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Summary

Human behavior analysis has become an active topic of broad interest and
relevance for a number of research and application areas. The research in
recent years has been considerably driven by the growing level of criminal
behavior in large urban areas and threat of terroristic actions. Also, accurate
behavior studies have been applied to gaming, sports analysis systems and are
emerging in healthcare.

When compared to conventional action recognition used in security appli-
cations, human behavior analysis techniques designed for embedded applica-
tions should satisfy the following technical requirements: (1) behavior anal-
ysis should provide scalable and robust results; (2) high-processing efficiency
to achieve (near) real-time operation with low-cost hardware; (3) extensibility
for multiple-camera setup including 3-D modeling to facilitate human behavior
understanding and description in various events.

The key to our problem statement is that we intend to improve behavior
analysis performance while preserving the efficiency of the designed techniques,
to allow implementation in embedded environments. More specifically, we look
into (1) fast multi-level algorithms incorporating specific domain knowledge,
and (2) 3-D configuration techniques for overall enhanced performance. If pos-
sible, we explore the performance of the current behavior analysis techniques
for improving accuracy and scalability. To fulfill the above technical require-
ments and address the research questions, we propose a flexible behavior anal-
ysis framework consisting of three processing layers: (1) pixel-based processing
involving pixel-accurate background modeling, (2) object-based modeling for
human detection, tracking and posture analysis, and (3) event-based anal-
ysis aiming at semantic event understanding. In Chapter 3, we specifically
contribute to the analysis of individual human behavior. A novel body repre-
sentation is proposed for posture classification based on a silhouette feature.
Only pure binary-shape information is used for posture classification without
texture/color or any explicit body models. To this end, we have studied an effi-
cient HV-PCA shape-based descriptor with temporal modeling, which achieves
a posture-recognition accuracy rate of about 86% and outperforms other ex-
isting proposals. As our behavior analysis scheme is efficient and achieves a
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fast performance (6-8 frames/second), it enables a fast surveillance system or
further analysis of human behavior. In addition, a body-part detection ap-
proach is presented. The color and body ratio are combined to provide clues
for human body detection and classification, without using the conventional
assumption of up-right body posture.

Afterwards, we design a specific framework for fast algorithms and apply
this in two applications: tennis sports analysis and surveillance. Chapter 4
deals with tennis sports analysis and presents an automatic real-time system
for multi-level analysis of tennis video sequences. First, we employ a 3-D cam-
era model to create an accurate floor plane for semantics and tactics analysis.
Second, a weighted linear model combining the visual cues in the real-world
domain is proposed to identify various events. The experimentally found event
extraction rate of the system is about 90%. Also, audio signals are combined
to enhance the scene analysis performance. The complete proposed applica-
tion is efficient enough to obtain a (near) real-time performance (2-3 frames/s
for resolution of 720 × 576 pixels, and 5-7 frames/s for 320× 240 pixels, with
a P-IV PC running at 3 GHz).

Chapter 5 addresses surveillance and presents a full real-time behavior
analysis framework, featuring layers at pixel, object, event and visualization
level. More specifically, this framework captures the human motion, classi-
fies its posture, infers the semantic event exploiting interaction modeling, and
performs the 3-D scene reconstruction. The introduced system design is based
on a specific software architecture, by employing the well-known “4+1” view
model. In addition, human behavior analysis algorithms are directly designed
for real-time operation and embedded in an experimental runtime AV content
analysis architecture. This executable system is designed to be generic for mul-
tiple streaming applications with component-based architectures. To evaluate
the performance, we have applied this networked system in a single-camera
setup. The experimental platform operates with two Pentium Quadcore en-
gines (2.33 GHz) and 4-GB memory. Performance evaluations have shown that
this networked framework is efficient and achieves a fast performance (13-15
frames/s) for monocular video sequences. Moreover, a dual-camera setup is
tested within the behavior-analysis framework. After automatic camera cali-
bration is conducted, the 3-D reconstruction and communication among differ-
ent cameras are achieved. The extra view in the multi-camera setup improves
the human tracking and event detection in case of occlusion. This extension of
multiple-view fusion improves the event-based semantic analysis by 8.3-16.7%
in accuracy rate.

The detailed studies of two experimental intelligent applications, i.e., ten-
nis sports analysis and experimental robbery detection for surveillance, have
been tested and evaluated in the framework of the European Candela and
Cantata ITEA research programs. Both systems demonstrated competitive
performance with respect to accuracy and efficiency.
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Samenvatting

De analyse van menselijk gedrag is in toenemende mate relevant voor diverse
onderzoeksgebieden en toepassingen. Het onderzoek is gemotiveerd door de
groei van crimineel gedrag in grote stedelijke gebieden en de dreiging van
terroristische acties. Nauwkeurige gedragsstudies zijn tevens toegepast in sys-
temen voor computerspel- en sportanalyse en het gebied is groeiend in de
gezondheidszorg.

Vergeleken met conventionele actieherkenning in beveiligingssystemen, moe-
ten technieken voor menselijke gedragsanalyse voor ingebedde toepassingen
aan de volgende technische eisen voldoen: (1) de analyse moet schaalbaar en
robuust zijn, (2) hoge efficiëntie is nodig voor (bijna) real-time verwerking, (3)
uitbreidbaarheid voor multi-camera systemen inclusief 3-D modellering voor
de analyse en beschrijving van diverse gebeurtenissen.

De kern van de probleemstelling is dat we de gedragsanalyse willen ver-
beteren met behoud van efficiëntie van de ontworpen technieken, zodat im-
plementatie in ingebedde systemen is gegarandeerd. De specifieke onder-
zoeksaspecten zijn (1) snelle meervoudig gelaagde algoritmen gebruikmakend
van specifieke domeinkennis, en (2) 3-D configuratietechnieken voor algemene
verbetering van de analyse. Indien mogelijk evalueren we de prestaties van
de huidige technieken voor gedragsanalyse m.b.t. nauwkeurigheid en schaal-
baarheid. Rekening houdend met bovengenoemde technische eisen en de on-
derzoeksvragen, streven we naar een flexibel kader voor gedragsanalyse met
drie verwerkingslagen: (1) pixel-gebaseerde verwerking in achtergrondsmod-
ellering, (2) object-gebaseerde modellering voor detecteren, volgen en postu-
uranalyse van mensen, en (3) gebeurtenisanalyse voor interpretatie van de
semantische betekenis. In hoofdstuk 3 leveren we een specifieke bijdrage aan
de analyse van individueel menselijk gedrag. We presenteren een nieuw een-
voudig model van het menselijk lichaam voor postuurclassificatie, gebaseerd
op het silhouet. Voor deze postuurclassificatie gebruiken we alleen binaire
vorminformatie zonder textuur/kleur of enige expliciete lichaamsmodellen.
Het algoritme gebruikt een efficiënte vormgebaseerde HV-PCA methode met
tijdsmodellering, die met 86% nauwkeurigheid postuurherkenning uitvoert en
bestaande voorstellen overtreft. Het gerealiseerde raamwerk is efficiënt en
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bereikt hoge prestaties (6-8 beelden/s), zodat een real-time beveiligingssys-
teem of verdere gedragsanalyse mogelijk zijn. Tevens wordt een detectie van
lichaamsdelen gepresenteerd, waarbij de kleur en lichaamsverhouding als aan-
wijzingen zijn gecombineerd voor menselijke lichaamsdetectie en classificatie,
zonder de gebruikelijke aanname van een rechtopstaande lichaamshouding.

Hierna ontwerpen we een specifiek kader voor snelle algoritmen en passen
dit toe in twee toepassingen: tennissportanalyse en beveiliging. Hoofdstuk 4
behandelt de analyse van tennissport en beschrijft een automatisch real-time
systeem voor meerlaagse analyse van tennisvideo’s. Ten eerste gebruiken we
een 3-D cameramodel voor een modelgebaseerde analyse van spelgedrag en
tactiek. Ten tweede beschrijven we een gewogen lineair model dat de visuele
hints in het reële domein combineert om diverse gebeurtenissen te identificeren.
Het experimenteel gevonden percentage van de gebeurtenisextractie van het
systeem is ca. 90%. Tevens zijn geluidssignalen gebruikt om de prestaties van
de scène-analyse te verbeteren. De complete toepassing is efficiënt genoeg voor
(bijna) real-time verwerking (2-3 beelden/s met een resolutie van 720 × 576
pixels en 5-7 beelden/s met 320 × 240 pixels, met een P-IV PC op 3GHz).

Hoofdstuk 5 richt zich op beveiliging en presenteert een volledig real-time
systeem voor gedragsanalyse met verwerking op pixel-, object-, gebeurtenis- en
visualisatieniveau. Het systeem analyseert specifiek de menselijke beweging,
classificeert het postuur en leidt hieruit de semantische betekenis af, gebruik-
makend van interactiemodellering, en voert daarna de 3-D scènereconstrutie
uit. Het ontwerp is gebaseerd op een specifieke SW architectuur volgens het
bekende “4+1” model. Bovendien zijn de analyse-algoritmen direct ontwor-
pen voor real-time toepassing en ingebed in een experimentele AV-analyse
executiearchitectuur. De executie is generiek ontworpen voor verscheidene
streamingtoepassingen met component-gebaseerde architecturen. Het sys-
teem is geëvalueerd in een enkele-camera opstelling. Het experimentele plat-
form gebruikt twee P-Quadcore processoren (2.33 GHz) en 4-GB geheugen.
Experimenten hebben aangetoond dat dit systeem snel en efficiënt is (13-
15 beelden/seconde) voor monoculaire videosequenties. Tevens is een dual-
camera opstelling getest voor gedragsanalyse. Na de automatische camerakali-
bratie vindt de 3-D reconstructie en communicatie tussen de verschillende cam-
era’s plaats. Het extra gezichtspunt in de dual-camera opstelling verbetert het
volgen van mensen en de gebeurtenisdetectie vooral bij occlusies. Deze uitbrei-
ding en fusie van camerabeelden verhoogt de interpretatie van gebeurtenissen
en semantische analyse met 8.3-16.7% in nauwkeurigheid.

De twee experimentele toepassingen voor de analyse van tennissport en
experimentele overvaldetectie zijn gebruikt in verscheidene tests binnen de
Europese ITEA Candela en Cantata onderzoeksprogramma’s. Beide syste-
men hebben daarbij concurrerende prestaties laten zien met betrekking tot
nauwkeurigheid en efficiëntie.
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Chapter1
Introduction

1.1 Background

Human behavior analysis has become an active topic of great interest and
relevance to a number of applications and areas of research [36]. The research
in recent years has been considerably driven by the growing level of criminal
behavior in large urban areas and increase of terrorism actions. Besides this,
accurate behavior studies have also found their ways in sports analysis systems.
There are constant efforts in today’s society to better understand how and why
the human system responds to various stimuli, experiences and situations.
Interpreting and understanding the way people move, react, and interact over
time is the key to understanding and modeling the fundamentals of human
nature, the kinematics and capabilities of the human body.

To analyze human behavior, one must first capture it and register it. For
this task we may consider various input sources, which include visual, acoustic,
or even pressure-based sensory systems. In this thesis, we focus on the anal-
ysis of moving video signals, particularly on the motion of individual persons
and the motion-related interaction between persons. The research in this area
has been conducted from various fields of interests, not only e.g. computer
vision and computer graphics, but also the video surveillance and broadcast-
ing industry. Computer vision researchers, on one hand, are interested in
building object-based models and performing semantic analysis of real-world
scenes captured by optical sensors. Computer graphics researchers, on the
other hand, are looking forward to finding an attractive and cost-effective
way of replicating the movements of human beings or deformable objects for
computer-generated productions, such as games and movies.

1



2 Chapter 1. Introduction

Visual human-behavior analysis can be defined as the process of distin-
guishing people in a video scene, detecting and tracking those people over time,
and conducting the semantic analysis of the scene and the people’s behavior.
The objective of the process is to understand and describe the human behavior
based on video signals. The analysis can be extended to a three-dimensional
representation of the motion activity for subsequent processing, with or with-
out integrating actual scene knowledge. For example, for surveillance video,
motion analysis has the objective to find answers to typical questions like:
where are the people in the monitored scene and what are their activities?

In order to obtain the semantic interpretation of video content as described
above, we first usually pay attention to primitive image signals (e.g. by an-
alyzing pixel-based features). However, there is no straightforward approach
for obtaining high-level semantics from the above pixel-based analysis results.
In most cases, this gap is bridged by techniques addressed in an hierarchical
level (i.e. pixel-based, object-based, event-based level). Although tremendous
efforts have been spent in the past decades, a fast and automatic motion-
analysis system for generic human behavior still does not exist. For specific
applications, like professional sports analysis, models exist but they are pro-
prietary and meet specific requirements. The objective of our research is that
the analysis should be used in an embedded system and for a broad class of
behaviors, such as home-use and security purposes.

With respect to object-based modeling, human bodies are typical examples
of non-rigid objects, which means that their shapes and visibility of limbs have
a large variety and typical change continuously over time. Motion-analysis
techniques are typically used within pixel and object-based processing and
provide inputs for semantic analysis tasks. Therefore, it is highly required
to find a suitable model to represent object-level features, e.g. posture and
shape. Then these object-based modeling lays a solid background for further
semantic analysis.

In multi-person events, the semantic analysis is achieved by understanding
the interactions among people involved in the scene. The events significantly
rely on the temporal order and relationship of their position and/or posture
changes. Therefore, it is necessary to impose appropriate spatial and temporal
constraints and model them for each of the various two-person interaction
patterns.

Furthermore, human behavior analysis plays a key role in various activities
and the associated results can facilitate numerous applications. It is valuable
to present validation model in various case studies. Given the large variety
of applications, our aim is to study techniques for detection and classification
of human behavior, which are validated in two different applications: sports
analysis and surveillance.

In this thesis, we focus on the problem of behavior analysis and apply the
techniques while integrating specific domain knowledge. We especially look

2



1.2. Automatic human behavior analysis 3

into performance issues of individual behavior analysis and propose an effi-
cient scheme for semantic-level event analysis. It should be noted that this
thesis is focused on (near) real-time implementation of consumer/embedded
applications.

The remainder of this chapter is organized as follows. In Section 1.2, we
briefly introduce the behavior analysis problem and present a layering of the
required processing for human behavior analysis. We divide the behavior anal-
ysis into several layers, namely, pixel-based processing (background modeling),
object-based modeling (human detection, tracking and posture analysis) and
event-based analysis (event understanding). In Section 1.3, we discuss the
performance requirements for designing behavior analysis systems, specifically
for consumer/embedded use. Furthermore, we point out the performance de-
ficiencies of current motion analysis systems and introduce our suggestions for
improvements. In Section 1.4, we present the research objectives and specify
our major contributions in behavior analysis. Section 1.5 provides the thesis
structure and summarizes the chapters and their scientific background.

1.2 Automatic human behavior analysis

Overall, the growing interest in human behavior analysis is motivated by a
wide spectrum of applications involving home multimedia, automatic surveil-
lance, virtual reality, performance analysis, human computer interactions, and
computer-generated animation. A summary of the possible applications is
listed in Table 1.1.

Automatic surveillance provides the promise of detection, tracking and
semantic analysis of multiple subjects with intelligent detection of activities
of interest. Virtual reality applications meanwhile will be driven primarily
by integrating more enriched forms of interaction with other participants or
objects. They involve adding gestures, head pose and facial expressions as
cues. Understanding human computer interactions is the key in developing
next generation man-machine interfaces which are natural and intuitive to
use. Performance analysis is extremely useful in the content-based video in-
dexing and increasingly, in the field of movement analysis in sports and clinical
studies. Motion-analysis techniques enable very low bit-rate video compression
(e.g. MPEG-4) in object-based coding. Finally, computer generated anima-
tion, as we all know, is now a fast-growing and lucrative industry with its films
depicting ever greater realism.

A typical behavior-analysis system usually consists of several processing
steps, as depicted in Figure 1.1. These steps are: pixel-based processing,
object-based modeling and event-based analysis. Each processing stage forms
a layer in general behavior analysis and facilitates a wide range of applications.

3



4 Chapter 1. Introduction

Table 1.1: Applications of behavior-analysis techniques.

General domains Specific areas
Access control (Parking lots, supermarkets,
department stores, etc.)

Automatic surveillance Traffic control
Security alarm (Banks, vending machines,
ATMs, etc.)
Interactive virtual worlds

Virtual reality Games
Virtual studios (e.g. advertising)
Teleconferencing
Social interfaces

Human computer Sign-languages translation
interfaces Gesture-driven control

Signaling in highly noisy environments
(airports, factories)
Content-based indexing of sports video footage

Performance analysis Personal training in golf, tennis, etc.
Choreography of dance and ballet
Clinical studies of human motion

Object-based coding Very low bit-rate video compression
Computer-generated 3-D films production
animation

1. Pixel-based processing
In the step of pixel-based processing, the background modeling is implemented.
It is a crucial pre-processing step for visual behavior analysis from arbitrary
video-capturing environments. A central question in pixel-based processing is
how to optimally produce a background model from a dynamically changing
background.

2. Object-based modeling
This stage performs human detection, trajectory estimation, body-based mod-
eling (e.g. posture classification and skeleton-model generation). Each image
within the video covering an individual human body is segmented to extract
the ‘blobs’ representing foreground objects. These detected blobs are refined
afterwards to produce the human silhouette. Human detection locates human
areas from input video sequences. Every moving person in the scene is tracked
over time. Afterwards, a body-based analysis is conducted to classify individ-
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Camera

Pixel-based processing

Recognized

scene
Background modeling 

Object-based modeling Event-based analysis

Human detection, 

tracking and

posture analysis

Event understanding

Robbery detected!
raising hands pointing

Figure 1.1: Processing layers for a human behavior analysis system.

ual activity. In some cases, it is necessary to obtain more detailed descriptions
of these features, such as their appearances and contours.

3. Event-based analysis
Event-based analysis generates the final output of the complete behavior-
analysis system: the semantic meaning of the event and possible indicators
or parameters associated with this. In addition, interaction relationships are
modeled to infer a multiple-person event. This semantic analysis is thus re-
sponsible for the event recognition. A key problem in event-based analysis
is the broad variation of video sequences dealing with the same activity, as
compared to that from different activities. Therefore, it is important to choose
suitable classification technique that can distinguish the different events quite
well.

Human behavior analysis has come a long way and the knowledge fron-
tier of this domain has advanced tremendously. In some constrained cases,
the techniques facilitate the design of a suitable application. It is, however,
still very difficult to design a general and robust system which enables mul-
tiple real-world applications in real time. Approaches integrating different
techniques are mostly designed for particular applications and are not flexible
enough to be reused for other types of applications. Sub-domain problems
such as developing accurate segmentation, performing robust human detec-
tion, handling occlusion situation and analyzing semantic-level behavior, are
under continuous development.

