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Making tactile textures with predefined
affective properties

Galal Elkharraz, Stefan Thumfart, Diyar Akay, Christian Eitzinger, Brian Henson

Abstract— A process for the design and manufacture of 3D tactile textures with predefined affective properties was developed.

Twenty four tactile textures were manufactured. Texture measures from the domain of machine vision were used to

characterize the digital representations of the tactile textures. To obtain affective ratings, the textures were touched, unseen, by

107 participants who scored them against natural, warm, elegant, rough, simple, and like, on a semantic differential scale. The

texture measures were correlated with the participants’ affective ratings using a novel feature subset evaluation method and a

partial least squares genetic algorithm. Six measures were identified that are significantly correlated with human responses and

are unlikely to have occurred by chance. Regression equations were used to select forty eight new tactile textures that had

been synthesized using mixing algorithms and which were likely to score highly against the six adjectives when touched by

participants. The new textures were manufactured and rated by participants. It was found that the regression equations gave

excellent predictive ability. The principal contribution of the work is the demonstration of a process, using machine vision

methods and rapid prototyping, which can be used to make new tactile textures with predefined affective properties.

Index Terms— Feature evaluation and selection, Human Factors, Rapid prototyping, Texture.
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1 INTRODUCTION

HE study of tactile texture perception is of interest to
many disciplines including product design, psycho-
physics, neuroscience, and computational modeling.

While much has been found out about tactile percep-
tion [1], application of the knowledge to, say, design a
new product with enhanced tactile appeal remains diffi-
cult. Studies are perhaps hampered by the inability to
create surface topographies in which different variables
can be independently controlled. For the most part, re-
searchers of perception have been limited to using tactile
stimuli that are either naturally occurring, or either easily
purchased or manufactured, such as sandpapers [2], or
gratings [3].
This research aims to develop a process for the design

and manufacture of three dimensional tactile textures
with predefined properties for affective and psychophysi-
cal studies of touch. In this research, surface topogra-
phies were represented by matrices, with the cell coordi-
nates representing the location of a �boxel� of the surface,
with cell values representing the height of the boxel, This
representation makes the topographies amenable to ma-
nipulation using image processing techniques and, in this
paper, these representations are presented as grey-scale
images. However, this research was not concerned with
the visual perception of textures. The research reported

here only involved humans touching surface topogra-
phies, unseen.
Whereas the relationships between visual perception

and measurable physical properties have been well-
established, the relationships between tactile perception
and measurable physical properties of surfaces are less-
well characterized. How the dynamic mechanical proper-
ties of the finger set up vibrations for the touch receptors
in the finger are being studied [4]. The response charac-
teristics of the receptors, the Merkel discs, Ruffini end-
ings, Meissner�s and Pacinian corpuscles, responding to
strain and rate of change of strain, and thermal receptors,
are well-known [5], [6]. Relevant to this work is that
when tactile features are greater than about 100µm, pres-
sure cues on a static or moving finger are sufficient for the
human to discriminate surface textures, but vibrations
generated by a moving finger on a surface are necessary
to perceive finer textures [7]. The topographical features
on the tactile textures used in this work are of the order of
100µm, and are therefore considered to be coarse textures
better perceived via pressure cues.
Unlike in visual perception, the perceptual dimensions

of touch are not clear. Hollins et al. [8],[9] identified the
perceptions of roughness, hardness and springiness based
on studies using multidimensional scaling, whereas Ges-
cheider, Bolanowski, Greenfield and Brunette [10], using
similar methods, identified the dimensions of blur,
roughness and clarity. Roughness is thought to be im-
portant and it remains the most studied of the perceptual
dimensions e.g. [11]. However, despite this, perceived
roughness does not correspond perfectly with measures
of roughness, and a single measure or characterization of
roughness has yet to be identified [12]. Others have stud-
ied other tactile perceptual dimensions such as soft-
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ness [13], but as the stimuli used in this research were all
made of the same, hard acrylic material, the perceptual
dimension of roughness is the one most relevant to this
paper. And these studies have principally been con-
cerned with the perceptual dimensions of touch, whereas
the work in this paper is also concerned with humans�
affective responses. Studies of affective responses to
touch, such as [14], [15], have also been restricted by the
inability to control the properties of tactile stimuli.
While there does not seem to be a one-to-one corre-

spondence between perceived roughness and first-order
statistical measures of roughness, the rich measures of
texture being used in the domain of visual image pro-
cessing, in which they are referred to as features, have yet
to be investigated in the context of touch. Numerous re-
searches have been conducted to build models to corre-
late human perceptions with visual textures. For example,
Kim, Kim, Jeong and Kim [16] proposed a system to clas-
sify textile images according to human emotions. This
was carried out by extracting features of textile images
such as colours and several patterns using different image
processing techniques and applying neural networks to
the features. Huang, Sobue, Kanda et al. [17] developed a
mapping-function using neural networks for mapping
features extracted from clothing fabric images to human
affective responses. All of these techniques have in com-
mon that, based on given textures, they were able to pre-
dict with quite good accuracy which visual perceptions or
emotions will be triggered when showing them to human
beings. Rao and Lohse attempted to identify the higher
order perceptual dimensions of human texture percep-
tion [18]. They applied dimensionality reduction tech-
niques such as multidimensional scaling, principal com-
ponents analysis and hierarchical clustering to analyze
the results obtained from rating and grouping experi-
ments. The analysis yielded three orthogonal higher order
dimensions of texture perception: �repetitive versus non-
repetitive�, �high-contrast and non-directional versus low
contrast and directional�, �granular, coarse and low-
complexity versus non-granular, fine and high-
complexity�. Thumfart, Jacobs, Haak, et al. [19] investi-
gated the correlation between human visual emotions
and color and texture features. The features were extract-
ed from texture images and were associated with human
visual feelings using linear feature selection and neural
networks to extract a set of eight texture features which
are capable of predicting six human visual feelings.
Section 2 reviews applications of texture analysis in the

