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Althoughmany researchworks have been carried out in the area of transmission 3Ddata through sensor networks, the security issue
of transmission remains to be unsolved. It is important to develop systems for copyright protection and digital right management
(DRM). In this paper, a blind watermarking algorithm is proposed to protect the transmission security of 3D polygonal meshes
through sensor networks. Our method is based on selecting prominent feature vertices (prongs) on the mesh and then embedding
the same watermark into their neighborhood regions. The embedding algorithm is based on modifying the distribution of vertex
norms by using quadratic programming (QP). Decoding results are obtained by a majority voting scheme over neighborhood
regions of these prongs. Assuming that cropping cannot remove all prongs, we can achieve robustness against the cropping attack
both theoretically and experimentally. Experiments indicate that the proposed method is also robust against noise, smoothing, and
mesh simplification.The proposed method has provided a solution for 3D polygonal watermarking which is potential to withstand
a variety of attacks.

1. Introduction

Nowadays, the processing, transmission, and visualization
of 3D objects are a part of possible and realistic function-
alities over sensor networks [1]. Confirmed 3D processing
techniques exist and a large scientific community works hard
on open problems and new challenges, including progressive
transmission, fast access to huge 3D databases, or content
security management. Although many research works have
been carried out in the area of transmission 3D data through
sensor networks, the security issue of transmission remains
to be unsolved. 3D objects can be duplicated, modified, trans-
formed, and shared easily during the transmission process. In
this context, it is important to develop systems for copyright
protection and digital right management (DRM).

Watermarking is a promising area for reinforcing the
security of 3D object transmission, which has received much
attention in the past years, as summarized by [2, 3]. 3Dobjects
can be represented by polygonal meshes [1], nonuniform
rational B-splines (NURBS) [4], point-sampled surfaces, [5]

and voxel representation [6]. Among these structures, polyg-
onal mesh is the most popular one due to its simplicity
and easiness to be converted to other representations. A
3D polygonal mesh is represented by a set of vertices and
connections. In consequence, watermark can be embedded
by modifying positions or connections of these vertices.

Watermarking algorithms can be classified into blind and
nonblind ones. In the blind watermarking, only the water-
marked objects are needed for the decoding process, while
in the nonblind watermarking, both the original and water-
marked objects are needed. Blind watermarking has wider
applications, but it is generally more difficult to be designed,
and not as robust as nonblind one in resisting attacks.
Algorithms for 3D mesh watermarking can be classified into
the spacial domain methods [7–13] and transformed domain
ones [14–19]. For the spatial domain methods, the vertices,
the normals, and the geometrical invariants are modified
for embedding, while for the transformed domain methods,
3D watermarking is treated as a common signal process-
ing problem.The regular signal processing conceptions, such
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Figure 1: The block diagram of watermark embedding.
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Figure 2: The block diagram of watermark decoding.

as frequency analysis and wavelet decomposition, are imple-
mented for the watermarking approach.

A watermarked mesh is likely to be attacked by a mali-
cious user with the aim of eliminating the embedded water-
mark. In addition, channel noise can also degrade the water-
mark during the transmission process. Thus, robustness
against attacks and transmission channels is one of the major
concerns in designing a watermarking system. Common
attacks include affine transforms (rotation, scaling, and trans-
lation), noise, smoothing, connectivity attacks (modification
of vertex connectivity), vertex reordering (reordering the
sequence of vertices), simplification (removing vertices and
faces but keeping the 3D shape unchanged), remeshing
(resampling the 3D objects to obtain new meshes), and
cropping (part of the 3D mesh being cropped from the
original mesh) [1–3]. Each algorithm has its own preferences
in resisting attacks. For example, compared with the spatial
domain approaches, the transformed domain ones are more
robust against noise. However, most transformed domain
methods are not robust against connectivity attacks because
they use connectivity information for watermarking.

Cropping is a special attack which aims at removing
part of the mesh. It is possible to design a watermarking
system which is robust against cropping by repetitively
embedding the same watermark into different patches of
the mesh. Suppose that several patches remained after the
cropping attack; it is possible to recover watermark from
these unaffected patches. The work of Ohbuchi et al. [20] has
been one of the first to propose a nonblind approach based
on repetitive embedding to resist the cropping attack. Other
nonblind approaches are proposed in [21, 22]. For nonblind
watermarking, the original mesh serves as a reference to
indicate embedding regions. By using synchronization and
registration techniques, it is not difficult to extract the
embedded watermark. However, for blind watermarking,
the situation is relatively more difficult because of the lack
of a reference to indicate the place where watermarking
occurs. The basic idea is to segment the mesh into patches,
which have special geometrical and topological properties,
as references for watermark embedding, with the expectation
that the same patches can be extracted during the decoding

process [10, 12, 23]. Such an approach has aroused the causal-
ity problem, the watermarking algorithm should produce the
same patches before and after embedding, which is a difficult
problem because embedding may change mesh properties
which are important to the segmentation algorithm. From
our knowledge, this problem is not fully solved by the
previous research works.

