascertain accuracy, precision and reliability as 

reported in section 4.7.1. It is stated that this text follows the terminology followed in 

photogrammetry. For clarification purposes two additional definitions are given: 

‘Robustness’ is referenced with regards to the presence of outliers within a system and 

‘consistency’ characterizes an estimator when it is said to converge in probability to 

the parameter. However these terms have been used only in implicit terms (without an 

explicit utilization or derivation of associated measures) throughout this text.  
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4.7.1. Quality indicators 

A review on the quality indicators and performance evaluation applied in bundle 

adjustment methods is given in Triggs et al., (2000) and Foerstner, (2005). Here the 

problem of quality assessment metrics is discussed outlining the typical estimators 

obtained from a LSE procedure. 

 

Accuracy is addressed through measures that ensure that systematic effects are not 

present in the data. Examples of accuracy evaluation measures are the residual vectors 

(their magnitude and direction need not to present undesirable systematic patterns). A 

measurement is considered as ‘accurate’ with relation to a reference dataset, hence 

comparative differences need to refer to standards designed for this purpose (see for 

example VDI/VDE, 2009). 

 

Precision is expressed as a quality measure associated with the covariance matrix 

analysis. Starting from the model formation an a priori variance factor σo
2 

is defined 

to be commonly equal to unity; this implies that the contribution of the image 

measurements in the estimation procedure is pointed by their stochastic model σi
2
. An 

example of the order (magnitude) of this value is given in the bundle software VMS 

8.0 where image networks are processed with a specified image observations quality 

σi
2
= 0.25μm (σi= 0.5μm => σi

2
= 0.25μm). The a posteriori variance factor can then be 

evaluated (see section 4.2.) to check if the a priori stochastic model meets the 

requirements. This test refers to the T statistic (T=v
T
Wv) that tests the null hypothesis 

where the variance factor is equal to unity against an alternative hypothesis. If the null 

hypothesis is rejected the precision of the measurements has not met the design, there 

is a gross error on at least one measurement or a systematic error occurs (Cooper & 

Robson, 1996). In the absence of gross and systematic errors the a posteriori 

covariance matrix scales the computed a posteriori covariance matrix of the estimated 

parameters. This is a significantly self-contained matrix in that it encloses highly rich 

information for quality evaluation. It describes each of the components that constitute 

a camera problem such as additional internal parameters, external camera elements 

(position and attitude) and finally 3D point coordinates. Sub-matrices can be easily 

derived if each of these three components need to be considered. To evaluate object 
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space quality the square root of the mean variance is calculated from a set of 3D 

points within the image network according to: 
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(4.30) 

 

Where: 

xi



 = mean a posteriori standard deviation of a number of i 3D CP data 

xi

C


= a posteriori covariance matrix of a number of i 3D CP data 

 

In addition, object space can be inspected from the ratio of the largest to the smallest 

eigenvalue (λmax/λmin) in relation to unity. The 3D standard error ellipsoid can be 

calculated from the eigenvalues (magnitude) and eigenvectors (directions). In an 

alternative case computation of the 2D point ellipses from an algebraic calculation is 

performed. Regarding the internal calibration parameters, these can be checked 

against their significance from zero based again on the T statistic. If over-

parameterization occurs then potential insignificant parameters need to be removed 

from the data and LSE needs to be re-evaluated. Further to these, analysis of the 

matrix of correlation coefficients is highly important in that it indicates the mutual 

variation between two random variables. Parameters that present high correlation 

coefficients (>0.9.) will need to be removed from the model. 
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(4.31) 

 

Where: 

ρxy= correlations coefficient of parameters x, y (unitless) 

σxy= covariance between two parameters x, y (mm; converted in μm) 

σx= standard deviation of parameter x (mm; converted in μm) 
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σy= standard deviation of parameter y (mm; converted in μm) 

 

Reliability measures usually refer to the detection and elimination of outliers from the 

system. Flagging image measurements that are affected by gross errors is one 

possibility but alternative approaches are implemented by applying a down-weighting 

scheme followed by statistical tests that check the a posteriori variance factor, 

subsequent measurements corrections and re-estimation. This procedure is repeated 

until the a posteriori variance factor is unity and all contaminated measurements have 

been assigned with large standard deviations that in effect minimize their contribution 

in the LSE process. The method of outlier elimination based on residuals testing is 

known as data snooping (Baarda, 1968). 

 

4.8. Summary 

In summary this chapter reviews the method of multi-view modelling from the 

photogrammetric perspective. It starts with an overview of the bundle adjustment 

method supported by its main features related to the method’s background, main 

attributes as well as state of the art. Subsequently the least squares estimation and 

associated mathematics are given. The perspective camera sensor is presented from 

the geometric viewpoint linked with the important aspects of self-calibration and 

starting value estimation. Subsequently the affine camera sensor which comprises the 

central topic of this thesis is covered with a brief description of background methods 

and its mathematical model formulation. The chapter additionally covers three 

important considerations for modelling multi-view problems; that is the aspects of 

datum, image network geometry and quality control. 

 

 



 

 

5. Affine multi-view modelling 

This chapter presents the ‘affine multi-view modelling’ algorithm developed within 

this research work. The chapter is organized into six main sections starting with a 

general overview as well as method description. Subsequently, the implementation 

tasks are listed in a methodological approach as the key stages of the algorithm are 

developed covering model structure, derivation of starting values and bundle 

adjustment framework in detail. Finally, the chapter closes with the design and 

initiation of the implemented method reporting a simulation example. 

 

5.1. Method overview 

The algorithm presented here is concerned with the investigation of the affine sensor 

in the close range. It is designed and developed for the multi-view case that solves the 

fundamental photogrammetric tasks; that is (a) calibrates, (b) orientates the cameras 

and (c) simultaneously estimates 3D point geometry. The algorithm needs to be 

capable to allow statistical error propagation and therefore to assess the method with 

the typical quality measures utilized for the purpose of performance evaluation (see 

section 4.7.). It is developed for close range convergent imagery arranged in a 

network configuration (see section 4.6.) and it is based upon the assumption that 

initialization is performed from sparse, artificially targeted, point-based geometric 

structures prior to method processing and evaluation. In the contexts of design, 

development and implementation of such a multi-view framework, there are some key 

considerations that need to be accommodated; these are formulated as follows: 

 

1. Input data handling: Is related to the reading of the input data files with 

regards to affine sensor modelling as well as the design of the basic model 

structures. 

2. Algorithm modelling: Depicts the ability of the algorithm to accommodate 

camera modelling factors (internal calibration and external orientation 

parameters) and to deal with a number of geometric factors which arise from 

point data treatment such as visibility handling, point coordinates contribution 

(CPs or TPs) in the network computations, particularly in the geometric datum 
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estimation (see section 4.5.). These are the primary geometric factors that are 

related to the 3D object positioning problem from multiple viewpoints.  

3. Affine sensor modelling: Signifies the ability of the algorithm to represent, 

given its theoretical basis, the physical reality, particularly regarding model 

scale and internal camera geometry. 

4. Checking and interpretation: Are issues related to the ability of the system to 

incorporate statistical error propagation within the method which will 

subsequently enable data quality assessment through the associated quality 

measures. 

 

Overall decomposing this chapter, the above factors are addressed by firstly 

illustrating an outline of the developed algorithm in a methodological approach (see 

section 5.2.). Method description is followed by four fundamental sections. The 

structure of the model is described with the affine model formation and stochastic 

model initialization (see section 5.3.). Noting that the key factors presented above are 

valid given that the method has been initialized with ‘good’ starting values, another 

issue is the investigation of starting value derivation based on direct or indirect 

estimation procedures (see section 5.4.). Subsequently, the bundle adjustment
22

 

framework, which is the core method of this thesis, is presented with its implemented 

intermediate stages (see section 5.5 and subsections). The chapter closes with a 

description of the implemented method based upon a simulation example that was 

created for the purpose of initial model formation and development. This synthetic 

example also supports theoretical proof of the method based upon three geometric 

viewing cases; that is two-view, three-view and seven-view geometric arrangements 

that are covered in sections 5.6.2., 5.6.3. and 5.6.4. 

 

5.2. Method description 

The method of multi-view modelling was treated in the context of developing a 

bundle adjustment framework that seeks the answers to the primarily stated key 

questions (see section 1.3.). It is restated here that prior concern is (a) to derive 

precise 3D object measurements, (b) to check the effect of parallel projection, scale 

factor modelling and local coordinate frame definition within the method and (c) to 

                                                 
22

 Within this text the term bundle adjustment is denoted as BA only in tables of results. 
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assess method quality over precise conventional reference measurements. The bundle 

adjustment starts from a set of input data that are generated externally to the 

developed method (see section 6.4.1.). For the purpose of initialization a set of sparse 

3D targeted structures can be utilized provided that they present sufficient content 

(intensity) as required from the employed 2D image measurement method as well as 

that they are highly geometric in their nature to avoid potential geometric 

degeneracies. In addition, the significant matters of point visibility, redundancy within 

network geometry are key to the problem as they affect the strength and adaptation of 

the algorithm developed here to the application of complex object measurement, for 

example. 

 

First consideration is the initialization of the method through the derivation of suitable 

approximate values that are optimal in that they assist the algorithm to converge 

rapidly and closely to its true answer. Next, the affine bundle adjustment is run 

accounting for modelling issues like visibility, validity, parameter inclusion (scale and 

interior orientation parameters). The iterative process terminates when the 

appropriately set criteria have been reached. Consequently, the successful solution 

extracts an overall report derived from the algorithm providing the affine sensor 

parameters accompanied with their statistical estimators. 
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Figure 5.1: Descriptive overview of affine multi-view algorithm. 

 

Figure 5.1 illustrates an outline of the overall method description according to its 

design, development and implementation applied within this research work. It is 

composed of three building blocks. The first, initialization of the method, stage starts 

from three general steps that read input data files, compute starting values and on 

success update the initialization data files. Subsequently, the key steps of the new 

affine bundle adjustment algorithm involve input data file handling, datum definition, 

internal checking of entities (visibility and validity), model parameter set-up, 

calculations and set up of sensor scale and simplified interior orientation, iterative 

weighted least-squares estimation procedure, convergence checking and finally output 

of the associated method report. 

 

To develop and implement the affine algorithm a set of data were read as input or 

exported as output (.log files). These data files were of ASCII format and a sample of 
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these can be found in Appendix B. Supported menus that draw the processing 

framework have been outlined in the same Appendix B. Accordingly, the individual 

stages of the algorithm regarding initialization strategy as well as bundle adjustment 

will be addressed analytically in the following sections (see section 5.4. and section 

5.5.). 

 

The algorithm has been designed, developed, implemented and subsequently tested 

for the purposes of this research work. It is noted that no similar method that 

processes multi-view data generated from affine imagery in the close range is 

currently available. This point emerges the significance of the initial investigation and 

successive algorithm treatment presented here, for a potential future complete 

modelling method from affine images. It is re-iterated here that image measurement 

and initialization were performed in the in-house photogrammetric processing tool 

VMS 8.0 (see section 1.5.) externally to the developed framework. For the purpose of 

this research work code has been developed in C/C++ within Microsoft Visual Studio 

2005 (subsequently upgraded to Visual Studio 2008). 

 

5.3. Model structure 

On the basis of implementation of a multi-view algorithm for the purposes of camera 

calibration and orientation and simultaneous location of sparse targeted 3D objects 

with statistical error propagation, algorithm structure and model geometry are of key 

significance. Model structure is related to the organization of the main model arrays 

for data population and location as well as treatment of model geometry. As a 

reminder, the fundamental mathematical model behind the affine sensor model has 

already been given in the section that renders a descriptive overview of affine camera 

modelling methods (see section 4.4.2. for mathematical model formation). This 

section provides the design of the affine model structure in relation to its fundamental 

arrangement. 

 

5.3.1. Affine model structure 

The prior objective of such a multiple-view task is to intersect in 3D space the lines of 

sight generated from imagery acquired with an affine close range camera sensor. A 

simplified example of such an imaging network is illustrated in Figure 5.2. This 
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example utilizes six views that were generated from an affine camera for the 

particular case that its scale factor is equal to unity. To structure the affine model in a 

bundle adjustment framework of prior importance is the design matrix structure. It is 

noted that the input data are organized as four data files (see Appendix B) that 

correspond to the input 3D target data, calibration data, photo orientation data and 

observations data initialized at a prior stage to the main developed framework (see 

section 5.3.3 for data structures outline).  

 

 

Figure 5.2: Multi-view intersection of affine images. Parallel lines of sight link 2D image and 

3D object spaces. Notation: PQ= object points, p0-p5: photo0 – photo5, pi-vqi-v= image 

measurements, oxyz= 3D coordinate system of camera. 

 

Following the structure of the input data, the model was structured starting from the 

population of the number of physical cameras k within the model followed by the 

number of views (images or frames) j and then by the number of targets (given their 

initialized 3D coordinates) i that contribute within the image network. Whilst the 

general problem requires that the parameters are populated and located on the 

mathematical basis of the affine sensor model (see section 4.4.2.), a key issue is the 

choice of the system parameters that correspond to the physical reality and do not for 

example result in an over-parameterized system. As a result, here the affine sensor is 

modelled accommodating a simplified interior orientation model (third power term of 

radial lens distortion polynomial). 

 

The parameters to be estimated are grouped according to their type in order to assist 

population of the required arrays in a columnwise order. The parameters are grouped 
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together as pseudo-exterior orientation parameters, that is projective equivalents of the 

principal point components (txj, tyj) populated per view (two parameters per view j) 

and 3D orientation angles (ωj, φj, κj) populated again per view (three parameters per 

view j).  The next group of parameters includes the 3D target coordinates (Xi, Yi, Zi) 

which are populated according to their visibility on each view (frame or image) (three 

parameters per target i). In cases where a target is not visible or its measurement is 

absent from an image its associated location is left void. In addition, the system is 

populated with one global scale factor (sk) and the third-power term of the radial lens 

distortion polynomial (k3k) which is modelled centrally from the computed image 

centre (tx, ty) per camera k. These are image invariant parameters provided that one 

physical camera system has been employed for data acquisition. It follows that scale 

factor and additional interior sensor geometry parameters are camera specific. It is re-

iterated here (see section 4.4. and section 4.5.) that the model structure of the design 

matrix A for any set of j views (frames or photos), i points and k cameras is 

formulated as: A [[(2*j*i*k) + c (where: c= 7(inner_datum) or 3*CP(external_datum))] x [(2*j) 

+ (3*j) + (3*i) + (1*k) + (1*k)]]. The outline of the model parameters is drawn in 

Figure 5.3 whereas the structure of the design matrix (see Appendix A) with regards 

to parameter location for a specific example is illustreated in the subsequent Figure 

5.4.  

 

 

Figure 5.3: Affine sensor parameters. 
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Figure 5.4: Design matrix structure - inner datum (left) and external datum (right).  

 

Specifically Figure 5.4 illustrates the design matrix configuration for a synthetic small 

sample of j= 10 views, i= 10 3D targets and k= 1 cameras to illustrate model 

parameter location and structure. For this set the inner constraints method is 

composed of a data size of 207 equations x 82 unknown parameters [A (207 x 82)] 

whereas the external constraint datum is comprised of a data size of 221 equations x 

82 unknown parameters [A (221 x 82)]. The matrix visualizes the numerical data in a 

binary representation. Where for example data exist the selected location is plotted in 

white (intensity value= 100) whilst black indicates absence of data (intensity value= 

0), hence the corresponding targets are not visible on the specified image (the targets 

are occluded or missing). For example the presented data demonstrate minimum 

visibility where one image contains seven measured points (for initialization and 

computation of photo locations) whereas ten point data are visible or otherwise 

located in two views (for initialization and computation of 3D point locations). 

Maximum visibility is present in the case where seven images include nine measured 

point targets noting that nine point target data are viewed and hence located from 

seven views. These numbers are specific to this example. It becomes apparent that the 

model needs to be flexible with regards to its adaptation to include or exclude those 
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parameters that may have a physical effect on sensor modelling (sensor scale and 

internal geometric distortions) affecting recovery of 3D geometry. 

 

The model is also capable of dealing with the important datum issue. The inner 

constraints method (see section 4.5.1.) augments the system’s equations by seven 

additional rows whilst the external constraints method (see section 4.5.2.) extends the 

system’s equations by three (where the index three corresponds to the known number 

of 3D coordinates for example) multiplied by the number of valid CPs pre-set 

(flagged) for datum definition. In the example presented here seven CPs have been 

assumed, resulting in twenty-one additional equations. It is further noted that 

population needs to treat the implemented arrays with validity checks; that is to check 

the number of flagged CPs and TPs that are valid according to their measurement for 

example in a minimum set of two views (forward intersection requirement). Flagging 

for parameter inclusion or exclusion within the system as well as identification of data 

type (CP flag = 7 or TP flag = 0) are central to the sections 5.4. and 5.5. where these 

will be addressed. 

 

5.3.2. Stochastic model initialization 

In the case of implementing 2D image measurements, the applied measurement 

method (see section 3.3.) is key to the initialized stochastic model. Although, in 

general there exists the ability to use natural point features within the method, testing 

within this work was performed on high contrast retro-reflective or passive white 

target features which were illuminated to enable high contrast measurement (see 

section 6.2.2.3. for a sample of target data quality). In similar image network 

computations, the input data quality is regarded to be characterized with a standard 

deviation of σ= 0.5 μm (which is the default precision in VMS 8.0 tool). With regards 

to the presence of blunders, it is noted that the method is treated with pre-processed 

data to ensure that the data are clean from any erroneous point correspondences as 

outlier detection and elimination is not part of the up-to-date solution. It follows that, 

a priori data quality is dictated by the empirically set image quality factor which can 

be optionally adjusted to the testing requirements. It is apparent, that considering 

magnification factor (see section 3.4.2.1.) as an inherent affine sensor property as well 

as projection distortions, these factors are likely to additionally affect the success of 
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image measurement and hence input data quality. For example it will be shown that a 

typical target diameter for close ranged image targets can reach the order of 36 pixels 

in image space under affine projection when 2 mm in diameter object space targets 

are imaged for measurement purposes (see section 6.2.2.3.). 

 

The affine model implements the a priori precisions as set for the input image 

measurements. These form the stochastic model that weights the least squares 

estimation procedure (see section 4.2.). In the case of an inner constraints datum, the 

weight matrix is augmented based on the normalized precision factor (σi=1.0) whilst 

external constraints utilize the control point data quality to form the augmented 

weight matrix (σi pointed by 3D targets precision). The quality of the 3D targets is 

pointed by their pre-measurement method which in general needs to generate high 

order precision reference measurements. It is noted that estimation of the a posteriori 

σo gives an overall fidelity check of the initialized stochastic model. It is recalled here 

that Gauss-Markov based procedures are evaluated with the extracted a posteriori 

quality measures; here quality evaluation is extracted from the scaled to the σo 

(standard deviation) a posteriori covariance matrix. Stochastic modelling is key to 

quality assessment (see section 4.7.1.) particularly in order to determine method 

precision and reliability measures that truly reflect the quality of the computed 

elements and can support further analysis. 

 

5.3.3. Data structure outline 

For clarification purposes it is stated that the following set of input data are handled 

within the computations. Specifically 3D target coordinates (.tar data file), camera 

calibration information (.cal data file), exterior orientation parameters (.pho data file) 

and 2D image observations (.obs data file) when these are attributed to the perspective 

sensor model whilst ORIENT data (.pho data file) and similarly 3D target data (.tar 

data file) point to the affine sensor model. Here, the following notation TAR, CAL, 

PHOTO, OBS and ORIENT apply to the utilized data structures a description of 

which is given in Appendix B. In addition, two structures were designed for problem 

handling. The first PHOTO_ORTO structure is required for the definition of the photo 

pseudo-exterior orientations entities that in the case of the affine sensor enclose the 

positions and orientations of the photo parameters (tx, ty, s, ω, φ, κ) and the second 
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structure is needed for least squares problem solving (1D and 2D arrays) (see 

Appendix B for a description). 

 

5.4. Derivation of starting values 

A prior task to the bundle adjustment algorithm is the estimation of starting values in 

order to initiate the process. Initialization procedures for the established multi-view 

problems met in photogrammetry have been reported earlier (see section 4.3.5.). 

Analytical approximate value estimation can be derived from direct (without the 

requirement of a priori estimates) or through iterative solution. Retrieval of 

orientation parameters is a highly critical subject and entails significant research 

interest in photogrammetry. Good starting values are those that ensure high stability 

in full parameter space. It is essential that starting value procedures provide 

knowledge on the critical configurations of 3D points and that they define cases of 

indeterminacy, instability or multiplicity which are accommodated within the derived 

solutions. Here, the approximate values are retrieved from a combination of 

established perspective-based and derived affine based solutions that have been 

investigated for the purpose of this research work. Since starting values are recovered 

photogrammetrically and not through external methods (e.g. orientation devices or 

coordinate system transformations) it is important that both perspective and affine 

cameras cover simultaneously an identical patch of the 3D volume to be measured. 

Such an imaging geometry is illustrated in Figure 5.5 where a joint projection model 

(affine and perspective sensors) recover the image space to object space 

correspondence relation and locate an object volume in 3D. 

 

 

Figure 5.5: Two-view geometry of a pair of affine and perspective views. 
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5.4.1. Initialization structure 

For the purpose of this work the problem of parameter initialization was treated as a 

combination of procedures through established perspective solutions regarded here as 

indirect procedures as well as two affine procedures one direct and one iterative 

written specifically for this purpose. Figure 5.6 demonstrates a general description of 

the initialization structure procedure.  

 

 

Figure 5.6: Affine model initialization. 

 

The method starts from a set of reference control which is known in the object space. 

Whilst it is made clear that the subject of minimum control requirements for starting 

value recovery has not been investigated as part of this work, it is emphasized that this 

is critical in order to avoid situations of geometric degeneracies that for example can 

originate from indirect estimation procedures (and associated assumptions) or weak 

cases regarding geometry (image to object space recovery under parallel projection). 

However, repeated tests proved that a minimum number of nine well distributed CPs 

are required to result in a successful estimation of orientation angles (see section 

6.4.1.2.). These data together with their associated precisions (.tar file) are inserted 

with the defined (.cal file) in the software tool VMS 8.0 where a set of image 

measurements are generated according to the method described in section 3.3. 

Applying established perspective procedures for initialization, requires that the 

physical affine sensor is approximated by an equivalent perspective sensor. This 

approximation is achieved based on the assumption that a perspective camera with a 

very long focal length is a good approximation to a parallel camera. Here it is 

assumed that such a guess is realized considering a nominal value for the focal length 

to be equal to 100,000mm which is significantly large over the measured volumes 

noting that the physical cameras footprint is a few tenths of mm (~40mm) in the 
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object space. This step is therefore completed by derivation of the 3D orientation 

angles (ω, φ, κ) applying the initialization methods. The output of this procedure is a 

set of ASCII data files target data (.tar), calibration data (.cal), photo orientations data 

(.pho) and image observations data (.obs) that have been updated and filled with the 

input required data (see Appendix B for a detailed format description). 

 

Subsequently, these data are read in the bundle adjustment framework where two 

procedures take place. The first generates the 2D projective photo locations directly 

from the affine camera sensor through back-substitution (see section 5.4.2.2.) in the 

ideal case (absence of any internal distortions). On completion this procedure updates 

the orientation file (.pho) which now includes, and in this particular order, the 2D 

projective translations (txj, tyj), nominal scale factor (si) and 3D orientation 

parameters (ωj, φj, κj) for each measured valid view. These can then be inserted into 

the next step which computes the 3D target locations through an iterative weighted 

least squares procedure which is written for the affine sensor model (see section 

5.4.3.). On convergence the process outputs the 3D target coordinates with their 

associated precisions and updates the 3D file (.tar file). 

 

Derivation of approximate values for the affine sensor model required the design and 

implementation of a new structure that identifies the required members and it is for 

this purpose embedded within the available header file (see Appendix B for further 

outline). The formats of the ASCII files described and utilized here are also given (see 

again Appendix B). It is again stated that the problem of starting value derivation has 

been theoretically given in section 4.3.5. (with initial approximations for model 

formation are given in Appendix A). 

 

5.4.2. Pseudo–exterior orientation parameters: Stage 1 

The pseudo-exterior orientation parameters are recovered as a first stage of the overall 

initialization method. The method is comprised of two steps that estimate the 3D 

orientation angles (ωj, φj, κj) indirectly through perspective (see section 5.4.2.1.) 

followed by estimation of projective translations through back-substitution (txj, tyj) as 

a direct approach from affine projection (see section 5.4.2.2.). 
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5.4.2.1. Indirect 3D orientations 

To initialize the orientation angles (ω, φ, κ) a modified Zeng, Wang closed form 

resection procedure (Zeng & Wang, 1992) is applied (see section 4.3.5.2.) on the 

assumption that a perspective camera with a very long focal length (e.g. assumed 

nominal focal length f=100,000 mm) is a good approximation to the affine camera. 

Prior to the established resection an initial exterior orientation procedure, again 

utilizing the same assumed focal length, is computed to enable initial estimation of the 

exterior orientation parameters as input to the resection procedure.  It is therefore 

understood that resection acts as a refinement of the initialized estimation. The 

procedure demands an initial set of known CPs in the object space that are well 

distributed in 3D to avoid for example geometric degeneracies that can be the result of 

employment for example of coplanar or collinear configurations. A description of this 

procedure is given here. 

 

Step 1 - Generate 3D orientations: 

- Start with a set of sparse reference target point (CPs). These provide reference 

control and simultaneously establish the datum for subsequent computations. 

- Estimate 3D rotations from an initial exterior orientation procedure updated by 

a modified closed form resection assuming a physical perspective camera with 

a very long focal length (e.g. here: f~100,000mm). 

On success, the utilized resection procedure outputs the 3D orientation angles (ω, φ, 

κ) together with an overall mean image measurement residual RMS (in μm) and mean 

valid target image observations (see Appendix B for output files). The exterior 

orientation parameters regarding the 3D photo positions will be subsequently (see 

section 5.4.2.2.) updated by the computed affine model parameters and hence their 

initial determinations from this step will be ignored. 

 

5.4.2.2. Projective translations through back-substitution 

The 2D projective translations (equivalents of the well known principal point located 

on perspective sensors) are estimated on the knowledge of the partial exterior 

orientation given above (step 1). In particular, this back-substitution procedure starts 

from the input observations list (OBS data) where for each valid photo (search on 

PHOTO data identifiers (IDs)) the target points (TARGET data) that sit on each photo 
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are found. Provided that a point acts as a CP and that it is measured on at least two 

views (four rays are generally preferred), tx and ty are calculated as the accumulated 

sum of the reduced observations vector which is subsequently divided by the number 

of valid rays. This is performed per view, noting that the reduced observation vector is 

calculated as the observed minus computed image measurements. Computed 

observations are regarded those that are estimated from the affine mathematical model 

initialized from the starting values of the parameters and in the absence of any internal 

camera distortions (ideal geometric case). It is noted that this procedure is executed 

for each valid photo; that is when at least three rays have fallen on it (formed by valid 

CPs). The computed parameters update the orientations data file. 

 

Step 2 - Mathematical formulation: 
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(5.1) 

 

Where: 

tx, ty= 2D projective translations (mm) 

xOBS, yOBS= 2D observed image coordinates (mm) 

xCOMP, yCOMP= 2D computed image coordinates (from the affine sensor model) (mm) 

nRAYS= number of rays occurring per photo (counted from the valid CPs) 

 

Step 2 - Projective translations through back-substitution: 

- Back-substitute the 2D projective translation parameters utilizing the affine 

camera model and update the orientations data file.  

 

5.4.3. Object space 3D coordinates: Stage 2 

To derive 3D target coordinates, a forward intersection procedure for the affine sensor 

model was written. This was implemented on the knowledge of the recovered pseudo-

exterior orientation parameters (see section 5.4.2.) and in the absence of any internal 

geometric camera distortions. The procedure starts with two basic checks to obtain the 

number of rays that correspond to each target (checking on TARs against OBS) and 
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views (checking on PHOTOS against OBS). Next the 3D target centroid is estimated 

from the total number of control point data similarly to the calculation of the 3D 

centroid that has been described in the inner constraints method (see section 4.5.1.). 

Subsequently, the starting values for all 3D control and tie point data are set to be 

equal to the (Xc, Yc, Zc) coordinates of the 3D centroid. A weighted LSE (forward 

intersection) procedure for the affine sensor model recovers the 3D point coordinates. 

This procedure minimizes the cost function in the object space and it results in the 

computation of the 3D control and tie point coordinates together with their 3D 

precisions. The tolerance of the intersection procedure is pre-set at 10μm in object 

space whereas minimum target visibility for the intersection is two rays by default 

unless otherwise modified. On convergence the original 3D target file is updated by 

the intersected 3D coordinates and their associated precisions (see Appendix B for a 

sample data file). 