domain of visual image processing, data acquisition and
affect recognition. Section 3 details the texture features
considered in this research. Section 4 describes the meth-
od, in which twenty four tactile textures were manufac-
tured using a rapid prototyping process. Texture features
as used in machine vision research were used to charac-
terize the textures. Human subjects touched the textures,
unseen, and rated them against 20 adjectives. The texture
features were regressed against a subset of the partici-
pants� affective ratings using a novel feature subset eval-
uation method and a partial least squares genetic algo-
rithm. Because the feature selection method is unusual, it

is described in detail in Section 4.3. The resulting regres-
sion equations were used to select forty eight new tactile
textures that had been synthesized using mixing algo-
rithms and which were likely to score highly against six
adjectives, natural, warm, elegant, rough, simple, and
like. The results in Section 5 describes how six features,
Percentile 90%, GrKurtosis, GLCM mean correlation at
distance 2, GrNonzero, GLCM mean sum variance at dis-
tance 1, and GLCM range sum of squares at distance 1
were identified that are significantly correlated with the
humans� responses, and that the regression equations
gave excellent predictive ability of human responses to
the new tactile textures.
The principal contribution of the work is that it

demonstrates a process, using machine vision methods
and rapid prototyping techniques, which can be used to
design new tactile textures. The process could be used to
create new tactile textures with pre-specified affective and
psychophysical properties for experiments leading to a
deeper understanding of the perception of touch, and it
can be used for improved product design. Members of
the machine vision and affective computing communities
are perhaps best placed to exploit this process. The sig-
nificance of the work is considered further in Section 6.

2 LITERATURE REVIEW

Many different techniques to characterize texture features
are used in different classification, image retrieval and
segmentation problems. Haralick [20] surveyed a number
of texture extraction methods: autocorrelation function;
optical transforms; textural edginess; structural element;
grey level co-occurrence matrix; grey level run length;
and the autoregressive model. He divided them into two
main categories, structural and statistical. Gool, Dewaele
and Oosterlinck [21] reviewed the literature on texture
analysis, but also included the use of filter masks such as
Laws� features and grey level sum and difference histo-
gram. They found that the structural techniques are better
matched to textures that have a regular macro-structure,
while the statistical techniques are better matched to mi-
cro textures. Other model-based techniques, such as Mar-
kov fields and fractals, have been reviewed [22].
One of the first applications of texture features was in-

dustrial inspection; for example, to detect flaws on a ma-
terial�s surface. Applications have been re-
viewed [23],[24],[25],[26]. Xie [24] concluded that statisti-
cal and filter based approaches are those most widely
applied. Attempts have been made to find correlations
between features in images and the surface properties of
manufactured components, such as rough-
ness [27],[28],[29]. Others have analyzed tool wear [30]
and the rugosity of metal parts [31]. These techniques
have also been applied to assess the quality of foods [32],
carpet wear [33], ceramic tiles [34], and pipelines [35].
The approach to texture feature recognition used in

this research is based on that used by Thumfart et al. [19].
They studied the relationship between textural features
and aesthetic judgments of feeling, naturalness, rough-
ness, elegance, complexity, warmth, beauty, colorfulness,
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and hardness. The features were extracted based on sec-
ond order statistics, Tamura, Fourier transform, Gabor
and color approaches. This resulted in 188 different fea-
tures which were selected in a two stage process. First,
sequential forward selection was used to their number to
31 unique features. Second, a novel selection method
called nomination analysis was applied to obtain the cor-
relation between each possible feature group and the aes-
thetic property that accounts for the inherent noise and
subjectivity in the aesthetic judgments of textures. It was
concluded that there is a correlation between features and
human visual perception. In addition, six of nine aesthetic
judgments were predicted with a correlation greater than
0.68. Their work has been continued by including syn-
thesis of new textures using existing texture mixing algo-
rithms and genetic algorithms [36],[37]. The genetic algo-
rithm approach uses mutation and crossover methods on
images from a database assessed using a linear regression
model. Although the proposed method showed success-
ful improvement by reducing the average distance of
nearest neighbor individuals to the target vector over
standard texture mixing algorithms, there are some limi-
tations. Both the synthesis of individual textures and the
calculation of a large number of texture features in each
iteration are computationally expensive.
Of relevance to the research reported in this paper are

the attempts to link texture features to people�s reactions
to the visual textures. This includes both psychophysical
and affective responses. The majority of research in this
area has been connected to human visual perception. For
instance, Julesz [38] conjectured that observers could dis-
tinguish pre-attentively between textures with different
and similar first order statistics, but not in the third or
higher statistics. Tamura, Mopi and Yamawaki [39] calcu-
lated new texture features corresponding to visual per-
ception of contrast, coarseness, regularity, roughness,
directionality, and line-likeness. Although there are some
drawbacks with these features, they are still widely used.
In a similar study [40], five previously defined fea-
tures (coarseness, contrast, busyness, complexity, and
texture strength) were modified and expressed in terms of
spatial changes in intensity, but the study failed to clarify
how visual properties are related to physical ones. Fujii,
Sugi and Ando [41] developed a psychological scale for
the textural properties of contrast, coarseness, and regu-
larity, related to the autocorrelation function. Later, Jian,
Dong, Gao et al. [42] presented three new texture fea-
tures, directionality, contrast, and coarseness, based on
the wavelet transform, that correlate with visual percep-
tion of those properties.
Studies have been conducted for image classification

derived, not from people�s psychophysical perception of
textures, but from their ratings against adjectives that
reflect affect or emotion (e.g. [16], [17]). In this research,
respondents were asked to touch tactile textures, unseen,
and then rate them against words on a self-report seman-
tic differential questionnaire [43]. Others have measured
affective responses using facial expressions [44]; biosig-
nals, such as electroencephalography [45], audio sig-
nals [46]; linguistics [47] and bodily expressions [48].