In this paper, we propose a blind watermarking scheme
which is robust to various routine attacks during transmis-
sion of 3D polygonal meshes through sensor networks, for
example, noising, smoothing, simplification, and cropping.
The basic idea follows our previous work [36] and the
work of Rondao-Alface et al. [25] Firstly, protrusive feature
vertices (referred as “prongs” in this paper) of the mesh are
selected as references for segmentation. Secondly, watermark
is repetitively embedded into neighborhood regions of these
prongs. Because the selection procedure is local, prongs are
evenly distributed on the mesh. If an attacker crops all the
prongs,most probably he/shewill obtain ameaninglessmesh,
so it is likely that there will be several prongs remained after
the cropping attack. For decoding, prongs are retrieved and
then their neighborhood regions obtained.Watermark can be
decoded from the neighborhood region associated with each
prong. Then a majority voting scheme is used to obtain the
final decoding results.

The rest of this paper is organized as follows. The pro-
posed watermarking scheme is described in Section 2, which
includes prong selection, watermark embedding, and decod-
ing. Robustness of the proposed method against cropping
attack is shown in Section 3. Section 4 theoretically proves
that the performance of the watermarking scheme is a func-
tion of the number of correct prongs and the total number
of prongs. Section 5 shows simulation results of the proposed
method against noise, smoothing, and simplification attacks.
Finally, Section 6 concludes this paper.

2. The Proposed Watermarking Method

Figures 1 and 2 illustrate the watermark embedding and
decoding processes, which are described in the following
subsections.
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Figure 3: The prongness value is negative for protrusive vertices and positive for concave vertices.

2.1. Selecting Prongs. The first step of watermark embedding
is to select prominent feature vertices, or “prongs”, from
3D meshes. Feature vertices are common descriptors of 3D
surfaces, which have been used for mesh segmentation [26,
27] and object recognition [28]. In this application, we require
feature vertices to be protrusive because protrusive regions
contain most information of the shape [29]. If an attacker
removes all protrusive regions, most probably he/she would
obtain ameaningless shape.We associate a prongness value to
each vertex. In this paper, the prongness value is an indicator
of how protrusive a vertex could be. Prongness value is
calculated by adding up the dot products between the normal
direction of this vertex and the vector from this vertex to its
nearest neighbors:

Prongness (𝑃
0
) = ∑
𝑃∈𝑉
1(𝑃0)

→
𝑃𝑃
0
⋅
→
𝑁
𝑃
0


→
𝑃𝑃
0




→
𝑁
𝑃
0



, (1)

where →
𝑁
𝑃
0

represents the normal direction of vertex 𝑃
0
and

𝑉
1
(𝑃
0
) is the set of vertices which are close to vertex 𝑃

0
in

geodesic distance. Various methods have been proposed to
calculate normal directions in 3D meshes [30, 31]. In this
paper, we use a simple and common one. The first step is
to calculate the surface normal →

𝑁
𝑗
at each polygon from

the neighborhood of 𝑃
0
. The surface normal of a polygon is

calculated as the vector product of the orientations of two of
its edges divided by the vector length.The normal direction at

vertex 𝑃
0
is taken as the average of surface normal directions

corresponding to its adjacent polygons; that is,

→
𝑁
𝑃
0

=
∑
𝑉
𝑗
∈𝑉(𝑃0)

→
𝑁
𝑗

𝑁
, (2)

where 𝑉(𝑃
0
) is the set of vertices which are connected with

𝑃
0
, and𝑁 is the total number of these vertices.
The algorithm to calculate geodesic distances was pre-

sented by Dijkstra [32]. In 1998, Kimmel and Sethian pro-
posed the fast marching algorithm running in complexity
𝑂(𝑛 log 𝑛) [33].The fast marching algorithmwas modified by
our previous work to increase its speed [34, 35]. In this paper,
we use themethod of our previous work to calculate geodesic
distances. The prongness calculation is to add up the cosines
between →

𝑁
𝑃
0

and →
𝑃𝑃
0
for all 𝑃’s which are geodesically close

to 𝑃
0
, as shown in Figure 3.
Prongs are selected as local minimums of prongness

values. In this paper, a vertex is selected as a prong if it takes
the lowest prongness value compared with its neighborhood
vertices. We use 𝑉

2
(𝑃
0
) to represent the set of 𝑃

0
’s neighbor-

hood vertices which need to be compared with𝑃
0
. We choose

𝑉
2
(𝑃
0
) as the set of the first 𝑁

2
vertices which are close to 𝑃

0

in geodesic distance. In other words, a vertex is selected as a
prong if it has the lowest prongness value among its closest
𝑁
2
vertices in geodesic distance.
Figure 4 shows the selected prongs of the bunny, head,

and hand models. Each prong is represented as a red point
on the mesh.There are also prongs at the back of each model,
which are not shownhere.We choose𝑁

1
= 200, whichmeans

that we take the closest 200 vertices to calculate the prongness
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(a) Bunny model (b) Head model (c) Hand model

Figure 4: The prongs of three models.

value. For the head and bunnymodels, which have 11,703 and
14,007 vertices, respectively, we choose 𝑁

2
= 1000. In other

words, a prong is selected by comparing its prongness value
with its 1000 neighborhood vertices in geodesic distance. For
the hand model, which has 38,219 vertices, we set𝑁

2
= 1600,

a little bit greater than the bunny and hand models to limit
the number of selected prongs. We can see that prongs are
scattered in protrusive regions and evenly distributed on the
whole mesh.