In order to achieve a high-performance behavior-analysis system, each pro-
cessing step in the system has to be carefully designed to satisfy specific appli-
cation requirements. In the following section, we will detail such requirements.

5



6 Chapter 1. Introduction

1.3 Research requirements and problem statement

1.3.1 Research requirements

In this thesis, we focus on fast human behavior analysis for embedded applica-
tions. Motion analysis applied in consumer or surveillance applications offers
many benefits such as wide applicability. Human behavior analysis techniques
designed for embedded applications should satisfy the following technical re-
quirements:

1. The behavior analysis should provide scalable and robust results for sit-
uations with a limited set of people.
Scalability is employed to offer the user various analysis results, ranging from
a single alarm signal to a behavior description including movements, moving
distances, etc. For this reason, it is desirable that the analysis system provides
multiple-level results, which are extracted from the different processing layers,
i.e. the pixel-level, object-level and event-level analysis and classification level.
The processing levels or layers allow us to improve the processing quality in
one layer without changing the total framework, so that we can increase the
system robustness. We concentrate on the behavior of a limited set of people
because high numbers of people are virtually impossible to process in real-time
at present. More specifically, we have studied a surveillance application and
tennis sports analysis as cases with a limited amount of active people in the
scene.

2. High-processing efficiency achieving (near) real-time operation with low-
cost hardware.
For consumer and embedded applications, (near) real-time performance is gen-
erally required while using low-cost hardware. Therefore, the algorithms have
to be executed with limited processing resources and capacity. This means that
algorithms have to be efficient and their complexity is constrained. Real-time
execution is indispensable for surveillance applications, where the behavior
sometimes should lead to direct action. In sports applications, the system
should be fast enough to understand the proceeding of the game.

3. Extensibility for multiple-camera setup including 3-D modeling.
The use of multiple cameras is very helpful for a robust understanding of the
human behavior, because the human body can be observed from multiple di-
rections and occluding situations in one camera can be circumvented by using
another camera view. It is beyond doubt that this will improve the success
rate of the behavior interpretation. The use of multiple cameras allows to
reconstruct the scene in 3-D so that the position of objects can be computed
and a different view of actual events can be presented. More specifically, a
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1.4. Research contributions 7

2D-3D mapping enables a computation of location and speed of objects and
more detailed scene visualization. For example, these data can be used to cre-
ate a top view of the scene where the motion and position of objects is shown
for analysis purposes. This feature can significantly contribute to the scene
understanding, like after-crime analysis and health-care behavior analysis of
people. In this thesis, we intend to provide a scheme with integrated 2D-3D
mapping for a surveillance application.

1.3.2 Problem statement

In this thesis, we will discuss a number of new techniques for each processing
stage in experimental behavior analysis systems. To improve on the previously
discussed requirements with respect to robustness, scalability and efficiency,
we aim at the following research objectives:

1. How can we efficiently represent the human body in order to facilitate
real-time behavior analysis?

2. How should we efficiently use 3-D modeling for improved scene under-
standing?

3. How can we implement behavior analysis for a complete application and
facilitate real-time execution?

A brief summary of our problem statement is that we aim at improving
the performance of the current behavior-analysis techniques by using models
for the human body and the 3-D environment to facilitate efficient reasoning
and improve the semantic understanding. We pay special attention to the
efficiency of the designed techniques to allow implementation in embedded
environments.

1.4 Research contributions

A. Individual behavior analysis
Chapter 3 addresses the problem of individual behavior analysis of a single hu-
man, involving action recognition and body-part detection. The contributions
in this part are both on detecting body parts and efficient body representation.

1. Effective body silhouette representation. We propose a novel body rep-
resentation based on a silhouette feature. Only pure binary-shape in-
formation is used for posture classification without texture/color or any
explicit body models.

7



8 Chapter 1. Introduction

2. Effective body-part detection. To find the minimum amount of features
for detecting human body, we present a scheme with only three features
(body ratio, shape, color). This simple scheme is generic and integrated
into a fast framework for body-part detection, without the conventional
assumption of the human’s posture being upright.

B. Tennis sports analysis application
In Chapter 4, we propose an AV-based tennis sports analysis system, featur-
ing high-level scene analysis based on real-world visual or audio cues. The
automatic sports analysis system can generate metadata that can be used for
categorizing the sports video scenes and provide support for fast searching
and retrieval of specific sports video. The contributions are both in creating
a full application with human behavior analysis and in using audio signals to
facilitate the detection of specific events that are difficult to find with video
signals only.

• Design of a complete three-layer framework for AV-analysis of tennis
sports video. We present one of the first fully automatic and real-time
systems, which executes a joint combination of multi-level analysis of ten-
nis video sequences and 3-D camera modeling. In addition, a weighted
linear model combining the visual cues in the real-world domain is pro-
posed to identify events. Adaptive adjustment of weight factors for each
visual cue to different events ensures that our algorithm achieves a high
accuracy.

• Audio-based analysis of tennis sports video. We extend the sports anal-
ysis framework by using audio signals for specific events. We propose a
combination of a racket-hit detection and a parametric classifier driven
by heuristic rules to classify services, returns and scores. Furthermore,
we utilize a non-ball-tracking approach with the fusion of audio and
video cues to infer the ball path. The tennis-ball path is generated for
tennis-game tactics analysis without detection and tracking the ball it-
self.

C. Surveillance applications
In Chapter 5, we propose a flexible framework for event recognition for monoc-
ular video and multi-view video to study the influence of using more than one
camera. Human interaction modeling and 3-D configuration are conducted for
event understanding. The single camera or two-camera system is tested for
different case studies for a surveillance application, leading to the following
contributions.

• Dual-camera surveillance system for behavior analysis with 3-D visual-
ization and increased occlusion robustness. The 3-D camera calibration

8



1.5. Thesis outline and scientific background 9

is modified to accommodate for employing two cameras. The 3-D in-
formation of objects, like location and speed, is used to reconstruct the
scene for improved understanding, both in a simple top-view and in a
more advanced way using posture models. We exploit the occurrence of
occlusion and improve robustness by employing an alternative camera
signal.

• System validation for embedded real-time implementation. To enforce
and achieve processing efficiency, we have constructed an experimental
real-time video-analysis system based on analyzing events with one or
two cameras. This system was inserted in a component-based architec-
ture and successfully executed for live demonstrations in the European
ITEA project CANTATA. The whole system is executed on a single reg-
ular PC so that it is feasible for mapping into an embedded application.

1.5 Thesis outline and scientific background

Figure 1.2 briefly sketches the structure of the thesis. Besides the introductory
and conclusion chapters (Chapter 1 and Chapter 6), the thesis consists of
three parts in two different levels. At the level of fundamental techniques,
overview of visual human motion analysis and individual person analysis are
presented in Chapter 2 and Chapter 3, respectively. Afterwards, we present
two case studies discussing complete analysis applications, i.e. a tennis sports
application (Chapter 4) and a surveillance application (Chapter 5). Both
chapters employ 3-D modeling with one or two cameras. In the following, we
briefly summarize the content of each chapter.

Chapter 1 introduces the background of human motion analysis and pro-
vides an overview of the related research. We introduce a generic behavior-
analysis framework consisting of three processing layers: pixel, object and
event-based analysis. Research requirements and contributions are presented.
The chapter concludes with the thesis outline and scientific background of
each chapter.

Chapter 2 first presents an overview of the state-of-the-art behavior-analysis
techniques and analyze their merits and pitfalls. At the pixel-based processing
level, background modeling techniques are presented. For object-based mod-
eling, the existing approaches for human detection and tracking are discussed,
such as background subtraction and temporal differencing, and mean-shift
and model-based tracking. At the event level, typical techniques like Hidden
Markov Models are discussed together with behavior description using tem-
poral modeling. Finally, camera calibration techniques for analysis system are
presented.

Chapter 3 presents the techniques for motion analysis of individual hu-
mans. Firstly, we propose a novel body representation to achieve posture

9
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Figure 1.2: Outline of the thesis structure.

classification. Secondly, a novel body-part detection approach is presented.
The color, body ratio are combined to provide clues for further reasoning,
where the conventional assumption of up-right body posture is not required.
The posture-classification results were first published in IEEE Proc. Int. Conf.
Multimedia Modeling in 2007 [46] and later a full version was published in the
SPIE Proc. Multimedia Content Access [47]. The body-part detection results
were published in Springer Lecture Notes on Computer Science in 2008 [48].

Chapter 4 describes a complete case study that applies the behavior-
analysis techniques in a sports video analysis application. First, the state-of-
the-art work of sports video analysis is discussed. Afterwards, a video-based
system for tennis sports analysis is presented, with details on tennis court
calibration for 3-D camera calibration and background subtraction to find
the players. Semantic inference is then discussed, involving the most relevant
events for a tennis game. In the second half of the chapter, an alternative
analysis system is presented based on audio clues and integration of game
rules. Finally, the audio and visual clues are combined to facilitate tennis-
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ball inference and tactical analysis. Our video-based analysis results were first
published in the Proc. 26th Int. Symp. on Inform. and Comm. Theory in
the Benelux [28] in 2005, the Proc. Int. Conf. Internet and Multimedia Sys-
tems and Applications (IMSA) [32] in 2006, and the IEEE Proc. Int. Conf.
Consumer Electronics (ICCE) [29]. The complete system was published in the
IEEE Trans. Consumer Electronics [30] in 2006. The audio-based analysis re-
sults were presented in Proc. IMSA [44] in 2006. The results combining video
and audio clues were published in IEEE Proc. Benelux/DSP Valley Signal
Proc. Symp. [45] in 2006.

Chapter 5 presents a surveillance application from monocular and multi-
view video with our proposed behavior-analysis system using modified 3D
modeling. This chapter firstly discusses the requirements for embedded surveil-
lance applications. Then a new experimental real-time AV content-analysis
system is introduced in detail. Afterwards, our behavior-analysis framework
is proposed. Techniques for every step within the behavior-analysis framework
are presented. We also extend the surveillance system to multiple-camera set-
ting. Finally, the behavior-analysis framework is tested in several study cases
in our experiments. Targeting at a bank-robbery detection, an initial system
description was published in IEEE Proc. ICCE [50]. Later, the related results
were published in SPIE Proc.VCIP in 2009 [51]. The behavior-analysis work
addressed in this thesis was also embedded in a new experimental real-time AV
content-analysis system. Its complete description was published in the IEEE
Trans. Consumer Electronics [49] in 2009. The extension to multi-camera
setup was published in the Int. Journal of Digital Multimedia Broadcast-
ing [52] (special issue on video analysis, abstraction and retrieval: techniques
and applications).

In Chapter 6, we conclude the thesis and indicate some future directions.
The features and achievements involved in every chapter are summarized. In
addition, we identify several interesting aspects that need further investigation.

11
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Chapter2
Overview of Visual Analysis

of Human Behavior

2.1 Introduction

This chapter summarizes recent developments and existing techniques in the
field of visual analysis of human behavior. The purpose of video understanding
is that it should result in the recognition of events (either predefined by an
end-user or learned by a system) in a given application domain (e.g., human
activities). The involved processing starts with pixel analysis and ends with a
symbolic description of what is happening in the scene. To reach this objective,
several consecutive techniques have to be used, as the start of the processing
is very different from creating symbolic descriptions at the end.

A typical behavior-analysis system is depicted in Figure 1.1 and consists
of the following processing steps:

• Pixel-based processing, including background modeling, involving e.g.
pixel labeling into histograms;

• Object-based modeling, including human detection and tracking;

• Event-based analysis, including event recognition and behavior under-
standing.

Each processing stage forms a sub-problem in general behavior analysis and
facilitates a wide range of applications. The design of behavior-analysis system

13



14 Chapter 2. Overview of Visual Analysis of Human Behavior

has to satisfy system requirements, like operation speed, robustness, algorithm
efficiency, classification performance, etc. We briefly discuss a few aspects here.

The robustness of a human-behavior analysis system can be expressed as
the degree to which the system can maintain correct output decisions for large
input variations. For example, the human detection should be able to correctly
find humans when using unconstrained video inputs. The tracking part should
follow the human correctly even for complex behavior patterns or fast move-
ments. The final event recognition should give consistent results even when
the persons shows a large variability in gender, age, clothing, illumination
conditions, and so on.

The purpose of this chapter is to provide an overview of state-of-the-art
techniques of each of the three levels of processing. The remainder of this chap-
ter is organized as follows. First, the techniques for background modeling are
presented in Section 2.2. Afterwards, Section 2.3 and Section 2.4 discuss differ-
ent methods for human detection and human tracking, respectively. Tracking
from multiple cameras is also described. Section 2.5 introduces the semantic
analysis for behavior understanding and its description. Subsequently, we in-
troduce the 3-D camera calibration in Section 2.6, which provides important
information for the behavior-analysis system. Finally, Section 2.7 summarizes
this chapter.

2.2 Background modeling

Updating of background models is an essential technique for human detection.
The background models can be classified into 2-D models in the image plane
and 3-D models in real-world coordinates. Generally, 2-D models have been
explored for more applications due to their simplicity. If the camera locations
are fixed, the key issue is to automatically recover and update background pixel
sets from a moving video sequence. All elements in the captured scene back-
ground that have a time-varying nature complicate the robust performance of
the background modeling. Examples of such elements are illumination vari-
ations, shadows, moving branches, etc., which pose many difficulties for the
acquisition and updating of background pixels. Many algorithms have been
published to handle such situations, like temporal averaging of an image se-
quence by Friedman [19], adaptive Gaussian estimation by Zivkovic et al. [110],
and parameter estimation based on pixel processing, as proposed by Sun [95]
and Grimson [23], etc. For example, Ridder et al. [23] model each pixel value
with a Kalman Filter to compensate for illumination variations. Stauffer et
al. [92] present a theoretic framework for recovering and updating background
images, based on a process in which a mixed Gaussian model is used for each
pixel value and online estimation is applied to update background images, in
order to adapt to illumination fluctuations and disturbance in backgrounds.

14



2.2. Background modeling 15

Figure 2.1: An example of GMM-based background modeling. Each pixel is
modeled with a set of Gaussian distributions.

Toyama et al. [96] propose the Wallflower algorithm in which background
maintenance and background subtraction are carried out at three levels: the
pixel level, the region level and the frame level. Haritaoglu et al. [33] build
a statistical model by representing each pixel with three values: its minimum
and maximum intensity values, and the maximum intensity difference between
consecutive frames observed during the training period. These three values
are updated periodically. McKenna et al. [59] use an adaptive background
model with color and gradient information to reduce the influences of shadows
and unreliable color cues.

We have found that Gaussian Mixture Models (GMM) facilitate a fast
operation while keeping satisfying accuracy. In addition, its memory require-
ments are feasible [92]. When using the GMM method, the following param-
eters of each Gaussian component need to be learned dynamically: the mean
µk, variance σ2

k, weight wk of the k-th Gaussian, and the number of Gaussians
K involved in the modeling. Then the Gaussian mixture distribution can be
written as a linear superposition of Gaussians in the form

p(x) =
K∑

k=1

wkN(x|µk, σ
2
k). (2.1)

An example of a GMM model (K = 3) is illustrated in Figure 2.1. Each
pixel is modeled as a mixture of Gaussian distributions and any pixel intensity
value that does not fit into one of the modeled Gaussian distributions is marked
as a foreground pixel later. In this thesis, we adopt the GMM concept to model
the background in a surveillance application (Chapter 5).

When a moving camera is used (e.g. sports video analysis in Chapter 4),

15



16 Chapter 2. Overview of Visual Analysis of Human Behavior

(a) (b) (c) (d)

Figure 2.2: Example of motion segmentation based on background subtrac-
tion: (a) background image; (b) current frame captured by the
camera; (c) result of foreground object after performing per-pixel
background subtraction; (d) silhouette image for the foreground
object.

the system has to align the input frame with the corresponding view of the
background image prior to carrying out background subtraction (discussed in
the next section). The motion parameters are computed directly relative to
the background image, instead of first computing interframe motion. These
motion parameters are subsequently used in the background subtraction al-
gorithm to obtain motion-compensated camera views from the background
image. Due to the uniform color for all tennis courts, a Gaussian model is
sufficient to model the background within the court area. Because of its sim-
plicity and suitability for real-time operation, this algorithm is adopted in our
application of sports video analysis (Chapter 4).

2.3 Human detection

Human detection is aiming at segmenting the human body from images or
video sequences. Human detection is an initial step for human tracking and
behavior understanding. Human detection is generally composed of two steps:
motion segmentation and object classification, which will be discussed below.

2.3.1 Motion segmentation

Motion segmentation in image sequences targets at detecting regions corre-
sponding to moving objects such as vehicles and humans. Detecting moving
regions facilitates later processing steps such as tracking and behavior analy-
sis. At present, most segmentation methods use spatial, temporal information
or combination of both types of information in the image sequence. Several
conventional approaches for motion segmentation are outlined here.

16
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• Background subtraction
Background subtraction is a popular method for motion segmentation,
especially in the case of a relatively static background. The fundamen-
tal idea is that moving regions are detected in an image by taking the
pixel-by-pixel difference between the current frame Fi(x, y) and the back-
ground image B(x, y). The general processing steps of background sub-
traction are summarized as follows.

1. Obtain the segmentation mask M from the pixels of frame Fi when
the pixels satisfy

|Fi(x, y)−B(x, y)| > Th, (2.2)

where (x, y) denotes the actual pixel in the current frame and Th

is the threshold for differentiating the foreground and background
pixels. Parameter Th can be a fixed value or adaptive to a particular
condition.

2. Find the largest n blobs B = (b1, b2, ..., bn) in the segmentation
mask M .

3. Perform the dilate/erode operations to refine the n blobs by filling
the holes for each blob bi, i = 1...n.

Figure 2.2 illustrates an example of motion segmentation based on back-
ground subtraction. Background subtraction is simple to implement,
but sensitive to changes in dynamic scenes, e.g. light changes, moving
leaves, etc. Therefore, the result highly depends on a good background
model to reduce the influence of scene-background changes [60, 110].

• Temporal differencing
Temporal differencing computes the pixel-wise differences between two
or three consecutive frames in an image sequence to extract moving
regions. Moving regions are detected in an image by taking the difference
between the current frame Fi(x, y) and the previous frame Fi−1(x, y) in
a pixel-by-pixel processing:

|Fi(x, y)− Fi−1(x, y)| > Th. (2.3)

Temporal differencing adapts to dynamic scenes, but it does not guar-
antee to extract all the relevant pixels, e.g., there may be holes left
inside moving regions after performing temporal differencing. There-
fore, a post-processing step is required to improve the performance. For
example, moving targets are detected in video streams employing tem-
poral differencing [56]. After the absolute difference between the current
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and the previous frame is obtained, a threshold function is used to deter-
mine changes. By using a connected component analysis, the extracted
moving sections are clustered into motion regions. This approach only
works in particular conditions of the objects’ speed and frame rate and
is very sensitive to the threshold Th.