 

Stage 2 - Object space 3D coordinates: 

- Perform a multi-view forward intersection (weighted LSE) procedure to 

coordinate new 3D points (CPs and TPs). The intersection closure tolerance is 

pre-set at 10μm in the object space for the 3D target coordinates corrections. 

 

5.5. Bundle adjustment framework 

It has already been stated (see section 4.1.) that a bundle adjustment framework 

provides an optimal method for processing multi-view problems to simultaneously 

estimate calibration, orientation parameters and 3D object geometry. To answer the 

question of selecting a least squares bundle approach to process universally such a 

linear model such as that of the affine sensor, it is recalled here that the choice of a 

least-squares solution (see section 4.2.) is attributed to its ability to produce a unique, 

unbiased and objective solution resulting in the minimum variance of estimated 

parameters. Moreover it delivers a quantifiable quality assessment and embeds full 

covariance matrix analysis within the system. To make this statement relevant to the 

multi-view problem examined here it is highlighted that, for instance, to combat noise 

derived from corresponding point measurement even the case of a direct approach 

should produce a least squares solution from redundant information.  
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To design such an iterative adjustment system, there are some important practical 

considerations that need to be considered which are outlined here giving an overview 

of the algorithm at the outset. Subsequently analysis of the intermediate steps 

according to design and implementation are reported. 

 

5.5.1. Framework structure overview 

The structure of the affine bundle adjustment framework is outlined in Figure 5.7. The 

method will be described from the stage where the input data (specifically target, 

calibration, photo and observations data; see section 5.3.3.) initialized from 

perspective-based procedures have been read within the process. Additionally, it is 

assumed that the explicitly generated data based on the affine-sensor model 

(specifically orientations and updated 3D target data) have been already initialized as 

previously described. For initialization of data structures see section 5.4.  

 

 

Figure 5.7: Affine multi-view model processing. 
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The implemented bundle method is blocked into three main parts, each one 

representing an implementation stage. The first stage requires that the datum is 

defined in order to enable data processing on either an external or inner datum 

definition. Next the measurement data are inserted within a list of checks related to 

issues like data visibility and validity, parameter set-up for inclusion or exclusion 

from the system (scale factor and radial lens distortion coefficient). The final stage 

involves the implementation of the iterative multi-view least squares estimation 

process. Here the issues of array handling for inversion as well as convergence criteria 

are reported. On convergence the algorithm outputs a descriptive report listing, on a 

statistical basis, the initial as well as estimated parameters together with their 

associated quality factors. 

 

5.5.2. Algorithm implementation 

Implementation of the algorithm is detailed according to the three individual stages 

given above. The affine bundle adjustment is described as a series of algorithmic 

steps: (a) prior to the iterative process (see section 5.5.2.1.), (b) least squares 

estimation process (see section 5.5.2.2.), (c) convergence (see section 5.5.2.3). 

Sections 5.5.3 and 5.5.4 outline the closure criteria and quality estimates. 

 

5.5.2.1. Prior to the iterative process 

 

Step 1 - Datum definition: 

- Set up datum for coordinate system definition. Two options are provided. 

External constraints establish the 3D datum based on the identified CPs 

(datum_flag= ’e’) where CPs are considered those targets that are indexed 

with a flag= 7. Alternatively, inner constraints (datum_flag= ’i’) establish the 

3D datum based on a 3D centroid identified  again from the flagged CP data. 

 

Step 2 - Visibility: 

- The total number of target points is checked against their occurrence onto the 

valid number of images within the image network to retrieve the total number 

of rays corresponding to each target point. This derives the point visibility 

from photos. 
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- The total number of photos is checked against the valid image observations to 

retrieve the total number of rays corresponding to each photo. This derives the 

number of target points measured on each photo. 

- The total number of photos is checked against the number of physical cameras. 

It is noted that each physical camera specifies a camera calibration set of 

parameters. 

 

Step 3 - Validity: 

- The number of image observations that are valid within the model are obtained 

and stored in a counter (n_obs). 

- The number of target points (CPs and TPs) that are valid within the model are 

obtained and stored in a counter (n_targ). 

 

Step 4 - Starting values: 

- The system is initialized with the pre-determined starting values 

corresponding to photo orientations (PHOTOS), 3D target coordinates (TARs) 

and additional parameters (ADPs). 

 

Step 5 - Set up scale factor: 

- Scale factor is specified from the nominal scale factor associated with the 

camera sensor (image invariant factor). Scale estimation is embedded within 

the system according to an identified flag. Particularly, scale_flag= 1 includes 

the scale factor within the system computations and scale_flag= 0 excludes the 

scale factor from the system estimations. 

 

Step 6 - Parameter locations: 

- The individual parameter locations are set for the 2D projective translations, 

3D orientation angles and 3D target coordinates with an implemented check. 

 

Step 7 - Parameter estimations: 

- Calculation of the estimated parameters is based upon the valid system 

parameters. 
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Step 8 - Constraints: 

- This step performs a calculation of the number of constraints for both datum 

methods. The external constraints will augment the system by a number of 

three (3D coordinates) times the number of valid CPs, whereas the inner 

constraints will augment the system by seven additional equations. 

 

Step 9 - Radial lens distortion: 

- The active image frame (maximum extent) is calculated from the image 

observations within the system. Accordingly, the frame radius is estimated 

from the equations given below (see equations (5.2) and (5.3)). Subsequently 

the additional parameter set (here the third power term of the radial lens 

distortion polynomial) is calculated from a function initialized for the radial 

lens distortion part only (without the inclusion of the extended parameters 

model that compensates for example affinity and orthogonality terms). It is 

evident that the simplified radial lens distortion is calculated from the valid 

image observations that clearly identify the active image frame extents as 

opposed to utilization of the total frame (given in pixels within the .cal file). 

 

2 2
r rframe x y 

 
(5.2) 

frame
r

2


 

(5.3) 

Where: 

frame= active image frame calculated from the image observations xr, yr (mm) 

r= image radius for radial lens distortion estimation (mm) 

 

5.5.2.2. Least squares estimation process 

 

Step 10 - Iterative process: 

- The standard LSE arrays are populated within the main LSE loop. Within this 

implementation, the algorithm sets up the ADPs, computes the reduced 

(observed minus computed) vector of observations and it calculates and 

locates the partial differentials that correspond to the model parameters within 

the design matrix (see Appendix A). 
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Step 11 - Derivation of system normals: 

- This step first populates the weight vector given the input image observation 

precisions. It then populates the augmented arrays for the external or inner 

constraints datum cases (augmented design matrix and observations vector). 

- The normal equations matrix N= A
T
WA and normal equations vector A

T
Wb 

are successively obtained with the inversion problem
23

 treated on the 

vectorized normal equations matrix as required from the available inversion 

routines. It is noted here that the inner constraints inversion method has the 

property that the resultant covariance matrix has a minimum trace and hence 

the standard deviations of the object points are estimated with minimum 

quantities. The 3D centroid becomes the origin of the datum which is a fixed 

point with a standard deviation equal to unity. The inverted array is back-

stored as a matrix for subsequent extraction of the quality measures. 

 

Step 12 - Estimation of parameters: 

- Subsequent population of the corrections to the parameters vector allows 

assignment of the final parameters (2D projective translations, rotations, 

targets, scale and k3). 

- The parameter data are reset according to the starting values derived from the 

estimated parameters (again given here as 2D projective translations, rotations, 

targets, scale and k3). 

 

5.5.2.3. Convergence 

 

Step 13 - Convergence: 

- The iterative procedure terminates when the convergence criteria have been 

reached (see section 5.5.3.). This is performed by a partial check of the 

individual absolute correction values parameter set  (2D projective 

translations, rotations, targets, scale and k3) over the defined criteria scaled to 

                                                 
23

  The inversion method applied in the external constraints case utilizes a Cholesky decomposition 

sub-routine which is suitable for positive symmetric matrix inversion whereas the inner constraints 

method utilizes a general matrix Moore-Penrose subroutine based on the Gauss Jordan elimination.  
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a pre-set unit weight of unity for the convergence check (σ0= 1) times the 

corresponding parameter precisions. 

 

Step 14 - Termination: 

- If the convergence criteria are met then the process stops and the solution is 

guided to the output stage. The LSE loop has reached to its end; the quality 

estimates output is given in section 5.5.4. 

 

5.5.3. Closure criteria 

As in every iterative adjustment process, the developed bundle method terminates 

when appropriate criteria have been reached. In theory, such an iterative process may 

converge to the desired solution, diverge, oscillate or repeat in certain cycles. Unless 

the system is degenerate, or for example erroneously established, convergence can be 

quickly achieved provided numerical instabilities are not encountered. In 

measurement applications it is important that the best precision is achieved. Best 

precision is that which derives an answer as close to the theoretical solution up to 

potential insignificant discrepancies (due to modelling as well as machine precision 

factors). At the same time the obtained solution needs to ensure an economical 

answer.  For example an iterative procedure that would perform numerous iterations 

for a relatively small gain in accuracy is considered as impractical and therefore tends 

to be avoided. 

 

Given the above considerations the selected criteria need to be representative of 

indicators of convergence and evaluate the precision of the system. Therefore, the 

strategy applied here groups different types of parameters according to the expected 

precision levels in terms of convergence. Specifically, the convergence limits for 

photo orientations are set to 0.1xσ0xσi whereas the 3D target coordinates and 

additional parameters are ascribed a tolerance of 0.04xσ0xσi (where σi is the 

associated parameter precision). These limits are given as follows: 

 

- Tolerance for orientation parameters: crit_photo (= 0.1) * σ0 (= 1) * σPHOTO 

- Tolerance for 3D point parameters: crit_tar (= 0.04) * σ0 (= 1) * σTAR 

- Tolerance for additional parameters: crit_adps (= 0.04) * σ0 (= 1) * σADPs 
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Checking based on these tolerances is performed on the corrections to the estimated 

parameters. The reason for generally scaling the photo orientations at a larger limit is 

that photo orientations are generally weakly determined and they can in some 

instances lead to an oscillating solution presenting convergence difficulty. These 

empirical factors are equivalent to those used within a conventional robust bundle 

adjustment that has been primarily tested with simulated and real data (within the 

VMS 8.0 tool). 

 

5.5.4. Quality estimates output 

On a successfully convergent solution the algorithm exports a report that includes an 

analytical description of the estimated parameters together with a set of statistical 

quality measures. In summary, the report outputs the initiated parameters grouped as 

initial photo parameters (2D positions in mm and 3D orientations in degrees) and 

initial target locations (in mm) with associated precisions (in μm). Next a set of 

synoptic descriptors are given to describe numerically the estimation procedure. These 

include the number of equations, number of unknowns, iteration of convergence, 

redundancy and a posteriori standard deviation (σo). The computed image residuals (x, 

y and mean in μm) are given as well as the radial lens distortion profile for camera 

calibration (that corresponds to the simplified calibration model). Subsequently, the 

updated orientations parameters (in mm and degrees) are provided with their 

estimated precisions (in μm) as well as the updated target locations (in mm) again 

with their corresponding precisions (in μm). Calculated ray visibility and point flags 

for data identification (e.g. indexed CP or TP data) are additionally supported. An 

update of additional parameters with associated precisions is given, including an 

indication of their significance (where significance= correction / precision). 

Successively, a summary of the 3D target precisions (in μm) as obtained from the a 

posteriori covariance matrix is exported. Finally, the report is completed with the 

extracted full correlation coefficients matrix as this is considered as highly useful for 

further analysis and evaluation of the calibration and measurement outcome. A 

sample of the generated report (.log file) for both the inner and external datum cases 

can be found in Appendix B. 
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5.6. Method description by simulation 

Evaluation of a novel bundle adjustment algorithm for close range photogrammetric 

measurement, requires that design by simulation is performed at a first development 

stage. The problem of network design which is well established has been reported 

earlier (see section 4.6.). Here, the theoretical model description and therefore method 

initialization is assessed by design of a simulation project to enable analytical method 

development. In parallel, the goal of this section is to provide an evaluation of the 

developed bundle adjustment method. 

 

The simulation framework is built upon the assumption that a synthetic volumetric 

array comprises the test object in the object space (see Appendix C) and that it is 

measured from incremented viewpoints and wide intersection angles chosen for this 

purpose. Particularly, a cube occupying a volume of 10 x 10 x 10 mm in object space 

(with a specified 3D precision of 25μm) observed from two-viewpoints, three-

viewpoints and subsequently seven-viewpoints was designed (see sections 5.6.2., 

5.6.3. and 5.6.4. accordingly). A descriptive diagrammatic form of the simulation 

process is provided in Figure 5.8.  

 

 

Figure 5.8: Descriptive simulation diagram applied to a synthetic cube dataset. 

 

The simulation process starts from known CP geometry in the object space as defined 

by the eight cube vertices and its centroid (Xi, Yi, Zi, where i=1-9). Subsequently the 
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3D data points are measured from each viewpoint as specified per imaging case to 

generate the photo orientation locations (txj, tyj, sk, ωj, φj, κj, where j= 2, 3 and 7 as 

associated with the three equivalent projects and k (= 1) the number of physical 

cameras within the system). Next 3D target and orientation data are inserted into the 

ideal affine camera model in the absence of internal camera distortions to generate a 

set of 2D image observations. A next step increments the extracted observation data 

by a randomly initiated set of corresponding standard deviations that follow the 

normal distribution (where: Mean= 0.0μm and Stdev=0.5μm). Successively, the 

bundle adjustment is processed with the set of input CP (TAR), calibration (CAL), 

orientation (ORIENT) and observations (OBS) data. It is noted that the system is 

based upon a local datum which is defined from the designed CPs (external datum 

method). A detailed representation of the simulation process is given below (see 

Figure 5.9). 

 

 

Figure 5.9: Bundle adjustment framework for simulation data. 

 

5.6.1. Input model parameters 

The input model parameters were identified to be equivalent with those that 

correspond to the real sensor parameters of the 1M pixel Kodak Megaplus ES1.0 

camera with MVO® TMLTM/0.16x lens (see sections 3.1.2.1. and 3.1.3.2.). This 

system has been used for the purposes of system testing and application (see Chapter 

6). It follows that the defined virtual camera is characterized by a scale factor of s= 

0.16 (which identifies the image magnification), a pixel size of 9.0μm and a format 

size of 1,008 x 1,018 pixels. Considering the precision levels encountered in close 

range image networks, the stochastic model was initialized with an image observation 

quality of σ= 0.5μm and a 3D point coordinates precision of σ= 25μm in all 

simulation tests. It is re-iterated here (see section 5.5.3.) that the convergence criteria 

were set to 0.1xσ0xσi for the photo orientations whereas for the 3D point coordinates 

and the additional parameter a tolerance of 0.04xσ0xσi was ascribed (noting that σ0 is 

by default set to 1 and σi is the a posteriori parameter precision). The input model 
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parameters that were utilized to set up the simulation projects are given in the 

following Table 5.1. 

 

Image scale Pixel size (μm) Image size (pixels) RMSxy (μm) σXYZ (μm) 

0.1600 9.0 1,008 x 1,018 0.5 25 

Table 5.1: Input model parameters in the simulation processing tests. 

 

5.6.2. Case A: Two-view geometry 

The two-view imaging geometry is covered with two cases by altering the direction of 

the lines of sight intersections with the X axis direction (as defined by the local 

coordinate system). In particular this section examines two instances that involve two 

virtual viewpoints, the first one having a basis nearly parallel to the X axis and the 

second one forming a basis nearly vertically to the direction of the X axis 

respectively. The scale factor is equal to 0.16, as described above, and the image 

observations are generated with identical noise (see Figure 5.8 for associated 

histogram). The image network geometries are drawn in Figure 5.10 and the 

associated parameters for both datasets are given in Table 5.2.  

 

  

Figure 5.10: Imaging configuration of two-view geometry case. Geometry with near parallel 

basis to X datum axis configuration (left) and near vertical basis to the X datum axis (right). 

XYZ system is visualized in red, green and blue respectively. 

 

Photo tx (mm) ty (mm) s ω (degrees) φ (degrees) κ (degrees) Rays 

1000_h 0.1423 -4.6332 0.16 -74.7258 -32.3675 -64.8622 9 

1001_h 1.6584 1.1229 0.16 -116.3754 24.5694 133.2145 9 

1000_v -2.0177 -3.8078 0.16 -71.7631 -10.9171 -33.7956 9 

1001_v 3.3984 -2.5645 0.16 -105.0204 -17.8026 -137.9776 9 

Table 5.2: Orientation parameters for the two-view geometry case. 
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The bundle adjustments were processed based upon an external constraints datum as 

defined from the determined CPs (see Table 5.3 for a summary of results). 

 
 

Dataset Iter. R. Scale 

(σscale) 

k3 

(σκ3) 

σo RMSxy 

(µm) 

σXYZ (μm) 

 

s_0.16h 2 24 0.1600 
(0.0887) 

-1.5721x10
-5 

(1.3655x10
-5

) 
0.50 0.14 6.83 

s_0.16h 2 24 0.1600 
(0.0636) 

5.4044x10
-5 

(2.2152x10
-5

) 
0.31 0.09 4.42 

Table 5.3: BA statistics for the two-view geometry case. Table notation: Iter.= number of 

iterations, R.= redundancy, Scale= scale factor, σo= unit weight, RMSxy= image misclosure, 

σXYZ= 3D object space precisions. 

 

In the case of the first dataset (near parallel basis to the X axis; s_0.16h) the solution 

results in an a posteriori σo of 0.50, whereas in the second dataset case (near vertical 

basis to the X axis; s_0.16v) the associated σo is 0.31. It is evident that these figures 

are not significantly different. Again, in the first case (s_0.16h) the RMS back-

projection error is larger in a direction orientated nearly parallel to the basis resulting 

in a value of 0.25μm (1/30
th

 of a pixel) as opposed to an RMS of 0.04μm (1/225
th

 of a 

pixel) which is the equivalent value in the y direction. The situation in the second case 

(s_0.16v) results in balanced RMS image residuals of 0.09μm (1/100
th

 of a pixel) in 

both x and y directions. The 3D point location precisions vary within 6.83μm and 

4.42μm for each first and second imaging cases respectively.   
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Figure 5.11: Image observation residuals for the two-view geometry case. S_0.16h (top) and 

s_0.16v (bottom) (magnification plot 25x). 

 

A display of the image residuals for both imaging cases (see Figure 5.11) shows that 

these follow a systematic pattern in a direction parallel to the basis of the geometric 

configuration. This is a factor of the weak geometry recovery from two views and 

demonstrates that there is a geometric correlation of the two-views geometric case 

with the estimation of 3D point coordinates (equivalent to the perspective case). The 

residual plots are shown with a magnification factor of 25x for visualization purposes. 

 

5.6.3. Case B: Three-view geometry 

Analysis of the three-view geometry case is made to examine model behaviour when 

altering the scale factor. The initial set scale of 0.16 is changed to 0.5 and 1.0 while 

preserving the orientations of the photos and the 3D target positions as initially set. 

Figure 5.12 illustrates the geometric arrangement of the three-view geometry case and 

Table 5.4 indicates the orientation parameters of the designed dataset. 
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Photo tx 

(mm) 

ty (mm) s ω 

(degrees) 

φ 

(degrees) 

κ 

(degrees) 

Rays 

1000 0.1425 -4.6334 0.16; 0.5; 1.0 -74.7258 -32.3675 -64.8622 9 

1001 -3.0773 0.1897 0.16; 0.5; 1.0 -82.7854 7.4404 30.1569 9 

1002 1.6582 1.1229 0.16; 0.5; 1.0 -116.3754 24.5694 133.2145 9 

Table 5.4: Orientation parameters for the three-view geometry case. 

 

 

Figure 5.12: Three-view geometry configuration. 

 

All three tests were processed with an external constraint datum based on the pre-

defined CP data. Processing the image observations data makes it apparent that tuning 

the scale factor to the pre-set values results in a change in the generated 2D image 

observations by the associate magnification factor. The bundle adjustment converges 

with an aposteriori σo of 0.8. This indicates that the increased number of viewpoints 

strengthens the ray intersections as well as the system redundancy when compared to 

the two-view imaging case reported above (see section 5.6.2.). The RMS image 

misclosure is 0.26μm (~1 /30
th

 of a pixel) and the mean precision of 3D points is 

10μm in the object space. These figures are given in Table 5.5 whilst Figure 5.13 

illustrates that the random residual patterns indicate the absence of systematic errors 

from the system. 

  
 

Dataset Iter. R. Scale 

(σscale) 

k3 

(σκ3) 

σo RMSxy 

(µm) 

σXYZ (μm) 

 

s_0.16 2 37 0.1600 
(0.1368) 

-1.7485x10
-5 

(1.8235x10
-5

) 
0.79 0.26 10.26 

s_0.50 2 37 0.5000 
(0.4120) 

-1.6905x10
-7 

(5.8004x10
-7

) 
0.79 0.26 10.08 

s_1.00 2 37 1.0000 
(0.8137) 

-5.1918x10
-9 

(5.0392x10
-8

) 
0.79 0.26 10.05 

Table 5.5: BA statistics for the three-view geometry case. 
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Figure 5.13: Image observation residuals for the three-view geometry case. S_0.16 

(magnification plot 25x). 

 

It is noted that when the ‘complete’ bundle adjustment method is run, here the term 

‘complete’ refers to the inclusion of the radial lens distortion coefficient within the 

computations; it is likely that the estimated radial lens distortion profiles are 

erroneously determined. This is reasonable considering that the simulated project 

comprises an approximation of the physical reality and hence presents a weakness in 

the recovery of the internal camera geometry factor. 

 

5.6.4. Case C: Seven-view geometry 

The third case involves testing with a greater number of views in relation to the 

minimum intersection requirements as examined in the previous cases (see sections 

5.6.2. and 5.6.3.). The seven-view geometry is designed in a wide-angled network 

arrangement as shown in Figure 5.14 with corresponding orientation parameters as 

indicated in Table 5.6.  
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Figure 5.14: Imaging configuration of seven-view geometry case. 

 

Photo tx (mm) ty (mm) s ω (degrees) φ (degrees) κ (degrees) Rays 

1000 0.1423 -4.6332 0.16 -74.7258 -32.3675 -64.8622 9 

1001 -2.0177 -3.8078 0.16 -71.7631 -10.9171 -33.7956 9 

1002 -3.0772 0.1895 0.16 -82.7854 7.4404 30.1569 9 

1003 -0.9284 2.1266 0.16 -93.8974 20.6170 89.8087 9 

1004 1.6584 1.1229 0.16 -116.3754 24.5694 133.2145 9 

1005 3.3984 -2.5645 0.16 -105.0204 -17.8026 -137.9776 9 

1006 2.7517 1.3587 0.16 -111.5494 6.2445 153.3023 9 

Table 5.6: Orientation parameters for the seven-view geometry case. 

 
 

Dataset Iter. R. Scale 

(σscale) 

k3 

(σκ3) 

σo RMSxy 

(µm) 

σXYZ (μm) 

 

s_0.16_7 2 89 0.1601 
(0.1371) 

-2.1261x10
-5 

(1.4594x10
-5

) 
0.81 0.27 10.37 

Table 5.7: BA statistics for the seven-view geometry case. 

 

The bundle adjustment converged after two iterations (see Table 5.7) with a σo of 

0.81μm whereas the RMS image misclosure is 0.27μm (~ 1/ 30
th

 of a pixel) and the 

mean precision of the 3D points is estimated to be equal to 10.37μm in the object 

space. It is evident that increasing the number of viewpoints from three to seven does 

not have a significant effect on the solution behaviour. Figure 5.15 supports the 

extracted residual vectors where again the random residuals patterns provide a further 

proof that the system is freed from any systematic biases within the computations. 
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Figure 5.15: Image observation residuals for the seven-view geometry case. S_0.16_7, 

(magnification plot 25x). 
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Besides residuals display and evaluation of their magnitude, another useful measure is 

to check their distribution patterns. From observation of the histogram plots from the 

bundle adjustment image observation residuals (see Appendix C), it follows that the 

residuals tend to follow the normal distribution while increasing the number of 

geometric viewpoints ranging from two views up to seven views. It is evident that 

while the three-view case results in a near normal residual distribution the seven-view 

case provides a normal distribution with associated statistics (see Figure 5.16). This 

evidence proves that the implemented functional model is correct. It is now expected 

that incrementing the number of images for the m-view case would lead to an 

optimized solution whereas the designed and implemented model provides a good 

solution to modelling the affine multi-view sensor.  

 

  
Figure 5.16: Histograms of BA residuals for the seven-view case. The extracted statistics are 

given per image coordinate direction x: stdev= 0.39μm, mean= 0.32μm and y: stdev= 0.29μm, 

mean=0.22μm. 

 

5.7. Summary 

In summary this chapter provides descriptions of the affine method design, 

development and implementation with simulated data. The chapter starts with an 

overview of the method which is subsequently linked with the fundamental model 

structure for algorithm treatment. Key consideration to the algorithm is the issue of 

derivation of approximate values based on a combination of implicit perspective and 

explicit affine procedures. The developed bundle adjustment framework outlines a set 

of factors (datum definition, visibility checks, validity checks, starting values 

determination, handling of scale factor, parameter locations, parameter estimation, 

constraint evaluations, radial lens distortions computations), least squares estimation 
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(iterative procedure, derivation of system normal equations, parameter estimation) and 

convergence criteria as well as the aspects of closure and extracted analytical 

indicators. Handling of these considerations within the algorithm is essential for 

flexibility in image-network based measurement. Subsequently, the chapter closes 

with analysis and design of the new affine-based multi-view framework through a 

simulation method that computes the implemented solution for three geometric 

imaging cases. The problem is decomposed with the two-view, three-view and seven-

view geometry cases and the evaluation of the derived results. 

 

The reader is now directed to Chapter 6 ‘Results and analysis’ for method assessment 

with real data. Particularly the affine multi-view modelling method will be tested 

extensively through a series of real image-network measurements all designed, 

initiated, implemented and analyzed for the purpose of this research work. Method 

assessment is performed for each subsequent stage of the method with variant 

geometric data structures which are always linked with practical considerations that 

are expected to be encountered in real world applications. 

 



 

6. Results and analysis 

To assess the affine multi-view bundle adjustment algorithm a set of tests were 

performed. The objective was to evaluate the developed approach in the aspects of (a) 

method correctness and (b) effectiveness in practical situations. This goal is achieved 

with application of the method on a series of test datasets that were designed for 

testing of each of the individual algorithm stages as well as full algorithm treatment. 

 

6.1. Main objectives 

To assess the correctness of the algorithm the following considerations will be 

asserted: 

1. Initialization of the method. Starting values were recovered from a 

combination of starting value generation approaches. 

2. Bundle adjustment algorithm. The algorithm recovers orientation parameters, 

3D point coordinates and internal calibration with the ability to define a datum 

(external or inner constraints), sensor scale and radial lens distortion model (k3 

term). 

 

To evaluate practical model behaviour the following factors will be handled: 

 

1. Assessment in object space and 3D point estimation. 

2. Invariance of sensor scale within the system. 

3. Independent evaluation with reference measurements. Sparse 3D reference 

measurements are provided by high order precision datasets. These datasets 

were generated from strong, convergent, redundant image networks acquired 

with high resolution digital SLR cameras and subsequently processed with a 

robust perspective bundle adjustment implemented within the software tool 

VMS 8.0. 

 

The above comprise core objectives for the purpose of methodological testing. 

However, it is important to make it clear that the developed bundle adjustment 

framework was implemented based upon two assumptions: 
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1. Starting values were generated from implicit perspective (based on the 

geometric assumption that a perspective sensor with a long focal length is a 

good approximation to the parallel sensor) and explicit affine approaches 

(based on the assumption that the 3D orientation rotations have been 

previously recovered successfully). 

2. Data processing was implemented on the hypothesis that no outliers were 

present in the system (based on significant pre-processing). 

 

These two assumptions comprise the main weaknesses of the designed method.  

Firstly, the recovery of starting values lacks a more generalized approach where 

starting values would be recovered in full from pure implementation of the affine 

sensor mathematical model. Secondly, system implementation with significant editing 

ensures that the system is freed from outliers. A more realistic implementation would 

be to embed within the system a robust outlier detection and elimination scheme 

based on residuals testing adopted from conventional approaches (see section 4.7.1.).   

 

System assessment and analysis are performed based on a set of statistical indicators 

that were extracted utilizing the measures reported earlier (see section 4.7.). 

Particularly statistical indicators will assess system accuracy and precision with most 

measures extracted from the a posteriori covariance analysis. Aspects of model 

assessment, algorithm convergence, parameter correlation, 3D object space point 

correlation with range, error ellipsoids, sensor scale invariance as well as accuracy 

checks will be part of the testing and analysis. The test datasets were generated from a 

series of camera systems and geometric objects; these were treated as (a) test, (b) 

high-order precision reference, or (c) independent test datasets. The design, set-up and 

data acquirement of close-up image datasets were performed at the UCL’s calibration 

laboratory. Some published results from method development and testing can be 

found in Rova et al. (2008a), Rova et al. (2008b) and Rova et al. (2009). 