These techniques have the advantage that they do not
rely on potentially unreliable self-report data. Once the
affect data have been collected, relevant features need to
be extracted before the affect recognition procedure can
be implemented [49]. The extraction of affect features is
perhaps more challenging when using objective observa-
tion of affective response such as facial expressions and
biosignals than when using self-report questionnaires, for
which the measure of affect is calculated as the mean of
the respondents� ratings. In much affective computing
research, identification of the affective state involves pat-
tern recognition from signals from different modalities,
which then poses challenges concerning synchronization
and fusion [49]. Issues of multimodality are assumed not
to arise in this work, because all tactile textures were
touched unseen by respondents, and the self-report ques-
tionnaires are the only source of affective data.
Approaches to affective feature recognition have in-

cluded sequential forward selection using neural net-
works [50], support vector machines [51], and fuzzy in-
ference [52]. For a comprehensive review of affect recog-
nition methods, see [53].

3 TEXTURE FEATURES

3.1 First, Second and Higher Order Statistics

First-order statistics measure the likelihood of observing a
grey value at a randomly-chosen location in an im-
age [38], [54]. The average intensity in an image, variance
and percentile are examples of first-order statistics. For
example, the average provides information about the cen-
ter line average (or average roughness), the standard de-
viation represents the root mean square height [55], and
percentile gives the highest peak under which a given
percentage of the pixels are in the image.
Grey level co-occurrence matrices are perhaps the most

widely used second order statistics. Haralick, Shanmu-
gam and Dinstein [56] proposed the grey level co-
occurrence matrices (GLCM) which give information on
how often pairs of grey levels of pixels, which are sepa-
rated by a certain distance and be positioned along a cer-
tain direction, occur in a texture image. In the research
reported in this paper, four different directions, 0°, 45°,
90°, and 135°, were used for each distance of one, two,
four, and eight boxels, and the four co-occurrence matri-
ces at each distance were averaged into a single matrix.
Higher order statistics include grey run length and ab-

solute gradient. A grey run length is a set of consecutive,
collinear pixels that have the same grey level value. Four
run length matrices are computed based on four different
directions (horizontal, vertical, and two diagonal direc-
tions). Five features were proposed by Galloway [57]:
short run emphasis; long run emphasis; grey level non-
uniformity; run length non-uniformity (RLN); and run
percentage. Chu, Sehgal and Greenleaf [58] introduced
two additional features, low grey level run emphasis, and
high grey level run emphasis. In a more recent study, four
new features have been proposed, short run low grey
level emphasis, short run high grey level emphasis, long
run low grey level emphasis, and long run high grey level



4 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, MANUSCRIPT ID

emphasis [59]. In our study, the four run length matrices
were averaged into one matrix and then all eleven fea-
tures were extracted from the averaged matrix.
The absolute gradient of an image is a measure of the

spatial variation of gray-level values across the image.
Thus, if at a point in the image the grey level varies rapid-
ly from black to white, there is a high-gradient value at
that point. The gradient may be positive or negative, de-
pending on whether the grey level varies from dark to
light or from light to dark. For this study, five features
were calculated from absolute gradient matrix: mean,
standard deviation, skewness, kurtosis, and nonzero per-
centage of the absolute gradient [60]. In this paper,
measures based on absolute gradient are prefixed �Gr� to
distinguish them from first order statistics.

3.2 Visual Perception Based Feature Methods

These methods include neighborhood grey level differ-
ence matrix and Tamura features. The neighborhood grey
level difference matrix method (NGLDM) employs tex-
tural features corresponding to visual properties of an
image [40]. NGLDM is a column matrix formed by sum-
ming the absolute value of the pixel being observed mi-
nus the average of the pixels in its neighborhood. In this
study, the neighborhood was defined as a distance of one
and two boxels. Five perceptual features, coarseness, con-
trast, busyness, complexity, and strength of texture, were
calculated from NGLDM at each distance, giving ten fea-
tures. Tamura, Mopi and Yamawaki [39] developed tex-
ture features that have a high correlation with human
visual perception. They defined six textural fea-
tures (coarseness, contrast, directionality, line-likeness,
regularity and roughness) and compared them with psy-
chological measurements for human subjects.

3.3 Laws’ Energy Features

Laws� energy measures were used to characterize tex-
tures [61]. Laws� filters of lengths 3×3 and 5×5 were used.
The two dimensional convolution kernels were generated
from a set of one-dimensional kernels corresponding to
level (L), edge (E), spot (S). Nine two-dimensional filters
of length three were generated, from which six rotational
masks were produced [62]. Those masks that were not
directionally invariant were scaled by two to keep the size
of features consistent. Similarly, for the 5×5 filters, twen-
ty-five two-dimensional filters of length five were gener-
ated and fifteen rotational masks were produced. The
masks were convolved with the image, and the mean,
standard deviation and entropy of the convolution results
were used as texture features.

4 METHOD

4.1 Manufacture of Plaques

The tactile stimuli used in the experiments described in
this paper were manipulated on computer as matrices,
converted to CAD files, 3D printed and then pressed on
to 100mm×100mm pieces of laminate board. This section
describes the manufacturing process.
The tactile textures were processed on computer as

matrices, with the cell coordinates representing the loca-
tion of a boxel of the surface, and with cell values repre-
senting the height of the boxel. (This contrasts with the
use of the term �voxel� from the field of medical imaging;
a voxel represents a fixed-volume element whose position
is inferred from its position relative to other voxels.) Ar-
bitrarily, 0 was chosen to represent the topographical
peaks and 255 to represent the valleys. When viewed as
an image, therefore, the black represent peaks and white
the valleys. Using Matlab, the textures were reduced in
resolution to 300×150, normalized so that they covered
the full height range between 255 and 0, and quantized to
10 levels. The matrices used in manufacture were not
square to account for the differences in the resolution of
the manufacturing process in the x and y directions. Re-
ducing the resolution was considered necessary, after a
pilot study, to account for the loss of resolution of the
topographies due to the subsequent manufacturing pro-
cess. It was also necessary for the tactile textures to be
coarse, and the topographical features to be of the order
of 100µm, so that the textures could be distinguished
based on spatial cues [7]. The matrices were also inverted
to take account of a further inversion of the tactile tex-
tures during the manufacturing process.
The matrices were exported to a custom-written pro-

gram that converted them to .stl (stereolithography) for-
mat files. The program places the textures on a
100×100×5mm block. The cells of the matrices were thus
converted to boxels, approximately 330×660×80µm, and
each texture had a relief of 0 to 800µm. Fig. 1 shows some
examples of the textures and the .stl shape representa-
tions of the tactile plaques they produced.
Each tactile texture was printed using an Objet Eden