• Optical flow
Motion segmentation based on optical flow uses characteristics of flow
vectors over time to detect moving regions in a video sequence. It tries
to calculate the motion between two image frames which are taken at
times t and t + δt at every pixel position. Suppose a pixel at position
(x, y) with intensity It(x, y) moves by δx, δy at time interval δt between
two image frames, the following translation assumption is applied:

It(x, y) = It+δt(x + δx, y + δy). (2.4)

Optical-flow-based methods can be used to detect independently moving
objects, even in the presence of camera motion. For instance, the dis-
placement vector field is computed in [61] to initialize a contour-based
tracking algorithm, called active rays, for the extraction of articulated
objects. The results are used for gait analysis. However, most flow com-
putation methods are very sensitive to noise. A more detailed discussion
of optical flow can be found in Barron’s work [2].

• Hybrid methods
In addition to the basic methods described above, several other hybrid
methods for motion segmentation have been reported. Using the ex-
tended Expectation Maximization (EM) algorithm, Friedman et al. [19]
implement a mixed Gaussian classification model for each pixel. This
model classifies the pixel values into three separate predetermined dis-
tributions corresponding to background, foreground and shadow. It also
updates the mixed component automatically for each class according to
the likelihood of membership. Hence, slowly moving objects are handled
perfectly, while shadows are eliminated much more effectively. The au-
thors of [11] have successfully developed a hybrid algorithm for motion
segmentation by combining an adaptive background subtraction algo-
rithm with a three-frame differencing technique.

Background subtraction is a straightforward approach to separate fore-
ground objects from the scene. The obtained foreground objects maybe further
analyze with respect to their features. For example, the silhouette feature is
later used in this thesis to discriminate human behavior. The intrinsic simplic-
ity of background subtraction is attractive for embedded system applications.
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In our investigated cases, the obtained background model is generally based on
the assumptions of limited illumination changes and stable scene background.

2.3.2 Object classification

Various moving regions in the video sequence correspond to different moving
objects in actual scenes. For instance, the road-traffic video sequences include
humans, vehicles and other moving objects, such as flying birds and moving
clouds, etc. Prior to tracking of human objects and analysis of their behavior,
it is essential to correctly classify moving objects. Object classification is a
standard pattern-recognition task. Currently, there are three major types of
existing approaches for object classification: shape-based, motion-based and
template-based classification, which will be outlined below.

A. Shape-based classification
Different shape descriptions of motion regions such as contours, bounding
boxes, silhouettes and blobs are utilized for classifying moving objects. For
instance, Collins [11] utilizes various image-blob features, such as ranging from
simple metrics like area, aspect ratio of the bounding box up to dispersedness
in meaning. Moving-object blobs are classified into four classes (single human,
vehicles, human groups and clutter) by using a viewpoint-specific three-layer
neural network classifier. Singh et al. [90] derive directionality-based feature
vectors from the silhouette contours and use the distinct data distribution of
directional vectors for clustering and recognition. Temporal consistency con-
straints are considered in order to make classification results more precise.
Lao et al. [51] use simple shape parameters of human silhouette patterns to
distinguish humans from other moving objects.

B. Motion-based classification
The articulated motion from a non-rigid human body generally demonstrates
one or more periodic patterns. This motion property is a strong cue for clas-
sifying moving objects. For example, the self-similarity measure described
in [67] is periodic and a time-frequency analysis is applied to detect and char-
acterize the periodic motion. Therefore, tracking and classification of moving
objects are conducted using periodicity. In Lipton’s work [56], residual flow is
used to analyze rigidity and periodicity of moving objects. It is expected that
rigid objects present little residual flow, whereas a non-rigid moving object
such as a human being has a higher average residual flow and even shows a
periodic component. Based on the above useful cues, human motion is distin-
guished from motion of other objects, such as vehicles.

C. Template-based classification
In template-matching techniques [46], the presence/location of humans is de-
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20 Chapter 2. Overview of Visual Analysis of Human Behavior

termined, using predefined and manually encoded human templates represent-
ing specific human characteristics. Templates are usually parameterized by a
specific function describing certain human features such as edges, contours or
luminosity/color information. These templates are later compared with input
images and regions of the image that are similar to the predefined template are
classified as human. The main advantage of template-matching-based tech-
niques is the fact that they are simple and easy to implement. However, most
of the methods need to be initialized based on existing data in order to be
effective. In addition, these methods are relatively restrictive and even de-
formable or flexible templates only allow for a small degree of variability.

In our investigated applications with human behavior analysis in this the-
sis, the shape information is important for further analysis (e.g. posture clas-
sification). Therefore, the motion-based method discussed in this section is
not suitable due to its limitation of producing accurate human silhouettes.
Also, it is complicated to enumerate templates for all possible poses and rota-
tions. This constraint is similar to the one in knowledge-based face-recognition
methods, where it is difficult to enumerate rules for all possible face poses and
rotations. For these reasons, we concentrate on shape-based methods within
this thesis and discuss their detailed implementation in Chapter 3.

2.4 Human tracking

Human tracking is the process of obtaining the trajectories of humans from a
video sequence. Most existing human tracking techniques can be divided into
the following approaches.

2.4.1 Region-based tracking

Region-based tracking is perhaps the most popular technique for performing
the matching of objects over time. Most of these techniques rely on a Kalman
filter (or equivalent) to perform the association between objects. In [13], the
authors propose an efficient implementation of a multiple hypotheses tracker.
They maintain all information about the associations between the currently
tracked objects and the new observations until they are able to choose the cor-
rect associations (e.g. incoherent associations are removed). Each hypothesis
(i.e. possible association) is processed with a Kalman filter. In [78], a Kalman
filter is also used to effectively track interacting objects in a scene. However,
this technique suffers from a problem of object initialization. In addition,
based on the assumption of the Gaussian distribution, this technique is not
conceived to handle multi-modal distributions of the state parameters. For in-
stance, this technique is inadequate in dealing with the simultaneous presence
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Table 2.1: Key steps of the algorithm for mean-shift tracking.

Given: the target model {q̂u}u=1...m and its location ŷ0 in the previous frame.
1. Initialize the location of the target in the current frame with ŷ0, compute
{p̂u(ŷ0)}u=1...m, and evaluate the Bhattacharya coefficient

ρ[p̂(ŷo), q̂] =
m∑

n=1

√
p̂(ŷo)q̂u. (2.5)

2. Derive the weights {wi}i=1...nh
.

3. Find the updated location of the target candidate in the succeeding frame.
4. Compute p̂u(ŷ1)u=1...m, and evaluate the Bhattacharya coefficient

ρ[p̂(ŷ1), q̂] =
m∑

u=1

√
p̂u(ŷ1)q̂u. (2.6)

5. While ρ[p̂(ŷ1), q̂] < ρ[p̂(ŷ0), q̂]
Do ŷ1 ←

1

2
(ŷ0 + ŷ1)

Evaluate ρ[p̂(ŷ1), q̂].
6. If ‖ŷ1 − ŷ0‖ < ǫ, then Stop iterating,

Otherwise Set ŷ0 ← ŷ1 and go to Step 2.

of occlusions and a cluttered background resembling the tracked objects. An-
other solution consists of using a particle filter or more generally, probabilistic
techniques [22]. For instance, Nummiaro et al.[69] use a color particle filter
to track objects. The objects are modeled by a weighted histogram based on
both the color and the shape of the objects. Then the particle filter compares
the histograms of objects of frame t− 1 and t at the sample positions in order
to decide whether objects match or not. Summarizing, the region-based tech-
nique is robust to partial occlusions, is also rotation and scale invariant and
computed efficiently. However, a limitation is that the tracker has difficulties
to handle significant changes in object appearance.

Comaniciu et al. [12] use a weighted histogram computed from a circular
region to represent the object. Instead of performing a full search for locat-
ing the object, they use the mean-shift algorithm. The mean-shift tracker
maximizes the appearance similarity iteratively by comparing the histograms
of the object, and the window around the hypothesized object location. His-
togram similarity is defined in terms of the Bhattacharya coefficient, ρ[p̂(ŷ), q̂].
At each iteration, the mean-shift vector is computed such that the histogram
similarity is increased. This process is repeated until convergence is achieved,
which usually takes five to six iterations. For histogram generation, the au-
thors use a weighting scheme defined by a spatial kernel, which assigns higher
weights to the pixels closer to the object center. An outline of the mean-shift
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Figure 2.3: Diagram for top-down model-based human tracking processing.

tracking algorithm is presented in Table 2.1.
In our implementation, we intend to utilize the mean-shift tracking in our

embedded application (e.g. surveillance application in Chapter 5) for two
reasons:

• It has fast processing speed which facilitates real-time system operations;

• It can provide acceptable results (especially when the occlusion problem
is not severe) with limited memory consumption, which satisfies the
requirement of low-cost hardware design.

2.4.2 Model-based tracking

Compared to other methods, model-based tracking algorithms are often con-
sidered as sophisticated techniques which are difficult to implement. They also
have some disadvantages, such as the necessity of constructing the models and
a high computational cost. However, model-based tracking approaches usually
perform better in complex situations (e.g. clutter, occlusions) [65, 75]. The
general overview of involved steps in model-based human tracking is presented
in Figure 2.3. During the tracking, the current state is predicted based on the
motion model and the tracking result from the previous frame. The human
model is projected into the image. Then the matching between features of
the projected model and those of the current frame is performed to produce
a matching function. Afterwards, the constraints for dynamic movements are
modeled and integrated. The matching function is minimized by optimizing
and/or correcting the predicted state. Finally, the state of human motion is
obtained in the current frame.

For model-based approaches to capture human motion, the representation
of the human body itself has steadily evolved from simple stick diagrams to
2-D contours and to 3-D volumes, as models become more complex. Some
examples of different human-body models are shown in Figure 2.4. The models
are briefly introduced in the following paragraphs.
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(a) (b) (c)

Figure 2.4: Examples of human-body models: (a) Stick figure model; (b) 2-D
contour model; (3) 3-D volumetric model.

• Stick figure models
The stick figure representation made of line segments is based on the
observation that human motion is essentially the movement of the sup-
porting bone structure. For example, Lee and Chen [53] use a model
including 17 line segments and 14 joints to represent the features of the
human head, torso, hip, arms and legs. It is assumed that the lengths of
all rigid segments and the relative location of the feature points on the
head are known in advance.

• 2-D contour models
The use of 2-D contours is directly associated with the projection of the
human figure in images. For instance, Leung and Yang [54] apply a 2-D
ribbon model to recognize poses of a human performing gymnastic move-
ment. A moving edge detection technique is successfully used to generate
a complete outline of the moving body. The technique significantly relies
on image differencing and coincidence-edge accumulation.

• 3-D volumetric models
The above-mentioned 2-D models are only useful for specific camera
viewing angles. Therefore, many researchers try to depict the geometric
structure of the human body in more detail by exploring some 3-D vol-
umetric models. In [105], the global motion of objects is tracked in 3-D
using ellipsoid shape models. Robust results are reported on challenging
sequences containing occlusions, shadows and reflections. However, the
usage of 3-D models is restricted to impractical assumptions of simplicity
regardless of the body kinematics constraints, and they have high com-
putational complexity as well. In our investigated case of the surveillance
application, volumetric models (highly realistic) are used to reconstruct
the scene and provide the free-view representation of the humans in order
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24 Chapter 2. Overview of Visual Analysis of Human Behavior

to enhance the event understanding.

2.4.3 Other tracking approaches

A. Feature-based tracking
The tracking of a set of features is another alternative solution for object track-
ing [21, 71, 62]. Typical features are centroids, perimeters, areas, color and
appearance. For instance, Shi et al. [88] first compute the covariance matrix in
a small image window. This window is shifted over the entire image in raster
order. Afterwards, two eigenvectors corresponding to the two maximum eigen-
values of the covariance matrix are maintained. These eigenvectors define the
directions of the maximum gradient and are thus used to detect corners (or
T shapes) in the image. Compared to a region-based approach, feature-based
tracking is robust to partial occlusions and can also be used to track crowds.
However, its computational cost is the main disadvantage. In addition, the
extraction of features is not robust, which often leads to tracking errors.

B. Active-contour based tracking
Active-contour based tracking algorithms track objects by representing their
outlines as bounding contours and updating these contours dynamically in
successive frames. These algorithms aim at directly extracting shapes of sub-
jects and provide more effective descriptions of objects than region-based al-
gorithms. For example, Peterfreund [74] explores an active-contour model,
based on a Kalman filter for tracking non-rigid moving objects such as people
in spatio-velocity space. In contrast with region-based tracking algorithms,
active-contour based algorithms describe objects more effectively and reduce
computational complexity. Even when disturbed by partial occlusions, these
algorithms may track objects continuously. However, the tracking precision is
limited at the contour level. Also, the recovery of the 3-D pose of an object
from its contour is a demanding problem.

2.5 Event understanding and behavior description

For event understanding, it is required that we can distinguish the primary
objects in the scene and classify what they are doing. The event understanding
can be described with scenarios in which there is interaction between objects
and the semantics are derived for individual behavior. The individual behavior
semantics can be based on specific descriptors (e.g., position, speed, posture,
trajectory and interaction). An event (e.g., abandoned bag, forbidden zone
access, bank robbery) is either learned or predefined by an end-user. An event
can be characterized by the involved objects, the individual behavior of ob-
jects, the interaction between objects, the initial time of the event recognition
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and its duration. Event recognition is performed globally for the scene, cap-
tured by single or multiple cameras. Advanced event-based analysis should be
able to not only handle the uncertainty associated to low-level features in order
to maintain a high accuracy of event recognition, but also recognize complex
events involving particular descriptors, such as the posture of an object.

2.5.1 Event understanding

Event-based analysis involves the detection and recognition of human behavior
patterns, and the creation of semantic-level descriptions of human actions and
interactions. In this thesis, understanding of human behavior is regarded as
the classification of time-varying feature data. The process steps involved in
the understanding are to learn the reference behavior from training samples,
and then to devise both training and matching methods for coping effectively
with small variations of the feature data within each class of behavior pat-
terns. However, understanding human behavior is a complex and challenging
task due to ambiguity caused by non-rigid body articulation, loose clothing
and occlusion situations. The major existing methods for event understanding
are now outlined.

A. Constraint-based approach
The constraint-based approaches recognize events in videos based on pre-
defined event models in the form of templates, rules or constraints. For ex-
ample, the use of templates has the advantage of conceptual simplicity and
robust performance. They aim at matching an unknown test sequence with
a group of labeled and pre-defined sequences representing typical human be-
havior. A constraint-based approach has been used recently in the matching
of human movement patterns by Mori et al. [68]. In addition, Bobick et al. [5]
use Dynamic Time Warping (DTW), a template-based dynamic programming
matching technique, to recognize human gestures. Even if the time scale be-
tween a test sequence and a reference sequence is inconsistent, DTW can still
successfully establish matching, as long as the time-ordering constraints are
satisfied. In our recent work [52], we utilize the rule-based concept to detect a
bank robbery. Both the individual person’s spatial information and temporal
interaction are considered in order to improve the detection accuracy of the
system.

The constraint-based approach is relatively easy to implement with high
efficiency. It is therefore generally applied in developing real-time systems [30].
Typically, a strong expert knowledge in a particular scenario is highly required
for the generation of appropriate rules and the corresponding algorithm de-
sign. Therefore, a constraint-based approach cannot be tuned for a particular
application in a straightforward way.
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Figure 2.5: An HMM model tied across time-slices. The parameters (nodes
with outgoing dotted arcs) are explicitly represented.

B. Learning-based approach
Learning-based approaches usually characterize the statistical description of
human motion through a learning process. This approach is relatively robust
to noise and invariant to changes in time intervals from input image sequences.
Statistical techniques are applied to automatically learn event models based
on training data [109]. The Dynamic Bayesian Network (DBN) is generally
adopted to represent a statistical model. Then both certain events and behav-
iors are distinguished by analyzing time sequences and their statistical models.
For example, Remagnino et al. [84] describe interactions between objects us-
ing a two-layer Bayesian network. The method relies on pixel-level recognition
supported by motion analysis, and involves high-level concepts for events and
scenarios. Finally, the relationships between these concepts are modeled and
concepts are associated with each other.

Hidden Markov Models (HMMs) are widely used as an important learning-
based approach [70, 7]. An example of an HMM model is visualized in Fig-
ure 2.5. Suppose an HMM has m states S = {s1, s2, ..., sm} and n observa-
tion symbols O = {o1, o2, ..., on}. The HMM is fully specified by the triplet
λ = {A,B,π}. Let the state at time step t be St, then the m × m-state
transition matrix A can be defined by

A = {aij |aij = P (St+1 = sj|St = si)}, 1 ≤ i, j ≤ m. (2.7)

The m× n-state output probability matrix B is defined as

B = {bj(k)|bj(k) = P (ok|St = sj)}, 1 ≤ j ≤ m, 1 ≤ k ≤ n. (2.8)

The initial state distribution vector π is specified as

π = {πi|πi = P (S1 = si)}, 1 ≤ i ≤ m. (2.9)
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Figure 2.6: Example of using an HMM model to recognize the human behav-
ior: three classes are defined to determine the person’s trajectory.

For event classification, an HMM model is assigned to each of the prede-
fined classes for the observation. Each HMM is trained based on the Baum-
Welch algorithm [81]. The learning process can calculate all parameters λ
of the model using the training data. Given an observation sequence Obv =
{Obv1, Obv2, ..., Obvq}, we can calculate P (Obv|λp), which is the probability
of the observation sequence Obv given model p with λp. After calculating
the output probability of each model, the model with maximum probability
is chosen as the recognition result. We can therefore recognize the class Cmax

as being the one that is represented by the maximum probable model among
K types:

Cmax = arg max
p

P (Obv|λp), 1 ≤ p ≤ K. (2.10)

Let us now provide an example to explain how to use HMM models to
classify different events. Three individual HMM models are trained for rec-
ognizing three different types of human behavior, e.g. from which door the
person enters the monitoring scene (see Figure 2.6). The observation feature
vector is formed by [x1, y1, v1]

T , where x1, y1, v1 are the person’s x-coordinate,
y-coordinate and movement speed v1 in the image, respectively. Then the
training process can calculate all parameters of the model using the training
trajectory data. When applying the model to perform behavior analysis, we
can calculate the likelihood of the given trajectory that is generated from the
HMM model. In this example, the corresponding HMM parameters are: m=8,
n=3, and K=3. Finally, the trajectory direction is classified into one of the
following types: from left, from right, from above.