 

6.2. Test datasets 

The test datasets are decomposed in three sub-sections according to their (a) design, 

(b) components and (c) datasets as follows (see sections 6.2.1., 6.2.2. and 6.2.3.). 
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6.2.1. Design 

To design a set of test datasets for method assessment and analysis the following 

aspects were considered: 

 

 Sensor scale: To address algorithm behaviour in the aspect of scale recovery 

within the system, a set of different camera systems were utilized. 

 2D image quality: To generate high contrast image data, artificial signalized 

markers, specifically white markers on a black background and retro-reflective 

targets were utilized. It is recalled that (see section 3.3.) the employed image 

measurement method affects the input quality of the image targets. In addition, 

the invariant affine sensor scale factor resulted in large blobs that significantly 

reduced image quality (see section 6.2.2.3.). As an example 2mm diameter 

targets in object space produce 36 pixel diameter blobs under affine 

projection. 

 Image network geometry: Network configurations were designed to ensure 

geometric strength, convergence and redundancy (see section 4.6.). 

Particularly wide-angle viewpoints, strong intersection angles and wide 

separated views were designed. Redundant datasets were generated with sets 

composed of 17 to 85 views and a number of targets ranging between 20 and 

178 targets (see section 6.2.3.). 

 3D point geometry: Point targets were arranged in a sparse 3D distribution 

following the 3D object geometry, reduce occlusion problems and ensure high 

redundancy when imaged from variant geometric viewpoints. 

 Object space recovery: To recover 3D geometry and scale, a number of 

different geometric structures were utilized. Specifically these will enable 

method assessment in 3D space and evaluation of geometry and scale recovery 

factors. 
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6.2.2. Components 

The basic components that characterize the test datasets are defined as follows: 

 

 The test objects are of geometric 3D type and they are defined with their size, 

shape and measurement markers (see section 6.2.2.1.). 

 The camera systems are characterized by their sensor elements and the 

attached optical lens that realizes the image to object space projection
24

 (see 

section 6.2.2.2.). 

 The image measurement quality is affected by the imaging systems, controlled 

illumination as well as measured white markers and retro-reflective targets 

(see section 6.2.2.3.). 

 The image networks are acquired to be as highly convergent, dense and 

geometrically strong as possible (see section 6.2.2.4.). 

 

6.2.2.1. Test objects 

Figure 6.1 and Table 6.1 provide a descriptive outline of the test objects that were 

utilized to generate the test datasets. These are ordered as A, B, C, D and E in a 

chronological order starting from the most recently acquired datasets. Their design 

demonstrates the representation of the different geometric test cases. In fact these are 

utilized to assess the method and extract useful analysis of results. 

 

 

 

 

 

                                                 
24

 Within this text image space and object space are denoted as IS and OS only within tables of results. 
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Figure 6.1: Measurement structures per dataset. 

 

The geometric structures ‘lego’, ‘pyramid’, ‘centroid’, ‘lego’, and ‘centroid’ 

correspond to the datasets A, B, C, D and E respectively. The objects are targeted with 

sparse signalized retro-reflective or white markers of varying diameter that range 

between 0.5 and 2.0mm in the object space. The general design requires that the 

targets cover the 3D geometry in full for object measurement (tie points) with CPs 

located at the objects’ edges. 
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Object [‘y] Geometric structure Datasets 

 Size (mm) ØWM (mm) ØRT (mm) R (mm)  

Lego [‘09] 89x104x89 0.5, 1.0 - 175 A 

Pyramid [‘08] 35x40x35 0.5 - 175 B 

Centroid [‘08] 45x18x45 0.5, 1.0 2 175 C 

Cube [’08,‘09] 100x100x100 0.5, 1.0 - 350 C, A 

Lego [‘07] 59x20x59 1.0 - 175 D 

Centroid [‘06] 45x18x45 - 2 175 E 

Table 6.1:  Measurement structures per dataset. Table notation: [‘y]= year, ØWM= white 

marker diameter, ØRT= retro-target diameter and R= imaging range. 

 

Following the listed objects a detail description is given here: 

 

- Datasets A and D: The test object is of ‘lego’ construction structured as a 

stepped 3D volume that covers up to double the dimensions of a single frame 

and is sparsely targeted to delineate its planar sub-surfaces. 

- Dataset B: The test object is a square based pyramid which covers a geometric 

volume of 35x40x35mm and similarly sparse targeted. 

- Dataset C: The test object is a cube, designed as a calibration array to enable 

pre-calibration and measurement. It is a 3D wireframe (volume: 

100x100x100mm) composed of six square faces, eight vertices and twelve 

edges. Each vertex is represented as a sub-cube (6x6x6mm) that hosts three 

0.5mm diameter targets at the three front square faces leaving the remaining 

three to support the linking edges. 

- Datasets E and C: The test object comprising datasets E and C is of centroid 

type. Following the definition after Wolfram (2009a) a geometric centroid is 

defined as the centre of mass of a 2D planar closed form surface with a given 

mass and density. The point data are distributed in order to cover the footprint 

of the test systems (field of view: ~40mm) and they are arranged in 18mm in 

depth (depth of field: ~20mm) according to specifications. 

 

6.2.2.2. Camera systems 

Data acquisition and testing were implemented with five different camera systems 

(see section 3.1.2.1. and section 3.1.3.2.). Convenient codes for the systems are given 

in the following table. 
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Camera-lens system Sensor Code 

Nikon D100 

[Nikkor f=28mm] 

DSLR, Nikon DX format 23.7x15.6mm, RGB 

CCD, 7.8μm, 3,008 x 2,000 pixels, USB 

interface 

CAM_P1 

Kodak Megaplus ES1.0 

[Fujinon TV / f=12.5mm] 

Progressive scan, monochrome, 9.0μm, 1,008 x 

1,018 pixels, RS-422 interface 

CAM_P2 

Kodak Megaplus ES1.0 

[MVO® TMLTM/0.16x] 

Progressive scan, monochrome, 9.0μm, 1,008 x 

1,018 pixels, 8 bits / pixel 20MHZ, RS-422 

interface 

CAM_A3 

Sony DFW-SX900 

[Switar/ f=10mm] 

Progressive scan, colour, 4.78μm, 1,024 x 768 

pixels, 24 bits / pixel, firewire interface 

CAM_P4 

Sony DFW-SX900 

[MVO® TMLTM/0.16x] 

Progressive scan, colour, 4.78μm, 1,024 x 768 

pixels, 24 bits / pixel, firewire interface 

CAM_A5 

Table 6.2: Technical characteristics of camera systems. 

 

The coded systems CAM_P1 (Nikon D100 fitted with a 28mm Nikkor lens), 

CAM_P2 (Kodak Megaplus ES1.0 fitted with a 12.5mm Fujinon lens) and CAM_P4 

(Sony DFW-SX900 fitted with a 10mm Switar lens) are perspective-based. They are 

utilized to generate high order precision photogrammetric measurements for the 

purposes of pre-calibration, pre-measurement, data initialization, generation of 

reference measurements and independent testing. It is recalled here that the term 

‘photogrammetric measurements’ denotes sparse data generation through robust 

bundle adjustment computations within the in-house photogrammetric software tool 

VMS 8.0. 

 

Equivalently, the coded systems CAM_A3 (Kodak Megaplus ES1.0 fitted with an 

MVO® TMLTM/0.16x lens) and CAM_A5 (Sony DFW-SX900 fitted with a MVO® 

TMLTM/0.16x lens) were utilized to generate the affine image datasets required for 

method testing. It is stated here that the deployed telecentric optical system is the 

physical approximation of the affine camera sensor in the close range, resulting in a 

40mm footprint in the object space at a 0.16x nominal image scale. 

 

6.2.2.3. Image quality 

Image quality factors as well as target measurement method are critical to image 

acquisition. Image capture, transmission and processing can affect the critical image 

factors (such as noise, dynamic range, sharpness, contrast, distortion, vignetting, 

exposure and artefacts) (see section 3.2.1.2.). Here, to achieve uniform illumination 

external high frequency fluorescent ring lights were utilized with simultaneous control 
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on the imaging settings (aperture, focus, exposure, gain, brightness, gamma and 

stability) on each camera system and accompanied software. In such a measurement 

environment, the imaged point features are affected by illumination at acquisition 

time in case these are white markers whereas retro-reflective targets present high 

contrast images when illuminated from the camera’s viewing direction. Image quality 

was controlled externally to the developed method; as a result the data were generated 

without applying any image pre-processing method. However, data generation 

resulted in a variation of the point data per dataset. According to Figure 6.2, the 

targets are displayed under perspective and affine image projections where it is shown 

that differences in resolution, imaging conditions, object space target diameters and 

projection scale affect 2D image measurement quality. To make this point clear, Table 

6.3 gives a description of some extracted image characteristics that correspond to 

these target data. 

 

P
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a:2mm Ø RT/KD dRGB: 1mm Ø WM /NK e: 1mm Ø WM/KD 

A
F
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E
 

   

f: 2mm Ø RT/KD i: 1mm Ø WM/KD jRGB: 1mm Ø WM/SN 

Figure 6.2: Perspective and affine image targets. Figure notation: RT= retro-reflective, WM= 

white marker, KD= Kodak sensor, NK= Nikon sensor, SN= Sony sensor. 

 

Camera PP AP PP AP PP AP 

Target (a) (f) (dRGB) (i) (e) (jRGB) 

Ø (pixels) 16 36 10 8 8 34 

FB 255 255 175, 188, 232 207 166 236, 251, 232 

BB 37 37 17, 23, 35 33 37 23, 25, 22 

Table 6.3: Signalized target image characteristics. Table notation: Ø= target diameter, PP= 

perspective projection, AP= affine projection, FB= foreground brightness, BB= background 

brightness, (a), (f), (dRGB), (i), (e) and (jRGB)= coded image targets. 

 

Overall, the employed point types are of 2mm (retro-reflective targets), 0.5mm and 

1mm (white markers) diameters in object space. Individual target images range within 

4-16 pixels under perspective and 17-36 pixels under affine projection respectively. It 
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is evident that the white markers present low contrast whilst the retro-reflective 

targets are saturated. For example it is evident from Table 6.3 (examples (e) and (a)) 

that the intensity value of the centroid equals 166 in the case of the selected white 

markers, whereas in the case of the shown retro-reflective targets the associated 

intensity value equals 255.  

 

Besides characterizing target intensity, typical problems are sharpness and shape loss. 

Particularly, where a target fails to be located within the depth of field, the imaged 

blob appears blurred, reducing image and measurement quality. In cases, where the 

imaged surface is located nearly parallel to the viewing direction, circular targets 

appear as ellipses. These characteristics are given by an illustration of an additional 

set of targets with their associated histograms (see Figure 6.3). It can be particularly 

seen that target B is projected as an ellipse when imaged under affine projection 

showing the effect of the deviation of the viewing projection rays from the surface 

normal where its sharpness loss is attributed to its location outside the depth of field. 

A further description of some extracted targets that were selected to describe image 

quality can be found in Appendix C. 

 

 
 

 
 

Figure 6.3:  Signalized image target pairs of perspective (PP; left) and affine (AP; right) views 

and associated brightness histograms. 

 

Image measurements were initialized within the software tool VMS 8.0. It has already 

been reported (see section 3.3.2.) that the software applies a set of point-based 

methods (manual, centroid, correlation, least squares matching). Particularly target 

measurement was performed with a combination of methods including manual point 
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digitization and centroid estimation with the features of epipolar drawing and 

backdriving turned on. Dependent on the target image quality (content), the centroid 

estimation method was empirically adapted to set optimal centroid measurement 

parameters with geometric tests that allow sub-pixel point measurement. Table 6.4 

gives the empirically set parameters for the selected sample of targets (for a further 

description see Appendix C). 

 

Target Ø (pixels) IW (pixels) LM TT S GT 

B [PP] 6 20 x 20 w_centroid histogram circular on 

B [AP] 17 40 x 40 ellipse_fit histogram circular on 

C [PP] 8 36 x 36 w_centroid histogram circular on 

C [AP] 18 38 x 38 w_centroid histogram circular on 

Table 6.4: Measurement method parameters within VMS 8.0. Table notation: Ø = target 

diameter, IW= image window, LM= location method, TT= threshold type, S= shape, GT= 

geometric tests. 

 

The software produced successful results in areas with significantly small features 

(diameter less than 5 pixels) and symmetrical homogeneous patterns and even in more 

difficult cases with dominant blurred points. However close-up network 

characteristics (such as imaging range, strong intersection angles, viewing direction, 

projection scale and depth of field) significantly increased target image diameter and 

degraded image quality. As a result, in cases of poor target image detection it was 

necessary to manually measure the point target data. 

 

6.2.2.4. Image networks 

The image networks were acquired in strong convergent configurations from multiple 

viewpoints in consideration of the imaging conditions, object geometry, point 

distribution, visibility and redundancy factors. Figure 6.4 visualizes a sample of three 

selected perspective and affine image networks as a 3D lattice of points and 

observations. 
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Figure 6.4: Image networks configured under perspective and affine views (green cones: 

photo location, blue lines: observations). 

 

Particularly the coded datasets B1, D1 and E1 describe the geometry of the 

perspective image networks whereas the coded datasets B2, D2 and E2 describe the 

geometry of the corresponding affine image networks. It is evident that perspective 

and affine image networks were designed as far as possible to form consistent 

imaging geometry for further processing and testing. 

 

6.2.3. Datasets 

Within this work twelve different datasets were designed for processing and checking. 

These are grouped utilizing the selected codes A, B, C, D and E according to object 

type (see section 6.2.2.1.). Table 6.5 tabulates these datasets in consideration of the 

employed camera systems (see section 6.2.2.2.) which are now described in relation to 

the designed image networks (see section 6.2.2.4.) with the associated views and 

targets that contribute in the subsequent data measurement and testing.  
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Dataset Camera system Views Targets 

A1 CAM_P1 44 178 

A2 CAM_A3 49 122 

A3 CAM_A5 85 86 

B1 CAM_P4 33 65 

B2 CAM_A5 23 44 

C1 CAM_P2 46 61 

C2 CAM_P2 41 25 

C3 CAM_A3 45 29 

D1 CAM_P2 45 52 

D2 CAM_A3 24 20 

E1 CAM_P2 43 89 

E2 CAM_A3 17 54 

Table 6.5: Processed datasets for testing. 

 

Specifically, dataset C3 is designed to evaluate the method’s behaviour regarding full 

bundle adjustment treatment. Assessment is based on the extracted typical quality 

indicators, measures that assess the behaviour of convergence and the consistency of 

parameter correlations. Datasets B2, D2 and E2 are utilized to assess the method in 

relation to object space recovery. This test utilizes measures based on analysis of 

correlation behaviour with range as well as a visualization of the error ellipsoids. 

Image networks A2 and A3 are utilized to test the system’s scale for two different 

camera systems again based on standard statistical indicators as well as object space 

accuracy checks. Finally, dataset C3 is selected to independently test the method 

compared to the results obtained from dataset C2 which is processed with a 

perspective bundle adjustment implemented within the software tool VMS 8.0. Again 

assessment is performed utilizing the standard statistical indicators as well as 

evaluation of 3D discrepancies. 

 

6.3. Practical aspects 

The application experiments focus on method assessment and analysis, particularly in 

evaluation of aspects of both method’s benefits as well as defects. Whilst practical 

issues will be conditionally dependent on each sequential testing step from the data 

acquisition to the data processing phase, here all tests were performed for very close-

up imaging situations.  

 

Particularly, the method’s working range is limited to some hundreds of millimetres 

(imaging range= 175mm) with a significantly small depth of field (depth of field= 
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±19.7mm) tolerance. Whilst these ranges set some practical limitations, network 

geometry and targeting design will need to allow high precision measurements. It is 

generally expected that small diameter targets will generate a few-tenths of pixel 

target images which will in effect suffice for perspective and affine imaging. However 

the smallest selected target size was designed as non retro-reflective 0.5mm diameter 

white marker due to physical construction limitations. These point targets result in 17 

pixel diameter target images when for example imaged with the affine Sony camera 

system. 

 

Image network geometry varies per object-case according to the requirements of 

object coverage, visibility and occlusion as well as strong intersection rays. In 

addition, projection magnification and scale invariance within the image frame in 

relation to the sensor’s small field of view constrain object size. Specifically the test 

objects (see section 6.2.2.1.) had to be highly local with sufficient characteristic 

features and density that allowed measurement and simultaneously produced a sample 

that could be used to extract useful model behaviour and assessment. Natural textured 

objects or surfaces with point-based features were not available for testing. In fact 

such datasets would not introduce significant information in the scope of testing the 

developed approach. However datasets of different nature (e.g. dense point clouds 

generated from photogrammetry or laser scanning) could act as good reference 

datasets for independent system evaluation.  

 

Regarding object measurement is such cases where the dimensions of an object 

occupy a volume larger than the camera’s field of view there will be additional 

requirements regarding initialization as well as tie point location for object coverage 

and measurement. As a result, these demands increase cost related to image datasets 

volume, pre-processing and editing. Further issues that emerge from data quality, 

initialization or data processing of the test data will be addressed in the subsequent 

sections as these may vary per experimental case. 

 

6.4. Model assessment 

This section assesses model behaviour in the aspects of method initialization, datum 

constraints and calibration parameters within the system. Method assessment is 
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evaluated with application of the method on datasets C (see section 6.2.3.) utilizing 

the extracted statistical indicators, system convergence analysis and correlation 

measures. 

 

6.4.1. Initialization 

To initialize the method two steps were followed. First the generation of the reference 

image measurements is given which is subsequently followed by the stage of 

derivation of starting values for the affine image dataset. 

 

6.4.1.1. Reference measurements 

The first aim is to provide reference measurements. To achieve this goal the 

convention is to acquire perspective image data in strong, convergent, redundant 

image network arrangements which are subsequently processed with established 

robust bundle adjustments. 

 

 

Figure 6.5: Image network geometry of reference dataset. 

 

Figure 6.5 illustrates the designed image network geometry for dataset C1 which is 

composed of 46 convergent images, 61 point targets (20 CPs and 41 TPs) and 6 

measurement scales that were defined for correct object scale recovery. The input data 

quality (for CPs and scales) was considered to be equal to 25μm after a target-to-

target edge measurement of points with the available digital callipers. In object space 

the target data vary between 2mm diameter retro-reflective and 1mm white markers. 

Although control is distributed in a highly 3D configuration, image quality in 

conjunction with the imaging direction of the lines of sight (some targets are 
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occluded) result in an inability to fully locate control in 3D in some views. As a result, 

the control volume is reduced from 3D to 2D (control lie on a plane). This loss is 

tackled ensuring highly redundant measurements and introduction within the system 

of six object space scales (four located on the top plane and two located on the base). 

 

The data processing framework involves a series of iterative passes. Given the 

knowledge of control these involve initial exterior orientations updated by resection 

approaches that estimate the exterior orientation parameters. Subsequent forward 

intersections coordinate the tie point data in 3D. When it is considered that sufficient 

(as complete and redundant as possible) data are measured, a bundle adjustment is 

processed on the final estimation step. The bundle is processed with the inner datum 

method and an additional parameters model which includes only the first two radial 

lens distortion terms (k3 and k5) according to their significance within the system (see 

Appendix C). The solution converged after 4 iterations with an RMS image residual 

of 1/10
th

 of a pixel (~0.91μm) (see Table 6.6). In object space the 3D targets are 

estimated with a precision of 10.75μm and a relative precision for the image network 

of 1:17,000. Within this thesis, relative precision is estimated as the mean estimated 

coordinate standard deviation divided by the maximum 3D dimension (usually 

bounding box diagonal) in the network. In other words, it follows that for a cube of 

side α= 10cm, its calculated diagonal (where diagonal is given as: αxsqrt(3)) equals 

17.321cm, resulting in a 2D image precision of 10.20μm which confirms the above 

quoted result.   

 

Dataset Iter. R. σo RMSxy 

(μm) 

σXYZ (μm) Relative 

precision 

RMS scale (µm) 

    IS OS 
 

C1 4 2,667 1.00 0.91 10.75 1:17,000 101.32 

Table 6.6:  BA statistical indicators - dataset C1. Scales: 6, ADPs: xo, yo, c, k3, k5, constraints: 

inner. Table notation: Iter.= iteration, R.= redundancy, σo= unit weight, RMSxy= image 

misclosure, σXYZ= 3D points standard deviation, RMS scale residual= RMS residuals in OS 

scale. 
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Figure 6.6: BA image residuals with highlighted CPs (left) and error ellipsoids (CPs: blue and 

TPs: green) (right). 

 

An additional check is obtained from observation of the distribution patterns of the 

bundle adjustment residuals; their magnitude (0.91μm ~1/10
th

 of a pixel) and random 

distribution assure the correctness of the conventional BA solution (see Figure 6.6 

left). Moreover, significant is the fact that the inner constraints datum generally 

results in a uniform quality precision (uniform error ellipsoid shape) with their large 

semi axes pointing towards the centroid of the cloud of points and vertical axis 

indicating the error in the viewing direction (see Figure 6.6 right). 

 

The introduction of the scale measurements within the image network result in a small 

decrease in precision for the control points which are specifically located at the base 

of the cube as these are coordinated from fewer viewpoints. However control is 

limited; this in combination with its poor quality pose scale implementation within the 

bundle adjustment necessary to restore scale in the object datum. To analyze the 3D 

target quality it is useful to check the distribution of the 3D precisions in the ‘XZ’ 

(planimetric) and ‘Y’ (depth) directions. Figure 6.7, Figure 6.8 and Table 6.7 provide 

a description of the a posteriori precisions of the data. The mean precisions are 

estimated to be equal to σXZ= 15.52µm and σY= 29.27µm for the CP data and σXZ= 

5.52µm σY= 7.54µm for the TP data. It is indicated (from the highlighted point data) 

that the worst achieved precision in the viewing direction (Y) is 98.00μm for the CPs 

and 9.70μm for the TPs. In fact maximum standard deviations occur in CP104 (count 

5) and CP105 (count 6) which are located on the base plane of the calibration cube 

and they are coordinated from 4 viewpoints, whereas minimum standard deviations 
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occur in CP500 (count 18) which is located on the top plane of the cube and it is 

coordinated from 43 viewpoints. Maximum and minimum standard deviations in the 

case of TP estimation were observed in TP7004 (count 23) which is located on the 

external ring of the centroid (2mm diameter retro-target) coordinated from 30 

viewpoints and minimum standard deviations in TP5001 (count 8) which is located on 

the top, inner plane (1mm diameter white marker) coordinated from 39 viewpoints. 

These numbers indicate the measurement quality of the reference data. Particularly 

they play a critical role as they characterize the input data quality; that is they 

initialize the stochastic model in the subsequent processing stage (see section 

6.4.1.2.). 

 

 

Figure 6.7: BA a posteriori 3D precisions - CPs. 

 

 

Figure 6.8: BA a posteriori 3D precisions - TPs. 
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 Control points Tie points 

 σX (μm) σY (μm) σZ (μm) σX(μm) σY (μm) σZ (μm) 

Mean  

Max  

Min 

15.82 

54.90 

7.30 

29.27 

98.00 

8.80 

15.23 

43.00 

7.50 

5.60 

7.30 

4.00 

7.54 

9.70 

5.90 

5.44 

7.10 

3.90 

Table 6.7: BA a posteriori 3D precisions - dataset C1. 

 

6.4.1.2. Affine starting values estimation 

The pre-measured centroid object is now utilized to generate and subsequently 

process the affine image dataset. Specifically ‘dataset C3’ is composed of 45 images 

(22 front views, 18 top views and 5 views oriented on their optical axis), 9 control 

points (6 located on the exterior basis and 3 located on the top plane of the centroid) 

and 20 tie points.  

 

 
 

Figure 6.9: Affine image network geometry (left) and data visibility (right). 

 

From Figure 6.9 it can be seen that the image network is geometrically strong, 

convergent and redundant with high target visibility. For example worst visibility case 

is the point TP10004 which is observed in 18 views. It is re-iterated here (see section 

5.4.) that data initialization is recovered from the generated CP data (and their 

associated precisions) based on an initial exterior orientation and resection approaches 

that estimate the 3D orientation rotations. This outputs an orientation file with the 3D 

photo rotations and the nominal image scale (s= 0.16) for the affine sensor. Next, a 

direct closed form back-substitution on the affine functional model estimates the 2D 

projective translations and updates the orientation file. 3D target coordinates are 

estimated from an affine-based intersection approach. This updates the control and 

locates all new tie point data (TPs). The results of the intersection procedure are given 
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in Table 6.8 from where it is evident that the method converged after 2 iterations with 

a posteriori sigma of 3.18 and a mean 3D point precision of 2.31μm. 

 

Dataset R. Iter. σo σXYZ (μm) 

C3 2,017 2 3.18 2.31 

Table 6.8: 3D intersection statistical measures - dataset C3. 

 

Illustration of the residual vectors of both stages of resection and intersection (see 

Figure 6.10) makes it evident that the combination of the residuals magnitude and 

their random distribution indicate the correctness of the initialization approach. 

 

  

Figure 6.10: Residuals. Resection CPs (left) and intersection - CPs and TPs (right). 

 

6.4.2. Affine bundle adjustment results 

Bundle adjustment performance is assessed in the aspects of evaluation of method 

behaviour as well as convergence with parameter estimation. Assessment is obtained 

utilizing the typical statistical indicators and additional measures that are defined at 

each test case. It is however important to note that where precisions have been used, 

these are extracted from the a posteriori covariance matrix which is scaled to the a 

posteriori standard deviation.  

 

6.4.2.1. Model assessment 

In this experiment (dataset C3) a comparative set of bundle adjustments was run to 

assess both external and inner constraint datum methods. Particularly the different 

runs were coded after point initialization (CP or TP) and datum implementation 



6. Results and analysis                                                                                                                        

 

- 170 - 

 

(external or inner) with the calibration model (inclusion or exclusion of k3 term) also 

implemented within the different runs. For comparative assessment all bundle 

adjustments were processed with identical calibration, orientation and 3D target data. 

To maintain datum as defined at its initial set up, the 3D control data were set to their 

pre-determined coordinates together with their associated precisions as these were 

identified from the reference image network (mean σX= 15.82µm, σY= 29.27µm, 

σZ= 15.23µm) (see section 6.4.1.1.). It follows that the remaining tie points were 

updated from their intersected 3D target coordinates whereas a uniform precision of 

5µm was set in the target file. Table 6.9 summarizes the statistical indicators of the 

bundle adjustment results. The solutions converge with an a posteriori sigma of ~2.00 

which indicates that the initialization of the stochastic model is potentially over-

estimated. It is additionally noted that the default input quality of the image 

observations is set to σxy= 0.5µm, whereas the 3D precisions of the control (external 

constraint datum) can be considered as too optimistic. The overall bundle adjustments 

converge rapidly after 2-3 iterations with an RMS image residual of 1/11
th

 pixel 

(RMSxy= 0.8-0.9µm for the 9.0µm pixel size Kodak sensor).  

 
 

C3 Iter. R. Scale k3x10
-4

 

(σκ3x10
-6

) 

σo RMSxy 

(µm)  

σX, σY, σZ 

(µm) 
 

CTPE 3 1,813 0.1611 

(0.0000) 

1.3048  

(6.0521) 

2.26 0.79 5.44, 7.66, 5.39 

CTPE 3 1,814 0.1613 

(0.0000) 

- 2.53 0.88 6.10, 8.59, 6.05 

CPE 3 1,203 0.1611 

(0.0000) 

1.1834 

(7.1455) 

2.24 0.77 3.94, 5.78, 3.90 

CPE 3 1,204 0.1613 

(0.0000) 

- 2.48 0.85 4.36, 6.41, 4.33 

CTPI 2 1,791 0.1611 

(0.0002) 

1.3012 

(6.0730) 

2.26 0.79 252.42, 253.24, 252.41 

CTPI 2 1,792 0.1613 

(0.0002) 

- 2.54 0.88 283.20, 284.12, 283.20 

CPI 2 1,156 0.1611 

(0.0001) 

1.1749 

(7.2265) 

2.26 0.77 125.87, 126.39, 125.89 

CPI 2 1,157 0.1613 

(0.0001) 

- 2.50 0.85 139.61, 140.19, 139.63 

 

Table 6.9: Affine BA statistical indicators - dataset C3. Model parameters: tx, ty, ω, φ, κ, X, 

Y, Z, s, k3. Table notation: CTPE= control, tie points, external constraints, CPE= control 

points, external constraints, CTPI= control, tie points, inner constraints, CPI= control points, 

inner constraints.  
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The 3D targets are coordinated with an increased σ in the viewing direction (Y) 

between 5.78μm and 8.59μm for the solutions processed with the method of external 

constraints and between 126.36μm and 284.12μm for the solutions processed with the 

method of inner constraints. It follows that there is a significant difference in 3D 

precision between external and inner constraints. In fact, the inherent 3D object scale 

within the inner constraints method reduces precision due to a potential correlation of 

the uniform sensor scale with the datum scale factor which can pose inner datum scale 

as impractical within the system. A trial to remove object space scale from the datum 

equations resulted in an inversion problem of the normal equations matrix, hence this 

problem was not investigated further. In detail (see Table 6.9) the external method 

results in a mean 3D precision of 6.16μm (CTPE solution) and 4.54μm (CPE 

solution). Yet, inner datum resulted in a mean 3D precision of 252.69μm (CTPI 

solution) and 126.08μm (CPI solution). The image residuals present random patterns 

and a visual inspection of their histograms shows that they follow the normal 

distribution. Figure 6.11 illustrates an example view (CPE and CPI solutions) with 

their associated histograms (residuals grouped in 10 bins with associated statistics: 

Solution CPE: stdevx= 1.00μm, meanx= 2.24μm; stdevy= 1.03μm, meany= 1.82μm and 

Solution CPI: stdevx= 1.00μm, meanx= 1.26μm; stdevy= 1.03μm, meany= -0.42μm).  