330 3D printer, with a nominal resolution of
42µm×84µm×16µm, which uses UV light to cure a photo-
sensitive liquid into a solid, resin component. Because
many copies of each texture were required for other ex-
periments not documented in this paper, the 3D printed,
resin texture was used as a master for a molding process.
The resin master was used to make a die that could with-
stand the high temperatures of the later reproduction
process. Silicone molds were made of each texture and a
die was made from each mold using vacuum casting. The
dies were used to imprint the textures on laminate board,
such as that used on office furniture, kitchen work surfac-
es, and synthetic hard wood flooring. This manufacturing
process was used to allow many copies of each texture to
be made. It also allowed visual textures to be incorpo-
rated into the boards, under the transparent tactile tex-
ture, to be used in further experiments not documented in
this paper. The laminate board was made of a core board
material, with a transparent acrylic overlay. The boards
were made under high temperature and pressure in an
industrial process sandwiched between foils, papers, the
dies and metal plates. They were pressed at approxi-
mately 70 bar at 130°C for 15 minutes. The boards were
made as 400×600mm sheets, each containing 24 tactile
textures. The boards were then sawn to separate the tex-
tures to 24, 100×100mm plaques.
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(a) (b) (c)

Fig. 1. Examples of the tactile textures used in the first

part of the study, (a) displayed as visual images in which

the black represents topographical peaks and white the

valleys (b) CAD renderings of the (negative of the) result-

ing tactile textures, and (c) an exploded view of one of the

CAD renderings showing detail of boxelated surface.

4.2 Measurement of affective response

Twenty four plaques containing different tactile surfac-
es (Fig. 2) were manufactured using the process described
in Section 4.1. Most of these textures were derived from
visual textures and some were copies of already existing
tactile textures, read using a 3D scanner. The textures
were chosen on the basis of variety of affective response
in the visual domain identified in a parallel study [19],
and for subjective tactile variety. Each plaque was placed
in a large, numbered envelope so that it could be touched,
but not seen.
The participants were 18 males and 89 females. The

tactile properties of the stimuli were rated by participants
against 20 adjectives: natural, cheap, practical, warm, ele-
gant, sticky, harsh, pretentious, depressing, distin-
guished, inspiring, modern, simulated, rough, simple,
hard, wet, playful, exciting, and like. The first thirteen of
these adjectives were identified in a previous un-
published study in which 53 female participants touched
samples of laminate board in the context of work surfac-
es. In that study, three focus groups were held in which
structured activities were conducted to elicit adjectives
that the women used to describe the surfaces, following
the procedure in [13]. The words rough, simple, hard and
wet were added to increase the number of words used
that represented perceptual rather than affective qualities;
playful, exciting were added because they had arisen in a
similar study in which they had formed a separate con-
struct [63]; and like was added because it is a high-level
hedonic evaluation. From these, six adjectives, natural,
warm, elegant, rough, simple and like were selected a
priori for analysis to reduce the possibility of fatigue bias
in the second part of the study, in which it was anticipat-
ed more stimuli would be required.

Fig. 2. The 24 visual textures which were converted to

tactile textures for the first phase of the study.

These words were chosen because they represent a range
that varies from assessment of perceptual qualities of the
surface (e.g. rough) to high-level hedonic evaluations of
the material (e.g. like), and because in our previous stud-
ies they had exhibited relatively low variance of persons�
responses on questionnaires. The decision to include
natural was informed by the existence of another research
project attempting to measure naturalness [64]. The
words used in this study are consistent with those used in
other affective studies of touch (see for example [65]).
Direct comparisons with other studies are difficult, how-
ever, because the words used often depend on the context
of the investigation.
Semantic differential questionnaires were prepared.

On each questionnaire, the words were presented on a
seven-point bi-polar scale. One end of the scale was an-
chored with the adjective and the other with the adjec-
tive�s declarative opposite, denoted by �not�. The adjec-
tives and the polarity of the scales were presented in a
random order.
The purpose and the procedures of the experiment

were explained to the participants. Participants were
asked to sit at a table where the envelopes were placed
and then asked to put their hand inside each envelop and
feel the plaque. The plaques were presented in a random
order for each participant. No restrictions were given
such as which hand or parts of hand could be used, or for
how long the plaque could be inspected. After touching
each plaque, participants were asked to rate the texture
against the adjectives on the questionnaire. When rating
each texture, participants were asked to not dwell too
long analyzing the textures, but to give their instinctive,
spontaneous reaction on touching the surface. The tex-
tures were presented without specifying any particular
hypothetical context of use, other than the context of the
experiment itself. Participants� ratings were transcribed
to spreadsheets twice, independently by separate re-
searchers.
Participants� responses to the questionnaires were re-
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garded as the �groundtruth� and were used to test retriev-
al accuracy during texture selection (see Section 4.3.3).
However, the responses were only assumed to be correct
for the context of this particular study; no attempt was
made to determine the reliability of the scale. Further, it
was assumed that the scales produced interval measures
that justified the subsequent analysis and modeling tech-
niques used. For a review of the limitations of these as-
sumptions and of other biases for the measurement of
affective responses, see [66].