2.2. Segmentation Based on Prongs. The next step is to
segment patches for watermarking based on the obtained
prongs. These patches are geodesic circles centered on the
prongs. For each prong, we segment the patch by taking
the first 𝑁

3
vertices which are geodesically close to it. Here

𝑁
3
is a predefined value, which is decided by considering

the number of prongs, the watermarking algorithm, and the
number of watermarking bits to be embedded. For example,
we can choose 𝑁

3
= 600 for the bunny model if we need

to embed 32 bits by using the histogram-based approaches,
because the histogram-based algorithm can obtain good
results if approximately 20 vertices are used to embed each
bit [13].

Figure 5 shows the patches of the bunny model by taking
𝑁
1
= 1000, 𝑁

2
= 200, and 𝑁

3
= 600, where each patch is

represented by a unique color. Because there are overlapping
regions belonging to more than one patch, we use the blue
color to represent them.

The next step is to embed the same watermark into
each patch. The embedding algorithm is an extension of
the histogram-based approach proposed by [13], which is
based on modifying the distribution of vertex norms. We
have extended their work byminimizing distortions of vertex
norms using quadratic programming (QP) and thus further
improved its robustness [36]. In this paper, we use the
proposed QP method for watermark embedding.

Another advantage of the QP method is the simplicity to
deal with overlapping vertices (vertices with the blue color
in Figure 5). Because overlapping vertices belong to more

Figure 5: The patches of the bunny model by choosing 𝑁
1
= 1000,

𝑁
2
= 200, and𝑁

3
= 600. Patches are shown by different colors, and

overlapping regions are shown by blue.

than one patch, they will be assigned different displacements
during the watermarking process. Thus, embedding into one
patch may destroy watermarks of other patches. By using the
QP method, the overlapping vertices can be constrained to
their original positions to ensure correct embedding.

2.3. The Embedding Algorithm. In this section, we describe
our embedding algorithm. Part of this section has been
published in [36]. The main difference is that we have added
a scheme to deal with overlapping vertices belonging to more
than one patch.

For embedding watermark into each patch, firstly, the
Cartesian coordinates of vertices in that patch are converted
into spherical coordinates (𝜌

𝑖
, 𝜃
𝑖
, 𝜙
𝑖
):

𝜌
𝑖
= √(𝑥

𝑖
− 𝑥
𝑔
)
2

+ (𝑦
𝑖
− 𝑦
𝑔
)
2

+ (𝑧
𝑖
− 𝑧
𝑔
)
2

,
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𝜃
𝑖
= arc tan

𝑦
𝑖
− 𝑦
𝑔

𝑥
𝑖
− 𝑥
𝑔

,

𝜙
𝑖
= arc cos

𝑧
𝑖
− 𝑧
𝑔

𝜌
𝑖

, 𝑖 ∈ {0, 1, . . . , 𝐿 − 1} ,

(3)

where 𝐿 is the number of vertices in the patch, 𝜌
𝑖
is the 𝑖th

vertex norm, and (𝑥
𝑔
, 𝑦
𝑔
, 𝑧
𝑔
) is the patch’s center of gravity,

which can be calculated as

𝑥
𝑔
=

1

𝐿

𝐿−1

∑
𝑖=0

𝑥
𝑖
, 𝑦

𝑔
=

1

𝐿

𝐿−1

∑
𝑖=0

𝑦
𝑖
, 𝑧

𝑔
=

1

𝐿

𝐿−1

∑
𝑖=0

𝑧
𝑖
. (4)

Secondly, vertex norms are divided into 𝑁 distinct bins
according to their magnitude. Each bin is used to hide one
bit of watermark. In this paper, we use 𝜔

𝑛
to represent the

watermarking bit to be embedded into the 𝑛th bin.
Here 𝜌min and 𝜌max represent the minimum and maxi-

mum values of all vertex norms. The 𝑛th bin 𝐵
𝑛
is defined

as follows (𝑛 ∈ {0, 1, . . . , 𝑁 − 1}):

𝜌
𝑛,min = 𝜌min +

𝑛 (𝜌max − 𝜌min)

𝑁
,

𝜌
𝑛,max = 𝜌min +

(𝑛 + 1) (𝜌max − 𝜌min)

𝑁
,

𝐵
𝑛
= {𝜌
𝑛,𝑗

| 𝜌
𝑛,min ≤ 𝜌

𝑛,𝑗
≤ 𝜌
𝑛,max} .

(5)

Here 𝜌
𝑛,min and 𝜌

𝑛,max are lower and upper boundaries of
the 𝑛th bin and 𝜌

𝑛,𝑗
is the 𝑗th vertex norm in the 𝑛th bin. In

this paper, we also use 𝜃
𝑛,𝑗

and 𝜙
𝑛,𝑗

to represent the spherical
angles of the 𝑗th vertex norm in the 𝑛th bin. In addition, we
use 𝑀

𝑛
to represent the number of vertex norms belonging

to the 𝑛th bin.
The third step is tomap the vertex norms belonging to the

𝑛th bin to the normalized range [0, 1]:

𝜌
𝑛,𝑗

=
𝜌
𝑛,𝑗

− 𝜌
𝑛,min

𝜌
𝑛,max − 𝜌

𝑛,min
, (6)

where 𝜌
𝑛,𝑗

is the normalized 𝑗th vertex norm in the 𝑛th bin.
The aimof thewatermarking process is to slightlymodify 𝜌