 

  

  

Figure 6.11: Affine BA residuals and histograms - CPE (top) and CPI (bottom).  
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Considering system calibration, both external and inner constraints solutions decrease 

3D target precision when not-accommodating for the k3 term (see Table 6.9 for 

estimated k3 parameter and associated precision). The radial lens distortion profiles 

(see Figure 6.12 left) estimate a radial distortion of dr= 8.3μm (positive, pincushion 

distortion) at a maximum radial distance of r= 4mm of the image format which agrees 

with the telecentric system specifications (maximum distortion < 0.3%). In addition, 

the fact that these patterns are similar for both datum cases provides the confidence 

that the functional model is correct. 

 

 

 

Figure 6.12: Radial lens distortion profiles (left) and 3D distances (right) - CTPE. 

 

Finally with regards to accuracy evaluation nine checks were performed on selected 

3D distances and their corresponding estimations from the bundle adjustment 

solutions. ‘Ground truth’ was generated with measurements obtained with a digital 

calliper considering a measurement uncertainty of ±25μm, noting though that a more 

realistic precision would be equal to σ= ±50μm (empirical value given the manual 

measurement uncertainty). The calculated 3D differences (true against evaluated from 
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the bundle adjustment) appear to be consistent for all processed solutions varying 

between 35.02μm and 250.53μm. Figure 6.12 (right) illustrates the linear 3D 

differences between true and evaluated dimensions as vertical error displacements 

(red lines) on the associated distances (cyan lines) for one selected solution (coded 

CTPE). For example, the 3D displacement of the distance ‘H’ is 0.16mm (it is scaled 

to 15.6 mm for the purpose of visualization) and it is displayed over a length of 

33.97mm. The observed large discrepancies in the data can be attributed to the 

initialization of the stochastic model for the intersected 3D target data (σXYZ= 

20.11μm for CPs and σXYZ= 5μm for TPs) that contribute and hence tie the 

measurements to the defined datum. In addition these significant differences can 

result from the uncertainty in measurement precision of the available callipers. 

 

6.4.2.2. Convergence behaviour 

In particular demanding situations that for example require processing of large 

datasets an additional aspect of bundle adjustment processing is to ensure the 

method’s algorithmic efficiency. Here the algorithm is run as an iterative method with 

inversion treated with the external and inner constraints routines that have already 

been referenced (see section 5.5.2.2.). The test datasets were processed ensuring that 

no outliers were present in the measurements. The bundle adjustments converged 

rapidly after 2-3 iterations presenting high numerical stability. 

 

To evaluate model behaviour with convergence, two fully controlled solutions (CPE 

and CPI) were utilized (see Table 6.9). The first utilized measure is the normalized 

span of model parameters which evaluates the change in model parameters between 

successive pairs of iterations (iteration n+1, iteration n) scaled to the magnitude of 

model parameter at iteration (n+1) (see equation (6.1)) and which is visualized over 

the model parameter count in the following figures. 

 

n 1 n

n 1

ABS(P P )
NSMP

| P |








 

Where: 

NSMP= normalized span of model parameters 

(6.1) 
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Pn+1= parameter value at iteration n+1 

Pn= parameter value at iteration n

 

 

Figure 6.13 illustrates the derived NSMP between iteration pairs 1 and 0 for the 

overall parameters that correspond to the CPE solution (external constraints with full 

control).  

 

 

Figure 6.13: Normalized span of model parameters (full). CPE - Iter. 1-0. 

 

To illustrate in detail model behaviour, Figure 6.14 provides the derived figures for 

the model parameters excluding the k3 term from the visualization of the NSMP 

values as in the first pair of iterations NSMPk3= 1.0, enhancing as a result the inter-

structure of the derived pattern. It can be seen that this indicator presents a relatively 

stable behaviour up to 0.02. Extreme values (highlighted points in the graph) that 

deviate from the average pattern behaviour were observed for two rotation elements 

ω1025= -53.2453 degrees where NSMP(ω1025)= 0.020 and ω1038= -131.4346 degrees 

where NSMP(ω1038)= 0.082. The indicator for the scale factor s=0.1600 is given as 

NSMP(s)= 0.007. 
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Figure 6.14: Normalized span of model parameters (-k3). CPE - Iter. 1-0. 

 

Accordingly Figure 6.15 and Figure 6.16 illustrate the convergence behaviour 

between iterations 2 and 1 as well as iterations 3 and 2. It can be seen that the model 

presents relatively stable behaviour in terms of data agreement. In the case of the 

iteration pair 2 and 1, the previous extreme cases are now given as NSMP(ω1025)= 

3.05x10
-4

 and NSMP(ω1038)= 6.28x10
-4

 for the above observed rotations whereas the 

equivalent index for the scale factor is now NSMP(s)= 6.32x10
-7

 and radial lens 

distortion k3 term is NSMP(k3)= 5.52x10
-4

. In the subsequent iteration pair 3 and 2 the 

associated values are given as NSMP(ω1025)= 8.71x10
-7

, NSMP(ω1038)= 1.15x10
-7

, 

NSMP(s)= 6.21x10
-9

 and NSMP(k3)= 2.37x10
-6

. It is again noted that these figures 

are shown in the graphs as highlighted points. 

 

 

Figure 6.15: Normalized span of model parameters (full). CPE - Iter. 2 - 1. 
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Figure 6.16: Normalized span of model parameters (full). CPE - Iter. 3 - 2. 

 

It is evident from the above graphics that the individual pairs of iteration passes have 

a clear relation. Specifically the NSMP values of iteration pair 2-1 as compared to its 

previous iteration pair 1-0 are approximately two orders of magnitude smaller. 

Accordingly the iteration pair 3-2 in comparison to the iteration pair 1-0 presents a 

five order magnitude difference for the NSMP value. Besides convergence behaviour 

it is additionally important to check the precisions of the estimated parameters at the 

final iteration stage. Figure 6.17 illustrates the parameter precisions for the CPE 

solution as these are extracted at the third iteration stage for the total number of 

parameters. 

 

Figure 6.17: Precisions of model parameters. CPE - Iter. 3. 
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To better describe the above patterns the following graphics display in colour coded 

(red, green and blue) representation the parameter precisions. As a result these 

graphics isolate the patterns of the sub-groups that correspond to translations (tx, ty) 

(see Figure 6.18), rotations (ω,φ,κ) (see Figure 6.19), 3D target coordinates (X, Y, Z) 

(see  Figure 6.20) as well as scale (s) and additional parameter term (k3) jointly (see 

Figure 6.21). It is evident that the precisions of the 2D projective translations vary 

between 2.62μm and 4.89μm whereas the precisions of the 3D orientation angles 

range between 0.01degrees and 0.03 degrees. The precision patterns present a 

consistent variation in the data as these are illustrated for each estimated image (that is 

tx, ty and ω, φ, κ are illustrated per image). 

 

 

Figure 6.18: Precisions of model parameters (tx, ty). CPE - Iter.: 3. 

 

 

Figure 6.19: Precisions of model parameters (ω, φ, κ). CPE - Iter.: 3. 



6. Results and analysis                                                                                                                        

 

- 178 - 

 

3D target coordinates are estimated with precisions that range between 3.33μm and 

6.81μm noting again that these numbers correspond to the CPE solution (see Figure 

6.20), whereas scale and k3 term are estimated with associated precisions σs= 3.03 x 

10
-5

 and σk3= 7.15x10
-6

 (see Figure 6.21). 

 

 

Figure 6.20: Precisions of model parameters (X,Y,Z). CPE - Iter.: 3.  

 

 

Figure 6.21: Precisions of model parameters (s, k3). CPE - Iter.: 3. 

 

By examining the corresponding figures for the inner constraints solution (CPI) (see 

Figure 6.22), it can be seen that the NSMP values that correspond to the first iteration 

pair 1-0 for the full estimated parameters agree in distribution and range with the 

previously reported CPE solution.  
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Figure 6.22: Normalized span of model parameters (full). CPI - Iter. 1-0. 

 

To better analyze these data Figure 6.23 presents the corresponding patterns for the 

estimated parameters when excluding the radial lens distortion term k3. It is evident 

that the NSMP values result in a similar distribution pattern in comparison to the 

external datum case (see Figure 6.14). Again the highlighted points 

NSMP(ω1025)=0.028, NSMP(ω1038)=0.073 and NSMP(s) = 0.007 present the most 

significant deviations. 

 

 

Figure 6.23: Normalized span of model parameters (-k3). CPI - Iter. 1-0. 
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For the iteration pair 2-1 (see Figure 6.24) these values are given as follows: 

NSMP(ω1025)=3.84x10
-4

, NSMP(ω1038)=5.40x10
-4

, NSMP(s) = 2.85x10
-7

 and 

NSMP(k3)= 7.40x10
-4

. 

 

 

Figure 6.24: Normalized span of model parameters (full). CPI - Iter. 2-1. 

 

Again it is noted that the two iteration pairs differ in two orders of magnitude while 

reaching the final convergence solution. The overall parameter precisions at the 

convergence stage of iteration 2 are now illustrated in Figure 6.25. 

 

 

Figure 6.25: Precisions of model parameters. CPI - Iter. 2. 
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To better highlight the parameter precisions four, additional sub-graphics were 

generated. The 2D projective translations precisions σtx,ty range between 21.72μm and 

24.36μm, 3D rotations precisions σω,φ,κ range between 0.04degrees and 0.08degrees, 

3D target coordinates precisions σX,Y,Z range between 125.65μm and 127.08μm and 

finally σs for scale factor and σk3 for k3 term are given as 9.34x10
-5

 and 7.23x10
-6

 

accordingly. Given the identical configuration in the data between both CPE and CPI 

bundle adjustment runs, it is evident that inner constraints reduce significantly the 

parameter precisions for the datum dependent parameters (tx, ty, ω, φ, κ, X, Y, Z, s) 

when these are compared with the external constraints solution. These results are 

illustrated in Figure 6.26, Figure 6.27, Figure 6.28 and Figure 6.29 in this specific 

order as follows. 

 

 

Figure 6.26: Precisions of model parameters (tx, ty). CPI - Iter. 2. 
 

 

Figure 6.27: Precisions of model parameters (ω, φ, κ). CPI - Iter. 2. 
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Figure 6.28: Precisions of model parameters (X, Y, Z). CPI - Iter. 2. 

 

 

Figure 6.29: Precisions of model parameters (s, k3). CPI - Iter. 2. 

 

It is recalled here that all precisions stated above reflect the quality of the method’s 

behaviour scaled to the a posteriori standard deviation. It follows that the described 

precision patterns will be influenced by the sigma value which is at the order of 2.2 

for both CPE and CPI solutions. To provide an additional description of convergence 

behaviour for the controlled solutions examined here, the mean of absolute 

differences (MAD) for both examined cases are derived. These figures describe the 

differences in convergence for the individual pairs of iterations as these were given 

above (see Table 6.10). 
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Solution Iter. MADtx,ty (mm) MADω,φ,κ 

(degrees) 

MADX,Y,Z 

(mm) 

MADs MADk3 

CPE 1 5.08x10
-2

 2.08x10
-2

 6.56x10
-3

 1.14x10
-3

 1.18x10
-4

 

CPE 2 6.69x10
-6

 1.33x10
-4

 4.73x10
-5

 1.02x10
-7

 6.53x10
-8

 

CPE 3 5.41x10
-8

 2.24x10
-7

 4.37x10
-8

 1x10
-9

 2.8x10
-10

 

CPI 1 4.98x10
-2

 2.14x10
-2

 6.36x10
-3

 1.13x10
-3

 1.17x10
-4

 

CPI 2 6.03x10
-6

 1.46x10
-4

 4.58x10
-5

 4.6x10
-8

 8.69x10
-8

 

Table 6.10: Convergence behaviour of model parameters. Table notation: MAD= mean of the 

absolute differences for each iteration in relation to its previous iteration. 

 

It is evident that inner constraints degrade the quality of the model for the datum 

variant parameters (tx, ty, ω, φ, κ, X, Y, Z and s) but not for the datum invariant 

parameter (k3) when these are compared with the corresponding precisions obtained 

from the external datum solution. The reduction in precision affects mostly the 3D 

target coordinates with a significant decrease in precision by a minimum to maximum 

factor of 19 and 38 whereas the reduction factor in precision for the 2D projective 

translations ranges between 5 and 8. These are less significant for the 3D rotations 

varying between 3 and 4 whereas the precision for the scale factor is reduced by 

approximately 3. These results are displayed in Table 6.11. 

 

Solution tx, ty (μm) ω,φ,κ (degrees) XYZ (μm) s k3 

σmax σmin σmax σmin σmax σmin σx10
-5

 σx10
-6

 

CPE #3 4.89 2.62 0.03 0.01 6.81 3.33 3.03 7.15 

CPI #2 24.36 21.72 0.08 0.04 127.08 125.65 9.34 7.23 

Table 6.11: Estimated precisions of model parameters. 

 

6.4.2.3. Correlations consistency 

Besides model assessment (see section 6.4.2.1.) and evaluation of convergence (see 

section 6.4.2.2.), a useful check is to inspect the correlation coefficient output 

comparing the different bundle adjustment runs. Calculation of the correlation 

coefficient has been given in equation (4.31) (see section 4.7.1.). Here the correlation 

coefficient measure is extracted from the scaled to the a posteriori precision 

covariance matrix. For interpretation purposes Figure 6.30 provides the formulation of 

the correlation data. This is done for a synthetic set of 2 views and 3 points within the 

image network where parameter correlations are blocked in red frames as it is shown 

below. 
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Figure 6.30: Correlation coefficient matrix structure. 

 

For comparative evaluation the numerical data are visually represented by mapping of 

the scalar values within the range 0 (no correlation) to ±1 (complete correlation) to the 

grayscale range 0 (black) to 1 (white). Figure 6.31 visualizes this intensity ramp 

highlighting the lower triangular part in red framed sub-blocks for better interpretation 

of the patterns. The illustrated patterns present the test cases that correspond to the 

solutions outlined in Table 6.9 (see section 6.4.2.1).  
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CPE CPE_k3 

  
CTPE CTPE_k3 

  

CPI CPI_k3 

  

CTPI CTPI_k3 

  

Figure 6.31: Correlation coefficient matrices for model parameters.  



6. Results and analysis                                                                                                                        

 

- 186 - 

 

Both external and inner datum solutions present high correlations between parameters 

of the same kind; that is 2D projective translations (tx, ty), 3D rotations (ω, φ, κ), 3D 

target locations (X, Y, Z), scale factor (s) and radial lens distortion term (k3). External 

constraints, in particular, present significant cross correlations between parameters 

(tx, ty) and (ω, φ, κ), (tx, ty) and (X, Y, Z) as well as (ω, φ, κ) and (X, Y, Z), whereas 

inner constraints present minimum correlations between (ω, φ, κ) and (tx, ty) as well 

as (ω, φ, κ) and (X, Y, Z). 

 

In fact, the external constraints solutions demonstrate distinctive high correlation 

between (tx, ty) and (ω, φ, κ). This effect is observed along the diagonal of this sub-

block. To isolate this pattern Figure 6.32 illustrates the correlation matrix for this 

particular block extracting the values that are considered to present high correlations; 

that is the locations where ρ>0.7. In addition, to interpret these patterns it is useful to 

visualize the image network geometry highlighting those photo locations that present 

high correlations (see Figure 6.32 right). Moreover, Figure 6.33 provides the spatial 

location of (tx, ty) with (ω, φ, κ). Specifically, the 2D projective translations are 

illustrated as triangles where the correlation coefficients are plotted as vertical linear 

displacements colour coded per rotation (red: ω, green: φ and blue: κ) and drawn in a 

left (tx) to right (ty) direction centred from a black index line. 

 

  

Figure 6.32: Correlation coefficient matrix between tx, ty and ω, φ, κ (left) and image 

network geometry (right). CPE (ρ>0.7). 
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Figure 6.33: Spatial location of tx, ty with correlations between tx, ty and ω, φ, κ. 

 

By observing these figures and provided that the photos contain sufficient CP data 

within the image format, the external constraints datum (defined from the CPs) results 

in a high correlation between the 2D projective translations and the 3D orientation 

angles.  

 
CTPE CTPI 

  

  

Figure 6.34: Correlation coefficient matrices for model parameters - ρ> 0.75 (top) and ρ> 0.9 

(bottom). 
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To examine further the correlations of the model parameters, the correlation data of 

CTPE and CTPI solutions were filtered to derive those parameters that present a 

correlation coefficient of ρ>0.75 and subsequently ρ>0.90 (see Figure 6.34). These 

were visualized as 1 where a correlation exists or 0 otherwise. External constraints 

present high correlations for similar types of parameters with no significant cross 

correlations between different kinds of parameter pairs. Again some distinctive 

correlations are present between 2D projective translations and 3D rotations as well as 

some random correlations between 2D projective translations and 3D target 

coordinates whereas the correlation coefficients between 3D rotations and 3D target 

coordinates are minor. Inner constraints present high correlations between 2D 

projective translations and 3D target coordinates showing the clear influence of the 

identified datum on the quality of the 3D target data (see 6.4.2.1.). Moreover the 

uniform scale factor of the inner constraints method causes significant correlations in 

3D space recovery, noting the high presence of correlations between 3D targets as 

opposed to the external datum case. 

 

6.5. Object space assessment 

To assess object space and 3D point estimation three datasets coded as B2 (pyramid), 

D2 (lego) and E2 (centroid) (see section 6.2.3.) were utilized. This check is evaluated 

with two performance measures. The first checks the object space proximities by 

visualization of the correlation coefficients over the 3D target distances per each X, Y 

and Z directions and the second plots the error ellipsoids of the estimated 3D target 

coordinates. The processed datasets vary in three aspects and these are target image 

quality, object geometry as well as distribution of control and photo orientations 

within the image network. These factors affect the quality evaluators utilized here. 

This section is covered with the reference measurements results (see section 6.5.1.), 

affine bundle adjustment results (see section 6.5.2.), correlations with proximities (see 

section 6.5.3.) and error ellipsoids (see section 6.5.4.). 

 

6.5.1. Reference measurements  

Initialization of the three test datasets was implemented based on a prior independent 

self-calibrating bundle adjustment (perspective, software tool VMS 8.0) similarly to 
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the processing method reported above (see section 6.4.1.). The overall results of the 

initialized bundle adjustment solutions are illustrated in Table 6.12. 

 

Dataset Iter. R. σo RMSxy (μm) σXYZ 

(μm) 

Relative 

precision 

RMS scale (µm) 

    IS OS 
 

B1 5 1,899 1.00 0.26 8.95 1:6,000 125.56 

D1 7 2,859 1.00 0.63 8.60 1:27,000 286.51 

E1 7 4,227 1.00 0.97 6.28 1:41,000 - 

Table 6.12:  BA statistical indicators - datasets B1, D1 and E1. 

 

6.5.1.1. Dataset B1 - pyramid 

Dataset B1 was measured with a bundle adjustment processed with an inner 

constraints datum, fifth and seventh terms of the radial lens distortion polynomial 

regarding calibration and 12 scales (measured with a digital calliper) to provide an 

accurate object space scale within the network. The solution converged rapidly with a 

redundancy of 1,899 after five iterations with an RMS image residual of 1/10
th

 of a 

pixel for the Sony sensor (with a pixel size of 4.78μm at a resolution of 1,024x768 

pixels). In object space the solution results in a relative precision for the image 

network of 1:6,000, 3D target coordinates precision of 8.95μm and an RMS object 

scale equal to 125.56μm.  

 

  

Figure 6.35: 3D target points (top view - left) and error ellipsoids (front view - right) - dataset 

B1. 

 

Figure 6.35 gives an example view of the 3D target points located on the pyramid 

object together with their error ellipsoids (blue ellipsoids= CPs and  green ellipsoids= 

TPs visualized in the software VMS 8.0). This illustration additionally describes the 

point arrangement; that is CPs are distributed at the edges of each face leaving all 
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other target points to be treated as TPs. The error ellipsoids for both CPs and TPs are 

not significantly different in magnitude which is a natural result of inner constraints. 

The 3D points were coordinated from an average number of 17.5 viewpoints. It is 

recalled that the large semi axes of the error ellipsoids point towards the centroid of 

the objects whereas the vertical axis indicates the error in the viewing direction. The 

fact that the major semi axes points towards the datum shows a weakness in scale 

recovery for the pyramid. The ellipsoids present a highly elongated shape noting the 

configuration geometry with the point location (the photos were acquired from a top 

angle in relation to the object’s four planar facets).  

 

6.5.1.2. Dataset D1 - lego 

Dataset D1 was measured with a bundle adjustment processed with an inner 

constraints datum, full additional parameters within the calibration model and 7 

measured scales in the object space. The bundle converged after seven iterations with 

an increased redundancy of 2,859 with an RMS image residual of 1/15
th

 of a pixel for 

the Kodak sensor (with a pixel size of 9.0μm at a full resolution of 1,008 x 1,018 

pixels). In object space the relative precision of the image network resulted in 

1:27,000, the 3D target coordinates precision was estimated to 8.60μm and the object 

space scale was 286.51μm.  

 

  

Figure 6.36: 3D target points (top view - left) and error ellipsoids (front view - right) - dataset 

D1. 

 

The 3D points are estimated from a mean number of 31.5 viewpoints which is 

increased significantly related to the previous image network. The illustrated error 

ellipsoids (see Figure 6.36) show that the quality of the estimated 3D target 

coordinates for the TPs (green ellipsoids) are of uniform precision for each of three 
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planar faces. Similarly, the CPs (blue ellipsoids) that were measured as 3D targets 

located on a turntable present a uniform precision which is attributed to the inner 

datum. It is noted that points that are located further than the datum origin present 

reduced target quality (error ellipsoids are larger). Similarly to the pyramid object (see 

section 6.5.1.1.) the major axes of the ellipsoids point towards the datum. This 

confirms the weakness in scale recovery within the inner constraints datum. 

 

6.5.1.3. Dataset E1 - centroid 

Dataset E1 was similarly processed with a bundle adjustment run with an inner 

constraints datum, two radial lens distortion terms within the calibration model and 

without the inclusion of any object space scales. In this case the solution that was run 

with a redundancy of 4,227 converged successfully at the seventh iteration with an 

RMS image residual at the order of 1/10
th

 of a pixel for the monochrome Kodak 

sensor. Object geometry was recovered with a relative precision for the image 

network of 1:41,000 and a mean 3D target coordinates precision of 6.28μm. 

 

  

Figure 6.37: 3D target points (top view - left) and error ellipsoids (front view - right) - dataset 

E1. 

 

The 3D point error ellipsoids confirm the geometric strength of the image network 

noting that the estimated targets are coordinated from a mean number of 26.7 image 

rays. Specifically (see Figure 6.37) it is evident that the error ellipsoids vary in shape 

for the CPs (blue ellipsoids) according to target image quality. This is observed from 

the difference in magnitude between the large and small diameter CPs. In the case of 

the estimated TPs the ellipsoids (drawn in green) have a uniform shape and are of a 

smaller magnitude in relation to the control (these are closer to the origin of the 

centroid). In fact it is evident that one target which was coordinated from four 
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intersected viewpoints results in a relatively weak 3D precision (σX=12.7μm, 

σY=22.3μm, σZ=18.1μm) and therefore it is coloured in yellow from the software. 

 

6.5.2. Affine bundle adjustment results 

Datasets B2, D2 and E2 were acquired with the affine sensor and processed with the 

developed affine bundle adjustment. In this processing test, the affine bundle was run 

with the external constraints datum and the third order radial lens distortion term 

(calibration model). The stochastic model was initialized with an a priori image 

observation quality of 0.5µm for datasets B2 and D2. Dataset E2 however presents 

very large target diameters in image space (target image diameters are equal to 36 

pixels), therefore this dataset was initialized with an a priori image observation quality 

of 1.5µm. The 3D target precisions were set to 25µm for the control point data and to 

the associated a posteriori precisions obtained from the pre-measurements of the tie 

point data (see section 6.5.1.). It is noted that the signalized point data describe the 

objects geometry only in sparse terms. 

 
 
 
 
 
 

Dataset Iter. R. Scale k3 

(σκ3) 

σo RMSxy 

(µm) 

σX, σY, σZ 

(µm) 
 

B2 3 608 0.1656 

(1.0632) 

4.4414x10
-4

 

(2.5059x10
-5

) 

1.62 0.53 7.69, 9.93, 7.28 

D2 2 430 0.1614 

(1.2899) 

4.0454x10
-5

 

(8.6230x10
-6

) 

2.57 0.75 27.88, 31.52, 28.03 

E2 3 1,287 0.1651 

(2.3232) 

4.7493x10
-4

 

(3.7241x10
-5

) 

3.37 3.45 36.54, 43.81, 36.86 

 

Table 6.13: Affine BA results - datasets B2, D2 and E2. 

 

6.5.2.1. Dataset B2 - pyramid 

This dataset is composed of 23 photos and 44 target points of which 20 are treated as 

control and 22 as tie. To analyze the bundle adjustment results, it is important to 

consider the quality of the data. It is noted that the target point data occupy a diameter 

of 17 pixels in image space (0.5mm diameter white markers in object space) (see 

Appendix C for a sample of target image quality). A primary requirement is that for 

photo orientation initialization the control had to be distributed in 3D. In addition, the 

minimum visibility requirement for optimal target measurement is four rays (each 
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target needs to be coordinated from four viewpoints). The image network geometry 

has already been illustrated in Figure 6.4 - network B2 (see section 6.2.2.4.). Figure 

6.38 provides an example affine view from this dataset jointly with the visibility 

frequencies for the control and tie point data within the image network. 

 

 

 

 

Figure 6.38: Affine (left) and CPs and TPs data visibility (right) - dataset B2. 

 

Regarding control, two CPs were observed from four viewpoints with the best case 

being one target observed from 13 viewpoints. Moreover minimum visibility is 

reported the case where one tie point was calculated from the intersection of 5 rays 

whereas maximum visibility is the case where one tie point is coordinated from the 

intersection of 15 rays. Besides characterizing the data according to their visibility it 

is important to note that configuring the data for simultaneous initialization (e.g. four 

CPs forming a volume) and measurement (e.g. tie point overlap) was difficult. This 

was the case particularly considering the object’s planar facets, the object’s small 3D 

volume in combination with the physical limitations of affine imaging sensor. In fact 

whilst image network geometry is highly convergent, it is relatively sparse again 

provided that an increased number of views would be required for increased frame to 

frame overlap and full object coverage in the ideal case. Finally the location of the 

object’s surface in relation to the photo locations results in an acute angle between the 

observation lines and each of the four planes of the pyramid. As a consequence the 

image measurement quality of the targets is reduced (targets imaged as elliptical 

blobs). This is particularly the case for those targets that do not reside within the 

identified (±19.7mm) field of view. The bundle adjustment was processed with a 

redundancy of 608 observations and converged rapidly after 3 iterations with a sigma 
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nought equal to 1.62 (see Table 6.13). The achieved quality in image space is equal to 

0.53µm that is 1/9
th

 of a pixel for the Sony sensor, whereas the 3D targets are 

coordinated with a mean 3D precision of σXYZ=8.3µm (σX= 7.69µm, σY=9.93µm, 

σZ= 7.28µm). The calibrated image scale is equal to 0.1656 (with precision 

σs=0.1264). The bundle results in a radial distortion of 6.94µm at a radial distance of 

2.5mm from the image centre. The calculated k3 term is equal to 4.44x10
-4

 (with a 

precision of σk3= 2.5095x10
-5

 and a significance of -0.0069) (see Figure 6.39). 