4.3 Prediction of affective properties of textures

A feature based approach was pursued to predict the af-
fective properties of the textures. First a set of features,
originally defined for the visual domain, was extracted.
The number of features was substantially reduced with
two feature selection procedures particularly accounting
for the danger of model overfitting.

4.3.1 Extraction of texture features

To predict the affective properties of the textures, a set of
characteristic features were extracted from the matrices
representing the tactile textures. Most of the software to
measure the features of the matrices was implemented in
MATLAB. The code that calculated first order statistics
and absolute gradient was verified against values ob-
tained from the MaZda software [60]. Code for NGLDM,
GLCM and Tamura features was verified against code

written independently by other researchers, and the code
for the Laws� energy measures was verified manually.
The GLRLM features were obtained using the GLRLM
Toolbox [67]. Table 1 contains a complete list of the fea-
tures used. The matrices on which the features were cal-
culated were sized 300×300 pixels.

4.3.2 Selection of features and prediction of affective
properties

Given the number of 24 tactile textures, it is not feasible to
directly aim for a regression model that incorporates all
196 features. Thus a voting-based feature-selection meth-
od was used called nomination analysis to analyze the
relationship between participants� responses to the adjec-
tives natural, warm, elegant, rough, simple, and like de-
tailed in Section 4.2.
Owing to the subjective experimental rating task and

the low number of samples that caused a high level of
noise, the standard feature selection methods are not ap-
plicable for this dataset. To overcome these challenges,
an approach following the wrapper methodology was
used with three major processing steps:
1. A sequential forward selection (SFS) was applied to
reduce the initial 196 texture features using a greedy
search method for all perceived responses [68]. For
every single human judgment, SFS starts with the

Table 1. List of the 196 features used in the study.

Class Feature Variation Class Feature Variation Class Feature Variation

First order

statistics

perc1%

Higher order

statistics -

GLRLM

SRE

Law�s

energy

measures

L3E3

mean, stand-

ard deviation,

and

entropy

calculated

for each

filtered

image

perc10% LRE L3S3

perc25% GLN E3S3

perc50% RLN L3L3

perc75% RP E3E3

perc90% LGRE S3S3

perc99% HGRE L5E5

average SRLGE R5L5

variance SRHGE S5L5

skewness LRLGE W5L5

kurtosis LRHGE E5S5

uniformity
Higher order

statistics -

Absolute

gradient

grmean W5E5

entropy grvariance R5E5

Second order

statistics -

GLCM

asm

Each at 0°,

45°, 90°, and

135°; and

distances of

1, 2, 4, and 8

pixels

grskewness R5S5

contrast grkurtosis W5S5

correlation nonzero R5W5

sumOfSquares

Visual percep-

tion measures

-NGLDM

coarseness

Each at a

distance of 1

and 2 pixels

E5E5

invDiffMoment contrast S5S5

sumAvg busyness L5L5

sumVar complexity W5W5

sumEntropy strength R5R5

entropy

Visual percep-

tion measures

-Tamura

coarseness

diffVar contrast

diffEntropy directionality

linelikeness

regularity

roughness
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Fig. 3. The rows (representing the samples) of the feature

matrix are randomly permuted to destroy the relation-

ships between feature value and tactile response.

feature that is most correlated with the target and
adds a new feature which, together with the old
one(s), most accurately predicts the target. New
features were added until the prediction error was
not significantly (p=0.05, using partial F-test) re-
duced. A linear regression model was used to pre-
dict the target values. Finally, for all responses to
the 24 tactile plaques, a set of 40 unique texture
features was selected, Fsfs.

2. The feature set Fsfs was used to build all possible
feature subsets of size three. The predictive quality
of every single subset for every tactile response
was evaluated. Step 2 of the method proposed by
Thumfart et al. [19] was modified by replacing the
neural network with a linear regression model, due
to the relatively low number of plaques. A linear
regression model was built using half of the
plaques and the tactile responses were predicted
for the remaining 12 plaques. The correlations be-
tween the predicted and the human responses
were measured using the Pearson correlation coef-
ficient.

3. The results of Step 2 were subjected to a parallel
analysis using a voting method that allowed both
the predictive quality of single features as well as
the overall predictability of human tactile respons-
es to be measured. This identified whether the cor-
relations were caused by chance or represent a sig-
nificant relationship between texture features and
human tactile responses. The subset evaluation
was repeated for a random dataset. This random
dataset was generated by randomly permuting the
ordering of the samples for the feature matrix (Fig.
3).

It is asserted that the correlations of the randomly
permuted dataset are those that can be achieved by
chance. Consequently, all of the correlations of the un-
permuted dataset larger than the correlation of the ran-
domly permuted dataset are relevant.
This proposed voting method takes into account both

the low number of available textures as well as the varia-
tions in the experimental data caused by requesting sub-
jective judgments from human subjects. Therefore it
would be dangerous to rely on single correlation values.
Consequently, the frequency of every feature element of
Fsfs was counted, being part of a feature subset that

reached a correlation > 0.65. The six features with the
highest frequency (i.e. the highest number of nomina-
tions) were selected for linear regression modeling.
Partial least squares regression (PLSR) [69] was used to

verify the results of the use of the wrapper methodology.
The performance of PLSR may decrease when there is an
excessive number of predictor variables [70] and so a ge-
netic algorithm was used to identify the subset of the tex-
ture features which were most useful. The steps taken
were as follows:
1. Random predictor variable (texture features) sub-

sets were generated.
2. The fitness value of each individual subset of tex-

ture features was calculated using the root mean
square error cross-validation of the PLSR model,
where the subset was used as the input and the
participants� ratings against all 20 adjectives as
output.