𝑛,𝑗
,

so that the mean of the vertex norms is moved into a specific
range according to the watermarking bit to be embedded.
We introduce the normalized distortion for the 𝑗th vertex
in the 𝑛th bin, which is represented by Δ𝜌

𝑛,𝑗
. Our aim is to

calculate each Δ𝜌
𝑛,𝑗
. After Δ𝜌

𝑛,𝑗
is obtained, we can calculate

the new vertex norm 𝜌
𝑛,𝑗

 by adding the previous one with its
distortion:

𝜌
𝑛,𝑗

 = 𝜌
𝑛,𝑗

+ Δ𝜌
𝑛,𝑗

. (7)

Then we need to transform the vertex norms to the
original ones by (8), which is an inverse transformation of
(6):

𝜌
𝑛,𝑗

= 𝜌
𝑛,𝑗

 (𝜌
𝑛,max − 𝜌

𝑛,min) + 𝜌
𝑛,min. (8)

The watermark embedding process is completed by con-
verting the spherical coordinates to Cartesian coordinates.
Let𝜌
𝑖
be the 𝑖th vertex norm.Awatermarkedmesh consisting

of vertices (𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) is obtained by

𝑥
𝑖
= 𝜌
𝑖
cos 𝜃
𝑖
sin𝜙
𝑖
+ 𝑥
𝑔
,

𝑦
𝑖
= 𝜌
𝑖
sin 𝜃
𝑖
sin𝜙
𝑖
+ 𝑦
𝑔
,

𝑧
𝑖
= 𝜌
𝑖
cos𝜙
𝑖
+ 𝑧
𝑔
.

(9)

Our aim is to minimize the sum of squares of Δ𝜌
𝑛,𝑗
:

Minimize:
𝑁−1

∑
𝑛=0

𝑀
𝑛
−1

∑
𝑗=0

Δ𝜌
𝑛,𝑗

2. (10)

Three constraints are applied to ensure that the embedded
watermarking bits can be correctly decoded later. The first
constraint is to limit the distortion of each vertex into a
reasonable range. If a vertex belongs to more than one
patch (the vertex with the blue color in Figure 5), then its
displacement is set to zero; for the nonoverlapping vertices,
we limit the transformed vertex norm 𝜌

𝑛,𝑗

 into the range of
[Δ𝐺, 1 − Δ𝐺]. Here Δ𝐺 is a parameter to control the distance
gap between adjacent bins. The constraint is given as follows.

Constraint 1. For every 𝑛 ∈ {0, 1, . . . , 𝑁 − 1} and 𝑗 ∈
{0, 1, . . . ,𝑀

𝑛
−1}, if vertex 𝑃

𝑛,𝑗
is an overlapping vertex which

belongs to more than one patch, then

Δ𝜌
𝑛,𝑗

= 0, (11)

else

Δ𝐺 − 𝜌
𝑛,𝑗

≤ Δ𝜌
𝑛,𝑗

≤ 1 − Δ𝐺 − 𝜌
𝑛,𝑗

. (12)

As discussed in Section 2.2, the overlapping vertices have to
be constrained into their original positions to ensure cor-
rect embedding, and nonoverlapping vertices are modified
according to this constraint.

We can see from (7) and (12) that after watermarking, 𝜌
𝑛,𝑗



will be in the range of [Δ𝐺, 1 − Δ𝐺] if the above constraint is
satisfied, soConstraint 1 ensures that vertices belonging to the
𝑛th bin still belong to that bin after the watermarking process,
which is also implied in [13].

The second constraint is directly derived from [13], which
ensures that the mean of the transformed vertex norms in the
𝑛th bin is greater (or smaller) than a reference value when
the embedded watermarking bit 𝜔

𝑛
= +1 (or 𝜔

𝑛
= −1).

This constraint must be satisfied to ensure that the embedded
watermarking bits could be correctly extracted later. Our aim
is to make the mean of the vertex norms in the 𝑛th bin:

𝜇
𝑛

 =
1

𝑀

𝑀
𝑛
−1

∑
𝑗=0

𝜌
𝑛,𝑗

 (13)

greater than 1/2 + 𝛼 (or smaller than 1/2 − 𝛼) when 𝜔
𝑛

=
+1 (or 𝜔

𝑛
= −1). Here 𝛼 is a strength factor to control
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the watermarking effect. The second constraint is given as
follows.

Constraint 2. For every 𝑛 ∈ {0, 1, . . . , 𝑁 − 1},

(1) if 𝜔
𝑛
= +1, then

𝑀
𝑛
−1

∑
𝑗=0

Δ𝜌
𝑛,𝑗

> 𝑀
𝑛
(
1

2
+ 𝛼) −

𝑀
𝑛
−1

∑
𝑗=0

𝜌
𝑛,𝑗

; (14)

(2) if 𝜔
𝑛
= −1, then

𝑀
𝑛
−1

∑
𝑗=0

Δ𝜌
𝑛,𝑗

< 𝑀
𝑛
(
1

2
− 𝛼) −

𝑀
𝑛
−1

∑
𝑗=0

𝜌
𝑛,𝑗

. (15)

It can be deduced from (7) and (13) that when Constraint
2 is satisfied, 𝜇

𝑛

 is greater than 1/2+𝛼 (or smaller that (1/2)−
𝛼) when 𝜔

𝑛
= +1 (or 𝜔

𝑛
= −1).