 

###############################################

Lens Distortion Profile for Camera Calibration

Units: microns

Radius Value

0.0000 0.0000

0.5000 0.0555

1.0000 0.4441

1.5000 1.4990

2.0000 3.5532

2.5000 6.9398

<< UPDATED ADDITIONAL PARAMETERS DATA (k3) >>

Units: mm

Value Precision Correction Significance 

4.441441509e-004 2.5059e-005 -1.7265e-007 -0.0069

##################################################  

Figure 6.39: Calibration output - dataset B2. 

 

6.5.2.2. Dataset D2 - lego 

This dataset is composed of 24 photos, 20 targets of which 10 are treated as control 

and 10 as tie. Figure 6.40 illustrates an example affine view together with the data 

visibility that characterizes this image network. The point data occupy 18 pixels in 

image space (1mm diameter white markers in object space). Control data present 

minimum visibility in the case where two targets are measured from eight viewpoints 

whereas regarding tie point data only one target is coordinated from 4 viewpoints. The 

object geometry points that all target data are sparsely arranged within each frame and 

they are located between two (top-bottom) square planes at regular separations. 
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Figure 6.40: Affine view (left) and CPs and TPs data visibility (right) - dataset D2. 

 

The bundle adjustment was processed with a redundancy of 430 observations and 

converged rapidly after 2 iterations with a sigma nought equal to 2.57 (see Table 

6.13). In image space the triangulation misclosure is 0.75µm which is equal to 1/12
th

 

of a pixel for the Kodak sensor. In object space the 3D targets are coordinated with a 

mean 3D precision of σXYZ=29.14µm (σX=27.88µm, σY=31.52µm, σZ=28.03µm). The 

calibrated image scale is equal to 0.1614 (with precision σs=1.2899 x10
-4

) whereas the 

calculated k3 term is equal to 4.0454x10
-5

 (with precision σk3= 8.6230x10
-6

 and a 

significance of 0.0066) (see Figure 6.41). 

 

##############################################

Lens Distortion Profile for Camera Calibration

Units: microns

Radius Value

0.0000 0.0000

0.5000 0.0051

1.0000 0.0405

1.5000 0.1365

2.0000 0.3236

2.5000 0.6321

3.0000 1.0923

3.5000 1.7345

4.0000 2.5891

4.5000 3.6864

<< UPDATED ADDITIONAL PARAMETERS DATA (k3) >>

Units: mm

Value Precision Correction Significance 

4.045420537e-005 8.6230e-006 5.6812e-008 0.0066

###############################################  

Figure 6.41: Calibration output - dataset D2. 

 

6.5.2.3. Dataset E2 - centroid 

This dataset is composed of 17 photo and 54 point data (12 CP and 42 TP). Target 

image quality is pointed by the 36 pixels in diameter blobs in image space (2mm 

diameter retro-reflective targets in object space). To characterize this dataset it is 

firstly pointed out that whilst this network was originally designed in a wide separated 

three ring arrangement, the selected photos cover the 3D object space in a cone 
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arrangement and they are geometrically wide and convergent. This is a highly 

advantageous point of this image network particularly when this is compared to the 

image networks of datasets B2 and D2 (see Figure 6.4 in section 6.2.2.4.). Contrary to 

this, the centroid consists of concentric rings of point data (retro-reflective targets) 

with significantly large target diameter (2mm in object space which is equal to 36 

pixels in image space) for this particular imaging range (r= 175mm) and sensor 

(CAM_A3). As a result, the data present a reduced image quality; therefore this image 

network was processed with an a priori image quality of 1.5µm. 

 

 

 

Figure 6.42: Affine image network (left) and CPs, TPs data visibility (right) - dataset E2. 

 

Figure 6.42 provides an illustration of the image network geometry and the data 

visibility. Both control and tie point data are highly visible and they range between 10 

and 17 views (CPs) and 9 and 17 views (TPs) accordingly. The bundle adjustment 

was processed with a number of 1,287 redundancies and converged rapidly after 3 

iterations with an a posteriori sigma nought of 3.73 (see Table 6.13). The triangulation 

misclosure is 3.45µm which is approximately equal to 1/3
rd

 of a pixel for the Kodak 

sensor in image space. In object space the 3D targets are coordinated with a mean 

precision of σXYZ=39.07µm (σX= 36.54µm, σY= 43.81µm, σZ= 36.86µm). The 

calibrated image scale is equal to 0.1651 (with precision σs=2.3232x10
-4

) whereas the 

calculated k3 term is equal to 4.7493x10
-4

 (with precision σk3=3.7241x10
-5

 and a 

significance of 0.0101) (see Figure 6.43). It is noted that for a complete display of the 

bundle adjustment results that were obtained from three datasets B2, D2 and E2 the 

associated radial lens distortions profiles are provided in Appendix C. 
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###############################################

Lens Distortion Profile for Camera Calibration

Units: microns

Radius Value

0.0000 0.0000

0.5000 0.0594

1.0000 0.4749

1.5000 1.6029

2.0000 3.7994

2.5000 7.4208

3.0000 12.8231

3.5000 20.3626

4.0000 30.3954

4.5000 43.2779

<< UPDATED ADDITIONAL PARAMETERS DATA (k1) >>

Units: mm

Value Precision Correction Significance 

4.749284375e-004 3.7241e-005 3.7683e-007 0.0101

###############################################  

Figure 6.43: Calibration output - dataset E2. 

 

6.5.3. Correlations with proximities 

For object space evaluation, the first measure that was utilized checks the relation of 

the 3D target correlation coefficients against object space proximity. It is noted here 

that the term proximity denotes the Euclidean inter-target distance for each possible 

target combination and which is calculated as follows. 

 

2 2 2

(n 1,n) n 1 n n 1 n n 1 nD (X X ) (Y Y ) (Z Z )          (6.2.) 

 

Particularly, this is done by visualization of the target Euclidean distance (x axis) over 

the 3D target correlation coefficients (y axis) derived per X, Y and Z direction (RX, 

RY, RZ) from the a posteriori covariance matrix. It is noted that the correlation 

coefficient vectors RX, RY and RZ were extracted from the upper triangle of the 

associated correlation coefficient matrix (absolute values) which for an example for a 

5x5 array is given as follows. 

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44

00

01

02

03

04

11

12

13

14

22

23

24

33

34

44  

Figure 6.44: Structure of correlation coefficient array. 
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6.5.3.1. Dataset B2 - pyramid 

Evaluation of the 3D correlations in object space for dataset B2 (pyramid object) is 

implemented with visualization of the absolute values of the 3D correlation 

coefficients in each direction RX, RY and RZ against the corresponding 3D inter-

target separations (see Figure 6.45). As a result, the generated graphs show the 

behaviour for each inter-direction correlation separately. 

 

  

 

 

Figure 6.45: Correlation coefficients with proximities (red: RX, green: RY, blue RZ) - dataset 

B2. 

 

The target-pairs differences range between 4.3mm (minimum separation) and 32.1mm 

(maximum separation). Correlations RX, RY and RZ increase inversely with target-

distance. In fact targets that are separated with distance D= 4mm-10mm are highly 

correlated in all three directions X, Y, Z (ρ= ~0.7-1.0) whereas only a few targets 

present low correlations in Y (ρ= ~0.3-0.7) and X (ρ= ~0.5-0.7). In general Z (object 

depth) direction presents a smooth behaviour when compared with correlations in X 

and Y that present a wider spread between the ranges 10mm-32mm. An interesting 

point is that as opposed to the general trend (that is correlations decrease with an 

increase in target-separation) there exists a cluster of targets separated between D= 
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~27mm-32mm that tend to have increased correlations. However the magnitude in 

correlations is not exceeding 0.3 therefore these can be attributed to potential poor 

uncertainty in precision (e.g. low image quality, viewpoint intersection, low 

measurement redundancy) and not necessarily a problem in the data. 

  

6.5.3.2. Dataset D2 - lego 

Figure 6.46 illustrates the 3D correlation coefficients in each direction RX, RY and 

RZ over the corresponding 3D inter-target separations. In the case of dataset D2 the 

target-pairs differences range between 9.98µm (minimum separation) and 61.97µm 

(maximum separation). It is evident that similarly to the previous case (see section 

6.5.3.1.) correlations RX, RY and RZ increase inversely with inter target-distance. 

 

  

 

 

Figure 6.46: Correlation coefficients with proximities (red: RX, green: RY, blue RZ) - dataset 

D2. 

 

Targets separated between D= ~10mm-20mm present high correlation (ρ= ~0.7-1.0) 

in X with only a few exceptions in directions Y and Z where D=~15mm-20mm with 

correlations being just below ρ= ~0.7. The data follow in general a smooth 

arrangement with only a small cluster (D= ~50mm-55mm) presenting correlations 
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between (ρ= ~0.2-0.3) in Y. In addition, correlations between CP4000 and CP4006 

(with D4000-4006= 61.51mm) as well as CP4000 and CP4009 (with D= 61.97mm) 

present an increase in correlations (with ρX, ρZ= ~0.1-0.2 and ρY= ~0.4-0.5) when 

these should be reduced in comparison to their counterparts. However the correlation 

coefficients are considered as small and the relative increase in the standard 

deviations can only be attributed to poor target measurement quality.  

 

6.5.3.3. Dataset E2 - centroid 

Similarly to datasets B2 and D2 Figure 6.47 illustrates the absolute 3D correlation 

coefficients in each direction RX, RY and RZ over the corresponding 3D inter-target 

separations. The 3D target data range between 3.3mm (minimum separation) and 

48.7mm (maximum separation). 

 

  

 

 

Figure 6.47: Correlation coefficients with proximities (red: RX, green: RY, blue RZ) - dataset 

E2. 

 

Correlations RX, RY and RZ increase inversely with target-distance similarly to the 

results presented above. Significant correlations (ρ= ~0.7-1.0) occur between D= 
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~3.0mm - 10mm in X and Z with a relatively similar behaviour. It is interesting that 

correlations RY appear to be reduced in magnitude when these are compared to 

corresponding correlation coefficients in X and Z within the range 0-40mm (for 

example for distance D= 0-10mm; ρXZ> ~0.8 and ρY= ~0.5-0.8, D= 10-20mm; ρXZ= 

~0.4-0.9 and ρY= ~0.2-0.8, D= 20-30mm; ρXZ= ~0.2-0.8 and ρY= ~0.0-0.6, D=30-

40mm; ρXZ= ~0.2-0.8 and ρY= ~0.0-0.6). However within the range (D= 40-50mm 3D 

targets are correlated within ρ= ~0-0.2 in X, Y and Z). Moreover two correlation 

values at the far end of these figures seem not to follow the decreasing pattern of their 

counterparts. Specifically this occurs for the pair CP10000-TP20009 (where 

D=48.65mm with ρX= 0.08, ρY= 0.26, ρZ= 0.13) as well as the pair CP10000-

TP20008 (where D= ~48.04 with ρX= 0.05, ρY= 0.23, ρZ= 0.10) but again these 

correlation coefficients are considered to be insignificant. It is however pointed that 

this repeatable pattern (see sections 6.5.3.1., 6.5.3.2. and 6.5.3.3) observed at the edge 

of the image format might result from a potential small uncorrected radial distortion 

error within the data measurement. 

 

6.5.4. Error ellipsoids 

The second measure that is utilized for object space evaluation is the visualization of 

the absolute 3D point error ellipsoids that are derived from the a posteriori covariance 

matrix (subblock for 3D targets). Error ellipsoids are considered to be highly useful 

for evaluation of bundle adjustment results. In particular they can characterize 

network orientation, scale and datum location. Here the error ellipsoids are visualized 

for each control and target point that contributes within the image network; these are 

ordered as extracted from the target data file. 

 

6.5.4.1. Dataset B2 - pyramid 

Figure 6.48 illustrates the location of the measured CP (red triangles) and TP (green 

triangles) and Figure 6.49 visualizes the corresponding 3D views of the error 

ellipsoids for dataset B2 (pyramid object) within the image network. 
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Figure 6.48: Point data distribution CP: red triangles, TP: green triangles - dataset B2. 

 

 

Figure 6.49: Error ellipsoids (external datum) - dataset B2. 

 

The external constraint datum defined the control target coordinates with an overall 

3D precision of σX= 7.69µm, σY=9.93µm, σZ=7.28µm (see section 6.5.2.). From the 

ellipsoids pattern, it is evident that error ellipsoids of points that lie on a similar plane 

and row present similarities in shape and size. Specifically target points that are 

located in the fourth and fifth rows in all four facets present largest error ellipsoids 

(counting six rows per facet from the pyramid’s basis to its peak). Such examples are 
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targets CP112, CP411, CP413, CP315, CP214, TP316, TP412, TP313, TP111, TP414, 

TP415. Opposed to these, targets that are located at the object’s edges or are more 

spread (e.g. are coordinated from an increased number of intersection angles) present 

uniform and small in size error ellipsoids. Such examples are targets CP110, CP410, 

CP416, CP308, CP312, CP211, CP209, TP215, TP210, TP108, TP314, TP408, 

TP105, TP106, TP106, TP409, TP309, TP310. 

 

6.5.4.2. Dataset D2 - lego 

Figure 6.50 illustrates a pair of two views showing the arrangement of the CP (red 

triangles) and TP (green triangles) data within the image network and Figure 6.51 

visualizes a 3D view of the corresponding error ellipsoids for dataset D2 (lego object). 

 

  

Figure 6.50: Point data distribution (CP: red triangles, TP: green triangles) - dataset D2. 
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Figure 6.51: Error ellipsoids (external datum) - dataset D2. 

 

The error ellipsoids are of similar magnitude and shape for the total number of targets 

which is reasonable considering the uniform image quality of the target points and 

simultaneously considering that the a posteriori 3D target precision was estimated as 

σX= 27.88µm, σY=31.52µm, σZ=28.03µm with a relatively increase in Y direction. 

Targets CP4000, CP4006 present the largest ellipsoid patterns. Moreover it is 

interesting that the error ellipsoids for targets CP4000 and CP4006 as well as targets 

CP4003 and CP4009 that are located on the base plane along the diagonals present 

high similarity in shape, orientation and magnitude. To check if this results from a 

weak orientation in the data (e.g. ray intersection angles) or if it characterizes the 

quality of the control data that were utilized to constrain the network, an obvious 

check was to re-run the solution with an inner constraint datum (with identical 

orientations, photo and target data). The inner datum solution resulted in a uniform 

error ellipsoid shape for all target points which proves that the network is highly 

homogeneous and strong (see Figure 6.52). As a result, the observed ellipsoid patterns 

in the external constraints case are not a function of a weakness in orientation. These 

can relate to poor control determination for these particular target points from data 
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pre-measurement (see section 6.5.1.2) or affine network computation (see section 

6.5.2.2.). 

 

Figure 6.52: Error ellipsoids (inner datum) - dataset D2. 

 

6.5.4.3. Dataset E2 - centroid 

Figure 6.53 and Figure 6.54 illustrate the distribution of the control and tie point data 

within the image network as well as the 3D error ellipsoids of the estimated point 

data. The shape, magnitude and direction of the error ellipsoids suggest that no 

systematic effects were present within the affine image network. It is recalled here 

that the estimated 3D targets were coordinated with an a posteriori quality of σX= 

36.54µm, σY=43.81µm, σZ=36.86µm (see Table 6.13 in section 6.5.2.). To give some 

examples of large error ellipsoid patters; these characterize targets CP10000, 

TP20007, TP20008, TP20009, TP20010 that are located in the most outer ring of the 

structure as well as targets TP20011, TP20012, CP20013 and TP20014 that are 

located in the second ring (counting from the outside).  

 



6. Results and analysis                                                                                                                        

 

- 206 - 

 

 

Figure 6.53: Point data distribution CP: red triangles, TP: green triangles - dataset E2. 

 

 

Figure 6.54: Error ellipsoids - dataset E2. 

 

6.6. Scale invariance assessment 

To assess sensor scale within the developed system, the bundle method was tested 

using two different datasets A2 and A3 acquired with the Kodak sensor (CAM_A3) 

and the Sony sensor (CAM_A5) respectively whereas initialization and target pre-

measurement were performed utilizing dataset A1 captured with the available Nikon 
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DSLR camera (CAM_P1). Comparative results are obtained from statistical analysis 

of the bundle adjustment. 

 

6.6.1. Reference measurements 

Dataset A1 was established from a strong, highly convergent image network from 44 

viewpoints at an imaging range of 400mm. It is noted that the rigid cube frame 

occupies a volume of 100 mm
3
 enclosing the lego structure where 178 point targets 

(white markers) were observed (mean target visibility of 15.1) with an image quality 

pointed by a target image diameter of 4.5 - 9.0 pixels in image space. Figure 6.55 

provides a description of the reference dataset. Specifically it illustrates the reference 

calibration object highlighting the control point data (red ellipses) as well as the 10 

object space measurements (drawn in blue) that were introduced as scale 

measurements in the bundle adjustment (a priori precision of object scales was set to 

50μm). In addition it illustrates the image network geometry and the 

photogrammetrically derived 3D point cloud. 

 

   

Figure 6.55: Calibration rigid structure (left), image network (middle) and photogrammetric 

point cloud (right). 

 

The dataset was processed with the bundle adjustment within the VMS 8.0 tool 

defining an inner constraints datum and the internal calibration model (excluding 

insignificant decentering and affinity terms). The bundle was implemented with a 

redundancy of 4,564 and it converged after 10 iterations resulting in a triangulation 

misclosure of 0.37μm (that is 1/20
th

 of a pixel for the Nikon sensor). Object geometry 

was recovered with a relative precision for the image network of 1:36,000, a mean 3D 

target coordinates precision of 5.66μm and an RMS object scale residual of 103.28μm 

(see Table 6.14). 
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Dataset Iter. R. σo RMSxy 

(μm) 

σXYZ (μm) Relative 

precision 

RMS scale (µm) 

    IS OS 
 

A1 10 4,564 1.00 0.37 5.66 1:36,000 103.28 

Table 6.14:  BA statistical indicators - datasets B1, D1 and E1. 

 

6.6.2. Affine bundle adjustment results 

Figure 6.56 illustrates a sample perspective view with two inset views acquired from 

the two different camera systems with clear differences in footprint and image 

content. The main differences of the test datasets are related to sensor characteristics 

noting that the key difficulty in this particular test case was the object’s dimension 

was larger than the footprint of the imaging system. The acquired datasets were 

processed with the pre-measured data and datum as defined above (see section 6.6.1.). 

However the object’s dimensions, occlusions and image quality demanded significant 

pre-editing in order to remove measurements that were partially occluded in 

subsequent images and simultaneously did not present sufficient ray intersection (3 or 

4 rays per frame) as an example. 

 

 

Figure 6.56: Perspective view with affine views - CAM_A5 (left) and CAM_A3 (right). 

 

The Sony camera system (CAM_A5) is characterized by a highly narrow field of view 

as well as limited resolution (see section 6.2.2.2.) when this is compared to the Kodak 

sensor footprint (CAM_A3). As a result the number of images required to cover the 

object volume increase and the target dispersion within each frame become more 

limited. However network design and image acquisition ensured that a minimum 

number of control points (4-6 per view) were present for stable frame initialization 

and that there was sufficient multi-image coverage (through tie point measurement) 
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and redundancy. This consideration is critical for subsequent calibration and network 

stability. Table 6.15 provides the comparative bundle adjustment results for datasets 

A2 and A3 noting that these were processed with an external datum and the 

implemented calibration model.  

 
 

Dataset Iter. R. Scale 

(σscalex10
-5

) 

k3 

(σκ3) 

σo RMSxy 

(µm) 

σX, σY, σZ 

(µm) 
 

A2 3 1,670 0.1615 

(7.5282) 

2.6356x10
-5

 

(5.3196x10
-6

) 

4.04 1.30 25.73, 30.53, 25.71 

A3 3 653 0.1659 

(3.4151) 

2.2805x10
-4

 

(2.3532x10
-5

) 

2.07 0.56 17.75, 34.83, 15.94 

 

Table 6.15: Affine BA results (external datum) - datasets A2 and A3. 

 

6.6.2.1. Dataset A2 - Kodak sensor 

In the case of dataset A2 the image network was processed with 35 CP, 87 TP and 44 

photo data. The measurements present a minimum number of 4 rays (for all target 

points) and a maximum number of 26 and 18 visibilities (for control and tie points 

respectively) (see Figure 6.57). Initialization was performed with the approach 

described in the previous test cases (see section 6.4.1. as an example). Resection 

computes an RMS image measurement residual of 1.52μm (to define the 3D 

orientation angles). A subsequent closed form back-substitution estimates the 

remaining 2D projective translations. The 3D target coordinates for the control were 

obtained from the reference measurements (see section 6.6.1.) therefore the datum 

was defined from the identified 35 control point data. 

 

   

Figure 6.57: Image network geometry (left) and data visibility (right) - dataset A2. 
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The system was run with a redundancy of 1,670 observations and converged rapidly 

after 3 iterations with an a posteriori sigma nought of 4.04 and a triangulation 

misclosure of 1.30µm (1/10
th

 of a pixel). Object points were estimated with a mean a 

posteriori 3D precision of 27.32µm (σX=25.73µm, σY=30.53µm, σZ=25.71µm). The 

sensor scale is equal to 0.1615 (with a precision of 7.5282x10
-5

) whereas the radial 

lens distortion was calculated as k3= 2.6356x10
-5

 (with a precision σk3= 5.3196x10
-6

 

and a significance (where: significance= correction / precision) of -0.0024 which 

result in a correction of 1.28x10
-8

 for the radial lens distortion term). 

 

6.6.2.2. Dataset A3 - Sony sensor 

Dataset A3 is processed with 78 CP, 8 TP and 85 photo data. The data visibility 

ranges between 3 (for CP data) and 16 rays (for CP and TP data) with a mean number 

of valid target image observations of 5.72 within the image network. For complete 

object coverage this particular dataset presented some significant difficulties that are 

worthy of mention. The Sony sensor presents a very narrow field of view when used 

with the telecentric lens and the point data are highly sparse for these particular 

magnified close-ups. As a result and to stitch the images through point data 

measurement (given that there is significant overlap and control for frame 

initialization and subsequent datum definition) the image network was designed to be 

highly ‘systematic’ (with regards to the imaging range) with relatively closed 

separated viewpoints (narrower bundle of rays) (see Figure 6.58). The resulting 85 

views within the image network ensured sufficient geometric strength and redundancy 

for data processing. 

 

  

Figure 6.58: Image network geometry (left) and data visibility (right) - dataset A3. 
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Initialization was implemented similarly to the Kodak sensor (see section 6.6.2.1.) 

with a mean resection image measurement residual of 1.22µm and a closed form 

estimation of the 2D projective translations. The system was run with a redundancy of 

653 observations and converged rapidly after 3 iterations with an a posteriori sigma 

nought of 2.07 and a triangulation misclosure of 0.56µm (1/9
th

 of a pixel). 3D object 

coordinates were estimated with a mean a posteriori 3D precision of 22.84µm 

(σX=17.75µm, σY=34.83µm, σZ=15.94µm). The sensor scale was estimated to be 

equal to 0.1659 (with a precision of 3.4151x10
-5

) whereas the radial lens distortion 

was calculated as 2.2805x10
-4

 (with a precision σk3=2.3532x10
-5

, a significance which 

is equal to -0.0256 and a resultant correction of -6.03x10
-7

). Although redundancy, 

image quality and network geometry are reduced when compared to dataset A2, the 

bundle results show that this dataset provides an improvement in both estimating 

RMS image misclosure as well as 3D point precision. This is an obvious outcome 

considering the 78 control point data that were utilized to tie this image network 

(stable datum definition). 

 

6.6.2.3. Object scale 

To provide evidence of the system’s ability for object scale recovery with both 

employed sensors (Kodak and Sony) two additional checks are given. The first 

measure calculates the absolute difference of five key distances over the estimated 

distances that were obtained from the bundle adjustments (see Figure 6.59 for 

illustration of data arrangement).  

 

 

Figure 6.59: Object scales and point data arrangement. 
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It is evident that in comparison to dataset A3, dataset A2 is closer to truth (denoted by 

S which stands for scale) by 5.45μm in the case of distance D2003-2006 (where the 

maximum discrepancy occurs) and 16.07μm in the case of distance D2006-2009 (where 

the minimum discrepancy occurs) (see Table 6.16). 

 

Distance AD(S–A2) (μm) AD(S–A3) (μm) 

D1000-1005 47.44 67.34 

D1005-1015 76.49 90.87 

D2000-2003 99.23 110.99 

D2003-2006 128.06 133.51 

D2006-2009 36.42 52.49 

Table 6.16: Distance checking - datasets A2 and A3. Table notation: AD= absolute difference, 

S=scale, A2= dataset A2, A3= dataset A3. 

 

The second check calculates the mean absolute discrepancy in 3D directions X, Y and 

Z between the reference measurements (dataset A1) that initiated the control data 

from premeasurement of dataset A1 and the estimated point coordinates for the 

individual datasets A2 and A3. In Table 6.17 these are grouped for the different object 

planes (coded plane1000, plane2000 and plane3000 starting from base to top plane) as 

well as the points located at the intermediate corresponding sides (coded pts10000, 

pts20000, pts30000). 

 

Dataset A2 A3 

 MADX 

(μm) 

MADY 

(μm) 

MADZ 

(μm) 

MADX 

(μm) 

MADY 

(μm) 

MADZ 

(μm) 

Plane1000 14.05 18.90 11.77 8.23 12.70 7.78 

Plane2000 5.07 7.00 5.23 7.34 6.66 11.82 

Plane3000 4.76 7.25 3.87 6.65 23.68 11.13 

Pts10000 13.03 25.45 10.65 59.03 83.89 23.73 

Pts20000 10.43 21.57 11.23 8.92 11.14 8.95 

Pts30000 4.23 11.96 6.82 10.89 16.60 7.92 

Table 6.17: Object space discrepancies - datasets A2 and A3. Table notation: MADX,Y,Z= 

mean of the absolute discrepancies between reference measurements and estimated point data. 

 

It is evident that the most significant discrepancies in both instances occur in the Y 

(viewing) direction. The Kodak sensor coordinates results to a mean 3D discrepancy 

of MADXYZ= 10.73μm (MADX = 8.59μm, MADY=15.35μm, MADZ=8.26μm) 

whereas the Sony sensor results in a 3D discrepancy of MADXYZ= 18.17μm (MADX = 

16.84μm, MADY=25.78μm, MADZ=11.89μm). The closure of the estimated 

discrepancies in relation to the reference data is attributed to the geometric strength, 
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redundancy and image quality of the Kodak sensor as well as the significant control of 

its competent Sony sensor. 3D points appear to be closer to the reference 

measurements for the data which are located in the middle and top planes of the lego 

structure (coded plane2000) which is a natural expectation considering geometric 

strength (wide ray intersection angles), increased visibility and frame coverage. 

Finally points that lie on the lego structure’s faces (coded Pts10000 - Pts30000) 

present reduced accuracy due to their poor image quality (image targets vary in 

diameter between 9-18 pixels for the Kodak sensor and 17-33 pixels for the Sony 

sensor) as well as visibility (targets are occluded in relation to the network 

viewpoints) and therefore less redundancy in their successive measurement frames. It 

is noted that point targets that lie on the three planes (coded Plane1000 - Plane3000) 

present an improved accuracy. This is attributed to the image quality considering 

direction of illumination and geometric viewpoint location as well as uniform target 

dimensions (image target diameter of 18 pixels for Kodak sensor and 33 pixels for 

Sony sensor). 

 

6.7. Independent testing 

To independently test the affine bundle adjustment algorithm, the developed method 

is compared over a conventional bundle approach utilized within the software tool 

VMS 8.0. For this reason three datasets were acquired; the first provides reference 

measurements for point data initialization (dataset C1), the second is used for 

processing of the perspective bundle adjustment (dataset C2) and finally the third is 

generated for affine bundle adjustment processing (dataset C3) (see section 6.2.3.). It 

is re-iterated here that processing of dataset C1 has already been given earlier in the 

model assessment test case (see section 6.4.1.1.).  

 

6.7.1. Bundle adjustment results 

Both datasets were processed based on a similar processing framework. Specifically 

dataset C2 was processed with 47 images, 18 CP and 7 TP data and dataset C3 was 

processed with 45 images, 18 CP and 11 TP data. For comparative evaluation both 

datasets were run with identical control; that is the datum was initiated from the 

identified reference image network. 
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6.7.1.1. Image networks 

Figure 6.60 provides a comparative illustration of the perspective and affine image 

network geometries together with two selected views per case. It can be seen that both 

image networks were acquired in a two-ring strong convergent configuration. In 

addition, to extract useful evaluation of the affine image dataset over the available 

bundle adjustment (within the software tool VMS 8.0) it was ensured that the point 

data covered identical volume in 3D object space. As a result and besides the sparse 

point data arrangement in the case of the perspective image dataset the targets occupy 

nearly 1/4 of the image frame, however these are located in the middle as far as 

possible for sufficient point estimation as well as calibration parameters. Regarding 

point visibility in the case of dataset C2 maximum visibility ranges between 40 and 32 

views (two CPs are coordinated from 40 views and one TP is coordinated from 32 

views) and minimum visibility ranges between 25 and 22 views (one CP is 

coordinated from 25 views and one TP is coordinated from 22 views). For dataset C3 

the corresponding data are given: maximum visibility ranges between 45 (one CP) 

and 38 views (one TP) whereas minimum visibility lies between 29 (one CP) and 18 

(one TP) views (see Figure 6.61). 