Summarizing, HMMs allow a more sophisticated data analysis with spatio-
temporal variability. During the training stage, the number of states of an
HMM is specified, and the corresponding state transition and output proba-
bilities are optimized. Therefore, the generated symbols can correspond to the
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28 Chapter 2. Overview of Visual Analysis of Human Behavior

observed image features of the examples within a specific movement class. At
the matching stage, the probability with which a particular HMM generates
the test symbol sequence, corresponding to the observed image features, is
computed. In our implementation, an extended model of HMM, called Con-
tinuous Hidden Markov Model (CHMM) with left-right topology is adopted
as an effective posture classifier (see Chapter 3).

As an alternative learning-based approach, neural network-based systems
are commonly applied to behavior understanding for unconstrained object
motions. Johnson et al. [40] describe the movement of an object in terms of
a sequence of flow vectors, each of which consists of individual components
representing the positions and velocities of the object in the image plane.
Afterwards, a statistical model of object trajectories is formed. Sumpter et
al. [94] introduce a new neural network structure which has a smaller scale
and faster learning speed, and thereby results in a more effective prediction of
object behavior.

The syntactic-based (grammatical) approach has also been used for visual
behavior recognition. Brand [6] uses a simple non-probabilistic grammar to
recognize sequences of discrete behavior. Ivanov et al. [37] describe a prob-
abilistic syntactic approach to the detection and recognition of temporally
extended behavior and interactions between different agents.

The above learning-based methods either model single-person events, or
require a-priori knowledge about the number of people involved in the events.
Variation in data may require complete re-training, so as to modify the model
structure and parameters to accommodate those variations. Furthermore,
there is no straight-forward method of expanding the domain to other events,
once training has been completed. If more events are added to the current
domain, or if we want to model events in a new domain, the existing models
have to be re-trained, using the new data and the model structure has to be
re-defined for the new events.

C. Clustering-based approach
Clustering-based approaches do not explicitly model events but utilize clus-
tering techniques for event detection. Therefore, a large amount of available
training data is important for robust performance. However, this condition
sometimes restricts its applicability to embedded systems if only limited train-
ing data is available. The clustering-based methods of event detection include
spatio-temporal derivatives [104] and co-embedding prototypes [107]. Both
methods find event segments by partitioning a spectral graph of the weight
matrix. The weight matrix is estimated by calculating a heuristic measure of
similarity between video segments. These methods assume maximum length
of an event and are restricted to a single person or a single threaded event
detection. Rao et al. [82] propose human action recognition using spatio-
temporal curvatures of 2-D trajectories. Their method initiates without any
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Table 2.2: Human action description and corresponding vocabulary sets.

Set notation for human action:
The universe set of human action: U

U={action|action=<agent-motion-target>}

agent set: S
S={si|si=various body parts as agent term}

={head, torso, arm, leg}

motion set: V
V ={vj |vj=movement of the body part}

={stay, move left, move right, raise, lower, stretch, withdraw}

target set: O
O={ok|ok=the other person’s body parts}

={head, torso, left arm, left leg, right arm, right leg}

event model and forms clusters of similar events based on their spatio-temporal
curvatures. Their method is also restricted to single person event detection,
but it makes no assumptions about the length of an event, and the event rep-
resentation which is based on spatio-temporal curvature is also view-invariant.

In our application studied in this thesis, domain knowledge is highly required
for the design of real-time embedded system implementation of those applica-
tions. For example, the tennis-game rules provide strong constraints in tennis
sports analysis. They can be effectively modeled and the training step is not
required at all. Therefore, a constraint-based approach is an effective solu-
tion at the event-based level for this application. However, in the object-level
modeling, a learning-based approach is generally adopted as it can produce a
robust classification result. For example, the HMM model proves to be a use-
ful tool to classify posture types, which will be presented in detail in Chapter 3.

2.5.2 Description of behavior

It is important to describe human behavior in a natural language, which is
suitable for many applications, e.g. video surveillance. For example, Ryoo et
al. [85] develop a novel representation scheme, employing context-free gram-
mar, which uses natural language to describe visual scenes.

Statistical models are commonly used for behavior description and they
interpret certain events and behavior by analysis of time sequences and sta-
tistical modeling. For example, Remagnino et al. [84] describe interactions
between objects using a two-layer agent-based Bayesian network. These meth-
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Figure 2.7: Example of a temporal description for human behavior.

ods utilize lower-level recognition based on motion concepts, and do not yet
involve high-level concepts, such as events and scenarios, and the relation-
ships between these concepts. Such concepts need high-level reasoning based
on a large amount of a-priori knowledge. Recently, Kojima et al. [43] pro-
pose a new method for generating natural language descriptions of human
behavior appearing in real image sequences. First, a person’s head region is
extracted from each frame, and the 3-D pose and position of the head are
estimated using a model-based approach. Next, the head motion trajectory is
divided into the segments of monotonous movement. The conceptual features
for each segment, such as degrees of pose changes, position and the relative
distances from other objects in the surroundings, are evaluated. Meanwhile,
the most suitable verbs and other syntactic elements are selected. Finally,
the natural language text for interpreting human behavior is generated by
machine-translation technology.

The human actions can be defined as <agent-motion-target> according to
the linguistic theory of ‘verb argument structure’ [1]. The argument structure
of a verb allows us to predict the relationship between the syntactic arguments
of a verb and their role in the underlying semantics. Table 2.2 shows an
example of human action description and its corresponding vocabulary sets.
However, the above description cannot represent the temporal information
about individual behavior or interactive behavior between different people.
Therefore, it is necessary to find a suitable tool to model the temporal relation.
A simple model representing the order of various motion types (standing,
walking, sitting) is visualized in Figure 2.7. The time instant for the start and
end of each person’s motion type is indicated.

Although there is some progress in the description of behavior, several
key issues remain unsolved. For example, it is difficult to properly represent
semantic concepts, to map motion characteristics to semantic concepts, and
to choose efficient representations to interpret the meanings of a video scene.
This leaves important ground for significant research contributions in this area.

Even when the correct interpretation of the scene has been performed,
the scene-understanding system needs to enable its understanding to different
users (experts of the application domain, end-users like operators, police, etc.).
Furthermore, the a-priori knowledge of the application domain requires for-

30



2.6. Camera calibration 31

image plane

image point

f

C

scene point

center of 

projection

T
vu ),(y

x

T
ZYX ),,(

cam
X

cam
Y

cam
Z

principal point
optical axis

Figure 2.8: The ideal pinhole camera model presents the relationship be-
tween a 3-D point (X, Y, Z)T and its corresponding 2-D pro-
jection point (u, v)T onto the image plane.

malization to enable the domain experts to describe their knowledge and their
methodology for analyzing the scene. In scene understanding, there are four
main types of knowledge to represent: (1) the empty scene of the surrounding
(e.g. its geometry), (2) the sensors (e.g. calibrated and synchronized cam-
eras), the communication network and the processing units, (3) the physical
objects expected in the scene (e.g. 3-D model of a human) and their dynamics
(location and speed), and (4) the events of interest for end-users.

In our description of a surveillance application, XML files are generated
and further adapted to the ViPER file format (see Appendix A.2). Then, the
multiple-person behavior and the associated semantic events are described,
according to spatial and temporal relationships defined by domain knowledge.
Furthermore, the timing configuration is included in this description. The
above method can effectively provide an integrated representation of the event.
Also, the annotations can be transmitted over the network in order to exchange
information between the processing units of a large and distributed surveillance
system. Chapter 5 presents such a networked event-recognition system.

2.6 Camera calibration

Camera calibration can be an essential component of a human-behavior anal-
ysis system, particularly in those cases where the analysis system is used to
compute actual behavior in terms of trajectory distance, speed, etc. Its role is
to estimate the metric information of the camera. In other words, camera cal-
ibration attempts to establish the relationship between the camera’s internal
coordinate system and the coordinate system of the real world. It is therefore
the first step for a calibrated motion capture system.
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32 Chapter 2. Overview of Visual Analysis of Human Behavior

Let us now explain the underlying principles for camera calibration. First,
we introduce the projection of points from 3-D space onto a 2-D image plane.
This projection operation is based on the idealized model of a pinhole camera,
which is a close approximation to most real cameras. We derive the projec-
tion equations and formulate them, using the the homogeneous coordinates
framework (see Appendix A.1).

The pinhole camera model is widely used in computer vision. The model
projects the 3-D real world to the 2-D space. The setup for the perspective
camera model is illustrated in Figure 2.8. A point of the 3-D scene object
is projected along the ray from the camera center to the object point. The
intersection of the ray with the image plane defines the position in the image.
In a real camera, the image plane is actually behind the camera center, and
the image is projected onto it up-side down, but for simplicity, we assume that
the image plane is in front of the camera. This is equivalent, but it relieves us
from considering many minus signs in the formal statement of the problem.

Let us assume a camera with the optical axis being collinear to the Zcam-
axis and the optical center being located at the origin of a 3-D coordinate
system (see Figure 2.8). The other two axes (Xcam- and Ycam-axis) are in a
plane perpendicular to the Zcam-axis. The two axes of the coordinate system
of the captured images are often assumed parallel to the x and y axes of
the camera frame if optical distortion is ignored. Let a 3-D point in the
camera frame be (X,Y,Z)T and its correspondent image point be (u, v)T .
The relationship between these two points is written as:

u =
Xf

Z
and v =

Y f

Z
, (2.11)

where f is the focal length of the camera lens. To avoid a non-linear divi-
sion operation, the previous relation can be reformulated using the projective
geometry framework, as

(λu, λv, λ)T = (Xf, Y f, Z)T . (2.12)

This relation can be expressed in matrix notation by

λ




u
v
1



 =




f 0 0 0
0 f 0 0
0 0 1 0









X
Y
Z
1



 , (2.13)

where λ = Z is the homogeneous scaling factor.
In the sequel, we provide an example of using camera calibration techniques

to implement 2D-3D mapping.
The geometric transformation is required to map points in the image to

real-world coordinates on the ground. Since both the ground and the dis-
played image are planar, it is a plane-to-plane transformation. In addition,
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Figure 2.9: Example of the corresponding homography based on camera cal-
ibration.

we analyze the human behavior based on the person trajectory and/or speed
on the ground, so that the height information of the human is not required.
Without loss of generality, we can place the ground plane at z = 0 and obtain
the 2D-3D mapping by a geometric transformation, specified by

p′ = Hp =




f 0 ox

0 f oy

0 0 1
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internal camera

parameters




r00 h01 r02 tx
r10 h11 r12 ty
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x
y

z = 0
1



 . (2.14)

This is a homography, represented by the 3× 3 transformation matrix H (see
Figure 2.9). The principal point (ox, oy)

T is located at the center of the image
(Figure 2.9) and tx, ty, tz denote the camera translation along the X-, Y -,
Z-axis, respectively. The matrix H transforms a point p = (x, y,w)T in real-
world coordinates to image coordinates p′ = (x′, y′, w′)T . Because matrix H
is scaling invariant, eight free parameters have to be determined. They can be
calculated from four reference points whose positions are both known in the
ground model and in the image.

In a similar way, it is possible to transform the image data into a 3-D
model space. This 3-D scene reconstruction is a useful tool in semantic-event
analysis, which may be utilized in multimedia applications [26]. The accurate
and realistic reconstruction in a virtual space can significantly contribute to
the scene understanding, like crime-evidence collection and tactical analysis.
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34 Chapter 2. Overview of Visual Analysis of Human Behavior

This approach may be of interest for advanced surveillance applications, such
as home-care monitoring and robbery-detection surveillance.

In this section, we have shown that a mapping of the 3-D data into the 2-D
image data can be realized with a projective transform between actual scene
and captured images, based on an ideal pin-hole camera model. In Chapter 4,
we utilize a standard tennis-court model to obtain the correspondence between
the real-world domain and image domain. Similarly in Chapter 5, a pattern
grid with four white lines is used to map the correspondence between the
reference points detected in the image and the points in the actual scene.
Afterwards, the exact displacements of a person can be obtained. For example,
the location and speed of humans in the scene are calculated prior to the
semantic analysis. In addition, 3-D reconstruction is performed to enhance
the scene visualization.

2.7 Summary and conclusions

This chapter has presented an overview of techniques for visual analysis of
human behavior. Three levels of techniques have been discussed within a
general processing framework: pixel-level processing, object-level modeling
and event-level analysis.

• In the pixel-level processing, background modeling with pixel labeling
is briefly introduced, thereby distinguishing foreground objects from the
background of the scene. We have found that Gaussian Mixture Models
are attractive for fast algorithm deployment, while keeping satisfying
accuracy.

• In the object-level modeling, various techniques of human detection and
tracking are discussed. Human detection is composed of two steps: mo-
tion segmentation and object classification. Four types of human track-
ing methods are discussed: region-based, feature-based, active-contour-
based and model-based tracking. From these types, region-based pro-
cessing is adopted for further experiments in the upcoming chapters.
Region-based tracking is feasible when occlusions are not severe and it
facilitates a real-time system implementation.

• In the event-level analysis, the current event-understanding approaches
can be classified into three types: constraint-based, learning-based and
clustering-based methods. In our applications, the domain knowledge
plays an important role in the analysis so that the constraint-based ap-
proach seems most beneficial for system implementation. For sub-event
analysis as in object-level modeling, a learning-based approach is attrac-
tive because it gives a robust classification result.
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Figure 2.10: Block diagram of processing steps involved in Chapter 4 and
Chapter 5.

• Finally, camera-calibration techniques are presented. Camera calibra-
tion enables the 2D-3D mapping and provides a platform for normalized
motion configuration (i.e. location and speed) and scene visualization.

In the literature, current approaches have been designed under different as-
sumptions and for different purposes. Each technique alone is not sufficient to
address the variety of all possible situations and to be selected as an accept-
able solution regarding the complexity of the video-understanding problem.
Therefore, delicate attention is payed for choosing suitable algorithm in order
to achieve fast operation.

This chapter has presented an overview of existing techniques involved in
different steps of human behavior analysis. In this thesis, we focus on develop-
ing a fast and robust embedded system. We have also discussed the algorithm
selection at each processing step in our implementation of motion analysis.
The techniques discussed in this chapter are connected with each other as
depicted in the generalized diagram of Figure 2.10. This diagram has been
elaborated and worked out for two application studies, which are presented in
Chapter 4 and Chapter 5. The diagram indicates which parts involve pixel-,
object-, and event-level processing steps. This diagram applies to both ap-
plications, but for some functions, there are differences which are specific for
the individual application. The background modeling is different for indoor
and outdoor scenes. Also, advanced event analysis of human behavior requires
that specific functions are added to the person tracking to facilitate a better
behavior analysis. Examples of such specific functions are human skeleton
modeling and posture classification, which will be discussed in Chapter 3.

35



36 Chapter 2. Overview of Visual Analysis of Human Behavior

36



Chapter3
Motion Analysis of the

Human Action

3.1 Introduction

The previous chapter has presented the state-of-the-art work within the human
motion analysis. The motion analysis is constrained to the behavior of a single
person. However, finding the moving areas in the video is not sufficient for in-
terpreting the human behavior. Research increasingly touches upon semantic
analysis through the object-based processing of the individual human actor.
For this purpose, this chapter adds the classification of a human posture, so
that the orientation of the human body and its limbs can be used for interpre-
tation. This addition forms a good basis for performing interaction modeling,
activity recognition in more detail. The combination of both steps is essential
for object/scene analysis and behavior modeling of deformable objects. This
chapter discusses these techniques in more detail.

The main issue in human motion analysis is the lack of a sufficiently accu-
rate measurement of e.g. the contour of the body and position of individual
body parts. The body-part detection and classification of human posture
would play an important role in performing the activity recognition and in-
teraction modeling, leading to object/scene analysis and behavior modeling
of deformable objects. Some previous work used multiple cameras [66, 65]
to obtain more reliable observations. However, most of the computer-vision-
based approaches require more than one camera and highly accurate camera-
calibration parameters as well. Unfortunately, these approaches are not always
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38 Chapter 3. Motion Analysis of the Human Action

feasible for surveillance and e.g. low-cost consumer multimedia applications.
Therefore, we concentrate on using a single camera only, but instead add a pos-
ture classification of human body that will allow us to distinguish the human
behavior.

This chapter is divided as follows. We first present an approach for au-
tomatic posture classification based on a novel silhouette descriptor in Sec-
tion 3.2. Then a novel scheme for body-part detection and 2-D skeleton con-
struction is introduced in Section 3.3. Finally, Section 3.4 draws conclusions
and summarizes the chapter.

3.2 Individual posture classification

Accurate detection and efficient recognition of various human postures are very
useful for understanding the scene. Existing posture-representation techniques
can be generally classified into two categories: local feature-based and global
feature-based methods.

Local feature-based approaches use local silhouette [87] or spatio-temporal
features such as Scale-Invariant Feature Transform (SIFT) [57] and 3-D Hes-
sians [24] to represent human activity in a video. In the silhouette-based
methods, human activity can be regarded as a temporal process in which hu-
man silhouettes continuously change over time. If the extracted feature in each
frame characterizes the human silhouette, temporal variations of these features
will implicitly characterize motion kinematics. However, an important limita-
tion of the aforementioned approaches is that they do not incorporate global
characteristics of the activity and the performance relies on the foreground
segmentation, especially when the background is complex and changing.

Global feature-based approaches use global features such as optical flow
to represent the state of motion in the whole frame at a time instant. With
static background, one can represent the type of motion of the foreground
object by computing features from the optical flow. To avoid articulated
tracking or segmentation, recent work has shifted towards the combination of
Histogram of Oriented Gradients (HOG) and optical flow [10]. The advantage
of these techniques is their relatively simple implementation. However, they
are significantly affected by the large variance of body postures and clothing.

In silhouette-based human action recognition, dimensionality reduction
techniques are adopted to project the original data covering a space with
a high number of dimensions into data having a much lower number of di-
mensions. The most popular reduction methods are Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA) [16] and Locality Pre-
serving Projections (LPP) [35]. In the recent sparse learning methods, Shao
et al. [86] propose the Spectral Regression Discriminant Analysis (SRDA) for
dimensionality reduction.
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3.2. Individual posture classification 39

In some investigated cases (e.g. surveillance with luminance pictures), only
silhouette configuration is available to analyze human behavior. Therefore,
we have to rely on a silhouette-based approach. In this section, we discuss a
silhouette-based approach, based on a novel body representation, to facilitate
the posture classification in an efficient way.

3.2.1 Posture representation

Prior to conducting the temporal modeling scheme of a Continuous Hidden
Markov Model (CHMM) to recognize the posture type, we propose a new,
yet simple and effective shape descriptor, called HV-PCA, to represent the
silhouette in each frame. Let us now explain this new descriptor.

