4,962 research outputs found

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    Fast human behavior analysis for scene understanding

    Get PDF
    Human behavior analysis has become an active topic of great interest and relevance for a number of applications and areas of research. The research in recent years has been considerably driven by the growing level of criminal behavior in large urban areas and increase of terroristic actions. Also, accurate behavior studies have been applied to sports analysis systems and are emerging in healthcare. When compared to conventional action recognition used in security applications, human behavior analysis techniques designed for embedded applications should satisfy the following technical requirements: (1) Behavior analysis should provide scalable and robust results; (2) High-processing efficiency to achieve (near) real-time operation with low-cost hardware; (3) Extensibility for multiple-camera setup including 3-D modeling to facilitate human behavior understanding and description in various events. The key to our problem statement is that we intend to improve behavior analysis performance while preserving the efficiency of the designed techniques, to allow implementation in embedded environments. More specifically, we look into (1) fast multi-level algorithms incorporating specific domain knowledge, and (2) 3-D configuration techniques for overall enhanced performance. If possible, we explore the performance of the current behavior-analysis techniques for improving accuracy and scalability. To fulfill the above technical requirements and tackle the research problems, we propose a flexible behavior-analysis framework consisting of three processing-layers: (1) pixel-based processing (background modeling with pixel labeling), (2) object-based modeling (human detection, tracking and posture analysis), and (3) event-based analysis (semantic event understanding). In Chapter 3, we specifically contribute to the analysis of individual human behavior. A novel body representation is proposed for posture classification based on a silhouette feature. Only pure binary-shape information is used for posture classification without texture/color or any explicit body models. To this end, we have studied an efficient HV-PCA shape-based descriptor with temporal modeling, which achieves a posture-recognition accuracy rate of about 86% and outperforms other existing proposals. As our human motion scheme is efficient and achieves a fast performance (6-8 frames/second), it enables a fast surveillance system or further analysis of human behavior. In addition, a body-part detection approach is presented. The color and body ratio are combined to provide clues for human body detection and classification. The conventional assumption of up-right body posture is not required. Afterwards, we design and construct a specific framework for fast algorithms and apply them in two applications: tennis sports analysis and surveillance. Chapter 4 deals with tennis sports analysis and presents an automatic real-time system for multi-level analysis of tennis video sequences. First, we employ a 3-D camera model to bridge the pixel-level, object-level and scene-level of tennis sports analysis. Second, a weighted linear model combining the visual cues in the real-world domain is proposed to identify various events. The experimentally found event extraction rate of the system is about 90%. Also, audio signals are combined to enhance the scene analysis performance. The complete proposed application is efficient enough to obtain a real-time or near real-time performance (2-3 frames/second for 720×576 resolution, and 5-7 frames/second for 320×240 resolution, with a P-IV PC running at 3GHz). Chapter 5 addresses surveillance and presents a full real-time behavior-analysis framework, featuring layers at pixel, object, event and visualization level. More specifically, this framework captures the human motion, classifies its posture, infers the semantic event exploiting interaction modeling, and performs the 3-D scene reconstruction. We have introduced our system design based on a specific software architecture, by employing the well-known "4+1" view model. In addition, human behavior analysis algorithms are directly designed for real-time operation and embedded in an experimental runtime AV content-analysis architecture. This executable system is designed to be generic for multiple streaming applications with component-based architectures. To evaluate the performance, we have applied this networked system in a single-camera setup. The experimental platform operates with two Pentium Quadcore engines (2.33 GHz) and 4-GB memory. Performance evaluations have shown that this networked framework is efficient and achieves a fast performance (13-15 frames/second) for monocular video sequences. Moreover, a dual-camera setup is tested within the behavior-analysis framework. After automatic camera calibration is conducted, the 3-D reconstruction and communication among different cameras are achieved. The extra view in the multi-camera setup improves the human tracking and event detection in case of occlusion. This extension of multiple-view fusion improves the event-based semantic analysis by 8.3-16.7% in accuracy rate. The detailed studies of two experimental intelligent applications, i.e., tennis sports analysis and surveillance, have proven their value in several extensive tests in the framework of the European Candela and Cantata ITEA research programs, where our proposed system has demonstrated competitive performance with respect to accuracy and efficiency

    Wheelchair-based game design for older adults

    Get PDF
    Few leisure activities are accessible to institutionalized older adults using wheelchairs; in consequence, they experience lower levels of perceived health than able-bodied peers. Video games have been shown to be an engaging leisure activity for older adults. In our work, we address the design of wheelchair-accessible motion-based games. We present KINECTWheels, a toolkit designed to integrate wheelchair movements into motion-based games, and Cupcake Heaven, a wheelchair-based video game designed for older adults using wheelchairs. Results of two studies show that KINECTWheels can be applied to make motion-based games wheelchair-accessible, and that wheelchair-based games engage older adults. Through the application of the wheelchair as an enabling technology in play, our work has the potential of encouraging older adults to develop a positive relationship with their wheelchair. Copyright 2013 ACM

    CGAMES'2009

    Get PDF

    Facial and Bodily Expressions for Control and Adaptation of Games (ECAG 2008)

    Get PDF

    A preliminary study of micro-gestures:dataset collection and analysis with multi-modal dynamic networks

    Get PDF
    Abstract. Micro-gestures (MG) are gestures that people performed spontaneously during communication situations. A preliminary exploration of Micro-Gesture is made in this thesis. By collecting recorded sequences of body gestures in a spontaneous state during games, a MG dataset is built through Kinect V2. A novel term ‘micro-gesture’ is proposed by analyzing the properties of MG dataset. Implementations of two sets of neural network architectures are achieved for micro-gestures segmentation and recognition task, which are the DBN-HMM model and the 3DCNN-HMM model for skeleton data and RGB-D data respectively. We also explore a method for extracting neutral states used in the HMM structure by detecting the activity level of the gesture sequences. The method is simple to derive and implement, and proved to be effective. The DBN-HMM and 3DCNN-HMM architectures are evaluated on MG dataset and optimized for the properties of micro-gestures. Experimental results show that we are able to achieve micro-gesture segmentation and recognition with satisfied accuracy with these two models. The work we have done about the micro-gestures in this thesis also explores a new research path for gesture recognition. Therefore, we believe that our work could be widely used as a baseline for future research on micro-gestures

    A Framework for Gamification of Human Joint Remote Rehabilitation, Incorporating Non-Invasive Sensors

    Get PDF
    Patients who have suffered soft tissue injuries or undergone surgery often experience reduced muscle strength, flexibility, and pain in the affected area, which can interfere with daily activities. Rehabilitation exercises are crucial in reducing symptoms and returning patients to normal activities. This research presents a framework for human joint rehabilitation that enables clinicians to set engaging gamified rehabilitation tasks for their patients utilising non-invasive sensors and machine learning algorithms
    • 

    corecore