3. The worse half of the population according to fit-
ness values was eliminated.

4. The remaining individuals were crossed together
to get the new generation.

5. A random mutation was made across the new
generation.

6. Steps 2 to 6 were repeated until termination crite-
ria were satisfied.

To overcome the risk of over-fitting, the genetic algo-
rithm was run many times, even though a cross validated
approach was used. The genetic algorithm�s parameters
were as follows: population size=64, maximum genera-
tion=100, percentage of convergence (percentage of the
population of solutions that are identical at conver-
gence) =60, crossover operator=two point crossover, mu-
tation rate=0.005, cross validation=3-fold and number of
GA replications= 50.
The texture features that showed highest correlation

were identified to develop regression models for human
touch feeling for rough, natural, warm, simple, elegant,
and like. Because the linear regression analysis assumes
all variables are normally distributed, the Ryan-Joiner test
was applied to the variables.

4.3.3 Test of retrieval accuracy

Before selecting new textures that satisfy certain human
touch affective responses, the robustness of the selected
features (used in the regression models), and the predict-
ed human affective responses, to retrieve the closest tex-
ture to the query one were evaluated. A database of tex-
tures was established using 200, 300×300 pixel, tex-
tures [71]. Each texture was divided into nine, non-
overlapping 100×100 sub-textures, resulting in 1800 tex-
tures. One sub-texture from each texture was used in a
testing set and the remaining sub-textures were used as
the training set. Grey relational analysis [72], Euclidean
and city block distance were used to retrieve the top
k (k=1, 2, 3, 4 and 5) textures using both the low-level
features, and the six human affective responses. Retrieval
was assessed by counting the number of sub-textures re-
trieved from the same texture as the query sub-texture.
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Fig. 4. The framework for texture retrieval.

4.3.4 Manufacture and evaluation of new textures

A database of 900 textures, each sized 300×300 pixels, was
established using sources such as Brodatz [73] and VisT-
ex [74]. Many of the textures were synthesized using
mixing algorithms applied to our own textures [71]. First-
ly, the texture features were computed for all textures in
the database. Secondly, Taguchi orthogonal matrices
were used to generate different combinations of the top
six features that highly correlated to the affective re-
sponses. Consequently, six dimensional vectors of these
features were obtained and compared to the calculated
texture features extracted from textures in the database
using similarity measures based on grey relational analy-
sis technique. Textures closest to the desired features
vector were selected (Fig. 4). Finally, the regression
models were used to predict the affective responses to the
new textures.
The 48 new textures were manufactured (Section 4.1).

Visual image versions of some of the new tactile textures
are shown in Fig. 5. The tactile properties of the new tex-
ture plaques were rated by 31 participants against the six
adjectives following the procedure outlined in Section 4.2.
To evaluate the accuracy of the prediction models, the

Reduction of Error (RE) statistic was calculated for each
adjective (1) ௣ܧܴ.[75] = 1 െ σ ൫ݕ௜ െ ො௣൯ଶே௜ୀଵσݕ ൫ݕ௜ െ ത௣൯ଶே௜ୀଵݕ (1)

Where ො௣ݕ are the predicted values of the affective re-
sponse for plaque p and ത௣ݕ is the mean value of the meas-
ured affective response for plaque p. N is the number of
participants and ௜ݕ the measured affective response of
participant i. Then, the average REs across all plaques
were calculated. RE ranges from െλ to 1. A positive val-
ue is an indication of a reasonable level of predictive abil-
ity [75].

5 RESULTS

In the wrapper analysis of the first part of the experiment
in which the affective responses to touching 24 plaques
were measured, 9880 feature subsets were evaluated
against participants� responses to all the 20 adjectives
used in the first part of the experiment. The histogram of
correlations for the un-permuted dataset (Fig. 6) repre-
sents the correlations that can be achieved by chance.
Only feature subsets which reached a correlation R > 0.65
were used in the final parallel analysis. The top six

Fig. 5. Some examples of the 48 new tactile textures syn-

thesized for the second part of the experiment.

features, according to the wrapper method, best suited to
predict the tactile responses were Percentile 90%, GrKur-
tosis, GLCM mean correlation at distance 2, GrNonzero,
GLCM mean sum variance at distance 1, and GLCM
range sum of squares at distance 1. The most important
features obtained by PLSR based on genetic algorithm
were Percentile 90%, GrKurtosis, GLCM mean correlation
at distance 2, and RLN. Features most often included in
the model are Percentile 90%, Gr-Kurtosis, run length
non-uniformity GLN, and grey level co-occurrence mean
correlation at distance 2. These were the only texture fea-
tures with frequencies of inclusion above 0.60.
The correlations between participants� responses to the

adjectives are shown in Table 2. The results of the regres-
sion analysis are shown in Table 3, and the coefficients of
determination (R2) are shown in Table 4.
The model was checked for different linear regression

assumptions. Based on scatter plots, the data fit straight
lines, suggesting that linear models are sufficient. The
results of the scatter plots were confirmed by ANO-
VA (Table 5). The values of coefficient of determination,

Table 2 Pearson correlation coefficient between tactile

responses to adjectives.

Natural Warm Elegant Rough Simple Like

Natural .703 .784 -.825 .847 .712

Warm .940 -.956 .646 .948

Elegant -.983 .746 .967

Rough -.793 -.964

Simple .688

Like

Significance all at p<.001
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Fig. 6. Correlation histogram for the randomly permuted dataset and the original, un-permuted dataset.

Table 3. Features included in the regression model.