We proposed another constraint to guarantee that the
center of gravity of the watermarked patch is the same as
the original one. If the center of gravity (𝑥

𝑔
, 𝑦
𝑔
, 𝑧
𝑔
) has been

changed, by (3), the vertex norms 𝜌
𝑖
will also be changed.

Thus, it is possible that the decoding process fails to extract
the embedded bits. Such a problem is not addressed in [13].
Here we propose the following constraint to solve it.

Constraint 3.
𝑁−1

∑
𝑛=0

𝑀
𝑛
−1

∑
𝑗=0

Δ𝜌
𝑛,𝑗

cos 𝜃
𝑛,𝑗

sin𝜙
𝑛,𝑗

= 0,

𝑁−1

∑
𝑛=0

𝑀
𝑛
−1

∑
𝑗=0

Δ𝜌
𝑛,𝑗

sin 𝜃
𝑛,𝑗

sin𝜙
𝑛,𝑗

= 0,

𝑁−1

∑
𝑛=0

𝑀
𝑛
−1

∑
𝑗=0

Δ𝜌
𝑛,𝑗

cos𝜙
𝑛,𝑗

= 0.

(16)

Thus, we have changed the problem of assigning distor-
tions to an optimization problem, with a quadratic objective
function and three linear constraints. This is exactly a
quadratic programming problem and can be solved efficiently
[37, Chapter 4].

2.4. Solving the Causality Problem. Because watermark
embedding modifies positions of vertices which are close to
each prong, the local minimum of the prongness value is
also likely to be changed. If this situation occurs, the prongs
cannot be retrieved during the decoding process. Such a
problem, referred as the causality problem in [3], is illustrated
in Figure 6(a).

Suppose after the watermarking process, 𝑃
0
, 𝑃
1
, and 𝑃

2

have been changed to 𝑃
0
, 𝑃
1
, and 𝑃

2
. It can be seen that the

prongness value of 𝑃
0
increases because the angles between

the norm →
𝑁
𝑃
0

and →
𝑃
0
𝑃
1
, →𝑃
0
𝑃
2
become smaller. Thus, after

watermarking, other vertices may substitute 𝑃
0
as the new

local minimum in prongness value.
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Figure 6: An example of solving the causality problem. (a) After the
watermarking process, 𝑃

0
, 𝑃
1
, and 𝑃

2
have been modified to 𝑃

0
, 𝑃
1
,

and𝑃
2
. In this situation, the prongness value of𝑃

0
increases, so other

vertices may substitute 𝑃
0
to be a new local minimum. (b) 𝑃

0
can be

slightly moved along its norm direction to 𝑃
0
, so that its prongness

value can be decreased and local minimum again obtained.

Prong selection

Watermark
embedding for

each prong

The prongness value
of each prong is a
local minimum?

Move prongs which
are not local

minimum along their
norm directions to

obtain local
minimum again

Original mesh

Yes

No

Watermarked mesh

Figure 7: The block diagram of iterative embedding.

We propose an iterative approach to solve the causality
problem—ensuring that the same prongs can be retrieved
after the watermarking process. Firstly, we embed the water-
mark into the neighborhood region of each prong. After
embedding, we check whether the prongness value of each
prong is the local minimum among its neighborhood ver-
tices. If so, the embedding is successful and the iteration
finishes; else we slightly move the prong along its normal
direction to decrease its prongness value and obtain local
minimum again, as shown in Figure 6(b).

The iteration continues until watermark is embedded and
simultaneously all prongs take localminimumprongness val-
ues. We also set up a maximum iteration number 𝑀iteration =
20, whichmeans that if this process does not converge after 20
rounds, watermarking is stopped and embedding is failed on
this prong. Figure 7 illustrates the procedure of the iterative
process. In experiments, around 1 out of 10 prongs fails to
be embedded. Considering that there are more than one
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prong in a mesh, this ratio does not significantly influence
the performance of the whole scheme.

Figure 8 shows the watermarking effects of the bunny,
head, and handmodels. In eachmodel, 32 bits are repetitively
embedded into each patch.

2.5. Watermark Decoding. The watermark decoding process
is as follows. We assume that the decoder knows the values
of 𝑁
1
, 𝑁
2
, and 𝑁

3
. These values can be transmitted with

the watermarked mesh, or predefined. Based on 𝑁
1
, 𝑁
2
,

and 𝑁
3
, we can obtain the prongs and patches by using the

same method as the embedding process.Then we can extract
watermark for each patch. Firstly, the center of gravity of
each patch is calculated by (4); then theCartesian coordinates
are converted to spherical coordinates by (3). After obtaining
the maximum and minimum, the vertex norms are classified
into 𝑁 bins and mapped onto the range of [0, 1] by (5) and
(6). Then, the mean of the 𝑛th bin 𝜇

𝑛
is calculated by (13),

and compared with the reference value 1/2. The watermark
hidden in the 𝑛th bin, represented by 𝜔

𝑛
, is extracted by

𝜔
𝑛
=

{{{
{{{
{

+1 if 𝜇
𝑛
>

1

2
,

−1 if 𝜇
𝑛
<

1

2
.