 

 

 

 

 

Figure 6.60: Image network geometry and views - dataset C2 (top) and dataset C3 (bottom). 
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Figure 6.61: Data visibility - dataset C2 (PP: perspective projection) and dataset C3 (AP: 

affine projection). 

 

6.7.1.2. Results 

Dataset C2 was processed with 47 images, 18 CP and 7 TP data with an external 

constraints datum and full calibration parameters. Similarly dataset C3 was processed 

with 45 images, 18 CP and 11 TP data with an external constraints datum and 

inclusion of the implemented radial lens distortion term (k3). The comparative bundle 

adjustment results are given in Table 6.18. 

 
 

Dataset Iter. R. σo RMSxy (µm) σX, σY, σZ (µm) 

    IS OS 
 

C2 4 1,343 1.00 0.78 8.92; 10.46; 8.94 

C3 3 1,838 2.23 0.79 19.14; 21.93; 19.20 
 

Table 6.18: Bundle adjustment statistical indicators - datasets C2 and C3. 

 

In the case of dataset C2 initialization was implemented with a resection procedure 

(for the 47 photo data) producing an RMS image measurement residual of 0.74μm 

(with a mean valid target image observation number of 13.17) and a subsequent affine 

forward intersection procedure with σXYZ= 5.23μm. However on the final estimation 

stage control was updated by its reference 3D coordinates (and their associated 

standard deviations) to ensure that the datum remains as it was originally defined. The 

bundle adjustment converged after 4 iterations with a number of 1,343 redundancies 

resulting in a triangulation misclosure of 0.78μm (~1/12
th

 of a pixel). In object space 

the bundle estimates 3D points with a mean precision of 9.44μm (σX=8.92μm, 

σY=10.46μm, σZ=8.94μm) whereas the relative precision for the image network is 

equal to 1:5000. Calibration is recovered with the 10 parameter self-calibration model 
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embedded within the software and the radial lens distortion at a radial distance of 

3.5mm estimated to be equal to -44.65μm for the Kodak sensor. 

 

Initialization of dataset C3 was based upon 18 control point data (reference 

measurements). The resection procedure (of the 45 photos within the network) 

resulted in an RMS image measurement residual of 1.37μm (with a mean valid target 

image observations of 13.45). The subsequent affine forward intersection procedure 

was run with a number of 2,011 redundancies resulting in a sigma nought of σo= 2.99 

and a σXYZ= 2.18μm after 2 iterations. To keep the datum defined at its initial set up 

the control data were set to their initial reference measurements. The affine bundle 

adjustment (dataset C3) converged after 3 iterations with a number of 1,838 

redundancies and an RMS image misclosure of 0.79μm (~1/12
th

 of a pixel) presenting 

high similarity over dataset C2. In object space the bundle estimates 3D points with a 

mean precision of 20.09μm (σX=19.14μm, σY= 21.93μm, σZ= 19.20μm). Here the 

camera system which employs the Kodak fitted with the telecentric lens is calibrated 

with a scale of 0.1611 (σs= 1.4401x10
-4

), radial lens distortion is 8.45μm at a radial 

distance of 4.00mm (k3=1.3204x10
-4

, σk3=6.0180x10
-6

, significance= 0.0150). 

 

6.7.1.3. Object space 

For object space evaluation two measures are calculated. The first provides a visual 

display of the 3D target error ellipsoids for both datasets C2 and C3. Specifically 

Figure 6.62 visualizes the 3D target error ellipsoids for dataset C2 (CPs coloured in 

blue and TPs coloured in green) with an ellipse scale factor of 10.3 (within the 

software tool VMS 8.0). The error ellipsoids in the case of the affine dataset C3 are 

displayed with a default scale of 1.0 and they are listed according to their order 

(obtained from the input 3D target file and labelled in blue: CPs and green: TPs). It is 

noted that 3D error ellipsoids present uniform shape, magnitude and orientation with 

regards to object geometry – location, point type and precision. As a result the 3D 

points present uniform quality (as obtained from the scaled a posteriori covariance 

matrix) which is confirmed by the tabulated results (see Table 6.19). 
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Figure 6.62: 3D target error ellipsoids - dataset C2 (left) and dataset C3 (right). 

 

 CP TP 

Dataset σX (µm) σY (µm) σZ (µm) σX (µm) σY (µm) σZ (µm) 

C2 8.89 10.26 8.94 8.99 10.93 8.89 

C3 19.11 21.61 19.22 19.16 22.44 19.17 

Table 6.19: 3D target precisions - datasets C2 and C3. 

 

Firstly dataset C2 estimates 3D target points with a precision which is improved by 

10µm in three (X, Y, Z) directions in comparison to dataset C3 considering that the 

affine bundle scales the 3D point precisions to an a posteriori sigma nought of 2.23. In 

both cases the error ellipsoids of the control present similar shape and magnitude per 

concentric ring (from the outer towards the inner target rings). Particularly, CP4003 

(which presents minimal σZ, 31 and 25 rays in ‘C2’ and ‘C3’ respectively) and 

CP4004 (with minimal σX, 31 and 26 rays in ‘C2’ and ‘C3’ respectively) as well as 

CP5001 (with minimal σY and 40 rays in C2) and CP5002 (which presents minimal 

σY with 44 and 40 rays in ‘C2’ and ‘C3’ respectively) are examples of small error 

ellipsoid shapes. TP10000 is an example of reduced quality (coordinated from 25 and 

36 views and estimated with 3D precisions σXYZ= 10.27µm and σXYZ= 21.16µm in C2 

and C3) whereas TP10001 is given as an example of a better quality (coordinated 

from 24 and 35 views and estimated with 3D precisions of σXYZ= 8.83µm and σXYZ= 

17.73µm in C2 and C3 accordingly).  

 

To evaluate accuracy Table 6.20 summarizes the mean of the absolute discrepancy 

values for the control point data within the image network. It can be seen that the 

affine image network derives a good comparative solution in comparison to the 

perspective dataset. In fact given its geometric strength as well as complete point 

coverage within the image frame, it results to an agreement of 6.27μm with the 
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reference data against an absolute discrepancy of 6.42μm that occurs in the case of 

dataset C2 (3D discrepancies of control over reference point data).  

 

Dataset MADX (μm) MADY (μm) MADZ (μm) 

C2 6.64 4.55 8.08 

C3 6.55 6.36 5.90 

Table 6.20: Control point discrepancies - datasets C2 and C3. Table notation: MADX,Y,Z= 

mean of the absolute discrepancies between reference measurements and control point data. 

 

6.8. Summary 

In summary this chapter provides an extensive assessment of the developed affine 

multi-view algorithm in the context of close range object measurement. The employed 

tests were designed in order to test and evaluate the method in relation to both 

considerations of correctness as well as effectiveness in practice. In particular the tests 

have derived method behaviour in the aspects of initialization, bundle adjustment 

algorithm, object space recovery, invariance of model scale as well as independent 

evaluation with reference data. Assessment has been performed utilizing the typical 

statistical indicators extracted from the bundle adjustment as well as measures that 

evaluate specific aspects of the method and which have been given analytically at 

each separate experimental case with regards to precision and accuracy aspects. The 

implemented bundle adjustments were run on an Intel® Core ™ Duo CPU, 2.80GHz, 

1.59GHz, 1.96GB of Random Access Memory (RAM). Table 6.21 summarizes the 

performance characteristics of the overall datasets that were utilized to test the 

method. It is evident that the data sizes of the processed bundles are relatively small; 

these are given in the context of complete method description and not for purposes of 

evaluation of the method’s performance. 

 

Dataset CPU time 

(hr:min:sec) 

Memory usage VM size 

C3 (#CTPE) 0:00:30 23,432K 17.576K 

C3 (#CTPI) 0:00:33 25,996K 21,116K 

B2 0:00:06 18,304K 11,888K 

D2 0:00:04 13,752K 7,320K 

E2 0:00:12 19,536K 13,396K 

A2 0:01:19 93,872K 87,720K 

A3 0:00:52 117,056K 110,856K 

C3 0:00:24 22,512K 16,132K 

Table 6.21: Comparative performance characteristics. 
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Model assessment has proved that the affine method converges rapidly (in the absence 

of outliers) with a triangulation misclosure of 1/10
th

 - 1/11
th

 of a pixel for the 

employed camera systems (C mount progressive scan cameras fitted with an MVO® 

TMLTM/0.16x telecentric lens). Object space is recovered with a 3D precision which 

varies within a few tenths of microns for the six different affine datasets when the 

bundle is run with an external constraints datum and the implemented internal 

calibration model. Inner constraints result in a significant reduction of 3D point 

precision which has been concluded that this is attributed to modelling of inner 

constraints datum for this scale invariant sensor model. In addition it has been shown 

that inner constraints degrade model quality for the datum variant parameters 

(projective translations, 3D rotations, 3D point coordinates and scale) but not for the 

datum invariant parameter (third power term of the radial lens distortion polynomial). 

The correlation analysis check has proved that significant correlations occur between 

parameters of the same kind with some distinctive correlations between 2D projective 

translations and 3D rotations as well as 3D target coordinates. Yet inner constraints 

present high correlations between 2D projective translations and 3D target coordinates 

which result from definition of the centroid datum with a simultaneous increase in 

correlations of 3D target coordinates as opposed to the external datum case. 

 

Evaluation of the 3D point coordinates correlation coefficients over the corresponding 

3D target separation has shown that targets present high correlations inversely with 

their 3D inter-target distance. Moreover, the 3D point error ellipsoids provide a good 

indicator of the achieved quality in 3D space; in fact it has been shown that the 

estimated points are in good agreement with similar type of precisions achieved from 

well-known reference photogrammetrically derived measurements (through robust 

bundle adjustment implementation). 

 

Testing with camera systems that employ two different sensors (Kodak Megaplus 

ES1.0 monochrome and Sony DFW-SX900 colour cameras fitted with the employed 

MVO® TMLTM/0.16x telecentric lens) has shown that the method derives accurate 

results at the order of 10-20µm in comparison to reference measurements. Finally an 

independent check has evaluated the method over a perspective-based image network 

that was run with the available in-house bundle adjustment tool (VMS 8.0) for 



6. Results and analysis                                                                                                                        

 

- 220 - 

 

comparative assessment purposes. It has been proved that the affine bundle 

adjustment results in a very close quality agreement with the perspective bundle 

adjustment in the aspects of RMS image space (with a misclosure of 1/12
th

 of a pixel), 

3D point estimation (with a 3D precision of ~10-20µm and a sigma nought of 1.0 and 

2.23 for perspective and affine image networks accordingly) as well as accuracy (3D 

discrepancies over reference measurements range within 10-20µm). The central 

conclusions derived from development and implementation of the affine multi-view 

method are given in the subsequent Chapter 7. 



7. Conclusions and future research 

This research has investigated the problem of affine multi-view modelling for the 

purpose of close range object measurement. A multi-view framework has been 

designed, developed and tested against simulated and real datasets. This chapter first 

presents a summary of the approaches presented in this thesis (see section 7.1.), 

subsequently provides the central conclusions (see section 7.2.) and finally suggests 

directions for future research (see section 7.3.) and closes with a final research point 

(see section 7.4.). 

 

7.1. Summary 

The main focus of this research has been the investigation and development of a new 

method for the purpose of system calibration, orientation and 3D measurement from 

affine image networks. This is treated in the context of addressing the fundamental 

questions that have been presented in the problem statement section (see section 1.3.) 

and are re-iterated as follows: 

 

- Is it realistic to generate, measure and process real affine multi-view images 

within a modelling framework in the context of deriving precise close range 

object measurements? 

- In the context of such a framework, how do sensor geometry (parallel 

projection rays, invariant scale factor and calibration) as well as local 

coordinate frame (datum) influence method precision and 3D point estimation 

(object geometry)? 

- What is the quality of affine multi-image modelling in comparison to 

established photogrammetric solutions? 

 

In these aspects the thesis starts with the investigation of the research context (Chapter 

1). This is done with formulation of the background in the concepts of non-contact 

object measurement (Chapter 2), digital close range image formation (Chapter 3) as 

well as multi-view modelling in the photogrammetric aspect (Chapter 4). The thesis 

can be considered in terms of: (a) method development and (b) application and 

assessment of the system. System development focuses on starting value recovery as 

well as design and implementation of the bundle adjustment algorithm (Chapter 5). 
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Application of the method considers each development stage and provides extensive 

assessment through testing with the designed experimental cases (Chapter 6). In the 

contexts of development, testing and application of the affine system, this work dealt 

with the aspects of starting value estimation (see section 7.1.1.), bundle adjustment 

algorithm (see section 7.1.2.) and application of the algorithm (see section 7.1.3.).  

 

7.1.1. Starting value estimation 

The problem of starting value generation has been recovered from a combination of 

implicit and explicit approaches to the affine sensor. Initialization is implemented on 

the assumption that a perspective sensor with a very long focal length is a close 

approximation to the affine sensor. Given this hypothesis the process starts from a set 

of well defined control points in the object space where an initial exterior orientation 

updated by a resection routine is applied to initialize the 3D orientation angles. 

Subsequently closed form back-substitution is applied on the affine model to estimate 

the 2D projective translations of the photo locations. In cases where there is 

insufficient knowledge of 3D point geometry in the form of control and inadequate tie 

points coordinated through pre-measurement (e.g. from prior robust perspective 

bundle adjustment), there is the option to run a least squares forward intersection 

procedure that estimates 3D points from the affine sensor model. This is performed 

with the initialized orientation estimates and in the absence of any internal geometric 

distortions (e.g. for calibrated cameras). 

 

7.1.2. Bundle adjustment 

The affine bundle adjustment approach is novel to this research work and has been 

designed in order to be able to handle a number of significant factors and issues. 

Firstly the developed framework reads a set of starting data grouped as target, 

calibration, photo, orientation and image observation data that are used to populate 

data structures needed for algorithm development. The method is implemented as a 

multi-view bundle adjustment with a stochastic model initialized from the input 

weights of image observations. 
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The algorithm is able to identify the datum for the system with either external or inner 

constraint methods. In the case of external constraints the stochastic model is 

initialized from the weights of control point data. Alternatively an inner constraint 

datum can be chosen; this calculates the centroid of data points from the identified 

control and ascribes a normalized precision to the point data that contribute in the 

image network. The system is also capable of handling variable target and photo 

occlusions. This is achieved by counting the number of valid image observations, 

control and tie points as well as photos in the network. Sensor scale factor is handled 

for optional inclusion or exclusion within the estimation procedure. In consideration 

of internal sensor distortions, a simplified radial lens distortion model constitutes the 

calibration model. 

 

The system is run as an iterative least squares observation procedure; it converges 

when appropriate empirical criteria are satisfied (tested over the orientation, target and 

calibration parameters). A successful solution provides a statistical analysis of the 

method. Outputs include the initial and estimated parameters together with the 

associated quality measures as extracted from the a posteriori covariance analysis. 

The developed system has been evaluated at each stage of its development. As a 

result, both algorithm considerations (stochastic model, datum, visibility, data points, 

parameter, scale factor and calibration model) as well as aspects of geometry (sensor 

scale invariance, internal calibration and 3D object point recovery) have been 

addressed. 

 

7.1.3. Application of the algorithm 

Practical assessment of the method in the aspect of performance evaluation and 

modelling has been carried out through testing with real datasets. Specifically, twelve 

image network datasets have been acquired with both perspective and affine sensors. 

The employed perspective camera systems have been utilized for the goals of 

initialization, pre-measurement and generation of reference measurements; the 

datasets have been processed with an established robust bundle adjustment tool. 

Affine image networks have been acquired with an off the shelf machine vision 

system that utilizes a telecentric MVO® TMLTM/0.16x lens attached on two 
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different C mount (Kodak Megaplus ES1.0 and Sony DFW-SX900) camera bodies 

that have been available for testing.  

 

The developed approach firstly tested model behaviour and evaluated initialization, 

overall bundle adjustment results, convergence behaviour and consistency of 

correlation checks with statistical quality measures (see section 6.4.). At a subsequent 

stage, it addressed object space behaviour based on reference image networks that 

provide initial 3D coordinates (see section 6.5.). Parallel projection image networks of 

varying geometry are processed to derive comparative bundle adjustment results 

which are evaluated with typical statistical indicators as well as correlation analysis in 

3D object space. The problem of sensor scale evaluation and its invariance is treated 

employing the two different camera systems which are again initialized, tested and 

assessed with typical measures in image and object spaces with additional accuracy 

checks (see section 6.6.). Finally, the affine multi-view approach is assessed over 

conventional robust bundle adjustments, initialized and consequently processed 

independently of the method presented here (see section 6.7.). In every test case, 

assessment has been extracted with specified quality and accuracy metrics. The tests 

have proved that the method can produce sub-pixel measurement precisions which are 

comparable to established photogrammetric methods (see section 7.2.). 

 

7.2. Conclusions 

This section outlines the central conclusions of this research that explicitly satisfy the 

prior objectives of this research (see section 1.4.). Therefore this section addresses 

modelling (research objective ‘2’), object space and sensor scale (research objective 

‘3’) and independent assessment (research objective ‘4’) considerations. The central 

conclusions of this research are formulated as follows: 

 

7.2.1. Modelling analysis 

The performance of the bundle adjustment algorithm has been assessed in relation to 

model, convergence as well as correlation behaviour. To obtain representative results 

tests have been run as comparative bundle adjustments with different calibration 

(inclusion and exclusion of radial distortion model), point data (control and tie) and 

datum (external and inner constraints) implementation (see section 6.4.). 
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1. Results prove that bundle adjustments converge rapidly (2-3 iterations) with 

stability offering sub-pixel image measurement precisions of the order of 

1/10
th

 of a pixel. Visual inspection of the residuals has demonstrated random 

patterns; these together with their normal distribution suggest that the 

functional model is correct and that no systematic effects are present within 

the system. 

2. The sensor is calibrated effectively with the inclusion of the implemented 

internal calibration model (k3= 1.3048x10
-4

, σκ3=6.0521x10
-6

 with an external 

datum solution with CP and TP data) and estimates a positive radial lens 

distortion (dr= 8.3μm at a maximum radial distance r=4mm for the Kodak 

Megaplus ES1.0 sensor). Encouragingly the radial lens distortion curves are 

consistent for both external and inner datum cases. Moreover, exclusion of the 

calibration model from the estimation reduces 3D point data precision (at the 

order of a few microns). This result is also valid for conventional perspective 

bundle methods provided that the functional model compensates systematic 

effects through additional parameter handling and no over-parameterization 

occurs; that is the additional parameters represent the physical reality. 

3. The affine adjustment method successfully estimates 3D target coordinates 

and their quality. Results have demonstrated that the achieved 3D target 

precisions are of the order of ~5-7μm in the case of external constraints and 

~126-283μm in the case of inner constraints. These figures are scaled to the a 

posteriori standard deviation (σo= ~2). Moreover, it has been repeatedly 

proven that even when employing strong convergent and redundant image 

networks, target coordinate precision is reduced by a magnitude of ~2 units in 

the viewing direction for both datum methods. Particularly reduction of 3D 

point precision in the case of inner constraints highlights potential 

‘correlation’ between object scale and invariant sensor scale. 

4. Accuracy assessment is naturally performed with comparisons over 

independent measurements generated from high order quality (resolution and 

precision) systems (photogrammetric cameras, laser scanners or CMMs). 

Accuracy checks have been shown a general agreement in geometry (point 

data) when these are compared with manual key measurements (acquired with 

a digital calliper). However, these results can not be considered as decisive 
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and further tests using full independent coordination of targets would be 

required to provide a rigid outcome. 

5. The tests examined within this thesis have been acquired under controlled 

laboratory conditions; that is using systematic rotation and translation imaging 

stages to acquire regular geometric networks of images. In this regard difficult 

geometries or missing data have not been a part of testing. Investigation of the 

method’s convergence has shown that successive iteration pairs result in high 

agreement for the estimated parameters. Some random extreme variations 

have been particularly observed in the case of 3D photo orientations. In fact, 

this check has demonstrated that the inner constraints method degrades the 

quality of the model for the datum variant parameters (2D projective 

translations, 3D photo rotations, 3D target positions and sensor scale factor) 

but not for the datum invariant parameter (radial lens distortion term). 

6. Analysis of parameter correlations has shown that both datum methods present 

high order correlations between parameters of the same kind. In particular it 

has been highlighted (see section 6.4.2.3.) that the external datum presents 

distinctive correlation patterns between 2D projective translations and 3D 

orientation angles whereas inner constraints are dominated by minimal 

correlation between 3D targets and 3D photo rotations. 

 

7.2.2. Object space analysis 

To assess object space recovery from the affine bundle adjustment the method was 

tested with three datasets (of different object geometry) that were initialized from 

reference measurement data (perspective bundle adjustments). The method was run 

with an external constraint datum and the calibration lens model. Besides the typical 

statistical indicators, assessment was obtained utilizing two measures that illustrate: 

(a) 3D point coordinates correlation coefficients (in X, Y and Z directions) over the 

inter-target proximities as well as (b) 3D error ellipsoid patterns (see section 6.5.). 

 

1. Results show that the bundle adjustments in this test converged rapidly (2-3 

iterations) with an a posteriori standard daviation ranging between σo= ~2.0 

and 3.0. Considering the difference in input image quality between the 

different datasets B2, D2 and E2  image point diameters range between 17 
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pixels, 18 pixels and 36 pixels for each case; the a priori observation precision 

was set to 0.5μm for ‘B2’ and ‘D2’ whilst 1.5μm was used for ‘E2’. The RMS 

image misclosures were estimated at 1/9
th

, 1/12
th

 and 1/3
rd

 of a pixel whilst 3D 

points have been coordinated with precisions of 8.30μm, 29.14μm and 

39.07μm again per test case. As a result, RMS image misclosure is at a sub-

pixel level whereas object points are estimated with precisions in the order of a 

few microns. 

2. Evaluation of the absolute values of the 3D correlation coefficients in each 

direction RX, RY and RZ against 3D inter-target separations has shown 

repeatability within the different datasets; that is 3D correlation coefficients 

increase inversely with target-distance. Particularly dataset B2 (pyramid 

structure) presents a smoother distribution in Z in comparison to X and Y 

directions. Moreover dataset E2 (centroid structure) has shown correlation 

coefficient values of reduced magnitude in Y as opposed to correlation 

coefficients in X and Z directions that present similarities in magnitude and 

which are separated with inter target distances within the range 0-40mm. In 

addition it has been observed that small clusters of targets tend to increase in 

correlation when their inter target distance is increased but their magnitudes 

are insignificant and hence have not been investigated further. 

3. Visualization of the error ellipsoids (described by their magnitude, shape and 

orientation) show the achieved precision levels of the affine bundle 

adjustment. These have indicated the influence of the input target image 

quality, image network geometry (strength, visibility and redundancy) as well 

as 3D control point quality for the external constraints datum. The 

homogeneous nature of the observed ellipsoids builds the confidence (together 

with the random pattern of the residual vectors) that the functional model is 

correct. An additional bundle adjustment check with an inner constraints 

datum (dataset D2) resulting in a uniform error ellipsoids shape, has proved 

that the image network is highly homogeneous and strong. As a consequence, 

the observed ellipsoid patterns in the external datum case are not related to 

potential orientation weaknesses but to potentially poor control determination. 
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7.2.3. Sensor scale analysis 

To assess the effect of scale within the system, the bundle method has been tested 

with two different camera systems (telecentric lens MVO® TMLTM/0.16x attached 

to a Kodak Megaplus ES1.0 as well as a Sony DFW-SX900). The utilized test object 

occupies a 3D volume larger than the sensor footprint. Initialization has been 

implemented from prior reference photogrammetric measurements. The test image 

networks were processed with pre-defined control data (to maintain the 3D coordinate 

datum definition) and associated 3D precisions set to 25μm. Assessment has been 

derived utilizing the bundle statistical indicators and recovery of object scale has been 

evaluated with calculations of 3D absolute discrepancies (see section 6.6.). 

 

1. Results have shown that the bundle adjustments converge after 3 iterations 

with an a posteriori σo= ~2.0 - 4.0, a triangulation misclosure of 1/10
th

 - 1/9
th

 

of a pixel and a 3D point precision up to 30μm. The calibrated image scale 

has been recovered to 0.1615 (with a precision of σS= 7.53x10
-5

) and 0.1659 

(with a precision of σS= 2.35x10
-5

) for each camera system which show the 

difference in scale recovery when using the two Kodak and Sony sensors. 

2. Object scale has been evaluated with calculation of the absolute differences 

(between externally measured and derived from the bundle computation 

distances) which reach the order of 130μm. Most significantly the overall 

mean 3D absolute discrepancy (between reference datum measurements and 

estimated 3D point coordinates) has proved to be equal to 10.7μm (Kodak 

camera system) and 18.2μm (Sony camera system). The small magnitude of 

these discrepancies can be attributed to image network geometric strength. 

 

7.2.4. Independent evaluation 

Final experimental case comprises testing of the bundle adjustment algorithm in 

comparison to a perspective bundle adjustment within the software tool VMS 8.0. 

Initialization has been recovered through pre-measurement at a prior stage of testing 

whereas processing has been implemented with identical control and precisions (σXYZ 

= 25μm). Here, assessment has been performed utilizing two measures, the first 

visualizes the 3D point error ellipsoids and the second the 3D absolute discrepancies 

for the common control data (see section 6.7.). 
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1. Results have demonstrated a triangulation misclosure of 1/12
th

 of a pixel on 

convergence in both network cases. In fact a posteriori standard deviation and 

3D points are estimated as σo= 1.0 and σXYZ= 9.44μm (perspective dataset) 

and σo= 2.2 and σXYZ= 20.09μm (affine dataset) which provide a first evidence 

that the data given their input quality estimate 3D point coordinates with a 

good agreement. 

2. The visualized error ellipsoids have shown that their patterns present similar 

shape and magnitude for the control located at each concentric ring whereas 

the error ellipsoids of tie points show the influence of the a posteriori 3D 

precision. 

3. Regarding accuracy evaluation, the mean absolute 3D discrepancies for the 

control data have resulted in an agreement of ~6μm (6.27μm for the 

perspective dataset and 6.42μm for the affine dataset) against the initially 

identified reference photogrammetric measurements. Consequently the affine 

bundle adjustment algorithm has shown to provide results of similar quality 

with the well known and well understood perspective case under controlled 

test conditions with significant repeatability within the various tests reported 

within the subsequent test cases. 

 

7.2.5. Critical assessment 

Following the concluding remarks presented above, a critical evaluation of the 

principal defects that characterize the developed approach is now demonstrated. 

 

 Use of target measurements: The current framework is initialized from 

discrete point features of high contrast (retro-reflective targets and white 

markers on a black background). In practical terms natural textured objects 

could be employed but such test objects would not insert any additional 

information for test purposes. In addition, image measurements have been 

initiated within the in-house bundle adjustment software externally to the 

developed framework. A key limitation to this process is that the affine images 

require significant manual digitization and processing given the sensor 

magnification factor in combination with the limited capabilities of object 

targeting. As a result, there is a significant data pre-processing cost which 
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makes the method inefficient. A more sophisticated, automated initialization 

procedure based on automatic feature extraction would be required in an ideal 

case. 

 Orientation value estimation: In the aspect of modelling difficult and non-

controlled image network configurations, the current initialization approach 

can be considered as suitable for network geometries utilized within this 

thesis. The system is built upon geometric assumptions that relate to the 3D 

orientation angles recovery through perspective as well as pre-knowledge of 

3D control. A complete exploitation of the affine sensor model for direct 

initialization considering degenerate cases has not been considered. 

 Tie point initialization: A more dedicated 3D intersection procedure 

regarding algorithm implementation would be required in an ideal case. The 

current method coordinates targets in 3D through forward least squares 

estimation directly from affine projection provided the sensor is externally 

oriented and internally calibrated.  

 Inner constraints datum: Inner constraints significantly reduce system 

precision as a result of a unified object space scale. Inherent lack of scale 

variation within the affine image when compared to the perspective case has 

resulted in a weaker network solution. Thus, an issue of alternatively 

modelling scale in the case of inner constraints remains open. 