Natural Rough Warm

Predictor Coeff. Beta p Coeff. Beta p Coeff. Beta p

Intercept 6.5 .00 14.22 .00 1.38 .03

GLCM correlation

at distance 2
-1.61 -1.173 .00

GRNonzero -2.75 -1.09 .00

Skewness 0.292 0.48 .018

Percentile 90% -0.05 -1.03 .00 0.012 .615 .00

GLCMm-sum variance

at distance 1
0.005 .403 .05

GLCM range sum of square

at distance 1
-14.8 -.468 .00

GrKurtosis -0.12 -.326 .03

R5E5

Simple Elegant Like

Predictor Coeff. Beta p Coeff. Beta p Coeff. Beta p

Intercept 29.3 .00 -2.8 .00 -1.66 .05

GLCM correlation at distance 2 -3.93 -1.33 .00

GRNonzero

Skewness

Percentile 90% 0.029 1.093 .00 0.028 1.035 .00

GLCMm-sum variance at distance 1 -0.004 -.499 .01 -0.003 -.364 .05

GLCM range sum of square at distance 1 4.67 .245 .05 9.11 .528 .00 8.36 .467 .00

GrKurtosis -0.12 -.326 .03

R5E5 -1.37 -.848 .00

and the adjusted and predicted coefficients of determina-
tion were all statistically significant at p<.001. Normal
probability plots indicated that it is reasonable to assume
that the random errors for these models are drawn from

approximately normal distributions. In each case, there
was a strong linear relationship between the residuals
and the theoretical values from the standard normal dis-
tribution.
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Table 4. Results of ANOVA to determine whether the regression error and the error variance are independent for each

adjective.

Natural Rough Warm Simple Elegant Like

Reg Res Tot Reg Res Tot Reg Res Tot Reg Res Tot Reg Res Tot Reg Res Tot

Sum of

Sq
2.42 1.651 4.07 40.05 14.46 54.51 5.47 3.436 8.906 14.043 5.789 19.83 12.78 3.438 16.22 13.803 3.692 17.49

df 3 20 23 3 20 23 2 21 23 3 20 23 3 20 23 3 20 23

Mean

Sq.
.807 .083 13.35 .723 2.735 .164 4.681 .289 4.26 .172 4.601 .185

F 9.77 18.47 16.714 16.174 24.784 24.92

Sig. .000 .000 .000 .000 .000 .000

Table 5. The coefficient of determination for the 6 adjec-

tives.

N
at
u
ra
l

W
a
rm

E
le
g
a
n
t

R
o
u
g
h

S
im

p
le

L
ik
e

Standard error

of estimate (Se)
0.27 0.40 0.41 0.81 0.51 0.41

Multiple coefficient of

determination (R2)
0.59 0.61 0.79 0.74 0.71 0.79

R2Adjusted 0.58 0.60 0.78 0.72 0.70 0.78

R2 Predicted 0.41 0.52 0.70 0.63 0.63 0.68

Table 6. Nearest neighbour retrieval accuracy for features

and for responses to affective adjectives using grey rela-

tional analysis.

k = 1 k = 2 k = 3 k = 4 k =5

Features 98.5% 97.25% 96.67% 95.75% 94.8%

Table 7. Nearest neighbour retrieval accuracy for re-

sponses to affective adjectives using grey relational analy-

sis, Euclidean and city block distance

k = 1 k = 2 k = 3 k = 4 k =5

Grey relational analysis 87.5% 86.5% 83.33% 81.75% 79.1%

Euclidean distance 87.5% 85.0% 82.5% 80.0% 77.3%

City block distance 88.0% 85.75% 82.67% 80.0% 77.5%

The average retrieval accuracies of 200 query textures for
the selected features using grey relational analysis are
shown in Table 6, and retrieval accuracy against the re-
sponses to the affective adjectives are shown in Table 7.
In the second part of the experiments, forty eight new

surface textures were predicted based on predefined hu-
man touch feeling using the multiple regression model.
Table 8 shows that all adjectives have positive reduction

Table 8. The standard deviations of responses, average

scores, average differences between actual and predicted

responses, and RE values for each adjective.

N
at
u
ra
l

W
ar
m

E
le
g
an

t

R
o
u
g
h

S
im

p
le

L
ik
e

Ηȱofȱaverageȱresponsesȱ 0.48 0.34 0.77 1.13 0.87 0.77

Average score on a

seven point scale
3.6 4.2 3.8 4.3 2.8 4.0

Average difference

between predicted

and actual responses*

5.6% 13.6% 17.8% 18.1% 23.8% 14.2%

Reduction of Error 0.59 0.34 0.26 0.05 0.12 0.33

*expressed as a percentage of the 7 point scale

of error ratios. The number of participants was 32, and
the estimated effect size for each affective response was
between 0.3 to 0.55 at the p < .05 level for a statistical
power of 0.6 to 0.9. Table 9 shows some examples of the
predicted and average responses to some of the textures,
normalized to a score between -100 and 100 against each
adjective.

6 DISCUSSION

For connections between people�s responses to the tex-
tures against the pairs of words (Table 2), it was found
that the word rough has very strong negative correlations
with natural, warm, elegant and simple. Simple and
warm were found to have positive correlations. The cor-
relation between rough and warm is consistent with the
findings of Hollins et al. [9]. It can be concluded that a
surface perceived as rough, not natural, and not simple
could be perceived as not elegant.
The parallel analysis takes into account both the low

number of available samples as well as the variations in
the experimental data caused by requesting subjective
judgments from human subjects. Therefore it would be
dangerous to rely on single correlation values. On the
other hand, the frequency of every feature in the unique
feature set was counted, being part of a feature subset
that reached a correlation > 0.65 (Fig. 6). Furthermore, the
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Table 9. Examples of the predicted and average responses

to some of the textures, normalized to a score between -

100 and 100 against each adjective.