(17)

Each patch produces a series of decoded bits. The final
result is obtained by a majority voting scheme. Each bit is
decoded by counting the 0’s and 1’s of all the series at that bit.
If there are more 0’s than 1’s, the bit is decoded as 0; otherwise
it is decoded as 1.

3. Robustness Test against
the Cropping Attack

Because watermark embedding is a local process, several
prongs remain unchanged after the cropping attack. It is
also possible that cropping introduces new prongs that no
watermark is embedded around it. However, the majority
voting scheme ensures that if the number of incorrect prongs
is less than half, watermark can be extracted without errors.
In Section 4, we will show that low bit error rates can also
be achieved even if the number of incorrect prongs is more
than half. Figure 9 shows the bunny, head, and hand models
where 50% vertices of each model have been cropped (i.e.,
cropping ratio = 50%). Compared with the original meshes
in Figure 8, it can be seen that many prongs remain on the
cropped meshes, but cropping also introduces new prongs.

We embed 32 bits into each mesh.The settings of𝑁
1
,𝑁
2
,

and𝑁
3
for each model are the same as in Section 2. The final

decoding results are shown in Table 1. We have listed the bit
error rates (BER) of each model with three cropping ratios.
The BER is calculated as the ratio of incorrectly decoded bits
to all embedded ones. We also listed the total number of
prongs in the cropped mesh, and the number of prongs in
whichwe have embedded thewatermark (denoted by “correct
prongs”).

From Table 1, we can see that the watermark can be
correctly decoded even if 70% of the mesh has been cropped.

The robustness is decided by the number of correct prongs
and the number of all detected prongs. If the number of
correct prongs is more than half of the number of all detected
prongs, the embedded bits can be decoded without errors.
Otherwise there will be decoding errors, such as the first
line of the bunny model, where 2 out of 6 prongs are correct
prongs and the BER is 12.5% in this situation.

4. Theoretical Analysis of
the Decoding Scheme

In this section, we will theoretically prove that the perfor-
mance of the watermarking scheme is a function of the
correct prongs and the total number of prongs. Suppose the
cropped mesh totally produces 𝑁 prongs, in which there are
𝑀 correct prongs and 𝑁 − 𝑀 incorrect prongs. We further
assume that each of the𝑀 prongs decodes the watermarking
bits without any error, and the𝑁 incorrect prongs randomly
guess thewatermarking bits (i.e., half correct and half wrong).
Then the probability that a bit can be correctly decoded in this
situation, denoted by 𝑃(𝑁,𝑀), can be obtained as follows:

if𝑁 is odd, then

𝑃 (𝑁,𝑀) = (
1

2
)
(𝑁−𝑀) 𝑁−𝑀

∑
𝑘=((𝑁+1)/2)−𝑀

𝐶𝑘
𝑁−𝑀

; (18)

if𝑁 is even, then

𝑃 (𝑁,𝑀) = 𝑃 (𝑁 + 1,𝑀) . (19)

The deduction of the above equation is as follows. When
𝑁 is odd, by the rule of majority voting, a watermarking
bit can be correctly decoded if at least (𝑁 + 1)/2 prongs
correctly decode that bit. Because from𝑀 of these𝑁 prongs
we can always obtain the correct bit, for the remaining𝑁−𝑀
prongs, at least (((𝑁+ 1)/2) −𝑀) prongs should produce the
correct bit. We further assume that the probability of correct
decoding for each of the remaining (𝑁 − 𝑀) prongs is 1/2
(i.e., half correct and half wrong), so the total probability that
one bit can be correctly decoded is (1/2)(𝑁−𝑀) times the sum
of 𝐶𝑘
𝑁−𝑀

, with 𝑘 varying from (((𝑁 + 1)/2) −𝑀) to (𝑁−𝑀),
as indicated in (18).

When𝑁 is even, the probability that the watermarked bit
can be correctly decoded is considered under two situations.

Situation 1. Correct decoding can be obtained if there are at
least ((𝑁/2)+1) prongs correctly decoding the bit. By similar
deductions, the probability relating to this situation is

𝑃
1
= (

1

2
)
(𝑁−𝑀) 𝑁−𝑀

∑
𝑘=(𝑁/2)+1−𝑀

𝐶𝑘
𝑁−𝑀

. (20)

Situation 2. When exactly 𝑁/2 prongs correctly decode the
bit, the decoder will randomly guess the watermarking bit.
We further assume that the probability of correct guess is 1/2.
Then the probability related to this situation is

𝑃
2
= (

1

2
)
(𝑁−𝑀+1)

𝐶(𝑁/2)−𝑀
𝑁−𝑀

. (21)
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(a) Bunny model (b) Head model (c) Hand model

Figure 8:The watermarked meshes of the bunny, head, and hand models. For each model, 32 bits are repetitively embedded into each patch.
(a) Bunny, 𝑁

1
= 200, 𝑁

2
= 1000, and 𝑁

3
= 600; (b) head, 𝑁

1
= 200, 𝑁

2
= 1000, and 𝑁

3
= 600; (c) hand, 𝑁

1
= 200, 𝑁

2
= 1600, and

𝑁
3
= 1000.

(a) Bunny model (b) Head model (c) Hand model

Figure 9: The cropped meshes of the bunny, head, and hand models (cropping ratio = 50%).