Firstly, every detected person silhouette is scaled to an M ×N sub-image
for normalization, where we choose M = 180 and N = 80. Then within
the template, we apply the horizontal and vertical projections which will be
explained in the sequel. Because each individual projection (horizontal or
vertical) is non-orthogonal, the projections along the vertical and horizontal
axis in the pixel domain with 180 and 80 dimensions are redundant. Therefore,
Principal Component Analysis (PCA) is used to obtain a more compact and
still accurate representation in each frame. In the vertical projection, the
180-D shape vector is divided into three parts and thus a feature matrix of
60 × 3 dimensions is obtained for each frame. Then the size of each feature
matrix is reduced to 2 × 3 after performing PCA. Afterwards, the previous
reduced matrix is rewritten into a 6 × 1 vector. Although there are different
options for the matrix form, we adopt the division scheme of 60× 3 to achieve
the balance between computation cost and recognition rate. Similarly, the
horizontal matrix of 20 × 4 is reduced to a vector of 8 × 1 for the horizontal
projection, and divided into four parts. Thus, both dimensions lead to a 14-D
vector to represent the human silhouette. In summary, the principal formal
algorithm steps of HV-PCA are defined as follows.

Suppose (x, y) represents every pixel that belongs to a silhouette within a
shape template S, its value Sil is represented as

Sil(x, y) = {
1, if (x, y) belongs to foreground,
0, otherwise.

(3.1)

Then we can calculate the horizontal projection H(m) in the m-th column
and vertical projection V (n) in the n-th row in the frame I by

HI(m) =

M−1∑

j=0

Sil(m, j), 0 ≤ m ≤ N − 1, (3.2)

39



40 Chapter 3. Motion Analysis of the Human Action

and

V I(n) =
N−1∑

i=0

Sil(i, n), 0 ≤ n ≤M − 1. (3.3)

Finally, we can obtain a 14-D feature vector of the silhouette ObvI in
frame I by using PCA, hence

ObvI = (PM (HI(.)), PN (V I(.)))T , (3.4)

where P (.) indicates our part-based PCA implementation (4-part horizontal
projection and 3-part vertical projection). Then every ObvI is set as obser-
vation input to the Continuous Hidden Markov Model (CHMM) classifier for
parameters learning and testing.

3.2.2 Temporal modeling with CHMM

Due to noise from segmentation errors, a single-frame recognition is not suf-
ficiently accurate when we require general motion classification. For a good
posture recognition, temporal consistency is required.

Hidden Markov Models (HMMs) are a popular probabilistic framework
for modeling processes that have structure in time. They have clear Bayesian
semantics, efficient algorithms for state and parameter estimation, and they
automatically perform dynamic time warping. An HMM is essentially a quan-
tization of a system’s configuration space into a small number of discrete states,
together with probabilities for transitions between those states. A single fi-
nite discrete variable indicates the current state of the system with the index
number. Any information about the history of the process needed for future
inferences must be reflected in the current value of this state variable.

We adopt the HMM as our posture classifier, since it has proven to be an
effective tool for sequential data processing. We use the Continuous Hidden
Markov Model (CHMM) with left-right topology [81]. Suppose a CHMM has
E states specified by the set Q = {q1, q2, ..., qE} and F output symbols in set
V = {v1, v2, ..., vF }. The model is fully specified by the triplet λ = {A,B, π}.
Let the state at time step t be st, then the E × E-state transition matrix A
can be defined by

A = {aij |aij = P (st+1 = qj|st = qi)}, 1 ≤ i, j ≤ E. (3.5)

The E × F -state output probability matrix B is defined as

B = {bj(k)|bj(k) = P (vk|st = qj)}, 1 ≤ j ≤ E, 1 ≤ k ≤ F. (3.6)

The initial state distribution vector π is specified as

π = {πi|πi = P (s1 = qi)}, 1 ≤ i ≤ E. (3.7)
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We assign a CHMM model to each of the predefined posture types for the
observed human body. Each CHMM is trained based on the Baum-Welch algo-
rithm [81]. The learning process can calculate all parameters of the model us-
ing the training data. In other words, the triplet λ is obtained for each model.
After having the models for each posture, we can proceed to implement the on-
line testing. Given an observation sequence Obv = {Obv1, Obv2, ..., ObvT }, we
can calculate P (Obv|λi), which is the probability of the observation sequence
Obv given model i with λi. The probability P (Obv|λi) can be obtained by us-
ing the forward algorithm [81]. After computing the probability of each model
output, the model with maximum probability is chosen as the recognition re-
sult. We can therefore recognize the posture class CT as being the one that is
represented by the maximum probable model among K types:

CT = arg max
i

P (Obv|λi), 1 ≤ i ≤ K. (3.8)

In our investigated case (T=30, K=5), every given posture is finally clas-
sified into one of the following types: left-pointing, right-pointing, squatting,
raising hands overhead and lying. The background of this choice of postures
refers to the case study that will be discussed in Chapter 5. In that case, we
use a limited set of posture classifications to interpret the posture when the
persons are standing. In this section, we are simply interested in the detection
performance of the posture-classification algorithm.

Table 3.1: The comparison of different shape-based features in posture clas-
sification.

Posture type Skeleton [20] A-Skeleton [76] 4-Hu [55] HV-PCA

Left pointing 82% 88% 84% 92%

Right pointing 78% 84% 88% 90%

Squatting 56% 60% 78% 84%

Lying 56% 64% 80% 76%

Raising hands 66% 72% 84% 86%

overhead

3.2.3 Experimental results

We have performed our posture classification using various single-person ac-
tion (left pointing, right pointing, squatting, lying and raising hands) at video-
capturing rate 15 frames/s. We have used 200 video sequences (40 for each
posture type) for training and 500 sequences (100 for each posture type) for
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42 Chapter 3. Motion Analysis of the Human Action

testing. The posture-classification results using several existing shape-based
features are summarized in Table 3.1. The ground truth data is obtained
manually. We have calculated the classification accuracy to measure the per-
formance of different methods. The accuracy is obtained by calculating the
ratio of correct posture-type sequences detected ζl and the number of testing
sequences νl for each posture type l, which is denoted as

Accuracy =
ζl

νl

× 100%. (3.9)

From Table 3.1, it is noted that our proposed HV-PCA feature achieves
an average accuracy rate of about 86% and outperforms other proposals.

We have also compared our result to state-of-the-art methods in Table 3.2.
These methods are all tested on the same public dataset Weizmaan [4]. Al-
though our result is not the best compared with other methods, our proposed
algorithm enables real-time operation while others do not claim their efficiency
in fast implementation.

Table 3.2: The comparison of the state-of-the-art features tested in Weiz-
maan dataset.

Jia et al. [39] Zheng et al. [106] Shao et al. [86] HV-PCA

90.9% 98.8% 100% 93.2%

3.3 Body-part detection

Successful pose estimation and human-body modeling facilitate the semantic
analysis of human activities in video sequences [64, 47]. If the body parts
(face and hands) cannot be accurately detected when self-occlusion problem
occurs or no color information is available, the approach of using skin-color
model [47] is not an ideal solution. We need to look for other approaches for
effective body-part detection.

Accurate detection and efficient tracking of various body parts are on-
going research topics. However, the computation complexity needs signifi-
cant reduction to obtain a real-time performance, especially for surveillance
applications. Existing fast techniques can be classified into two categories:
appearance-based and silhouette-based methods.

• Appearance-based approaches [97, 73] utilize the intensity or color con-
figuration within the whole body to infer specific body parts. They can
simplify the estimation and collection of training data. However, they
are significantly affected by the variances of body postures and clothing.
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• For the silhouette-based approach [20, 33, 102, 76], different body parts
are located employing the external points detected along the contour,
or internal points estimated from the shape analysis. The geometric
configuration of each body part is modeled prior to performing the pose
estimation of the whole human body. However, the highly accurate de-
tection of body parts remains a difficult problem, due to the effectiveness
of segmentation. Human limbs are often inaccurately detected because
of the self-occlusion or occlusion by other objects/persons.

Summarizing, both silhouette and appearance-based techniques do not
offer a sufficiently high overall accuracy of body-part detection. Also, the
assumption of upright posture is generally required.

To address the challenging problem of accurately detecting and modeling
human-body parts in a fast way, we contribute in two aspects. First, various
differentiating body features (e.g. body ratio, shape, color) are integrated
into one framework to detect different body parts without the assumption
of the human’s upright posture. Second, we have proposed a novel scheme
for capturing human motion, that combines the trajectory-based estimation
and body-based modeling. This is effective to improve the detection accuracy.
As our system is efficient and achieves nearly real-time performance (around
10 frames/second), we facilitate its application in a surveillance case study.

The structure of this section is as follows. Section 3.3.1 briefly presents
the scheme. Section 3.3.2 introduces every detection component involved.
The body-part detection that is based on seamless integration of different
observation clues, is explained in detail. Promising experimental results and
analysis are presented in Section 3.3.4.

3.3.1 System architecture of body-part detection

When combining the trajectory-based estimation and body-based detection,
we intend to capture the human motion and locate the body parts using a
skeleton model. The block diagram of our proposed scheme is shown in Fig-
ure 3.1. First, each image covering an individual body is segmented to extract
the human silhouette after shadow removal. Second, both the trajectory-based
and body-based modules are co-operating based on a particular sequence of in-
ternal functions. The position of the moving object in every frame is extracted.
Occurring situations (behaviors) can be validated along the estimated trajec-
tory for every individual person. Based on the trajectory-based estimation, the
system initializes the local body-part detection. In this body-modeling mod-
ule, various features are applied, such as appearance, body ratio and posture
direction. Furthermore, the center point of the whole body is extracted. After
different body parts are detected, the human geometry is modeled. Finally,
the skeleton model of every person is constructed.

43



44 Chapter 3. Motion Analysis of the Human Action

Video input

Human silhouette

Skeleton construction

Regions of interest

Trajectory Estimation
Detection and tracking moving objects

Foreground segmentation

Shadow removal

Body modeling
- Body ratio, appearance

- Posture direction (PCA) 

- Center-point extraction

- Dominant points (convex hull)

Update the trajectory estimation

Human geometry modeling

Figure 3.1: Block diagram of our body-part modeling system.

3.3.2 Component algorithms of body-part detection

A. Background substraction

Background modeling is generally the first step of detection and/or analy-
sis of moving objects in a video sequence. We perform an adaptive background
subtraction to support person-behavior analysis. The intention is to maintain
a statistical background model at every pixel.

In the case of common pixel-level background subtraction, the scene model
has a probability density function for each pixel separately. A pixel from a new
image is considered to be a background pixel if its new value is well described
by its density function. For a static scene, the simplest model could be just
an image of the scene without the intruding objects. After the background
modeling, the next step would be to e.g. estimate appropriate values for the
variances of the pixel intensity levels from the image, since the variances can
vary from pixel to pixel. Pixel values often have complex distributions and
more elaborate models are needed. The Gaussian Mixture Model (GMM) is
generally employed for the background subtraction. We apply the algorithm
from [110] to produce the foreground objects using a Gaussian-mixture prob-
ability density. The parameters for each Gaussian distribution are updated in
a recursive way. Furthermore, the method can efficiently select the appropri-
ate number of Gaussian distributions during pixel processing, in order to fully
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(b) (c)

(d) (e) (f)

(a)

Figure 3.2: Procedure of body-based processing: (a) original frame, (b) fore-
ground segmentation (after shadow removal), (c) body modeling
based on convex hull, (d) center-point estimation, (e) body-part
location and (f) skeleton construction in single-person motion.

adapt to the observed scene.

In the actual segmentation of foreground and background, shadow removal
is another important issue. Based on the assumption that shadows decrease
the brightness of pixels but do not affect their color, shadows are detected
and removed [110]. To consider changes in illumination during the process of
video acquisition, the pixels labeled as background are used to update in a
recursive manner. Finally, the labeled foreground pixels are grouped together
to represent potentially moving objects.

B. Trajectory estimation

The trajectory-based module estimates the human position over time, i.e.
the movement, which is regarded as a fundamental function of surveillance
systems. In our trajectory-based module, we apply blob tracking in two ap-
proaches. In a simple setting (e.g. static background, no occlusion), the
first approach is based on an object’s segmented binary mask. In the second
approach, we employ the broadly accepted mean-shift algorithm for tracking
persons, based on their individual appearance model, which is represented as a
color histogram. When the mean-shift tracker is applied, we detect every new
person entering the scene and calculate the corresponding histogram model in
the image domain. In subsequent frames for tracking that person, we shift the
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46 Chapter 3. Motion Analysis of the Human Action

person object to the location whose histogram is the closest to the previous
frame. After the trajectory is obtained, we can conduct the body-based anal-
ysis at the location of the person in every frame.

C. Body-based modeling
The body-based processing block models the human motion by a skeleton

model. The detailed procedure is illustrated in Figure 3.2. In the example of
single-person motion, the input frame (Figure 3.2(a)) is segmented to produce
a foreground blob, after shadow removal is applied(Figure 3.2(b)). Then the
convex hull is implemented for the whole blob (Figure 3.2(c)). The dominant
points along the convex hull are strong clues, in the case of single-person
body-part detection. They infer the possible locations of body parts, like
head, hands and feet. Here we employ a content-aware scheme (Section 3.3.3)
to estimate the center point (Figure 3.2(d)), which is fundamentally used to
position the human skeleton model. Meanwhile, dominant points along the
convex hull are selected and refined (Section 3.3.3) to locate the the head,
hands and feet (Figure 3.2(e)). Finally, different body parts are connected
to a predefined skeleton model involving a center point, where the skeleton is
adapted to the actual situation of the person in the scene (Figure 3.2(f)).

3.3.3 Construction of 2-D skeleton model

We represent the body by using a skeleton model, which is used to infer the
relative orientation of body parts and body posture. The center point is first
estimated from the silhouette. Afterwards, it is connected to different body
parts to construct the skeleton model.

A. Center-point extraction
The center point plays an important role in the skeleton model as a refer-

ence point. Its estimation accuracy significantly affects the detection of body
parts. Here we apply a content-aware scheme to detect the center point ci at
the frame with index i. Contents of posture direction, human-body ratio and
appearance are taken into account. The key processing steps are illustrated
in Figure 3.3.

The human posture’s direction can be estimated by the major axis mi of
the body’s foreground region at the frame i. The major axis is determined by
applying Principal Component Analysis (PCA) to the foreground pixels. Its
direction is given by an Eigenvector v associated with the largest Eigenvalue of
its covariance matrix. Along the above direction and based on the somatolog-
ical knowledge, we initially classify the whole body into three segments: head,
upper body (including torso and hands) and lower body (two legs). Also, an
initial body boundary bi, dividing upper body and lower body, is produced.
Next, within a neighboring area A from body boundary bi, we perform the
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Figure 3.3: Block diagram of center-point extraction.

Laplacian filter Li(x, y) to each pixel (x, y) prior to a thresholding function
f(a, δ) using threshold δ. If Li(x, y) > δ, then the thresholding f(a, δ) = 1.
Otherwise, f(a, δ) = 0. Then we search the optimal boundary line b′i between
the upper body and lower body in Equation (3.10) by

b′i = arg max
bi

∑

(x,y)ǫbi

f(Li(x, y), δ), (3.10)

where Li(x, y) indicates the Laplace operation with the 3 × 3 kernel at point
(x, y). Finally, the center point Ci is located by the crossing point of the major
axis mi and the boundary line b′i in Equation (3.11), hence

Ci = mi ⊙ b′i, (3.11)

where “⊙” denotes returning the intersection position between two lines. Dur-
ing our experiments, we have found that this center-point extraction is effective
and accurate, and it is superior to the Centroid-of-Gravity (CoG) approach of
the whole blob, as used in [20]. An example is visualized in Figure 3.4. Our
proposed scheme is simple but effective, even when disturbed by residual noise
after shadow removal. If the clothes between the upper body and the lower
body are similar in the appearance, only the silhouette feature is employed.
The center point is estimated based on the domain knowledge of the human-
body ratio.

B. Skeleton-model extraction
After the center point is obtained, a skeleton model of the human body

is extracted. The key processing steps are illustrated in Figure 3.5. Different
body parts are connected to the center point according to a predefined human
geometry model, which is similar to the one reported in [76]. Every individual
part is estimated according to the Euclidean distance between the center point
Ci and every dominant point along the convex hull at the frame i. Based on
the body-ratio knowledge, we initially select a set of dominant points Pi with
the maximum distance in the three body segments, i.e. head, upper body and
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(a) (b) (c) (d)

Figure 3.4: Estimation of center point: (a) original frame, (b) silhouette
after foreground segmentation, (c) result of CoG approach, (d)
result of content-aware center point.
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Figure 3.5: Block diagram of skeleton-model extraction.

lower body. These dominant points are used to infer the locations of potential
body parts. As we obtain the body segments (head, upper body, lower body)
along the posture direction, we can refine the points Pi in each individual
segment to locate the body parts. Then we use a simple nearest-neighbor
filtering scheme to correlate different body parts over time. Afterwards, a
Double Exponential Smoothing (DES) filter is added to refine the results.
This filter provides a good performance for moving object tracking [29].

The DES smoothing operator is defined by

{
si = α · oi + (1− α) · (si−1 + di−1) ,
di = γ · (si − si−1) + (1 − γ) · di−1 ,

(3.12)

where oi is the observed body-part position value at the frame i. The parame-
ter si refers to the position after smoothing the observed position, di represents
the trend of the change of body-part position, and α and γ are two weighting
parameters controlling motion smoothness. Equation (3.12) applies to every
detected body-part position for the individual person. The first smoothing
equation adjusts si directly for the trend of the previous period with di−1, by
adding it to the last smoothed value si−1. This helps to eliminate possible
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position discontinuities. The second smoothing equation updates the trend,
which is expressed as the weighted difference between the last two position
values.

After the smoothing filter is performed on the observed body parts, an-
other post-processing step is implemented to improve the detection accuracy.
If the distance between the detected hands and the center point is below a
predefined threshold, we set the location of the hands as a default value, i.e.
the position of center point. This additional processing can remove some inac-
curate observations and improve the accuracy, especially in the self-occlusion
case.

Table 3.3: Comparison of the detection accuracy of three methods for five
human actions.

Method of [20] Method of [76] Our method Frames

Feet 78% 85% 90%

Walking Hands 70% 78% 84% 800

Head 93% 96% 100%

Feet 90% 90% 94%

Leaping Hands 71% 76% 83% 400

Head 95% 96% 100%

Feet 93% 95% 99%

Pointing Hands 90% 94% 96% 400

Head 97% 100% 100%

Feet 90% 93% 98%

Kicking Hands 88% 92% 95% 400

Head 98% 99% 100%

Feet 73% 75% 82%

Falling Hands 58% 65% 77% 600

Head 88% 90% 98%

3.3.4 Experimental results and discussions

In our experiments, we have tested the algorithm for different monocular video
sequences covering 2,600 frames. The video sequences are recorded at 15-Hz
frame rate with a resolution of 320 × 240 samples (QVGA). The sequences
cover different persons, background, clothes and behaviors in both indoor and
outdoor situations.