Adjective

Texture N
a
tu
ra
l

S
im
p
le

W
a
rm

R
o
u
g
h

E
le
g
a
n
t

L
ik
e

Predicted

properties
-4 -67 -30 87 -65 -44

Experimental

evaluation
-23 -66 -19 82 -52 -46

Predicted

properties
-18 7 -42 100 -84 -62

Experimental

evaluation
-38 -65 -23 86 -65 -48

Predicted

properties
-12 -15 -5 10 -16 2

Experimental

evaluation
-2 -10 15 6 -14 -12

affective responses to the six adjectives could be predicted
with a correlations greater than 0.65. Other research
found that there is a relationship between texture features
and human aesthetic judgments [19].
From these regression models, it was found that re-

sponses to the adjective natural have a negative correla-
tion with GLCM mean correlation, and a positive correla-
tion with Skewness. This means that for a texture with
large areas of similar intensities (not natural), the correla-
tion is much higher than for a texture with noisi-
er (random), uncorrelated intensities [75],[76]. In addi-
tion, nonzero gradient has a negative correlation with
responses to natural. Gr-nonzero is the percentage of
non-zero elements in the gradient matrix which implies
that the lower the Gr-nonzero value, the higher the varia-
tion between the texture�s boxels.
Warm has a negative correlation with GrKurtosis and

positive correlation with Percentile 90%. Both elegant
and like have a strong negative correlation with the
GLCM mean sum of variance and a positive correlation
with both Percentile 90% and GLCM range sum of
squares. Rough has a positive correlation with GLCM
mean of sum of variance and a negative correlation with
both Percentile 90% and GLCM range sum of squares. A
percentile gives the highest height of a boxel under which
a given percentage of the boxels in the texture are con-
tained [77]. The mean of sum variance is the variance of
the normalized boxel heights, whereas the range of sum
of squares is the difference between the largest and small-
est sum of square (which indicates how much the height
of a boxel differs from the mean) of all four directions.
Thus the higher the sum variance and percentile values,
the rougher the surface texture. Simple has a negative
relationship with the mean correlation of GLCM and
R5E5 while it has a positive correlation with the range of
sum of square. R5E5 is a measure of the ripples and edg-

es in the texture. The higher the R5E5 value, the more
edges and ripples are detected.
It is perhaps surprising that no significant correlations

were established between human touch feeling and the
features that were extracted from the textures using
Tamura and NGLDM, although these features were cal-
culated based on human visual perception such as
coarseness, directionality, roughness, and complexi-
ty [39], [40]. This contradiction could be evidence that
human vision and touch work in very different ways.
The results of the evaluation of the ability of the select-

ed texture features and human affective responses to re-
trieve the query texture showed that the features had very
good retrieval performance (Table 5) compared to the
results that were obtained by Kuo and Su [78]. These re-
sults help to demonstrate that the selected features are
robust enough to represent the texture. The query system
was able to assign the predefined affective responses to
the closest possible texture available in the database with
retrieval accuracies in the range 79.1% to 87.5%. Any
misclassification might be caused by the texture feeling
different on different parts of the texture. This range of
accuracy is acceptable for producing a surface topogra-
phy for a predefined human affective response.
To verify the ability of the regression model to predict

human touch affective responses for textures, 48 new tex-
tures were selected, manufactured and touched by hu-
mans. Features were extracted from the matrix represen-
tations of the new textures and human touch affective
responses were predicted using the regression model.
The predicted and measured values of the feeling of natu-
ral for the majority of plaques were close to each oth-
er (Table 7), and have the highest reduction of error (RE)
score. But the actual scores were close to the centre of the
scale, which might suggest the participants� indifference
or a lack of discrimination. Furthermore, the standard
deviations between the average scores for natural for each
plaque show little variation in the scores between
plaques. This could be explained by the plaques being
made from the same, hard, plastic material. This argu-
ment could be extended to explain the small standard
deviation in scores for warm. Although it has been sug-
gested that the assessment of warm depends on the sur-
faces� roughness, it might be that in this case most
plaques were similarly rough, and the surfaces� material
was the more pertinent property. For simple, the average
difference between measured and predicted scores was
quite high, but predictions for simple nevertheless
showed a positive RE value.
Table 7 shows that all adjectives have positive reduc-

tion error suggesting that the regression models have a
reasonable skill of prediction. It is concluded that these
regression models are able to predict human affective
responses based on touching the surface textures used in
this study.
It remains for further research to determine the relative

importance of the features identified, and to identify
physical interpretations of what they are measures of in
terms of touch. Nevertheless, the principal contribution
of the work is that it demonstrates a process, using ma-

2050

2075

2389
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chine vision methods and rapid prototyping techniques,
which can be used to design new tactile textures. In re-
search, the process can be used to create new tactile tex-
tures with pre-specified psychophysical properties, and
with variables independently controlled, for experiments
on the perception of touch. Experiments similar to those
carried out during the earliest research on vision, in
which textures were analyzed in the frequency domain,
for example, can now be carried out on touch. In indus-
try, the process can be used for improved product design.
Members of the machine vision and affective computing
communities are perhaps best placed, in collaboration
with psychologist and engineers, to exploit this process.

7 CONCLUSIONS

In this study, an attempt has been made to seek the im-
portant textural features corresponding to human touch
feeling. To achieve this, twenty four tactile textures were
manufactured and characterized using computational
features from the domain of computer vision. These tex-
tures were touched and rated against the adjectives
rough, natural, warm, simple, elegant, and like, by 107
participants. The top six features, according to the wrap-
per method, best suited to predicting the tactile responses
were Percentile 90%, GrKurtosis, GLCM mean correlation
at distance 2, GrNonzero, GLCM mean sum variance at
distance 1, and GLCM range sum of squares at distance 1.
The strongest feature was Percentile 90% because it has
correlation with four out of six adjectives. According to
these results, a regression model was built to predict the
surface texture�s topography that satisfies participants�
affective responses, and suitable textures were selected
from a database using K-nearest neighbors. The estimat-
ed human affective responses performed very well for
retrieving the closest textures to the specified affective
responses. Forty-eight new textures were selected, manu-
factured, and presented to 31 participants to rate them
against the six adjectives rough, natural, warm, simple,
elegant, and like. The predicted and the measured adjec-
tives were compared using error reduction and the re-
gression models were found to have a significant skill of
prediction. This work has demonstrated a process for
developing new tactile textures, which could be used to
design surface textures with predefined affective proper-
ties for new products, or for affective and psychophysical
studies.
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