 System calibration: The implemented calibration model has been proved to 

calibrate the sensor successfully (at the level of ~1/10 of a pixel); an additional 

issue is whether a different affine system would demand an augmented 

additional parameter estimation model. 

 Outlier detection: The current least squares approach minimizes the cost 

function in the feature re-projection error and provides the statistical quality of 

results. Yet an open issue remains due to the fact that the method is prone to 

blunders.  This inability is a key problem as in real world measurement tasks it 

is expected that common users do not have absolute control over the 

implemented data unless an expertise operator is assumed. Outlier detection 

and automation are essential parts of algorithm design as they enhance system 

reliability and practical usability; therefore an outlier detection method could 

be adopted within the affine method. 
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7.3. Future research 

This research has presented an affine multi-view approach in the context of close 

range object measurement. This comprises a joint calibration, orientation and 

measurement problem and as such it can be extended to further processes that on their 

core implementation rely on the 2D to 3D geometric recovery. In the scope of areas of 

application, the presented system can be applied to any close range measurement task 

(such as in industrial metrology, archaeology and medicine) that aims to measure or 

recover fine object detail. Suggestions for future research are reported here in terms of 

optimization of the current algorithm that would for instance increase or improve 

modelling as well as extend the current framework in the context of method 

application. 

 

7.3.1. Method extension 

 

 Initialization: The developed method can be extended further in order to 

optimize starting value estimation from pure affine projection. This includes 

estimation of orientation angles through space resection as well as 

investigation of minimum conditions and critical geometric configurations for 

the absolute purpose of processing parallel projection images. 

 3D point estimation: Whilst the current forward intersection method is 

another form of least squares multi-view solution suitable for calibrated 

cameras it would be of great benefit if 3D point estimation would have been 

treated by a refined solution. Such an approach would be for example to 

perform a geometric closed form solution that minimizes the ray intersections 

as a first stage updated subsequently by a multi-view solution that  minimizes 

the reprojection error in image space to calculate 3D point positions. These 

problems are considered as solved for the fundamental perspective case and 

thus a more sophisticated solution can be similarly applied for the affine case. 

 Outlier detection: An outlier detection and elimination tool that applies 

system self-diagnosis would be desirable. Such robust approaches are typically 

implemented utilizing statistical testing or a down-weighting scheme. As an 

example, statistical tests are applied to check the a posteriori sigma nought and 
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re-estimation stops when all contaminated measurements have been removed 

from the system and the a posteriori sigma nought becomes unity. 

 Sensor calibration: The internal calibration model could subject to alternative 

system requirements (different affine sensor) demand a more sophisticated 

treatment. An obvious solution to this issue would be to embed an additional 

parameter set (radial lens, tangential lens distortions as well as affinity and 

orthogonality terms), statistically checked and accepted or rejected within the 

system. 

 

These considerations are critical in that they would open the method in the aspects of 

implementation, automation regarding robustness and efficiency as well as practical 

usability.  

 

7.3.2. Application extension 

Following the results presented in section 7.2. sub-pixel recovery of affine projection 

image sequences is possible to a level appropriate for applications such as texture 

mapping, sensor fusion or feature automation. 

 Texture mapping: In physical terms, the sensor by virtue of its optimal 

parallel projection presents minimal internal geometric distortion and a more 

consistent image sampling over an object surface when compared to a 

perspective imaging system. This combination can offer the potential to 

optimize the image quality of discrete signalized point targets. As a result, 

texture mapped models from real affine image sequences can be possible 

provided that correct multi-view registration and surface approximation have 

already been recovered. This could be of specific interest to the measurement 

and visualization of fine object detail where typical perspective-based 

modelling and texturing procedures can be ineffective. Standard algorithms 

can fail to capture very fine object details or can be error-prone to significant 

sensor distortions. 

 Sensor fusion: The method could be extended to generate a hybrid system 

that will integrate perspective and affine sensors in a joint adjustment. 

Although such a solution has been crudely investigated within the course of 

this research in experimental terms, this approach has not been exploited 
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further in algorithmic and practical terms. An effective solution could 

potentially introduce geometric constraints between photo orientations 

provided that both sensors view the same 3D volume. As a consequence a 

bundle adjustment would be processed similarly to methods that process 

convergent stereo-pairs. 

 System automation: A final promising application of an affine bundle 

adjustment would be to integrate automatic feature extraction within the 

system. In particular, given the inherent invariant sensor scale, it would be 

beneficial to further investigate the method in the aspect of automatic feature 

or line extraction directly from real affine imagery. This approach could 

possibly enhance automation given the minimal geometric distortion and thus 

optimize the automatic correspondence between different image frames which 

on success would enter the multi-view modelling algorithm presented here. 

 

7.4. A final point 

At the outset of this research it was unknown whether affine projection images would 

offer sufficient content and allow the establishment of a new close range approach. 

This research has successfully shown that the affine sensor offers a good alternative to 

the well-understood and well-established perspective sensor for the purpose of close 

range object measurement. It is possible to utilize, develop and implement more 

theoretical camera models that are closer to metric reconstruction and often adopted 

from the computer vision community. This thesis contributes in the development of a 

new affine bundle adjustment system applied to convergent imaging networks. 

Current state of the art is focused on fast algorithms as well as automation and 

implementation of advanced intensity and range imaging systems. Thus, such topics 

could be potentially embedded and applied in the case of processing affine imagery. 

The research community focuses on system automation; it is however expected that 

sensor modelling and 3D measurement will still be very active topics of research in 

the field of photogrammetry. 
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Appendix A: Essential elements for affine model 

formation 

 

This appendix gives the basic elements needed for the development of the affine 

sensor model. Particularly the following are listed: Coordinate system definitions (see 

section A.1.), rotation matrix (see section A.2.), numerical first order derivatives of 

the affine camera model (see section A.3.), notation for least squares adjustment (see 

section A.4.) as well as camera model arrangement (see section A.5.). 

 

A.1. Coordinate system definitions 

The coordinate systems applied in the image formation process are illustrated as 

described accordingly (see Figure 1). It is pointed that x,y is the photo - coordinate 

system (given in mm) and N, M is the associate digital image coordinate system 

(given in pixels). The digital image coordinate system is linked with the photo-

coordinate system through an affine transform (see equations (A.1) and (A.2)). 

 

 

Appendix A - Figure 1: The relation between digital and photo coordinate systems. 
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Where: 

x,y= photo-coordinate system (mm) 

xpp, ypp= principal point location (mm) 
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N,M= image-coordinate system (pixels) 

Nx, My= image size (pixels) 

νx,μy= pixel size in x and y (mm) 

 

For the purpose of the affine-sensor model development, image measurements were 

initialized externally to the developed method within the software tool VMS 8.0. The 

structure of the .obs file within the system is given as: ‘Photo id, Target id, x 

coordinate (mm), y coordinate (mm), standard deviation in x (mm), standard deviation 

in y (mm), residual in x (mm), residual in y (mm) and measurement flag (0 or -1)’ 

(see Figure 2). 

 

################################################################################### 

# VMS Project:  Photo data output 

# Sunday, March 22, 2009  

# 

# Project name: legonikon 

# 

# 2749  Photo Obs 

#   Photo   Target     X(mm)     Y(mm)     sdx   sdy    res x    res y 

# 

# 

# Used image measurements - at last adjustment 

        1026       2011   2.05289   1.73421   2.2064   2.2064  -0.4873  -0.1646      0 

        1025       1000   3.03020   2.51099   2.2064   2.2064  -0.2899   0.7698      0 

        1025       1019   2.97068   1.91054   2.2064   2.2064  -0.0492   0.4871      0 

        1049      20049  -0.72281  -1.44884   0.2167   0.2167   0.0159  -0.8476    0 

        1033        400   6.81271   1.32663   0.4983   0.4983  -5.5208  -1.1356     -1 

# 

# Unused and rejected image measurements - at last adjustment 

# 

# End of file 

###################################################################################  
Appendix A - Figure 2: Sample of .obs file in VMS 8.0. 

 

As a result, within this work system implementation (computations and modelling) 

was treated directly on the photo-coordinate system (defined in mm) without the 

requirement for any system-image transformation. 

 

A.2. Rotation matrix 

The 3*3 rotation matrix that establishes the relationship between image and object 

space coordinate systems with its elements defined as trigonometric functions of the 

three rotations angles omega (ω), phi (φ) and kappa (κ) is given as follows. 



Appendix A: Essential elements for affine model formation                                                                                                                

 

 

 

- 253 - 
 

cos cos sin sin cos cos sin cos sin cos sin sin

R cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

               
 

                
 
       

 

(A.3) 

 

A.3. Affine camera model: numerical first order derivatives 

The partial derivatives of the simplified collinearity condition function f(x) with 

respect to the model variables (tx, ty, ω, φ, κ, X, Y, Z, s, k3) are calculated according 

to the following equations A.4 - A.23.  
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A.4. Notation for least squares adjustment 

The notation of symbols utilized within the least squares adjustment procedure is 

given below. 

 

Notation of symbols used within the least squares adjustment 

l   Vector of observation variables 

l   True values of the vector of observation variables 

l


  Vector of least squares estimate of observation variables (l)  

v   True values of the vector residuals 

v


  Least squares estimate of v 

x   True values of the vector of parameters; mean value 

ox   Approximate values of x  

x   True values of the corrections to o ox , x x x   

x


  Least squares estimate of x 

n   Number of observations 

m   Number of parameters 

A   Design or Jacobian matrix (n rows, m columns) 

W   Weight matrix (n rows, n columns) 

C   Covariance matrix (m rows, m columns) 

N   Normal equations matrix (m rows, m columns) 

Appendix A - Table 1: Notation of symbols utilized within the least squares adjustment. 

 

A.5. Camera model arrangement 

Considering a test set of j=10 views, i=10 point targets and k=1 camera the design 

matrix is populated with the partial derivatives given above. It is noted that the 

exemplary design matrix has been structured for the inner constraints datum case; 

hence it is augmented with seven additional datum rows (see section 4.5.1.). 
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Appendix A - Figure 3: Design matrix arrangement for a sample of j=10 views, i= 10 point 

data and k= 1cameras. 

 

 

 



 

 

Appendix B: Processing framework 

This appendix describes the input and output data files of the implemented processes. 

Data measurement and initialization have been treated within the VMS 8.0 software 

tool (see sections B.1. and B.2.) whilst affine multi-view modelling has been 

implemented within the developed framework (see section B.3.). 

 

B.1. VMS 8.0 software settings 

VMS 8.0 software for network adjustment requires that the user adjusts three types of 

settings given here: 

 

 Image measurement parameters: For 2D location (measurement) of point- 

based target data. 

 Adjustment settings: For data handling within the initialization procedures 

(resection and intersection). 

 Network adjustment settings: For data handling within the network adjustment 

procedure. 

 

- Image measurement parameters: 

 

Appendix B - Figure 1: Image measurement parameters menu in VMS 8.0. 
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- Adjustment settings: 

 

Appendix B - Figure 2: Adjustment parameters menu in VMS 8.0. 

 

- Network adjustment settings: 

 

Appendix B - Figure 3: Network adjustment parameters menu in VMS 8.0. 
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B.2. VMS 8.0 software data files 

The VMS 8.0 software’s data files are given below. 

 

B.2.1. Input VMS 8.0 data files 

The input data files of the perspective sensor model follow the format identified 

within the VMS 8.0 software. Example data files are given below: 

 

 Target file (.tar): Contains the 3D targets co-ordinates. 

 Calibration file (.cal): Contains the internal camera geometry (interior 

orientation). 

 Photo file (.pho): Contains the cameras positions and orientations (exterior 

orientation). 

 Observations file (.obs): Contains the 2D image observations. 

 

TARGET FILE INPUT FORMAT (.tar): 
################################################################################### 

# VMS Project:  Target data output 

# Tuesday, March 24, 2009  

# 

# Project name: legonikon 

# 

# 178  Targets 

# Targets in millimetres, precisions in 1000*millimetres 

# 

#       Target         X         Y         Z   flag        sdx       sdy       sdz 

# 

       20045    65.5735    75.5262    23.4447  0     3.8866     4.6782     6.4878 

         200     2.4575   100.0290     3.3735  7    10.7861     5.8654    10.1860 

          …       …             …             …       …       …           …             … 

         107    -0.5143     2.7531    96.7073  7    13.5413    19.2530    11.4413 

# 

# End of file  

################################################################################### 

 

CALIBRATION FILE INPUT FORMAT (.cal): 
################################################################################### 

# VMS Project:  Camera data 

# Tuesday, March 24, 2009  

# 

# Project name: legonikon 

# 

# This file contains information on 1 cameras 

# Parameters : 1=PPx,2=PPy,3=PD,4-6=radial,7-8=decentring,9=orthogonality,10=affinity 

 1 

# 

# Calibration parameters for camera 1 
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       1       0.1137       0.0020 

       2       0.0404       0.0073 

       3      29.5784       0.0048 

       4    -1.8822e-004    2.6425e-006 

       5     2.2259e-006    1.1925e-007 

       6    -2.0575e-008    1.4543e-009 

       7     0.0000e+000    2.6565e-006 

       8     7.7070e-006    2.8038e-006 

       9     0.0000e+000    8.5655e-006 

      10     3.8332e-005    1.0764e-005 

# 

#  x and y pixel size in mm and x, y image size in pixels 

   0.00780  0.00780       3008       2000 

# 

# 

#  Fiducial Mark Data 

# Camera  Point   Ref X      Ref Y     Std X    Std Y     Obs X      Obs Y     Std X    Std Y 

# 

# No fiducial information for this camera 

# 

# End of file  

################################################################################### 

 

PHOTO FILE INPUT FORMAT (.pho): 

################################################################################### 

# VMS Project:  Photo data 

# Tuesday, March 24, 2009  

# 

# Project name: legonikon 

# 

# This file contains information on 52 photos 

# Exterior orientation parameters for photo: 1000 

#  Photo      X        Y        Z        Omega          Phi       Kappa      Camera 

     1000     33.6101   404.4008   354.6350   -45.2831    -0.8795    91.5219 1 

     1002      0.0000     0.0000     0.0000     0.0000     0.0000     0.0000 1 

      …         …               …             …             …             …             … 

     1051   -256.4724   401.4178    82.2784   -81.4259   -44.5892    15.8017 1 

# 

# End of photo orientation file  

################################################################################### 

 

It is noted that where the orientation parameters are assigned with zero values, these 

indicate that that the associated photo has not been measured and will be discounted 

from the calculations. 
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OBSERVATIONS FILE INPUT FORMAT (.obs) : 

################################################################################### 

# VMS Project:  Photo data output 

# Tuesday, March 24, 2009  

# 

# Project name: legonikon 

# 

# 2745  Photo Obs 

#   Photo   Target     X(mm)     Y(mm)     sdx   sdy    res x    res y 

# 

# 

# Used image measurements - at last adjustment 

        1026       2011   2.05289   1.73421   0.4035   0.4035  -0.2650  -0.0584      0 

        1033        400   6.81271    1.32663   0.4035   0.4035  -3.1485   0.2948     -1 

        …             …    …             …           …           …         …           …             …       

        1032      30025   2.69271   0.71370   0.4035   0.4035  -0.2079   0.6499      0 

# 

# Unused and rejected image measurements - at last adjustment 

# 

# End of file  

################################################################################### 

 

It is noted that where the observation flag is -1, this indicate that the associated 

observations has been rejected from the system and will be not used in the subsequent 

computations. 

 

B.2.2. Output VMS 8.0 data files 

The output data files of the VMS 8.0 software under the ‘photogrammetry’ processing 

menu are listed here: 

 The initial exterior orientations file: Outputs the exterior orientations data 

(.log) of the initializations procedures. 

 The resections file: Outputs the updated exterior orientations data (.log) of the 

resection procedures. 

 The intersections file: Outputs the 3D targets coordinates (.log) of the 

intersections procedures. 

 The network adjustment file:  Outputs the bundle adjustment report (.log) of 

the bundle adjustment procedures. 

 

 

 

 

 



Appendix B: Processing framework space                                                                                  

 

- 262 - 
 

INITIAL EXTERIOR ORIENTATIONS FILE (.log): 

################################################################################### 

*** Vision Measurement System (VMS) Initial Orientation Solutions *** 

 

Version 8.0 - Stuart Robson and Mark Shortis - August 2008 

 

 

Project name : legonikon 

 

VMS initial orientation log file legonikon_init_orient.log written on Thu Mar 12 20:55:14 2009 

 

 

Only measured control point targets (those with a known location) used for initial orientation 

computation 

 

 

  Photo  Camera       X           Y           Z         Omega       Phi         Kappa 

                              (millimetres)                           (Degrees)  

   1000      1     34.7101    387.3291    338.7801    -45.0838     -0.8447     91.4651  

   1002      1      0.0000      0.0000      0.0000      0.0000      0.0000      0.0000 insufficient targets imaged: 

measure some more! 

    …        …     …             …              …             …            …             …    

   1051      1   -240.1238    383.7137     86.2845    -81.1419    -45.6671     14.4972  

 

Summary of    52 initial orientation computations 

 

   44 computations OK 

    0 computation failures 

    8 insufficient image observations 

    0 non-convergent solutions 

 

*** End of VMS initial orientation log file *** 

################################################################################### 

 

It is noted that the software sets zero values to the orientation parameters of the non-

measured and hence excluded from the calculations photos. 

 

RESECTIONS FILE (.log): 

################################################################################### 

 

*** Vision Measurement System (VMS) Resection Solutions *** 

 

Version 8.0 - Stuart Robson and Mark Shortis  - August 2008 

 

 

Project name : legonikon 

 

VMS resection log file legonikon_resect.log written on Thu Jun 18 19:46:45 2009 

 

 

Only measured control point targets (those with a known location) used for resection computation 

 

Maximum iteration count of the solutions :     10 

 

Outlier rejection factor (image residuals) (microns):    5.0 
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                                                                                           RMS Image     Image Counts 

  Photo  Camera       X           Y           Z         Omega       Phi         Kappa      Residuals    Valid  Rejected 

                              (millimetres)                           (Degrees)                 (microns) 

   1000      1     37.5575    386.0050    339.8901    -45.1949     -0.5102     91.5658         1.31         4      1  

   1002      1      0.0000      0.0000      0.0000      0.0000      0.0000      0.0000         0.00         0      0 Too 

few targets or image area coverage 

    …        …     …               …               …               …              …              …                 …          …     … 

   1051      1   -241.4290    386.3624     80.9816    -81.4474    -44.3574     15.7887         8.42         7      0  

 

Mean resection image measurement residual RMS (microns):     3.7897  

Mean valid target image observations:       4.10 

 

Summary of    52 resection computations 

 

   44 computations OK 

    0 computation failures 

    8 insufficient image observations 

    0 non-convergent solutions 

 

*** End of VMS resection log file *** 

 

################################################################################### 

 

It is noted that the software sets zero values to the orientation parameters of the non-

measured and hence excluded from the calculations photos. 

 

INTERSECTIONS FILE (.log): 

################################################################################### 

 

*** Vision Measurement System (VMS) Intersection Solution *** 

 

Version 8.0 - Mark Shortis and Stuart Robson - August 2008 

 

 

Project name : legonikon 

 

VMS intersection log file legonikon_intersect.log written on Wed Mar 18 21:26:40 2009 

 

 

All target coordinates are unconstrained (free network or internal datum) 

 

All photographs with a known location/orientation (resection) will used in the solutions 

 

Maximum iteration count of the solutions :     10 

 

Outlier rejection factor (image residuals) :    5.0 

 

                                                                                      Mean Image       Image Counts 

 Target       X           Y           Z       Index     sX        sY        sZ        Residuals      Valid   Rejected 

                      (millimetres)                             (microns)             (microns) 

                                                                                      x        y 

    20045     65.3209     64.8550     28.4933      0      25.1      25.2      13.4    58.96     8.84      2      1 

        200      2.1541     99.8931      3.4229      7      14.6      21.9      15.0    13.00    12.23     40      0 

    …         …             …               …           …     …         …        …      …        …        …     … 

        107     -0.8992      3.1723      96.5628      7     128.5     189.3      61.7     5.97     9.04      5      0 
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   Mean                                                 21.5      37.3      22.3     2.56     2.15     14.7 

 

 

Summary of 183 intersection computations 

 

  183 computations OK 

    0 computation failures 

    0 insufficient image observations 

    0 incomplete solutions 

    0 solutions over tolerance 

 

 

Summary of Target Images by Photo 

 

 Photo     Target   RMS Residuals 

           Counts     (microns) 

  1000       50         3.15 

  1001       58         3.95 

  …           …         … 

  1051       63         4.40 

 

  Mean     51.7         3.32 

 

*** End of VMS intersection log file *** 

 

################################################################################### 

 

NETWORK ADJUSTMENT FILE (.log): 

################################################################################### 

 

*** Vision Measurement System (VMS) Self-calibrating Photogrammetric Network Solution *** 

 

Version 8.0 - Mark Shortis and Stuart Robson - August 2008 

 

 

Project name :        legonikon 

 

VMS bundle adjustment log file legonikon_network.log written on Tue Mar 24 12:47:04 2009 

 

 

<<< Program control variables >>> 

 

Network datum definition type :        generalised internal constraints 

 

Additional parameter set type :        PP, PD, lens distortion and affinity parameters, block-invariant PP 

 

Maximum iterations for a solution :    10 

 

Default target image precision :       0.40 

 

Minimum images for a network target :  4 

 

Rejection criterion for image errors : 5.0 

 

 

<<< Initial Camera Calibration Sets >>> 

 

Units : millimetres 
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Calibration set : 1 

 

Parameter       Value            Precision 

 

    1           0.114                1.000 

    2           0.040                1.000 

    3          29.578                1.000 

    4    -1.8822e-004           1.000e+000 

    5     2.2259e-006           1.000e+000 

    6    -2.0575e-008           1.000e+000 

    7     0.0000e+000           0.000e+000 

    8     7.7070e-006           1.000e+000 

    9     0.0000e+000           0.000e+000 

   10     3.8332e-005           1.000e+000 

 

    Pixel size in mm     Format size in pixels 

 

       x          y           x          y  

    0.0078     0.0078       3008       2000 

 

 

<<< Initial Camera Locations >>> 

 

 Photo     Cal Set     X           Y           Z          Omega         Phi       Kappa     #Images 

                               (millimetres)                            (degrees) 

 

  1000        1      33.610     404.401     354.635      -45.28       -0.88       91.52        51 

  1002        1       0.000       0.000       0.000        0.00        0.00        0.00         0 (insufficient images) 

      …        …     …             …            …            …            …          …           … 

  1051        1    -256.472     401.418      82.278      -81.43      -44.59       15.80        63 

 

 

<<< Initial Targets >>> 

 

 Target        X            Y            Z        Index       sX      sY      sZ    #Images 

                        (millimetres)                               (microns) 

 

 20045     65.5735      75.5262      23.4447        7                                   8 

   200      2.4575     100.0290       3.3735           7                                  41 

    …        …               …             …                 …                                  … 

   107     -0.5143       2.7531      96.7073            7                                   5 

 

<<< Initial Survey Measurements >>> 

 

Units (azimuths and angles) :             ddd.mmsss and seconds of arc 

Units (distances and level differences) : millimetres and microns 

 

   RO Targ    At Targ    To Targ  Measurement       Type      Precision     Residual   Significance    Inst 

Ht      Targ Ht 

 

                 1000       1005      74.0250  Slope dist          50.0        0.000        0.000 

                 1005       1010      74.3800  Slope dist          50.0        0.000        0.000 

                 …           …           …          …                       …          …             … 

                 2009       2000      43.8700  Slope dist          50.0        0.000        0.000 

 

 

<<< Input Summary >>> 

 

Number of camera calibration sets :                  1 

Number of target image observations :             2745 
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Total number of exposures :                         52 

Number of exposures in the network :                44 

 

Total number of targets :                          178 

Number of targets in the network :                 178 

 

Total number of survey measurements :               10 

Number of survey measurements in the network :      10 

 

 

*** Results for the Calibration Solution *** 

 

Solution completed successfully after 10 iteration(s) 

 

Unit weight estimate (sigma zero) :        1.00 

RMS image residual (microns) :             0.37 

 

Number of rejected target images :           62 

 

Number of observables in the network :     5376 

Number of unknowns in the network :         812 

Number of redundancies in the network :    4564 

 

 

<<< Updated Camera Calibration Set : 1 >>> 

 

Parameter      Value     Precision    Correction  Significance   Max. Effect 

                       (millimetres)                              (microns) 

 

    1         0.1137        0.0020        0.0000       0.00 

    2         0.0404        0.0073        0.0000       0.00 

    3        29.5784        0.0048        0.0000       0.00 

    4   -1.8822e-004    2.643e-006    2.121e-011       0.00          -88.0 

    5    2.2259e-006    1.193e-007    2.101e-012       0.00           62.7 

    6   -2.0575e-008    1.454e-009   -5.009e-014       0.00          -34.9 

    7    0.0000e+000    2.657e-006    0.000e+000       0.00            0.0 

    8    7.7070e-006    2.804e-006    1.877e-011       0.00            0.5 

    9    0.0000e+000    8.566e-006    0.000e+000       0.00            0.0 

   10    3.8332e-005    1.076e-005    3.409e-010       0.00            0.3 

 

 

Lens Distortion Profiles for Camera Calibration Set: 1 

 

Units : microns 

 Radius          Radial Distortion        Decentring Distortion 

                  Value  Precision            Value  Precision 

 

   0.0            -0.00       0.00             0.00       0.00 

   1.0            -0.19       0.00             0.01       0.00 

   2.0            -1.44       0.02             0.03       0.01 

   3.0            -4.59       0.05             0.07       0.03 

   4.0           -10.10       0.08             0.12       0.04 

   5.0           -18.18       0.11             0.19       0.07 

   6.0           -29.11       0.16             0.28       0.10 

   7.0           -44.09       0.26             0.38       0.14 

   8.0           -66.58       0.63             0.49       0.18 

 

 

Correlation Parameters for Camera Calibration Set: 1 
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 1   1.00 

 2   0.00  1.00 

 3   0.03  0.59  1.00 

 4  -0.03  0.04 -0.10  1.00 

 5   0.12 -0.02  0.07 -0.93  1.00 

 6  -0.11  0.03 -0.04  0.86 -0.97  1.00 

 8  -0.01  0.91  0.40  0.13 -0.09  0.08  1.00 

10  -0.07 -0.15 -0.06 -0.09  0.07 -0.07 -0.29  1.00 

 

 

<<< Updated Camera Location Values and Precisions >>> 

 

 Photo   Cal Set      X           Y           Z         Omega        Phi      Kappa        sX      sY      sZ      sO      sP      

sK 

 

                              (millimetres)                         (degrees)                     (microns)          (seconds of arc) 

 

  1000       1     33.6101    404.4008    354.6350     -45.283    -0.880     91.522       26.0    91.7    85.9    

18.0    51.4     6.1 

  1002    Indeterminate - insufficient target images 

  1051       1   -256.4724    401.4178     82.2784     -81.426   -44.589     15.802       85.7    89.8    23.4    

70.1    20.7    47.8 

 

 

<<< Target Image Precisions and Residuals >>> 

 

Units : microns 

 

                            Mean Precision   Mean Residual   Max Residual 

 Photo  #Targets   #Rej        x       y       x       y       x       y 

 

  1000      51       0        0.40    0.40    0.30    0.36    0.67    1.11 

   1002    Indeterminate - insufficient image observations 

  1051      63       0        0.40    0.40    0.46    0.35    1.63    1.43 

 

  Mean    61.0     1.4        0.40    0.40    0.83    0.73 

 

   All    2683      62                                       19.15   20.03 

 

 

<<< Updated Targets >>> 

 

                    Coordinates                             Precisions         Mean Residuals   Max Residuals 

 Target      X           Y           Z       Index      sX      sY      sZ        x       y       x       y    #Images    Photo 

List (y=yes, n=no, R=rejected) 

                   (millimetres)                             (microns)                     (microns) 

 

 20045     65.5735     75.5262     23.4447     7        3.9     4.7     6.5      0.12    0.24    0.23    0.35      8      

nnxxxxxxxxnnnyyyynnnnnnnnnynynnnnnnnnnnnynnnnnnnnnyn    

   200      2.4575    100.0290      3.3735     7       10.8     5.9    10.2      0.78    0.59    1.22    1.21     25      

yRxxxxxxxxRRRRRRnRRRRRRRRyyyyyyyyyyynyyyyyyyyyyyyRny 

…       …              …             …             …       …     …       …         …      …       …       …        …                                                                                                                                                                                                                                                                  

 107     -0.5143      2.7531     96.7073     7       13.5    19.3    11.4      0.85    0.92    1.30    1.43      5      

nnxxxxxxxxnnnnnnnnnnnnnnnnnnnnyyynnnnnnnnnynnnnnnnny

  

 

  Mean                                                                                                            15.1 
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<<< Target Precision Summary >>> 

 

Units : microns 

 

           Target       sX      sY      sZ 

 

Minimum    30029       3.96    3.38    1.58 

 

Mean                   5.98    5.08    5.92 

 

Maximum      101      11.98   23.32   16.73 

 

Mean precision of target coordinates  :       5.66 

 

Relative precision for the network  1 :      36000 

 

 

<<< Updated Survey Measurements >>> 

 

Units (azimuths and angles) :             ddd.mmsss and seconds of arc 

Units (distances and level differences) : millimetres and microns 

 

   RO Targ    At Targ    To Targ  Measurement       Type      Precision     Residual   Significance    Inst 

Ht      Targ Ht 

 

                 1000       1005      74.0250  Slope dist          50.0         57.6         1.15        0.000        0.000 

                 1005       1010      74.3800  Slope dist          50.0        -70.9         1.42        0.000        0.000 

                 …           …            …         …                      …            …            …           …             … 

                 2009       2000      43.8700  Slope dist          50.0       -142.3         2.85        0.000        0.000 

 

  RMS Residual                                                                103.28 

 

*** End of VMS calibration log file *** 

 

################################################################################### 

 

B.3. Framework space 

The description of the processing framework is given below. 