If we sum up probabilities of these two situations, we can
obtain the probability of correct decoding when𝑁 is even:

𝑃 (𝑁,𝑀) = 𝑃
1
+ 𝑃
2

= (
1

2
)
(𝑁−𝑀+1) 𝑁−𝑀+1

∑
𝑘=(𝑁/2)+1−𝑀

𝐶𝑘
𝑁−𝑀+1

= 𝑃 (𝑁 + 1,𝑀) .

(22)

Figure 10 plots 𝑃(𝑁,𝑀) with 𝑀 = 1, 2, 3, 4, 5, respec-
tively. It can be observed that the theoretical analysis coin-
cides with experimental results. For example, it can be seen
from the first line of Table 1 that the BER is 12.5% when the
number of correct prongs is 2 and the number of all prongs
is 6, while the theoretical curve in Figure 10 indicates that
𝑃(6, 2) = 0.8125. Thus, the theoretical BER is 1 − 0.8125 =
18.75%, which is consistent with the experimental results.
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Figure 10:The graph of 𝑃(𝑁,𝑀)with𝑀 = 1, 2, 3, 4, 5, respectively.

From the above analysis, we can see that the performance
of watermark decoding can be improved if 𝑁 takes smaller
value and 𝑀 takes greater value. The number of correct
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(a) Noise attack (b) Smoothing attack (c) Simplification attack

Figure 11: The prongs of the bunny model under the noise, smoothing, and simplification attacks.

Table 1: Evaluation of robustness against the cropping attack.

Model Cropping
ratio

Number of
prongs

Number of
correct prongs BER

Bunny
70% 6 2 12.5%
50% 8 4 0.00%
20% 10 6 0.00%

Head
70% 4 3 0.00%
50% 7 4 0.00%
20% 11 7 0.00%

Hand
70% 7 5 0.00%
50% 11 8 0.00%
20% 15 13 0.00%

prongs 𝑀 increases if we decrease the value of 𝑁
1
. However,

if 𝑁
1
is smaller, the number of vertices which can be used

for embedding decreases, so the watermarking capacity also
decreases. In practice, we need tomake compromise between
robustness and watermarking capacity. We can also decrease
𝑁bydiscarding incorrect prongs. It can be seen fromFigure 9
that the number of incorrect prongs are distributed near
the cropping boundary. If the cropping boundary is known
beforehand or can be estimated, we can discard prongs which
are close to the cropping boundary in order to improve
robustness. Normally, if the cropping boundary is simple, we
can estimate it from experiences. For example, we can easily
distinguish the cropping planes in Figure 9 even if we do
not see the original models, because we have the experience
that a rabbit should have legs and so forth. We can directly
discard prongs close to the cropping boundary to improve
performance. However, it is difficult to build algorithms that
can automatically estimate cropping boundaries due to the
complexity of the human visual systems (HVS).

5. Simulations on Other Attacks

Because of the good property of histogram-based approaches,
our system is invariant to rotation, scaling, and transla-
tion (RST) attacks and vertex reordering. We then test the

Table 2: Evaluation of robustness against the noise attack.

Model Noise level Hausdorff distance BER

Bunny
0.1% 0.0116 12.50%
0.3% 0.0123 31.87%
0.5% 0.0125 38.12%

Head
0.1% 0.0088 11.25%
0.3% 0.0219 23.75%
0.5% 0.0433 42.50%

Hand
0.1% 0.4564 11.25%
0.3% 1.4374 27.50%
0.5% 2.4380 33.75%

Table 3: Evaluation of robustness against the smoothing attack.

Model Smoothing iterations Hausdorff distance BER

Bunny
5 0.0043 18.75%
10 0.0060 31.25%
15 0.0086 43.75%

Head
5 0.0128 9.38%
10 0.0229 28.13%
15 0.0310 43.75%

Hand
5 0.2435 3.13%
10 0.4042 18.75%
15 0.5449 34.38%

robustness of the system under four distortion attacks—
noise, smoothing, simplification, and mixed (50% cropping
+ noise). The same as in previous sections, we use the bunny,
head, and hand models for this test. We embed 32 bits into
each model. The settings of 𝑁

1
, 𝑁
2
, and 𝑁

3
are the same as

those in Section 2. The similarity between the original mesh
and attacked mesh is measured by the Hausdorff distance,
which is calculated by Metro [38].

Examples of the noise, smoothing, and simplification
attacks are shown in Figure 11. Prongs are also shown on these
attacked models. For noise and smoothing attacks, 𝑁

1
, 𝑁
2
,

and𝑁
3
are the same as in Section 2; for simplification attacks,
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Table 4: Evaluation of robustness against the simplification attack.

Model Noise level Hausdorff distance BER

Bunny
5% 0.0117 15.63%
10% 0.0117 31.25%
15% 0.0117 46.88%

Head
5% 0.0084 21.88%
10% 0.0084 28.13%
15% 0.0084 53.13%

Hand
5% 0.1923 12.50%
10% 0.1923 18.75%
15% 0.1923 37.50%

Table 5: Evaluation of robustness against the mixture of cropping
and noise attack.