We have evaluated our scheme with different activities such as walking,
pointing, kicking, leaping and falling. We have implemented two well-known
contour-based methods [20, 76] for performance comparison. Table 3.3 presents
a confusion matrix showing the accuracy comparison using different methods,
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Figure 3.6: Comparison of the detection accuracy of three different methods
for walking.
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Figure 3.7: Comparison of the detection accuracy of three different methods
for pointing.

and testing frames for each action. The accuracy is obtained by calculat-
ing the ratio of frames with correctly detected human body and the number
of testing frames. Figure 3.6-Figure 3.10 present the accuracy comparison
when using different methods. In our experiments, the ground truth of body-
part locations are manually obtained. The maximum tolerable errors in the
evaluation is set to 15 pixels. Our system is implemented in C++ on a 3.0-
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Figure 3.8: Comparison of the detection accuracy of three different methods
for kicking.

50

60

70

80

90

100

Feet
Hands

Head

Accuracy (%)

Body parts

Leaping

Method of [21]

Method of [75]

Our method

Our method

Method of [75]

Method of [21]

[17]

[69]

[17]

[69]

Figure 3.9: Comparison of the detection accuracy of three different methods
for leaping.

GHz PC. The detection system operates nearly at real-time speed (around
10 frames/second).

From our experiments, we have found that the dominant points (with high
curvature) along the contour play an important role in the three presented
contour-based methods. If the dominant points are well visible, e.g. in the
postures of pointing and kicking, all three methods yield similar performance.
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Figure 3.10: Comparison of the detection accuracy of three different methods
for falling.

However, as we integrate the temporal constraints by employing the DES
filter, our detection accuracy is higher by around 5%, especially in the case of
the self-occlusion when the hands/legs appear within the silhouette. Another
interesting point is that our method does not assume that the human posture
is upright. Moreover, the posture direction can be estimated in our algorithm.
In the case of falling, our method clearly outperforms the other two [20, 76]
by approximately 20% in the detection of hands.

3.4 Summary and conclusions

This chapter has introduced motion analysis for individual human actions.
The current efforts focus on generating a general framework while discussing
the associated object-based techniques. We aim at keeping the balance be-
tween accuracy and effectiveness.

Firstly, we have presented a fast posture-classification scheme. Our pro-
posed HV-PCA descriptor with temporal modeling achieves an accuracy rate
of about 86% for posture recognition and outperforms other existing propos-
als. As our human motion scheme is efficient and achieves a fast performance
(around 10 frames/second), it enables a surveillance system or further analy-
sis of human behavior. The occlusion problem is not yet thoroughly tackled
at the current stage. To further combat the problem of occlusion, multiple
cameras will be employed for capturing the same scene from different angles,
and it is necessary to integrate an effective occlusion-handling module, which
was reported in [31] to improve the motion-analysis robustness.
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Secondly, we have proposed a novel approach for body-part detection,
that combines trajectory-based estimation and body-based analysis in a co-
operating way, to capture the human motion and locate different body parts.
The trajectory-based module provides a platform for performing body-based
analysis. The body-based module updates the tracking process, and describes
the body geometry efficiently by a 2-D skeleton model. We have presented a
new algorithm for accurately locating the body center point, using the body sil-
houette and an upper/lower-body separation line. This algorithm outperforms
the conventional center-of-gravity approach from existing literature, address-
ing the same center-point usage. Body-part detection was performed after es-
timation of the center point, analysis of body ratio, silhouette and appearance.
An advantage is that the conventional assumption of upright body posture is
not required. The above scheme has proven to be a fast (nearly real-time
speed at 10-Hz frame rate) and effective technique for the automatic detection
of different body parts within monocular video sequences in indoor/outdoor
areas.

However, the current system has a few limitations. The self-occlusion prob-
lem is not completely solved, requiring additional exploration, as the dominant
points along the convex hull fail to differentiate and locate the underlying body
parts within the silhouette. We have found that the color appearance of the
person is important in the case of self-occlusion. The region-based nature
of color can be utilized to improve the body-part segmentation. Also, it is
useful to capture motion sequences from different viewpoints and train the
optimal parameters for various activities, thereby aiming at becoming more
view-independent in performance. Most of the above limitations are addressed
in the case study in Chapter 5 to come to an improved performance.

Up to this point, we have discussed the object-based processing (e.g. body-
part detection, posture classification) for intermediate-level analysis of human
motion. To obtain semantic meaning in specific scenarios, for example sports
video analysis, both the tracking and body-based analysis require specific do-
main knowledge, such as the game rules. Furthermore, the individual motion
analysis can upgrade to conduct interaction modeling, when more than one
person is involved in the scene. In the next chapters, the motion analysis is
further investigated to obtain semantic analysis in different applications. In
Chapter 4, the study case of tennis sports is elaborated by employing the
techniques of individual motion analysis. In Chapter 5, a study case of visual
surveillance is investigated with interaction modeling. In both chapters, a 3-D
scene reconstruction is performed to achieve semantic-level analysis. Specific
domain knowledge (e.g. the tennis game rules) is integrated in the system
design and algorithm selection.
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Chapter4
Tennis Sports Analysis

Application

4.1 Introduction

4.1.1 Motivation

The previous chapters have discussed several fundamental techniques for hu-
man motion analysis. We are now going to apply a selection of those techniques
in different applications in this and the subsequent chapter. This chapter con-
centrates on a consumer application, i.e. tennis sports analysis, where we
further add other aspects, such as domain knowledge and 3-D camera calibra-
tion to obtain real-time semantic analysis.

The relevance of a consumer case involving video analysis, is motivated
by the continuous growth in media storage capacity and the handling of
large databases in multimedia systems of audio/video (AV) files for movies
and music. For these databases, various applications such as sports video
(tactics) analysis and object-based manipulation are potentially attractive.
These applications will facilitate practical user requirements involving effective
database management, indexing, and quick searching and retrieving of specific
contents. With the advent with increasing of hard-disk capacity running to
1 TBytes, large video databases for consumer applications are gradually de-
veloping. The large storage capacity of compressed video on disks increases
the need for fast storage and retrieval functions, realizing quick user-friendly
searching for and access to specific parts of the video data. The identification
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of those parts in the video can be improved or enhanced by metadata, describ-
ing the specific properties of key objects in the video scene. Such metadata
should then be generated by a tool, which is active at recording time. This
chapter explores such an analysis tool for finding rich content and presents an
experimental application for home use. In consumer television, sports videos
constitute a major percentage of the total video content, provided by public
and commercial television channels. Because of the growing offer of TV chan-
nels providing full coverage of large sports events, we have focused on sports
video analysis and finding meaningful parameters and event data.

4.1.2 State-of-the-art of sports video analysis

Content understanding of sports video is an active research topic, in which the
past research can be roughly divided into four stages. Earlier publications [42,
72] have only focused on pixel and/or object-level analysis, which segment
court lines and/or track the moving players and the ball. Evidently, such
systems may not provide the semantic interpretation of a sports game. The
second generation of sports video analysis exploits the general features to
extract highlights from the sports video. Replayed slow-motion [75], density
of scene cuts and sound energy [98] are common input features used by such
systems. Although this highlight-based analysis is more general than earlier
proposals, many systems still lack sufficient understanding of a sports game,
as a viewer cannot deduce the whole story from looking to a special event only.
The third stage of sports analysis is an event-based system [42, 72, 98], aiming
at extracting predefined events in a specific sports genre. Visual features in
the image domain, such as object color, texture and position, are useful clues
broadly adopted by these systems. Despite these approaches yield acceptable
results within the targeted domain, it is hard to extend the approach of one
sports type to another, this is because the condition of video-capturing and
scene organization are highly dependent on the sports type. In the fourth
stage of sports analysis, research shows an increasing interest for constructing
a generic framework for sports video analysis. Opposite to the highlight-based
system [41], the previous systems [17, 93] try to recognize more events with
rich content by modeling the structure of sports games. A predefined event
can be identified based on the model generated during a training phase, which
studies the interleaving relations of different dominant scene classes. This
type of approaches has been proven to be applicable to multiple sports genres.
Unfortunately, the primary disadvantage is that it does not take the behavior
of key objects into account, thereby failing to provide sufficient events or
tactical meaning.

Among the above sports analysis systems, there are several algorithms
that are highly related to our work. Zhou et al. [108] propose a tennis video
analysis system approaching a video retrieval application. It detects the court
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lines and tracks the moving players, then extracts the events, such as base-line
rally, based on the relative position between the player and the court lines.
Improved work is presented in [55], where the authors further upgrade the
court detection and player tracking algorithms. Park [73] first defines four
types of camera views in tennis video, involving global, medium, close-up, and
audience shots, and then detects events like first-service failure in terms of
the interleaving relations of these four views. In the system described in [41],
sports video is characterized by its predictable temporal syntax, recurrent
events with consistent features, and a fixed number of views. A combination
of domain knowledge and supervised machine learning techniques is employed
to detect the different event boundaries. Mikic [66] also employs shot-based
modeling, but creates a concept of mid-level representation to bridge the gap
between low-level features and the semantic shot class.

In this chapter, the semantic analysis of sports is achieved by integrating
domain knowledge of games. More spefically, we aim at developing a real-time
sports-analysis system by designing fast algorithms at each processing level.

4.1.3 Requirements for home-use sports analysis systems

Although several sports video analysis algorithms aiming at different types of
sports have been proposed, sports analysis for home use is not easily achieved,
because the system should be robust for different users. The users may apply
these algorithms in various ways. We require that the home-use application
involves a system that provides a broad range of analysis at different seman-
tic levels. Besides the robustness, for a multitude of users, the platform for
executing such an analysis system should be efficient and not too expensive.

In order to fulfill the above requirements, we present a fully automatic and
real-time system, which grows in the direction of multi-level analysis of tennis
video sequences. The main contributions of our research are in three aspects.
First, we employ a 3-D camera model to bridge the pixel-level, object-level
and scene-level of the tennis sports analysis, which enables to deliver various
semantic results for different users. Second, we employ the combination of vi-
sual cues in the real-world domain to classify events. Third, audio signals are
utilized to perform racket-hit detection and increase robustness and more de-
tail in event understanding. Afterwards, automatic tennis-ball-path inference
is achieved, by combining audio and video information.

In the remainder of this chapter, we first present a video-based tennis
sports analysis system for real-time implementation in Section 4.2. Then in
Section 4.3, we present an audio-based scheme for detecting alternative events
in automatic sports video analysis. Further in Section 4.4, we present a scheme
for detecting other automatic tennis-ball-path inference for tennis sports video
analysis combining audio and video information. Finally, Section 4.5 draws
conclusions and summarizes this chapter.
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4.2 Video-based analysis

Ideally, a powerful analysis system should be able to provide a broad range
of different analysis results, rather than semantic events only, because of the
various requirements from the users. For instance, object-level parameters like
the real speed of players, may be helpful to certain users.

In this section, we present a fully automatic and real-time system for multi-
level analysis of video sequences containing tennis sports. Our system encloses
novel contributions in the following three aspects.

• An automatic 3-D camera calibration is proposed, that enables the com-
putation of the real-world positions of many objects from their detected
image position. Such real-world coordinates are more useful for deducing
the semantic events. Additionally, our calibration technique is an aid for
more generic modeling of the playing field, so that it can be adapted to
every court-net sports game, through only changing the court-net layout
for each sport.

• An adaptively weighted linear model combining the visual cues in the
real-world domain is proposed to identify events, since the importance
of each visual cue is different for specific events. The weighting factors
are adjusted adaptively for each visual cue related to different events.
This ensures that our algorithm achieves a higher classification accuracy
than the pure linear model.

• We build the entire framework upon the 3-D camera calibration, since
this modeling is an efficient tool to link pixel-level analysis, object-level
analysis and also scene-level analysis. Our system is capable of classify-
ing several game events, such as service, base-line rally and net-approach
events, which are consistent with the viewer’s understanding about a ten-
nis game. This framework is advanced due to its capability of providing
a wide range of analysis results at different levels.

4.2.1 Overview of proposed tennis sports analysis system

Our tennis sports analysis system can be described best as composed of several
interacting, but clearly separated modules. Figure 4.1 depicts our system
architecture with its main functional units and the data flow.

First, playing-frame detection involves the selection of the tennis playing-
field sequences out of full sports program including special scenes like e.g.
breaks or advertisements. Second, court detection identifies the court location
in the scenes and provides its specific information, such as size and shape.
Third, the player segmentation and tracking module calculates the position
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Figure 4.1: Architecture of the complete sports video analysis system with
small sample figures showing the intermediate results after each
stage.

and speed of each player, which are required to derive the player’s behavior
and tactics. Fourth, the camera calibration deduces a semantic meaning from
the position and movements of the players, taking the camera motion into ac-
count and computes the player positions in the real-world coordinates, based
on 2D-3D transformation. These coordinates are required because the player
tracking algorithm only produces the player positions in image coordinates,
which are physically meaningless. After the above steps are implemented, we
can perform semantic analysis and classify different events, such as service,
base-line rally and net-approach. Finally, the game abstract is obtained show-
ing different information, such as real running distance and behavior of the
players.

The most important modules involved in the analysis system are briefly
explained below.

A. Playing-frame detection based on white-pixel ratio
A tennis sequence not only includes scenes in which the actual play takes place,
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Figure 4.2: At the left: identification of the local regions for detecting the
playing field (black lines, arrows indicate the vertical for the
field). At the right: the search area for the court lines (bold
black lines structure).

but also breaks or advertisements. Since only the playing frames are impor-
tant for the subsequent processing, we efficiently extract the frames showing
court scenes for further analysis. In our system, the playing-frame detection
only identifies the white pixels of court lines and distinguishes the difference
between the numbers of white pixels inside two consecutive frames. We use
this metric [26], because we found that the color of the court line is always
white, irrespective of the court type, and the number of white pixels compos-
ing the court lines is relatively constant over a large interval of frames (several
hundreds). Compared to conventional techniques [93, 8] based on the mean
value of the dominant color, this technique is more efficient and removes a
complex procedure for training data.

In [93], a color-based playing-field detection algorithm is proposed that
summarizes the mean value in each color space of the four court classes, like
carpet, clay, hard and grass, based on statistical analysis using many example
frames. The Euclidean distance between the color of the current frame and
each class of courts is computed, and a class threshold is applied to decide
whether it is a playing field or not. Besides a complex procedure for training
data, the finding of the threshold is a serious problem, since the mean color
of the same court type varies considerably, as this mean is a function of e.g.
the presence of shadows, lighting conditions and partial occlusion(s).

As already mentioned, the key properties are that the color of court lines
is always white and the number of white pixels in the lines is relatively con-
stant. Based on these two properties, we propose the following playing-frame
detection algorithm presented below.

1. Initialize with the court detection algorithm of [18], until a court is de-
tected. Find the positions of two baselines and two sidelines, forming a
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local area as shown in Figure 4.2 (left), where two black lines represent
the vertical boundaries. The horizontal boundary is the same as the
figure width.

2. Compute the fraction of the white pixels within the selected area using
Fw = Nw/Nt, where Nw is the number of white pixels within the area
and Nt is the total number of dark pixels, selected in the area. We em-
ploy the technique proposed in [18] to extract white pixels. Its advantage
is that white pixels that do not belong to court lines (i.e., the player’s
white clothing) are rarely marked.

3. Calculate the value of |Fw(t)− Fw(t− 1)|, where t refers to the current
frame and t− 1 to the previous frame. If it is less than a threshold, this
frame is indicated as a frame containing the playing field. The threshold
is experimentally determined after extensive evaluations.

B. Court detection and camera calibration
Court information, including size, shape and location, is an important aid to
analyze the tennis game. To deduce the semantic meaning from the position
and movements of the players, their position has to be known in real-world co-
ordinates. However, pixel-level image processing algorithms will only calculate
the player positions in image coordinates, which are physically meaningless. To
transform these image coordinates to physical positions, a camera-calibration
algorithm has to be applied [18]. The complete camera-calibration system
comprises the following algorithmic steps.

• Court-line pixel detection. This step identifies the pixels that belong
to court lines. Since court lines are usually white, this step is essentially
a white-pixel detector. The mandatory feature of this step is that white
pixels that do not belong to court lines (e.g. the player’s white clothing,
etc.) should not be selected.

• Line-parameter estimation. Once we have obtained the set of court-
line pixels, we derive parametric equations for the lines. The process
is as follows. We start with a RANSAC-like algorithm to detect the
dominant line in the data set. The line parameters are further refined
with a least-squares approximation and the white pixels along the line
segment are removed from the data set. This process is repeated several
times until no more relevant lines can be found.

RANSAC is a randomized algorithm that hypothesizes a set of model
parameters (in our case the line parameters) and evaluates the quality
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of the parameters. After several hypotheses have been evaluated, the
best one is chosen. More specifically, we hypothesize a line by randomly
selecting two court-line pixels p = (px, py) and q = (qx, qy). For each
line hypothesis, a score s(g) is computed by

s(g) =
∑

(x′,y′)∈ℜ

max(τ − d(g, x′, y′), 0), (4.1)

where d(g, x, y) is the distance between the pixel (x, y) at line g, ℜ is
the set of court-line pixels and τ is the approximate line width. This
score effectively computes the support of a line hypothesis as the number
of white pixels close to the line, weighted with their distance to the
line. The score and the line parameters are stored and the process is
repeated with about 25 randomly generated line hypotheses. Finally,
the hypothesis with the highest score is selected.

• Model fitting. The model fitting step determines correspondences be-
tween the four detected lines and the lines in the court model. Once
these correspondences are known, the homography between real-world
coordinates and the image coordinates can be computed. To this end,
four intersection points of the lines pi and p′

i are computed, and using
the four resulting projection equations p′

i = Hpi, eight equations are
obtained that can be stacked into an equation system to solve for the
parameters of matrix H. Since the correspondences between the lines
in the image and the model are not known a-priori, we iterate through
configurations of two horizontal and two vertical lines in the image as
well as in the model. For each configuration, we compute the parameter
matrix H and apply some quick tests to reject impossible configurations
with little computational effort. If the homography passes these tests,
we compute the overall model matching error E by

E =
∑

(p,q)∈β

min(||p̂′,Hp||2 + ||q̂′,Hq||2, em), (4.2)

where β is the collection of line segments (defined by their two end-points
p, q) in the court model and (p̂′, q̂′) is the closest line segment in the
image. The metric ||., .||2 denotes the Euclidean distance between the
two points, and the error for a line segment is bounded by a maximum
value em. This bound is introduced to avoid a very high error if the input
data should contain outliers introduced, e.g., by undetected lines. The
transformation H that gives the minimum error E is selected as the best
transformation. Note that this algorithm also works if the intersection
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point itself is outside the image or if it is occluded by a player, thereby
adding robustness to the system.