 

B.3.1. Data structure 

Development and implementation of the affine algorithm required the generation of 

two data structures (embedded in the available melb.h header file). These two 

structures are given here. 

 PHOTO_ORTHO data structure: identifies the photo structure (members for 

affine photo data implementation). 

 MAT_POINTERS data structure: identifies the matrices structure (1D and 2D 

arrays members) for algorithm handling. 
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- PHOTO_ORTHO STRUCTURE: 

typedef struct PHOTO_ORTHO_T   

{ 

 long m_camera; // Camera name 

 long m_photo; // ID of this photo 

 long xsize;   // width of the digital image in pixels 

 long ysize;   // height of the digital image in pixels 

 double pixel_x;  // x pixel size in mm.  

 double pixel_y;  // y pixel size in mm.  

            //double ext_ori[6]; //Camera location X,Y,Z, and orientation Omega,Phi,Kappa 

(meters and degrees dec) 

 //double ext_std[6]; // Camera Stdev X,Y,Z and Stdev Omega,Phi,Kappa 

 double ortho_ori[6]; //Parallel camera scale, orientations omega, phi, kappa and 

translations tx, ty 

 double ortho_std[6]; //Parallel camera std scale, omega, phi, kappa, tx, ty 

 double rot_array[9]; // Rotation matrix stored in row order. 

 double int_ori[AP_MAX];// Camera interior orientation parameters  

xp,yp,pd,k1,k2,k3,p1,p2,a1,a2,extended APs 

 double int_std[AP_MAX];// Camera interior orientation standard deviations 

 double int_std_file[AP_MAX];// Camera interior orientation initial standard deviations 

 double int_res[AP_MAX];// Camera interior orientation residuals  

xp,yp,pd,k1,k2,k3,p1,p2,a1,a2,extended APs 

 double int_normat[AP_MAX_Q]; // Camera interior orientation cofactor matrix 

 double quality;  // Quality value : estimate of unit weight for the photo 

 double rms;  // RMS image residual for the photo 

 short total_rays; // Total number of rays to this photo 

 short used_rays; // Number of used rays to this photo 

 short   pho_flag;  // Flag for photo setup 

 short rot_hir;  // Flag for rotation hirarchy 

 long epoch_id; // Epoch id 

 char image_file[CHLIM];// photo image file name 

 double min_target_depth;// Depth of the nearest target 

 double max_target_depth;// Depth of the farthest target 

 DPOINT dpFootprint[4];// footprint of the photo at the maximum target depth 

 double coef[16]; // Coefficients for IO transformations 

 char transf_type; // IO Transformation type // p = 16, b = 8, a = 6, s = 4, t = 3 

 //long   photo_count_ortho;  //Parallel camera, number of photos - added 01102007 

} PHOTO_ORTHO; 
 

-MAT_POINTERS STRUCTURE: 

typedef struct MAT_POINTERS_T //matrices allocated in mrscal -added 21092007 

{ 

 double* ans_vec;  //Vector of parameters of LSA ans_vec[max_unknowns] (x) 

 double* corr_ans_vec; ////Vector of increments to parameters of LSA 

ans_vec[max_unknowns] (x) 

 double* nor_vec;  //Normals array vector nor_vec[max_unknowns] (At*W*b) 

 double** des_mat_full; //Design matrix in 2D des_mat_full[equations][unknowns] 

(A)//added 25092007 

 double** nor_mat_full; //Normals array matrix in 2D nor_mat_full[unknowns][unknowns] 

N=(At*W*A)//added 25092007 

 double* nor_vec_full; //normals array vector atwb for the lse 

 double* obs_vec_full; //Correction vector to the observations//added 16102007 

 double* weight_vec_full; // Weight vector associated with the weight matrix full 

 double** inv_nor_mat_full;//normals matrix inverse 

 long** photo_loc;  //Photo station parameter locations 

 long** trans_loc;  //Translation parameter locations 

 long** scale_loc;  //Scale parameter locations 

 double** rot;   //Rotation matrices for each photograph 
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 long** targ_loc;   //Target coordinate column locator 

 //double** ab_bb;  //Intermidiate matrix for LSA solution: ab_bb[n_unk][7] 

 //double*** ab_mat;  //off-diagonal sub-matrix for targets: ab_mat[n_targ][n_unk][3] 

 //double** bm_mat;  //normals vector components for each target: 

bm_mat[n_unk|n_targ][3] 

 //bm_mat should be set to n_unk or n_targ, whichever is larger 

 double* nor_mat;  //normals array matrix stored columnwise: nor_mat[] N=(At*W*b) 

 double** photo0;   //initial values for camera stations: photo0[n_photo][6] 

 double** targ0;   //initial values for target coordinates: targ0[n_targ][3] 

 //long** pp_para_loc;//pp parameter locations 

 //double** pp_para0; //initial values for pps 

 long n_eqns;  //default number of equations at allocation time// added 25092007 

 long n_unks;   //default number of unknowns at allocation time 

 long tar_count;   //default number of targets at allocation time 

 long photo_count;  //default number of targets at allocation time 

 double* res_vec;   //residual vector after lse adjustment 

 double** cov_mat_full; //covariance matrix after lse adjustment 

} MAT_POINTERS; 
 

B.3.2. Processing menus description 

The menus of the developed framework space are given below: 

 

- Bundle adjustment menu: 

 

Appendix B - Figure 4: Bundle adjustment framework. 
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- Read perspective camera data files (VMS 8.0 format): Perspective camera 

menu opens and subsequently saves target, calibration, photo and observations 

data files. 

 

Appendix B - Figure 5: Perspective camera menu. 

 

- Initialize perspective camera procedures: Initialization menu performs initial 

exterior orientation, resection and intersection procedures. 

 

Appendix B - Figure 6: Initialization menu.  

 

- Initialize parallel camera procedures: Orientation menu reads and saves 

orientations data files. Generate translations: performs 2D cameras locations 

calculations. Generate 3D targets points: computes 3D targets coordinates. 

 

Appendix B - Figure 7: Parallel camera menu.  

 

B.3.3. Input processing files 

The input data files required for the implementation of the parallel sensor model 

follow the general format of the perspective sensor model as described above with 

modifications. The data files are listed as follows. 
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TARGET FILE (.tar) 

################################################################################### 

# VMS Project:  Target data output 

# Thursday, April 02, 2009  

# 

# Project name: sony_sx900 

# 

# 86  Targets 

# Targets in millimetres, precisions in 1000*millimetres 

# 

#       Target         X         Y         Z   flag        sdx       sdy       sdz 

# 

       30016    52.0970    94.5440    48.4662  7     1.9000     5.2000     1.8000 

        1009    72.8786    67.7193    86.6971   7     5.1000     2.7000     8.4000 

          …         …            …             …         …    …            …            … 

       20020    79.5663    71.4596    51.8730  7     7.1000     4.1000     1.9000 

# 

# End of file  
 

################################################################################### 
 

CALIBRATION FILE (.cal) 

################################################################################### 

# VMS Project:  Camera data 

# Friday, May 26, 2006  

# 

# Project name: SonyCam-SWITAR:10mm 

# 

# This file contains information on 1 cameras 

# Parameters : 1=PPx,2=PPy,3=PD,4-6=radial,7-8=decentring,9=orthogonality,10=affinity 

 1 

# 

# Calibration parameters for camera 1 

       1       0.0000       0.0000 

       2       0.0000       0.0000 

       3  100000.0000       0.0000 

       4     0.0000e+000    1.0000e+000 

       5     0.0000e+000    0.0000e+000 

       6     0.0000e+000    0.0000e+000 

       7     0.0000e+000    0.0000e+000 

       8     0.0000e+000    0.0000e+000 

       9     0.0000e+000    0.0000e+000 

      10     0.0000e+000    0.0000e+000 

# 

#  x and y pixel size in mm and x, y image size in pixels 

   0.00478  0.00478       1024        768 

# 

# 

#  Fiducial Mark Data 

# Camera  Point   Ref X      Ref Y     Std X    Std Y     Obs X      Obs Y     Std X    Std Y 

# 

# No fiducial information for this camera 

# 

# End of file  

################################################################################### 
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It is noted that indirect initialization requires that the camera constant c is set to a 

large value such that (c=100,000.0 mm) and the standard deviation of the third power 

term of the radial lens distortion polynomial (parameter 4) is set to 1.0 for inclusion in 

the calculations. 

 

PHOTO FILE (.pho) 

################################################################################### 

# VMS Project:  Photo data 

# Thursday, April 02, 2009  

# 

# Project name: sony_sx900 

# 

# This file contains information on 85 photos 

# Exterior orientation parameters for photo: 1001 

#  Photo      X        Y        Z        Omega          Phi       Kappa      Camera 

     1001  0.0000 0.0000 0.1600   -92.1378   -13.9839   -95.3905 1 

     1002  0.0000 0.0000 0.1600   -91.1046   -14.1578   -90.9038 1 

     …      …        …        …             …              …             …        … 

     1145  0.0000 0.0000 0.1600   -64.6832    28.5346    49.4593 1 

# 

# End of photo orientation file  

################################################################################### 

 

It is noted that the first two parameters correspond to the 2D cameras locations the 

values of which will be updated after back-substitution from the affine camera sensor.  

 

OBSERVATIONS FILE (.obs) 

################################################################################### 

# VMS Project:  Photo data output 

# Thursday, April 02, 2009  

# 

# Project name: sony_sx900 

# 

# 553  Photo Obs 

#   Photo   Target     X(mm)     Y(mm)     sdx   sdy    res x    res y 

# 

# 

# Used image measurements - at last adjustment 

        1001       1019  -1.84762   0.78812   0.5000   0.5000  -0.5216   0.1714      0 

        1001       1000  -1.78758  -1.40620   0.5000   0.5000  -0.3189  -0.5313      0 

         …           …       …            …            …          …          …          …             … 

        1092      20032   0.82131   1.00758   0.5000   0.5000  -0.7636  -0.2837      0 

# 

# Unused and rejected image measurements - at last adjustment 

# 

# End of file  
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B.3.4. Output processing files 

The output data files under the ‘parallel camera’ and ‘bundle adjustment’ processing 

menus are listed here: 

 

 Generate translations (.log): Outputs the updated orientations file of the back-

substitution procedure. 

 Generate 3D points (.log): Outputs the 3D coordinates file of the 3D targets 

calculation procedure. 

 Bundle adjustment (.log): Outputs the solution file of the bundle adjustment 

solution in two modes external datum and inner datum constraints. 

 

GENERATE TRANSLATIONS (.log) 

################################################################################### 

# VMS Project:  Photo data 

# This file contains information on 85 photos 

# Exterior orientation parameters for photo: 1001 

#  Photo      X        Y        Z        Omega          Phi       Kappa      Camera 

     1001     -3.5543    -6.3773     0.1600   -92.1378   -13.9839   -95.3905 1 

     1002     -6.2914    -6.3716     0.1600   -91.1046   -14.1578   -90.9038 1 

        …        …             …            …            …               …            …       …    

 

     1145      0.9669    -0.2349     0.1600   -64.6832    28.5346    49.4593 1 

# 

# End of photo orientation file  

################################################################################### 

 

GENERATE 3D POINTS (.log). 

################################################################################### 

#<< Parallel Camera Project - Intersection Solution >> 

#Units: mm 

#Multi-view intersection converged successfully after 0002 iterations. 

#Number of redundancies in the intersection solution:  0846 

#s_aposteriori: 69.8041 

#<< UPDATED TARGETS LOCATIONS >> 

#Units: mm 

#Target    X          Y          Z            flag    sdx        sdy        sdz  

# 

30016    52.1595       94.4384       48.5095        7    66.9488   255.4150    66.9691 

1009    72.9971       68.2253       87.1588        7    70.3455   176.4792    84.1095 

   …        …                …                …             …      …              …              … 

20020    79.9308       72.3601       51.9579        7   258.1666   390.0057    75.2454 

# 

# End of 3D targets file 

 

################################################################################### 
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BUNDLE ADJUSTMENT (.log). 

################################################################################### 

EXTERNAL DATUM CONSTRAINTS 

################################################################################### 

<< Parallel Camera Project - Bundle Adjustment >> 

<< Network Datum Definition Type: e >> 

<< INITIAL PHOTO LOCATIONS>>  

 Units: mm, degrees 

Photo  Camera    tx         ty       Scale     Omega       Phi       Kappa     Rays 

 1001     1 -3.554  -6.3773  0.1600  -92.1378  -13.9839  -95.3905     5  

 1002     1 -6.2914  -6.3716  0.1600  -91.1046  -14.1578  -90.9038    6  

    …     …  …          …         …            …            …             …          … 

 1145     1  0.9669  -0.2349  0.1600  -64.6832    28.5346   49.4593     5  

 

<< INITIAL TARGETS LOCATIONS>>  

Units: mm 

Target     X          Y          Z       Index    sX         sY         sZ      Images 

30016  52.1595  94.4384  48.5095   0  66.9488  255.415  66.9691  11 

1009  72.8786  67.7193  86.6971  7  5.1000  2.7000 8.4000    12 

…        …           …           …       …  …         …        …           … 

20020  79.5663  71.4596  51.873  7 7.1000  4.1000  1.9000     9 

 

<< Number of Equations:  1338 >> 

<< Number of Unknowns:  0685 >> 

Iteration:  0003 

Number of redundancies in the network :  0653 

Unit weight estimate (sigma zero) : 2.2600 

 

Image residuals (microns):  

x y Mean 

0.7296 0.4763 0.6029 

 

Lens Distortion Profile for Camera Calibration 

Units: microns 

Radius Value 

0.0000 0.0000 

0.5000 0.0289 

1.0000 0.2313 

1.5000 0.7805 

2.0000 1.8502 

2.5000 3.6136 

 

<< UPDATED ORIENTATIONS LOCATIONS>> 

 Units: Values mm, degrees Precisions microns, degrees 

Photo   Camera    tx        ty        Scale      Omega      Phi       Kappa        stx       sty         ss         so         

sp         sk           Rays 

1001   1 -3.7052 -6.6006 0.1659 -92.2531  -13.9763 -95.4445 19.4582 18.1860 0.0000 0.1085 0.1034 

0.0329 5 

1002  1 -6.5044 -6.5856 0.1659 -91.1612 -14.1185 -90.9403 8.6938 10.8058 0.0000  0.0580 0.0461 

0.0460    6  

….   …   …         …        …           …            …          …        …           …        …         …        …        …           

… 

1145  1 1.0109 -0.2579  0.1659  -64.6506 28.5629  49.4359  20.6365  24.9394  0.0000  0.0703 0.0639 

0.0411 5 

 

<< UPDATED TARGETS LOCATIONS >> 

Units: mm, microns 

Target     X          Y          Z       Index    sX          sY         sZ      Images 
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30016  52.0975 94.5801 48.4683     0 3.0693 10.5697 3.0819    11 

1009   72.8837 67.7244  86.6937     7 3.6725  5.3298  4.8033    12 

…         …           …           …         …  …        …         …           … 

20020  79.5706 71.4604 51.8676     7 6.4348 7.5573 2.5350     9 

 

<< UPDATED ADDITIONAL PARAMETERS DATA (k1) >> 

Units: mm 

Value Precision Correction Significance  

2.312710354e-004 2.4014e-005 1.4908e-005 0.6208 

 

<<< TARGETS PRECISION SUMMARY >>> 

Mean (microns): 

sX      sY      sZ 

10.1599 17.5822 7.7488  

 

 

<< FULL CORRELATIONS MATRIX>> 

 1.000        0.047        0.133        0.110        0.014        0.050        0.001        0.019       -0.004        0.011        

0.004        0.002       -0.001        0.000       -0.004        0.001       -0.002        0.002       -0.002        0.002       

-0.002        0.001        0.001        0.003       -0.000        0.004        0.000        0.004       -0.002        0.004       

-0.006        0.004       -0.003        0.019       -0.005        0.016        0.004        0.074       -0.032       -0.008       

-0.005 

  …             …             …             …             …             …              …             …              …            …          

…   

################################################################################### 

 

INNER DATUM CONSTRAINTS 

################################################################################### 

<< Parallel Camera Project - Bundle Adjustment >> 

<< Network Datum Definition Type: i >> 

<< INITIAL PHOTO LOCATIONS>>  

 Units: mm, degrees 

Photo  Camera    tx         ty       Scale     Omega       Phi       Kappa     Rays 

 1001     1 -3.5543 -6.3773 0.1600 -92.1378 -13.9839 -95.3905     5  

 1002     1 -6.2914 -6.3716  0.1600 -91.1046 -14.1578 -90.9038     6  

 ….    

 1145     1 0.9669 -0.2349 0.1600 -64.6832 28.5346 49.4593     5  

 

<< INITIAL TARGETS LOCATIONS>>  

Units: mm 

Target     X          Y          Z       Index    sX         sY         sZ      Images 

30016 52.1595 94.4384 48.5095     0 66.9488 255.4150 66.9691    11 

 1009 72.8786 67.7193 86.6971    7 5.1000 2.700 8.4000    12 

… 

20020 79.5663 71.4596 51.8730     7 7.1000 4.1000 1.9000     9 

 

<< Number of Equations:  1111 >> 

<< Number of Unknowns:  0685 >> 

Iteration:  0003 

Number of redundancies in the network :  0426 

Unit weight estimate (sigma zero) : 2.5279 

 

Image residuals (microns):  

x y Mean 

0.6861 0.4391 0.5626 

 

Lens Distortion Profile for Camera Calibration 

Units: microns 
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Radius Value 

0.0000 0.0000 

0.5000 0.0280 

1.0000 0.2239 

1.5000 0.7556 

2.0000 1.7911 

2.5000 3.4983 

 

<< UPDATED ORIENTATIONS LOCATIONS>> 

 Units: Values mm, degrees Precisions microns, degrees 

Photo   Camera    tx        ty        Scale      Omega      Phi       Kappa        stx       sty         ss         so         

sp         sk           Rays 

 1001 1 -3.7040 -6.5922 0.1659 -92.2799 -13.9103 -95.5057  39.5662  28.9734  0.0000  0.2113 0.1751 

0.0826 5 

 1002 1 -6.5067 -6.5635 0.1659 -91.1936 -13.9928 -90.9730 33.4803 29.5572  0.0000 0.18613 0.1544 

0.0926  6 

  …   …  …         …        …           …           …            …          …          …         …        …          …        

…       … 

 1145 1  0.9844 -0.2906 0.1659 -64.5100  28.5968  49.3478 138.2115 124.4356  0.0000 0.4456 0.3552 

0.1874 5 

 

<< UPDATED TARGETS LOCATIONS >> 

Units: mm, microns 

Target     X          Y          Z       Index    sX          sY         sZ      Images 

30016 52.1110 94.5747  48.4634    0    37.6660 67.5979 42.5347    11 

 1009 72.8891  67.7051 86.6932     7    41.4308 85.3256 46.7768    12 

  …       …           …           …          …     …           …          …          …       

 20020 79.5739 71.4647 51.8620    7 41.5566 62.8952 37.5903    9 

 

<< UPDATED ADDITIONAL PARAMETERS DATA (k1) >> 

Units: mm 

Value Precision Correction Significance  

2.238894011e-004 2.9664e-005 1.7741e-005 0.5981 

 

<<< TARGETS PRECISION SUMMARY >>> 

Mean (microns): 

sX      sY      sZ 

57.6372 142.6282 60.5613  

 

 

<< FULL CORRELATIONS MATRIX>> 

1.000       -0.286        0.721       -0.307        0.099       -0.187        0.120       -0.150        0.146       -0.122       

-0.129       -0.097       -0.093       -0.084        0.034       -0.101        0.050       -0.142        0.052       -0.136        

0.050       -0.133       -0.120       -0.079       -0.130       -0.093       -0.135       -0.109       -0.205       -0.164       

-0.228       -0.179       -0.196        0.284       -0.216        0.256       -0.200        0.468        0.063        0.529        

0.360  

…              …             …             …             …             …              …             …            …             …             

… 

################################################################################### 



Appendix C: Processing data examples 

This appendix provides a supportive description of processed data required for the 

critical analysis while decomposing the problem within the successive thesis chapters. 

In particular the main sections that will be listed here cover:  data implementation for 

simulation analysis of the affine sensor model (see section C.1.), numerical target 

image quality characteristics (see section C.2.), evaluation of typical camera 

calibration parameters (see section C.3.) as well as some comparative radial lens 

distortion profiles results from affine bundle adjustment processing (see section C.4.). 

 

C.1. Computed data in simulation analysis 

Prior to the implementation of the affine bundle adjustment algorithm a simulation 

project was implemented based upon a synthetic 3D cube which was processed for 

three different imaging cases (see section 5.6.). 

 

C.1.1. Input 3D target coordinates of synthetic cube 

The 3D target coordinates of the synthetic cube were designed as follows.  

 

3D TARGET FILE FOR SIMULATION PROJECT: 

################################################################################### 

# VMS Project:  Target data output 

# Monday, November 24, 2008  

# 

# Project name: cube_simu_4_4 

# 

# 9  Targets 

# Targets in millimetres, precisions in 1000*millimetres 

# 

#       Target         X         Y         Z   flag        sdx       sdy       sdz 

# 

         100     4.5000    29.8000   -15.7000  7    25.0000    25.0000    25.0000 

         101    14.5000    29.8000   -15.7000  7    25.0000    25.0000    25.0000 

         102    14.5000    39.8000   -15.7000  7    25.0000    25.0000    25.0000 

         103     4.5000    39.8000   -15.7000  7    25.0000    25.0000    25.0000 

         104     4.5000    29.8000    -5.7000  7    25.0000    25.0000    25.0000 

         105    14.5000    29.8000    -5.7000  7    25.0000    25.0000    25.0000 

         106    14.5000    39.8000    -5.7000  7    25.0000    25.0000    25.0000 

         107     4.5000    39.8000    -5.7000  7    25.0000    25.0000    25.0000 

         108     9.5000    34.5000   -10.7000  7    25.0000    25.0000    25.0000 

# 

# End of file  

################################################################################### 
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C.1.2. Histograms of bundle adjustment residuals 

Bundle adjustment runs for the simulated geometric cases produce the following 

residual histograms separated in x and y directions. Here the bundle adjustment 

residuals are given for the two-view geometry case (see section 5.4.2.) (red framed 

figures), three-view geometry case (see section 5.4.3.) (green framed figures) and 

seven-view geometry case (see section 5.4.4.) (blue framed figures).  

 

   

   

  

 

Appendix C - Figure 1: Histograms of residuals - BA solution, simulation project. 

 

C.2. Numerical target image quality characteristics  

For analysis of the image measurement quality of the measured targets within the 

image network a set of image targets are selected. The first sample illustrates a range 

of different targets for both perspective and affine imaging geometries acquired with 

the Kodak and Sony camera systems (see Figure 2).  Some extracted numerical 

properties of the imaged targets are given in Table 1 to draw the characteristics of the 

measured image features. The following target images are tabulated as: (a.)= 2mm 
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diameter retro-reflective target (Kodak system), (b.)= 1mm diameter white marker 

(Kodak system), (c.)= 0.5mm diameter white marker (Sony system), (d.)= 1mm 

diameter (Kodak system), (e.)= 1mm diameter white marker (Kodak system), (f.)= 

2mm diameter retro-reflective target (Kodak system), (g.)= 1mm diameter white 

marker (Kodak system), (h.)= 0.5mm diameter white marker (Sony system), (i.)= 

1mm diameter white marker (Kodak system) and (j.) 1mm diameter white marker 

(Sony system). 
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(a.) (b.) (c.) (d.) (e.) 

A
F

F
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(f.) (g.) (h.) (i.) (j.) 

Appendix C - Figure 2: Signalized point targets (magnification window 40x40 pixels). 

 

Camera PP AP PP AP PP AP PP AP PP AP 

Target a f b g cRGB hRGB dRGB i e jRGB 

Ø (pixels) 16 36 4 18 6 17 10 8 8 34 

FB 255 255 255 255 248 

248 

248 

193 

193 

193 

175 

188 

232 

207 166 236 

251 

232 

BB 37 37 60 66 61 

61 

61 

28 

28 

28 

17 

23 

35 

33 37 23 

25 

22 

Appendix C - Table 1: Signalized targets image characteristics. Table notation: PP= 

perspective projection, AP= affine projection, Ø= target diameter, FB= foreground brightness, 

BB= background brightness, a - i= coded image targets. 

 

An additional set of target images are displayed as a set of perspective and affine 

views (see Figure 3) characterized by their histograms and measurement parameters 

(see Figure 4 and Table 2 accordingly).  

 

 

Appendix C - Figure 3: Signalized image points - perspective (top) and affine (bottom) views. 
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Appendix C - Figure 4: Brightness histograms of point pairs (A-E) perspective and affine 

views. 

 

Target Ø (pixels) IW (pixels) LM TT S GT 

A [PP] 10 20 x 20 w_centroid histogram circular on 

A [AP] 33 60 x 60 w_centroid histogram circular off 

B [PP] 6 20 x 20 w_centroid histogram circular on 

B [AP] 17 40 x 40 ellipse_fit histogram circular on 

C [PP] 8 36 x 36 w_centroid histogram circular on 

C [AP] 18 38 x 38 w_centroid histogram circular on 

D [PP] 8 20 x 20 w_centroid histogram circular on 

D [AP] 18 40 x 40 w_centroid histogram circular on 

E [PP] 16 24 x 24 w_centroid histogram circular on 

E [AP] 36 60 x 60 w_centroid histogram circular off 

Appendix C - Table 2: Parameters of measurement method within VMS 8.0. Table notation: 

Ø = target diameter, IW= image window, LM= location method, TM= threshold type, S= 

shape, GT= geometric tests. 
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C.3. Computed camera calibration parameters 

In the course of the experimental analysis data initialization was implemented through 

conventional perspective bundle adjustment estimation (VMS 8.0). The software 

embeds an extended additional parameters model to accommodate internal geometric 

errors ordered as 1: principal point x component (PPx), 2: principal point y 

component (PPy), 3: principal distance (PD), 4-6: radial distortions, 7-8: decentring 

distortions, 9: orthogonality, 10: affinity terms. Bundle adjustment processing dictates 

parameters inclusion judged by their extracted significance values. The example here 

illustrates the output calibration data for the utilized C1 dataset, camera system 

CAMP2 (Kodak Megaplus ES1.0; Fujinon TV / f=12.5 mm lens) (see section 

6.4.1.1.). The bundle adjustment was processed based on an inner constraints datum 

with appropriate 1-5 up to the k5 radial lens distortion term internal model parameters. 

The derived camera parameters include the updated calibration terms and the 

associated correlation coefficients together with the illustrated radial lens distortion 

profile (see Figure 5 and Figure 6).  

 

 

 

Appendix C - Figure 5: Camera calibration parameters and correlation coefficients - system 

CAM_P2, dataset C1. 

 

 

Appendix C - Figure 6: Radial les distortion profile - system CAM_P2, dataset C1.  
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C.4. Comparative radial lens distortion profiles 

In chapter 6 (see section 6.5.2.) the affine bundle adjustment was processed in order to 

evaluate method behaviour in object space. This was done by application of the 

method in datasets B2, D2 and E2. The bundle adjustment was processed with the 

external constraints datum and the implemented calibration model (third power term 

of the radial lens distortion polynomial). Results from this test have already been 

assessed in detail. This section provides a display of the radial lens distortion profiles 

for the three implemented datasets B2, D2 and E2 (see Figure 7). It is clearly evident 

that the target occupancy varies within the image frame for radial lens distortion 

calculation reaching a maximum of 43.3μm at a radial distance of 4.5mm. 

 

 

Appendix C - Figure 7: Comparative radial lens distortions – datasets B2, D2 and E2. 
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