Model Noise level Hausdorff distance BER
Bunny (50% cropped) 0.1% 0.0710 29.38%
Head (50% cropped) 0.1% 1.4359 31.87%
Hand (50% cropped) 0.1% 94.0903 24.37%

they need to be adjusted according to the reduction ratio.
For example, if 5 percent of the vertices are vanished after
simplification, the values of𝑁

1
,𝑁
2
, and𝑁

3
should be reduced

5 percent accordingly. Compared with prongs in Figure 4(a),
we can see thatmost prongs are preserved, while some prongs
are missing and new prongs appear after these attacks.

The experimental results are shown in Tables 2, 3, 4, and
5. Generally, decoding errors of the system are caused by two
aspects. The first is that attacks may change the positions of
prongs, delete prongs, and introduce new prongs, so that we
cannot obtain the same patches as not attacked. The second
aspect is that vertex positions in patches can also be modified
by attacks, which also produces decoding errors. Because of
the interaction of these two factors, the proposed method
is not as robust as the one which does not take prongs into
consideration (such as the watermarking system proposed in
[36]). This fact indicates that if robustness to the cropping
attack is to be improved, we need to sacrifice robustness
against other attacks.

The robustness against the noise attack is shown in
Table 2. Gaussian noise is added to each of the vertices in
the watermarked mesh. The mean of the Gaussian noise is
zero, and its variance is proportional to the maximum vertex
norm in the mesh. We define the noise level as the ratio of
the noise variance to the maximum vertex norm in the mesh.
In order to filter out the randomness, we repeat the noise-
adding process five times and obtain the bit error rates in
different noise levels. Three noise levels have been tested in
experiments. It can be seen that the BERs increase when noise
level increases.

Table 3 shows the performance of the watermarking
scheme after the smoothing attack [39]. The relaxation
parameter is set to 0.03 and three different pairs of iteration
are applied. Because the head and hand models are smoother
than the bunny model, they are more robust against smooth-
ing attacks.

For simplification attacks, watermarked models are sim-
plified by three reduction ratios, 5%, 10%, and 15%. The
reduction ratio is defined as the percentages of vanished
vertices to the total number of vertices. In order to obtain
similar patches as the original mesh, 𝑁

1
, 𝑁
2
, and 𝑁

3
are

adjusted according to the reduction ratio. We use 𝑅 to
represent the reduction ratio.Then the adjusted values of𝑁

1
,

𝑁
2
, and𝑁

3
can be obtained by

𝑁
1
= 𝑁
1
(1 − 𝑅) ,

𝑁
2
= 𝑁
2
(1 − 𝑅) ,

𝑁
3
= 𝑁
3
(1 − 𝑅) .

(23)

Here 𝑁
1
, 𝑁
2
, and 𝑁

3
are used for watermark decoding, and

the results are obtained in Table 4.
The proposed method is not very robust against sim-

plification because the modification of 𝑁
1
, 𝑁
2
, and 𝑁

3
is

based on the assumption that vertices are evenly distributed
on the mesh so that after simplification, approximately the
samenumber of vertices vanishes in the neighborhood region
of each prong. However, most meshes have relatively dense
and sparse regions, which will introduce big errors for patch
estimation after simplification. Another observation is that
the Hausdorff distance between the simplified mesh and
the original mesh does not change with different reduction
ratios.This is because theMetro software interpolates vertices
into the simplified mesh before calculation and thus obtains
relatively similar Hausdorff distances.

Finally, robustness against a mixture of cropping and
noise attacks is shown in Table 5. Here 50% vertices of the
watermarked models are cropped; then 0.1% noise is added
to the cropped models. We repeat the noise-adding process
five times to obtain the BERs. It can be seen that the BERs for
the mixed attacks are around 30% for these three models.

In summary, our method is robust against the cropping
attack, as well as other attacks such as RST attacks, connec-
tivity attacks, noise, smoothing, simplification, and mixtures
of these attacks. Although robustness level against some
attacks still needs to be improved, it is one of the first blind
watermarking schemes which can withstand such a variety of
attacks.

6. Conclusions

Although many research works have been carried out in
the area of transmission 3D data through sensor networks,
the security issue of transmission remains to be unsolved.
In this context, it is important to develop systems for
copyright protection and digital right management (DRM).
In this paper, a blind watermarking algorithm is proposed
to protect the transmission security of 3D polygonal meshes
through sensor networks. Our method is based on selecting
prominent feature vertices (prongs) on the mesh and then
embedding the same watermark into their neighborhood
regions. The embedding algorithm is based on modifying
the distribution of vertex norms by using quadratic pro-
gramming (QP). Decoding results are obtained by a majority
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voting scheme over neighborhood regions of these prongs.
Assuming that cropping cannot remove all prongs, we can
achieve robustness against the cropping attack both theo-
retically and experimentally. Experiments indicate that the
proposedmethod is also robust against noise, smoothing, and
mesh simplification. The proposed method has provided a
solution for 3D polygonal watermarking which is potential
to withstand a variety of attacks.

In this paper, watermark is retrieved by a majority voting
scheme under the assumption that most prongs remain
after the cropping attack. We also tested our method on
other attacks such as noise, smoothing, simplification, and
a mixture of these attacks. Experiments indicate that our
method is robust against these attacks. Although robustness
level against some attacks still needs to be improved, the
simulation results demonstrate a blind watermarking scheme
for 3D polygonal meshes which can resist a wide spectrum of
attacks.
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