• Court tracking. When the initial position of the court is known, the
computation in successive frames can be carried out more efficiently,
since the position of the court in the successive frame will be close to
the previous position. Tracking of the court is carried out in two steps.
The first step is an initialization that captures court information by
means of court-line pixel detection, line parameter estimation and model
fitting [18] in the first frame containing a playing field. For each detected
court line, it is simple to obtain a search area based on the start and end
points of the line (see Figure 4.2). The second step executes the same
detection algorithm as the first step, but now within the local search
area. The current location of the court is iteratively updated to predict
the search area for the coming video frame.

The above first three steps are carried out to find the initial location of
the court in the first image. For the subsequent frames, only court-line pixel
detection and court tracking are applied, as they are both computationally
inexpensive, so that a high tracking speed is obtained.

C. Moving-player segmentation
To analyze a tennis video at semantic level, it is necessary to know where the
players are positioned. Earlier systems propose several moving-player segmen-
tation algorithms. A class of methods is based on motion detection [93, 80], in
which subtraction of consecutive frames is followed by applying a threshold to
extract the regions of motion. Obviously, with such a simple detection algo-
rithm, it is impossible to analyze cases where the background is also moving,
or the camera is moving at the same time. Another category proposes the use
of change-detection algorithms. In change-detection systems, the background
is first constructed, and subsequently, the foreground objects are found by
comparing the background frame with the current video frame. The litera-
ture addressing tennis analysis [83] concentrates on selecting a video frame
of the tennis court without any players as a background image and then seg-
menting the players in the video sequence by looking for variations within
the background. Unfortunately, in most tennis videos, such frames rarely oc-
cur. In conclusion, earlier systems adopt existing techniques of moving-object
detection without any exploitation of specific properties of the tennis video
game, which leads to a poor detection performance. In addition, the pur-
pose of detecting players is to obtain the player’s positions. That is, only
the feet positions of the players are really important for further analysis, but
there is no technique addressing this feature specifically. The contribution
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of our technique is also based on change detection, but we focus on building
a high-quality background based on the game properties of tennis, since the
performance of the change-detection technique largely depends on the quality
of the background.

We have found that in most tennis video sequences, a regular frame con-
taining the playing field mainly includes three parts: (1) the court (playing-
field inside the court lines), (2) the area surrounding the court and (3) the area
of the audience. Normally, the moving area of the players is limited to the
field inside the court and partially the surrounding area. Moreover, the color
of the court is uniform, as is also the case for the surrounding area. The above
observations have been exploited to separately construct background models
for the field inside the court and the surrounding area, instead of creating a
complete background for the whole image. Using this concept, two advantages
occur as compared to the conventional algorithms. First, a background figure
with better quality is obtained, which cannot be influenced by camera motion.
Second, because of the improved background picture quality, only color and
spatial information are considered for further feature extraction, which makes
our proposal simpler than advanced motion-estimation methods. More details
about the algorithm can be found in [26].

In conclusion, the player detection and tracking algorithm is summarized
as follows.

1. Construct background for the playing field inside the court. Up
to now, we have obtained the boundaries of the court, and the coordi-
nates of each white pixel of the court lines. We can therefore label the
pixels excluding the white pixels within this area as inside pixels. After
this, the background model for the playing field inside the court is made,
in which the intensity of each pixel equals the mean intensity of all inside
pixels.

2. Construct background for the area surrounding the playing
field. Predict the moving area for the players outside the field, and label
all pixels of this area as outside pixels. In order to obtain a more robust
moving area, we predict it using a standard court model constructed
in the real world, which is then transformed into the image domain
employing 3-D camera parameters. Once all the outside pixels have been
extracted, the same averaging technique as mentioned above is applied
to construct the background for the area surrounding the playing field.

3. Produce binary map. Create a binary map having the same size
as the original picture, and initialize all pixels with 255. This map is
used later for player position analysis. A residue picture is formed by
subtracting the background model from the original picture. The output
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binary map is obtained by

B(x, y) =

{
0, if |d(x, y)| < Th;
255, otherwise,

(4.3)

where B(x, y) represents the value of the binary map at a given point
(x, y), d(x, y) denotes the corresponding value in the residue picture, and
Th is the threshold. Figure 4.3 shows an example, where the left figure
is the original, and the right figure is the produced binary map.

4. Extract the players. Exploiting the knowledge of the game court,
we select two search regions in the binary map, above and below the
tennis net-line (see the right figure of Figure 4.3). Subsequently, we
scan the Top and the Bottom search regions of the map (above and
below the tennis net-line) for finding the player bodies. The top and
bottom search region are two windows of different dimensions, in order
to account for perspective differences. For searching, we locate a small
player search window in the Bottom region WB at every possible pixel.
For each pixel position (the center position of the small search window),
we count the number of zero values in bottom region WB enclosed by the
small window. Then we select maxB, the centroid of the bottom player,
and find the related position which maximizes the zero count. Similarly,
we obtain the top player position using the same algorithm.

5. Player tracking in successive frames. When the initial player po-
sitions are determined in the first frame with the playing field, we can
detect the players in an efficient way for successive frames. We only
explore two local search areas surrounding the identified small window
centers of the previous frame, where the players are found. Within those
two search areas, we again search for the positions that maximize the
zero counts in the search areas at the bottom and top field areas WB

and WT , respectively. In this way, the players’ positions are computed
at each frame.

6. Tracking refinement. In our framework, the semantic-level analysis
requires the player position with high accuracy. It is difficult to be pro-
vided by only the player extraction and the tracking developed in Step 5.
Therefore, we need a procedure that further smoothes and refines the
motion of each player. Plankers [65] adopts the DES operator to track
moving persons, which executes faster than the Kalman-based predic-
tive tracking algorithm with equivalent prediction performance. Here,
we adaptively adjust key parameters of the DES filter by using the real-
world speed of the player calculated by our camera modeling [31]. Once
the player positions in the 3-D domain are obtained with high accuracy,
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Figure 4.3: Example of constructing a binary map with top search region and
bottom region.

the relevant parameters, such as the real speed, trajectory, and so on, can
be easily computed. This kind of real-world parameters can be directly
provided to the users, like a coach or the player himself. Meanwhile,
the semantic-level analysis would also profit from these real-world visual
features.

D. Scene-level event classification
The semantic analysis module is designed based on the definition of a set of
events. Its objective is to classify various events with game context knowledge.
For the user, an event would be an important mark in the play, a fault, a scor-
ing point, etc. For the analysis, events are defined by a linear combination of
a number of real-world visual cues, such as the instant speed of each player,
speed change of each player, distance of the moving players to a set of ref-
erence locations (base-line, service-line) and temporal relations between each
event. Moreover, we have also found that the importance of each visual cue to
different events is not exactly equal. For example, the position of the player
is evidently more important to identify a net-approach event, than other vi-
sual cues. Thus, we propose to assign a weighting factor to each visual cue,
whose value is depending on its importance to a specific event. Such a refined
weighted linear combination has the potential to yield a higher accuracy. This
definition of an event has the advantage of being flexible, since any event of
any time scale can be represented. Afterwards, event recognition is achieved
by computing a likelihood degree, which also provides a reliability indication
of the event recognition. The technical details will be discussed in the next
section.

4.2.2 Semantic inference

The semantic inference derives several real-world visual cues from the image
domain and afterwards, it makes weighted models for event recognition. To
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achieve the first part of this task, the system should correctly bridge the gap
between the numerical image features of moving players and symbolic descrip-
tion of the scene. To do so, we first analyze the game rules and select a list of
several visual cues that really facilitate semantic analysis of the tennis game.
Second, we intend to describe each key event making use of the selected visual
cues from a real-world viewpoint, and further analyze which cue is more im-
portant to a specific event. The previous two steps are performed off-line, and
yield mapping and computing models for events. These models are used in the
algorithms for on-line computations of both steps. Third, we compute a likeli-
hood degree of each event for each input frame and decide on the mapping of
input frames to events. At the end of this step, a simple but efficient temporal
filter is used to extract the start time and the end time of each event. Fourth
and finally, we summarize the game based on temporal correlations among
events. Let us now elaborate further for each of those principal steps.

A. Real-world visual cues in tennis video
As mentioned earlier, some existing tennis-video analysis systems [83] employ
two common visual features: position and speed of the player. In this chapter,
we not only extend these two cues to the real-world domain, but also propose
two novel cues for event identification in tennis video, which makes it possible
to detect more events. Let us now list and motivate the four real-world visual
cues that are used by our algorithm. In this way, one frame is represented by
the feature vector

f = [SI , SC , PR, TR]. (4.4)

• Instant speed of the player SI : The speed of each player is definitely
important, because it reveals the current status of a player (running or
still) and it also indicates the intensity of the match.

• Speed change of the player SC : Acceleration and deceleration of a player
occurs during changes in action behavior.

• Relative position of the player to the court field PR: This position is
important for the recognition of those events that are characterized by
a typical arrangement of players on the playing field.

• Temporal relations among each event TR: In some sports games like
tennis and baseball, there are strong temporal correlations among key
events. For example, in a tennis video, service is always at the be-
ginning of a playing event, while the base-line rally may interlace with
net-approaches. In our case, TR marks the first four seconds of a possible
rally, starting with the service.
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B. Visual-based model for each event
With the above real-world cues, we can model key events, of which three are
given below. These are the events classified by our system.

• Service: This event normally starts at the beginning of a playing event,
where two players are standing on the opposite half court, and where
one is at the left part of the court, and the other is at the right part. In
addition, the receiving player has limited movement during the service.

• Base-line rally: This occurs usually after the service, where two players
are moving along their base-lines with relative smooth speeds, that is,
there is no drastic speed change.

• Net-approach: This is one of the highlight parts of a game, in which
standard visual cues: (1) a large speed change, combined with (2) close
positioning of players to the net lines.

As soon as a new event starts with the playing frame of an event inside,
the parameter PR is set to unity for four seconds, after which it becomes to
zero again. This marks the beginning of a sequence with an event.

All event models utilize the four real-world visual cues described earlier.
We have found that a linear combination of these visual features can be ap-
plied to identify the events. Furthermore, we employ the knowledge that the
importance of each cue to different events is not equal. For example, the tem-
poral position is clearly more important than other cues in order to identify
a service event, as 90% of the frames belong to the service event within the
first four seconds of a playing event (verified by our sequences). Similarly, the
position of the player is more important than other cues to recognize a base-
line rally or a net-approach. Therefore, we assign weighting factors to each
visual cue and then make linear combinations of the four visual cues. As an
example, we discuss the service-event detection in more detail and illustrate
the computation of a likelihood degree for an input frame. The likelihood
degree Li is obtained by

Li = w1 × TR
i + w2 × SI

i + w3 × SC
i + w4 × PR

i , (4.5)

where i is the frame number, TR
i marks the beginning of an event, as indicated

in subsection A. For service detection, if the current frame is within the first
four seconds of a playing event, then TR

i = 1, otherwise TR
i = 0. The param-

eter SI
i represents the instant speed of a player. In this case, if the speeds of

both players are less than 1 m/s, then parameter SI
i = 1, otherwise SI

i = 0.
The parameter SC

i refers to the speed change of a player. In the service case, if
the speed changes of both players are less than 1 m/s, then SC

i = 1, otherwise
SC

i = 0. Parameter PR
i means the relative position between the player and

the court field. In the service case, if two players have positions close to the
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Start time End time

time

Figure 4.4: Example showing how to extract the start time and the end time
of a service event.

baselines and also on the opposite half court, then PR
i = 1, otherwise PR

i = 0.
Weighting factors w1, w2, w3 and w4 correspond to each feature. In the service
case, w1 = 2, but w2, w3, and w4 are all equal to unity, as temporal relations
are more important than other features. In our algorithm, when Li = 3, we
mark this frame as a service frame. Similarly, Equation (4.5) can also be used
to extract the base-line rally and net-approach by merely changing the variable
values and weighting factors related to a different event model, which makes
this likelihood concept generally applicable.

C. Event extraction
Until now, each frame is classified as a service, base-line rally or net-approach.
The next step is to extract the start time and the end time of each event.
Figure 4.4 portrays an example, where we show a set of frames in the tem-
poral direction. A circle represents a detected “service” frame, and a cross
stands for a “non-service” frame. It can be noted from Figure 4.4 that the
first frame is not a reliable start frame of the service event, although it is
labeled as a “service” frame. This is because there are three “non-service”
frames behind it, so that the probability that it is erroneously classified as
“service” frame is large. Therefore, the first step of the start-time extraction
is to measure a window for the local correlation of the i-th frame, using the
following definition:

c(i) = s(i− 2) + s(i− 1) + s(i) + s(i + 1) + s(i + 2), (4.6)

where i is the frame number, and s(i) denotes the binary state of this frame.
If frame i is a service frame, s(i)=1, otherwise s(i) equals 0. We compute the
local indication c(i) for each “service” frame (circles), then select the lowest
frame number i for which c(i) > 2 as the start frame of the service event.

In order to detect the last frame of the service, we first calculate the
occupancy rate by

Oi = nj,i/Nj,i. (4.7)

Here, assuming the current i-th frame is classified as “service”, nj,i counts
the number of “service” frames between the first “service” frame with index j
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and the current frame i. Furthermore, parameter Nj,i denotes the total amount
of image frames between the first “service” frame and the current frame (in-
clude some frames that are classified as non-service), hence Nij = i − j + 1.
We compute Oi for each “service” frame. The frame with the largest index i
for which Oi > 0.7 is selected as the end frame of the service. The threshold
value 0.7 was derived after conducting several experiments.

D. Game summary
Our scene-level analysis not only identifies some important events, but also
intends to summarize the game, making use of time-sequential order between
events. For instance, if there is a service event without a base-line rally, or
a net-approach that directly changes to a ”non-event”, it is reasonable to de-
duce that such a case might be an ace or a double-fault. Furthermore, it is
feasible to calculate how many net-approaches each player carried out during
a match. Based on the statistical results, the player with more net-approaches
is classified as more aggressive.

4.2.3 Experimental results

To evaluate the performance of our proposed algorithms, we have tested our
system using 7 broadcasted tennis video clips (totally more than 40 minutes)
recorded from three different tennis matches (US open, Australian open, and
French open). We present various results starting with pixel-based processing,
ending with event classification and performance evaluation.

A. Results for pixel and object-level algorithms
In this section, we present the results of our playing-frame detection algorithm,
player segmentation and player tracking algorithm. For each of these algo-
rithms, we compare the computed results with manually have labeled ground-
truth data.

In our dataset, the system achieves a 96% detection rate on finding court-
view frames among the testing frames, and 96% detection of players at the
playing frames, where the criterion is that at least 70% of the body of the
player is included in the detection window. Here, the ground truth data are
manually labeled. Figure 4.5 portrays a set of practical visual detection results.
It can be concluded from these results that our proposed algorithm not only
accurately segments the player and the court, but also detects the position of
the player in the image domain with different court types.

To evaluate the player position adjustment, a 70-frames clip is processed
by applying the smoothing filter in the 3-D domain. Figure 4.6 shows exam-
ples of the player positions processed by various smoothing filters, where the
results of our adaptive DES (see Chapter 3) compare favorably to the ground-
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Figure 4.5: Player and court-tracking results for 3 consecutive periods of
30 frames, where the row of sub-figures indicate tracking within
that sequence (the court is indicated by black lines, the black
rectangular represents the detected player).

truth data.

B. Results for scene-level analysis algorithm
We manually have labeled all events to obtain the ground truth. At the
scene level, the system automatically classifies three important events includ-
ing service, baseline rally and net-approach. Table 4.1 shows the results of
our simulations using the proposed weighted linear combination model and
the conventional linear model. The results clearly show that our model is bet-
ter than the conventional linear solution. Also, it can be concluded that the
scene-level event extraction rate of the system is about 90%.

C. Results for system performance
Our video-based sports analysis system provides analysis results at three dif-
ferent levels, which provides sufficient analysis results for various users with
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Figure 4.6: Player position tracking, using various filtering techniques. X
and Y refer to an image domain coordinate system (we track
positions in the real-world domain, then transform them back to
the image domain).

Figure 4.7: Results of our analysis system in the service event at Frame 248.

different preferences. An example of a full visualization for service detection is
shown from Figure 4.8 through Figure 4.9. Another example of the detection
of net approach is shown from Figure 4.10 through Figure 4.12. At the pixel
level, several key objects are segmented and indicated. Meanwhile, the sys-
tem indicates whether the current frame is a court-view frame or not. At the
object level, the moving objects are tracked in the 3-D domain (at the right
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Figure 4.8: Results of our analysis system in the service event at Frame 252.

service!

Figure 4.9: Results of our analysis system in the service event at Frame 256.

side of Figure 4.8-Figure 4.12). Several useful data parameters are provided,
such as the instant speed of each player, the average speed of each player (in
meters/second) and the total running distance. At the scene level, the sys-
tem automatically classifies three important events including service, baseline
rally and net-approach. We have also tested our video-based sports analyzer,
achieving a near real-time performance (2-3 frames/s for 720× 576 resolution,
and 5-7 frames/s for 320× 240 resolution, with a P4-3GHz PC).

This section has presented a nearly real-time video-based system for tennis
sports analysis. It has been shown that visual cues can successfully achieve
event understanding, integrating game-related domain knowledge of tennis
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Figure 4.10: Results of our analysis system in the net-approach event at
Frame 1815.

Figure 4.11: Results of our analysis system in the net-approach event at
Frame 1820.

sports. However, it is very difficult to recognize some scenes (e.g. cheers of
audience and scoring moment) only by using visual signals. Therefore, we will
explore the audio signal and associate it with the video for additional scene
understanding. In the next section, we will discuss this audio-based system in
more detail.
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net approach!

Figure 4.12: Results of our analysis system in the service event at Frame
1831.

Table 4.1: Video-based classification results.

Total Detected Correct Miss False

Service 16 18 16 0 2
Our model Base-line rally 14 16 14 0 2

Net-approach 6 6 6 0 0
Service 16 15 14 2 1

Linear model Base-line rally 14 13 12 2 1
Net-approach 6 5 5 1 0

4.3 Audio-based analysis

4.3.1 Introduction of audio-based aspect

In multimedia systems, the audio signals can contribute to the semantic anal-
ysis in a similar way as with video. Figure 4.13 depicts a typical generic struc-
ture of an audio-based sports analysis system. First, audio signals are entering
the pre-processing module, where they are divided into frames through time-
windowing and amptitude normalization processing steps. Afterwards, in the
feature-selection module, frame-level or clip-level audio features are extracted
for analysis [99]. Then audio event detection is implemented in the event-
classification module. Finally, the event information is reused in the video
domain by classifying corresponding video frames into various video events.

Particular audio events like the racket-hit sound are important for analy-
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Feature Selection

Time domain: STE, ZCR, etc.

Frequency domain: MFCC, Spectrogram, etc.

Event Classification

(SVM, HMM, NN, etc.)

