10 research outputs found

    Information hiding through variance of the parametric orientation underlying a B-rep face

    Get PDF
    Watermarking technologies have been proposed for many different,types of digital media. However, to this date, no viable watermarking techniques have yet emerged for the high value B-rep (i.e. Boundary Representation) models used in 3D mechanical CAD systems. In this paper, the authors propose a new approach (PO-Watermarking) that subtly changes a model's geometric representation to incorporate a 'transparent' signature. This scheme enables software applications to create fragile, or robust watermarks without changing the size of the file, or shape of the CAD model. Also discussed is the amount of information the proposed method could transparently embed into a B-rep model. The results presented demonstrate the embedding and retrieval of text strings and investigate the robustness of the approach after a variety of transformation and modifications have been carried out on the data

    A shape-preserving data embedding algorithm for NURBS curves and surfaces

    Full text link

    A numerically stable fragile watermarking scheme for authenticating 3D models

    Get PDF
    International audienceThis paper analyzes the numerically instable problem in the current 3D fragile watermarking schemes. Some existing fragile watermarking schemes apply the floating-point arithmetic to embed the watermarks. However, these schemes fail to work properly due to the numerically instable problem, which is common in the floating-point arithmetic. This paper proposes a numerically stable fragile watermarking scheme. The scheme views the mantissa part of the floating-point number as an unsigned integer and operates on it by the bit XOR operator. Since there is no numerical problem in the bit operation, this scheme is numerically stable. The scheme can control the watermark strength through changing the embedding parameters. This paper further discusses selecting appropriate embedding parameters to achieve good performance in terms of the perceptual invisibility and the ability to detect unauthorized attacks on the 3D models. The experimental results show that the proposed public scheme could detect attacks such as adding noise, adding/deleting faces, inserting/removing vertices, etc. The comparisons with the existing fragile schemes show that this scheme is easier to implement and use

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    Applying 3D Polygonal Mesh Watermarking for Transmission Security Protection through Sensor Networks

    Get PDF
    Although many research works have been carried out in the area of transmission 3D data through sensor networks, the security issue of transmission remains to be unsolved. It is important to develop systems for copyright protection and digital right management (DRM). In this paper, a blind watermarking algorithm is proposed to protect the transmission security of 3D polygonal meshes through sensor networks. Our method is based on selecting prominent feature vertices (prongs) on the mesh and then embedding the same watermark into their neighborhood regions. The embedding algorithm is based on modifying the distribution of vertex norms by using quadratic programming (QP). Decoding results are obtained by a majority voting scheme over neighborhood regions of these prongs. Assuming that cropping cannot remove all prongs, we can achieve robustness against the cropping attack both theoretically and experimentally. Experiments indicate that the proposed method is also robust against noise, smoothing, and mesh simplification. The proposed method has provided a solution for 3D polygonal watermarking which is potential to withstand a variety of attacks

    Data Hiding Based on Connectivity Modification of 3D Mesh

    Get PDF
    Day by day, the amount of digital data has been rapidly increasing on the Internet. The size of 3D objects is very large and these objects need fast transmissions. Moreover, 3D data security becomes increasingly important for many applications, e.g., confidential transmission, video surveillance, military and medical applications. In this paper we present two new approaches of 3D object data hiding without changing the position of vertices in the 3D space. The main idea of the two proposed methods is to find and to synchronize particular areas of the 3D objects used to embed the message. The embedding is done by changing the connectivity of edges in the selected areas composed of quadrangles. The first proposed approach of data hiding in 3D objects is based on minimum spanning tree (MST) while the second approach is based on the projection on a secret axis of the quadrangle centers. These methods are lossless in the sense that the positions of the vertices are unchanged. Moreover they are blind and do not depend of the order of the data in the files. These two approaches are very interesting when the 3D objects have been digitalized with high precision.De nos jours, des visualisations ainsi que des transferts d’objets 3D sont couramment effectués pour de nombreuses applications allant du jeu vidéo à l’imagerie médicale en passant par l’industrie manufacturière. Dans cet article nous proposons deux nouvelles méthodes permettant de dissimuler des données dans des objets 3D sans modifier la position des sommets. L’idée principale des deux méthodes présentées est de trouver et de synchroniser des zones particulières dans l’objet 3D pouvant être utilisées pour insérer le message. L’insertion de données s’appuie sur la modification de la connexité des arêtes dans les zones sélectionnées composées de quadrangles. La différence entre les deux méthodes présentées est la manière de sélectionner et de synchroniser ces zones d’insertion. Alors que la première méthode s’appuie sur un arbre couvrant minimum (ACM), la seconde méthode utilise un axe sur lequel sont projetés les centres des zones d’insertion. Ces deux méthodes aveugles, protégées par utilisation de clefs secrètes, résistent à des transformations géométriques tels que les rotations, translations ou changement d’échelle et ne sont pas perturbées par des modifications directes de l’ordre des données dans les fichiers originaux. Ces approches trouvent un intérêt certain pour des objets 3D dont les sommets ont été acquis avec une grande précision et dont la modification n’est pas acceptable

    ИНТЕЛЛЕКТУАЛЬНЫЙ числовым программным ДЛЯ MIMD-компьютер

    Get PDF
    For most scientific and engineering problems simulated on computers the solving of problems of the computational mathematics with approximately given initial data constitutes an intermediate or a final stage. Basic problems of the computational mathematics include the investigating and solving of linear algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, the solving of systems of non-linear equations, numerical integration of initial- value problems for systems of ordinary differential equations.Для більшості наукових та інженерних задач моделювання на ЕОМ рішення задач обчислювальної математики з наближено заданими вихідними даними складає проміжний або остаточний етап. Основні проблеми обчислювальної математики відносяться дослідження і рішення лінійних алгебраїчних систем оцінки власних значень і власних векторів матриць, рішення систем нелінійних рівнянь, чисельного інтегрування початково задач для систем звичайних диференціальних рівнянь.Для большинства научных и инженерных задач моделирования на ЭВМ решение задач вычислительной математики с приближенно заданным исходным данным составляет промежуточный или окончательный этап. Основные проблемы вычислительной математики относятся исследования и решения линейных алгебраических систем оценки собственных значений и собственных векторов матриц, решение систем нелинейных уравнений, численного интегрирования начально задач для систем обыкновенных дифференциальных уравнений

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    A new attribute measuring the contour smoothness of 2-D objects is presented in the context of morphological attribute filtering. The attribute is based on the ratio of the circularity and non-compactness, and has a maximum of 1 for a perfect circle. It decreases as the object boundary becomes irregular. Computation on hierarchical image representation structures relies on five auxiliary data members and is rapid. Contour smoothness is a suitable descriptor for detecting and discriminating man-made structures from other image features. An example is demonstrated on a very-high-resolution satellite image using connected pattern spectra and the switchboard platform
    corecore