3,522 research outputs found

    A user-dependent approach to the perception of high-level semantics of music

    Get PDF

    Case-based reasoning for product style construction and fuzzy analytic hierarchy process evaluation modeling using consumers linguistic variables

    Get PDF
    Key form features are relative to the style of a product and the expression style features depict the product description and are a measurement of attribute knowledge. The uncertainty definition leads to an improved and effective product style retrieval when combined with fuzzy sets. Firstly, a style knowledge and features database are constructed using fuzzy case based reasoning technology (FCBR). A similarity measurement method based on case-based reasoning and fuzzy model of the fuzzy proximity method may be defined by the Fuzzy Nearest-Neighbor (FNN) algorithm obtaining the style knowledge extraction. Secondly, the Linguistic Variables (LV) are used to assess the product characteristics to establish the product style evaluation database for simplifying the style presentation and decreasing the computational complexity. Thirdly, the model of product style feature set, extracted by FAHP and the final style related form features set, are acquired using LV. This research involves a case study for extracting the key form features of the style of high heel shoes. The proposed algorithms are generated by calculating the weights of each component of high heel shoes using FAHP with LV. The case study and results established that the proposed method is feasible and effective for extracting the style of the product

    Making Tactile Textures with Predefined Affective Properties

    Get PDF
    A process for the design and manufacture of 3D tactile textures with predefined affective properties was developed. Twenty four tactile textures were manufactured. Texture measures from the domain of machine vision were used to characterize the digital representations of the tactile textures. To obtain affective ratings, the textures were touched, unseen, by 107 participants who scored them against natural, warm, elegant, rough, simple, and like, on a semantic differential scale. The texture measures were correlated with the participants' affective ratings using a novel feature subset evaluation method and a partial least squares genetic algorithm. Six measures were identified that are significantly correlated with human responses and are unlikely to have occurred by chance. Regression equations were used to select 48 new tactile textures that had been synthesized using mixing algorithms and which were likely to score highly against the six adjectives when touched by participants. The new textures were manufactured and rated by participants. It was found that the regression equations gave excellent predictive ability. The principal contribution of the work is the demonstration of a process, using machine vision methods and rapid prototyping, which can be used to make new tactile textures with predefined affective properties

    Class discovery from semi-structured EEG data for affective computing and personalisation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Many approaches to recognising emotions from metrical data such as EEG signals rely on identifying a very small number of classes and to train a classifier. The interpretation of these classes varies from a single emotion such as stress [24] to features of emotional model such as valence-arousal [4]. There are two major issues here. First classification approach limits the analysis of the data within the selected classes and is also highly dependent on training data/cycles, all of which limits generalisation. Second issue is that it does not explore the inter-relationships between the data collected missing out on any correlations that could tell us interesting facts beyond emotional recognition. This second issue would be of particular interest to psychologists and medical professions. In this paper, we investigate the use of Self-Organizing Maps (SOM) in identifying clusters from EEG signals that could then be translated into classes. We start by training varying sizes of SOM with the EEG data provided in a public dataset (DEAP). The produced graphs showing Neighbour Distance, Sample Hits, Weight Position are analysed holistically to identify patterns in the structure. Following that, we have considered the ground- truth label provided in DEAP, in order to identify correlations between the label and the clustering produced by the SOM. The results show the potential of SOM for class discovery in this particular context. We conclude with a discussion on the implications of this work and the difficulties in evaluating the outcome

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Dynamics under Uncertainty: Modeling Simulation and Complexity

    Get PDF
    The dynamics of systems have proven to be very powerful tools in understanding the behavior of different natural phenomena throughout the last two centuries. However, the attributes of natural systems are observed to deviate from their classical states due to the effect of different types of uncertainties. Actually, randomness and impreciseness are the two major sources of uncertainties in natural systems. Randomness is modeled by different stochastic processes and impreciseness could be modeled by fuzzy sets, rough sets, Dempster–Shafer theory, etc
    • …
    corecore