Preprocessing

Windowing / Normalization / Noise filtering

Audio 

signals

Figure 4.13: Two modules in general audio-based sports analysis.

sis at the semantic level. However, the short duration of the racket-hit sound
and the significant ambient noise are major practical challenges in reliable
racket-hit detection. The traditional approach of tennis racket-hit detection,
employing template matching in the frequency domain [63] does not yield sat-
isfactory results. Different choices of audio features [100] and learning-based
algorithms [14] have been applied and may improve the detection accuracy.
However, the challenge is to keep a good balance between high accuracy, ro-
bustness to varying circumstances, and the involved computational cost.

Different sports event detectors are available for the event classification
module in Figure 4.13. In [100], a single-layer SVM classifier is used to evalu-
ate the performance of a single feature. Ref. [101] uses Hidden Markov Mod-
els (HMM) for effective audio classification. These approaches may achieve
good results, but they require offline processing, and additionally, a suitable
dataset for training is indispensable. The objective of our research is to cre-
ate an automatic online sports video analyzer of tennis video sequences at a
semantic level. When using audio signals with the three-step approach from
Figure 4.13, we concentrate on simplifying the second and the third mod-
ule in two aspects, because they involve expensive processing. First, in the
feature-selection module, we propose a three-step racket-hit detection scheme,
driven by specific knowledge fused with temporal and spectral criteria of the
audio event marking a racket hit. Second, in the event classification module,
a simple parametric classifier using heuristic rules is constructed to implement
tennis event classification without training datasets. The previous two aspects
distinguish our work from the existing proposals.

The remainder of this section is arranged as follows. Section 4.3.2 intro-
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Figure 4.14: Hierarchical block diagram of audio-based sports video analysis.

duces the architecture of our tennis audio-based analysis system. The detailed
techniques, especially the proposed three-step racket-hit detection scheme, are
introduced in Section 4.3.3. Next, heuristic detection rules for audio events
detection in tennis video are described in Section 4.3.4. The experimental
results are demonstrated in Section 4.3.5.

4.3.2 Audio-based system framework

The hierarchical block diagram of our audio-based sports video analysis system
is visualized in Figure 4.14. It serves as a supplementary customized solution
for sports video analysis.

As a first step, we extract the audio data from tennis video followed by
pre-processing filtering to remove accompanying noise. The audio data is used
for low-level feature detection, employing both time-domain and frequency-
domain analysis. After a pre-processing step, a novel three-step racket-hit
detection scheme effectively removes incorrectly detected hits based on the
features properties and specific game-rule knowledge. This improves the ac-
curacy of the final event classification (see Section 4.3.3). Subsequently, in
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Section 4.3.4, we employ heuristic rules for bridging the gap between feature-
level space and the semantic level. Using semantic data, we are able to label
various events on a tennis sports video, such as rally, service, return, audience
applause/score without any visual information. In the following, the audio-
based components are discussed in detail.

4.3.3 Racket-hit detection scheme

Racket-hit detection plays an important role in audio-based tennis video sports
analysis. However, this task is a practical challenge as the sound of a ball im-
pact on the racket is rather short and often mixed with significant background
noise resulting from yells of players, scratches of shoes, voice of commentators
and audience during the game. To achieve an accurate detection result, we
propose a racket-hit detection scheme.

Step 1: Classify two segments
We initially classify a particular sequence into either silence or applause/score
segments. It is a practical rule that there is less background sound during
the rally, while a loud applause occurs when a player scores during the game.
We use this as an essential hint for our algorithm design. The key is that the
whole sequence is divided into the above two types of segments based on their
different temporal audio property. After doing so, we execute the remaining
racket-hit detection scheme on each segment that was classified as “silence”.
Then the two main processing steps follow. Figure 4.15 shows more details
in feature-extraction and subsequent steps. After classifying segments as ap-
plause, two processing steps are added to find accurate hitting points in the
following.

Step 2: Find hitting-point candidates
The second step of our racket-hit detection aims at searching preliminary
hitting-point candidates. A racket-hit point candidate Pt over each rally pe-
riod is calculated by

Ht =

n∑

i=1

aiXi, (4.8)

where n is the number of low-level features involved, ai and Xi indicating
the weighting parameter and normalized value for a particular hitting point
related to the i-th feature, respectively. Parameter Ht is the projected value
from the n low-level features space for the t-th point. Hereby we set n = 2
as we use only two features: Short Time Energy (STE) and Spectral Power
(SP). Furthermore, we set a1 = a2 = 0.5. Parameters X1 and X2 represent
the normalized values for the two features of STE and SP, respectively. If the
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Figure 4.15: Diagram of example result of Step 2 (above: original data; mid-
dle: Short Time Energy (STE); bottom: spectrogram).

value Ht is above a predefined threshold T1, we may label this point as Pt

and add it in the set of racket-hit point candidates P = {P1, P2, ..., Pt−1, Pt}.
Evidently, Equation (4.8) may be extended when more low-level features are
taken into account.

An example result of this hitting-point candidates finding is shown in
Figure 4.15. The obtained segments of applause/score and rally from the ini-
tialization are supplemented with sets of preliminary hit-point candidates over
each rally segment. Therefore, we proceed to Step 3 where we refine the results.

Step 3: Refinement
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Figure 4.16: Hierarchical block diagram of sports video analysis.

At the third step, the refinement process corrects the detection error and
thereby improves the accuracy of the final event classification.

From the length and width of a standard tennis court and the feasible speed
of the tennis ball during the game, we have derived that the possible range of
time between two successive racket-hits is approximately 1.2-2.0 seconds. As
our video playing rate is 25 frames per second, the distance in frames between
two racket-hit points is 30-50 frames. This constraint provides important
information in this refinement step.

The service in a tennis game always occurs with less background noise that
interferes with the racket-hit sound. Therefore, it is easier to detect than other
hitting points during the rally. This is also verified by our experimental re-
sults. Based on the assumption that the service is accurately detected, we have
implemented an approach to improve hitting detection, which is illustrated in
Figure 4.16. Suppose a service point is denoted as Ps and its corresponding
value Hs from Equation (4.8). We obtain a set of three hitting-point candi-
dates above a predefined threshold T1, i.e. P = {P1, P2, P3} during a rally
from Step 2. Their corresponding values are in the set H = {H1,H2,H3}.
Along the time axis shown in Figure 4.16, Ps indicates the verified service
point, while P1, P2, P3 represent three hit-point candidates.

Subsequently, a penalty coefficient Ki is incorporated to limit the possible
distance range of every two consecutive racket-hit points over a sequence:

Ki =






1 if 30 ≤ Di ≤ 50,

0 if 20 ≤ Di ≤ 30 or 50 ≤ Di ≤ 60,

−1 if otherwise,

(4.9)

where Di denotes the distance between the current hit-point candidate Pi

and the previously verified racket-hit point, expressed in frame units. For
example, to verify candidate point P1 in Figure 4.16, the distance D1 between
the verified service point Ps and P1 is calculated. Suppose P1 is not verified
as a racket-hit point later. We proceed to verify the next candidate point P2

by computing the distance D2 between Ps and P2.
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Figure 4.17: Hierarchical semantic structure of a tennis game.

The value of each feature-space point Hi is referred to a criterion for defin-
ing the next verified racket-hit point, specified by

Si = (1 + Ki)
Hi

Hs
− λ, (4.10)

where Si is the weighting parameter for the i-th hit-point candidate Pi and λ
is a threshold which is validated empirically to each candidate Hi. If Si > 0,
we label the i-th hit-point candidate as a validated one and add it to the set
P’, which represents the verified racket-hit points. Then the hit-point Pi is
used for the next detection iteration and calculate Di+1 as a reference point.

Hence, we are able to obtain the refined tennis racket-hit points P’ result-
ing from Equation (4.10). Then we proceed to the next module for automatic
high-level semantic sports analysis.

4.3.4 Heuristic rules for audio-based events detection

Sports videos have a game-specific structure because all sports games have
particular rules and regulations. In other words, all of the games take place
under a constrained environment with a defined layout. Therefore, the context
knowledge of the particular game may be used as an important clue for our
sports analysis. Tennis sport also applies to this general idea. To understand
the relationships between various events, the particular hierarchical structure
of a tennis game is shown in Figure 4.17. It forms the foundation for our
heuristic rules for tennis event detection. It is also a logical verification tool
for our tennis video analysis system.

Using heuristic detection rules, the tennis sports sequence can be classified
into four different categories as follows.

• Applause/Score: a loud applause from the audience indicates that a
player has scored.
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Table 4.2: Correct detection fraction of the three-step racket-hit detection
scheme.

Recall Precision
Racket-hit detection
without refinement step 0.77 0.68
Racket-hit detection
with refinement step 0.90 0.84

• Rally: no applause occurs. In this period, results of the racket-hit
detection module further sub-divide the rally into service and return.

• Service: the moment that a racket-hit is detected at a silent segment.
The service is further segmented into four classes.

– Ace: the non-serving player fails to return in any form the oppo-
nent’s service, which leads to direct loss of a point. Typically, an
ace is shortly followed by an applause segment.

– First service failure: a player fails to serve the ball for the first
time. First service failure is characterized by a racket-hit event,
which is however not followed by an applause segment.

– Second service failure: a player fails to serve the ball for the second
time.

– Normal service: a player makes a successful service, followed by a
return from his/her opponent. Practically, it is a service which is
not labeled as ace, first service failure or second service failure.

• Return: when the opponent’s racket-hit is detected after a service.

4.3.5 Experimental results

We have conducted various experiments to verify the performance of the audio-
based scheme, as described in the previous subsections. Our database contains
three MPEG-2 tennis video clips with a total length of 6 minutes. The audio
signal is sampled at 44.l kHz sampling rate, stereo channels and 16 bits per
sample.

First, we have verified the proposed three-step racket-hit detection scheme,
which is described in Section 4.3.4. The three video clips contain 30 actual
hitting points in total. We have defined the so-called parameters Recall and
Precision of the racket-hit detection and used them to measure the perfor-
mance of our algorithm. Recall is defined as
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Table 4.3: Performance evaluation of event detection in tennis videos.

Ground Number of Number of
truth false detections missed detections

Score 9 0 0
Normal service 4 0 0
Ace 4 1 0
First service failure 5 0 0
Second service failure 2 0 0
Return 15 1 2

Recall =
number of correct racket hits detected

actual number of racket hits
, (4.11)

while Precision is defined by

Precision =
number of correct racket hits detected

number of all racket hits detected
. (4.12)

We have summarized the results in Table 4.2. It is clear that the refine-
ment step effectively improves the recall and precision of racket-hit detection.
Second, we have classified the three video clips into different events, based on
the heuristic rules described in Section 4.3.4. Table 4.3 shows six mutually
exclusive events and the encouraging performance of the event classification
for each of them. In addition, we have constructed an audio-based tennis
video analysis system. It runs under the Linux operating system and was
programmed in C++. Its user interface is shown in Figure 4.18.

Let us now combine the video-based and audio-based technique to inves-
tigate the possible increase of the analysis result and discuss the details in the
next section.

4.4 AV-based analysis

In multimedia systems, both audio and video signals can simultaneously con-
tribute to the analysis at the semantic level [100, 14]. In this section, we
simultaneously combine audio and video information to implement an auto-
matic tennis-ball-path inference for tennis sports video analysis.

The tennis ball-path plays an important role in the tactical analysis of
tennis. However, recovering the tennis-ball path remains a challenging task.
Approaches for semantic-level analysis based on ball tracking have been ex-
plored in [63, 29, 103], where a rather accurate trajectory, using tennis-ball
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// Frame Number //
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Figure 4.18: User interface of our audio-based tennis analysis system.

detection and tracking, was obtained. Generally, it is quite difficult to de-
tect and track the ball accurately in practice, especially for a long sequence,
because of the features of the ball in the image domain given below.

• The ball size is small.

• The detection is considerably affected by the environment, like illumi-
nance, type of playing field, etc.

• The quality of the acquired video sequence is not always sufficient to
detect the ball.

• The ball deformation is significant, especially at high speeds.

In fact, the accurate trajectory of the ball is not necessary for tactics anal-
ysis. Only the ball path is important. Therefore, we alternatively propose to
utilize a non-ball-tracking approach with the fusion of audio and video signals
to infer the ball path. This alternative approach should also contribute to the
tactics analysis in balancing accuracy, robustness to varying circumstances,
and the involved computational cost.

The objective of our research is to create an automatic online tennis sports
video analyzer at high semantic level, using both auditory and visual informa-
tion. This section contributes in two aspects. First, we present a simple and
reliable serving-player detection scheme, that classifies the service status and
which is driven by fusing audio and video information about the service. Sec-
ond, the tennis-ball path is generated for tennis-game tactics analysis without
detecting and tracking the ball itself.

In the sequel, we first introduce the architecture of our AV-based anal-
ysis system in Section 4.4.1. The proposed serving-player detection scheme
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Figure 4.19: Block diagram of our AV-based analysis system for ball-path in-
ference and tactics analysis.

is described in Section 4.4.2. Later, Section 4.4.3 introduces the scheme for
tennis-ball-path inference. Finally, Section 4.4.4 summarizes the experimental
results.

4.4.1 AV-based system framework

The hierarchical block diagram of our AV-based tennis video analysis system
is visualized in Figure 4.19.

As a first step, both the video and audio data are extracted from the tennis
video sequences, which are fed to two different modules. In the audio-based
analysis module, pre-processing filters remove accompanying noise. Subse-
quently, the audio data is used for sample-level feature detection, employing
both time-domain and frequency-domain analysis. Next, a racket-hit detec-
tion scheme effectively removes incorrectly detected hits, based on the feature
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Figure 4.20: Block diagram of analyzer for serving player.

properties and specific game-rule knowledge [44]. In the visual-based analysis
module, several techniques of our earlier work are applied to detect the playing
scenes [29], track the players [29] and detect the tennis court [29]. Meanwhile, a
camera-calibration algorithm [18] is used to bridge the gap between the image
domain and the real-world domain. In other words, it transforms the image
coordinates to physical positions. Afterwards, a serving-player detection, de-
scribed in Section 4.4.2, is activated. Based on the combination of audio and
video processing results, we are able to obtain the tennis-ball-path inference.
Therefore, the tactics analysis of a tennis game can be implemented.

4.4.2 Visual-based serving-player detection

Triggered by the timing of each racket-hit sound, the visual analysis in the
image domain is performed. Based on our previous work [29], we obtain the
position of each player in each frame. Then their projection on the real-world
tennis court model is also calculated. This may lead to further tactical analysis
which is described in Section 4.4.3.

The serving-player detection plays an important role, as it contributes to
the mapping between a sequence of racket-hit moments and the position of
the hitting player in the corresponding video frames. We define a player as
front-court player when he is closer to the camera and the other player as
back-court player. Since the service status of two players is correlated, we
analyze only the service of the front-court player. The status of the other
player can be easily derived from the rules of the tennis game. For example,
only one player (front-court or back-court) is serving during a tennis game
and his service status is either right-court service or left-court service.

Let us now introduce our serving-player detection approach of which the
block diagram is portrayed by Figure 4.20. First, the image frames corre-
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W

H

Figure 4.21: Example of comparing the silhouettes of a serving player (left)
and a non-serving player (right).

sponding to the service event are extracted. From the results of [29], an initial
template indicating the position of the front-court player, is available. As the
3-D real-world position is also calculated, we can classify the serving status
into two cases, i.e. right-court player and left-court player, according to the
position relative to the detected court [29]. The silhouette of the front-court
player is represented with a bounding box. This enables to distinguish whether
the front-court player is serving or not, based on a specific silhouette property.

Figure 4.21 shows an example of the difference between a serving posture
and a non-serving posture. The feature of the aspect ratio α of the bounding
box can distinguish between a serving player and a non-serving player. This
aspect ratio α is defined as the ratio between width W and height H of the
bounding box, which is compared to a threshold such that

α =
W

H
=

{
6 λ is serving, or

> λ is NOT serving.
(4.13)

Here, λ indicates an adaptive threshold which is depending on the relative
court size. If the aspect ratio α of the bounding box indicates a service of the
front-court player, the service status is classified as front-court service. Oth-
erwise, the service status is labeled as back-court service. In our experiments,
we have measured λ from ground-truth events and found that λ=0.8.

4.4.3 Tennis-ball-path inference for tactics analysis

Suppose we obtain a set of n racket-hit points P’ = {Ps, P1, P2, P3, ..., Pn}
from Section 4.4.2, a set of its corresponding positions for the front-court
player F = {Fs(xFs, yFs), F1(xF1, yF1), F2(xF2, yF2), ..., Fn(xFn, yFn)}, and
B = {Bs(xBs, yBs), B1(xB1, yB1), B2(xB2, yB2), ..., Bn(xBn, yBn)}, which is the
back-court player. From the serving-player detection and tracking results, we
are able to implement the tactics analysis, while no highly accurate ball tra-
jectory is required.

An example of the analysis is shown in Figure 4.22. In the tennis court
model, the circle and the rectangle represent the positions of the front-court
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1

3

2

4

Player trajectory

Tennis-ball-path inference

Figure 4.22: Example of the tennis tactics analysis with indicated ball-path,
playing order and player trajectories.

player and back-court player when they are making the racket-hit, respec-
tively. The numbers shown in the figure indicate the order of the racket hits
in a particular sequence. The dotted arrow and the solid arrow represent the
player trajectory and the tennis-ball-path during the game, respectively. Evi-
dently, this arrangement contributes to the tennis tactics-analysis application.
It facilitates the player and/or the coach to analyze and improve the playing
performance.

4.4.4 Experimental results

Experiments are conducted to test the performance of our proposed scheme, as
described in the previous sections. The database for experiments is composed
of two MPEG-2 tennis video clips with a total length of 6 minutes.

First, we verify the proposed serving-player detection scheme, which is de-
scribed in Section 4.4.2. The video clips contain 11 actual services in total.
Given the accurate racket-hit detection results from audio-based analysis, the
score of the video-based serving-player detection reaches 91% for this (limited)
dataset. It should be noted that this high score relies on the audio-based anal-
ysis result. We have verified that the performance deteriorates when the audio
analysis does not work properly. Employing the algorithm of Section 4.4.3, we
have succeeded to classify the serving status into the four categories as shown
in Figure 4.20 (front/back-court, left/right-court service).

Second, we have implemented an AV-based tactics analyzer, of which ex-
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Figure 4.23: Schematic results of tennis tactics analysis, by showing the mea-
sured ball path.

ample analysis results are depicted in Figure 4.23. This effectively and accu-
rately simulates a tennis game at a position level, where the tennis-ball-path
is drawn in solid lines between the player positions.

4.5 Summary and conclusions

In this chapter, we have first motivated the use of a sports analysis system
for consumer applications and afterwards reviewed its state-of-the-art work.
Later, requirements of home-use sports analysis systems are summarized. The
video-based, audio-based and AV-based detection systems are developed such
that the previously mentioned requirements for home-use are satisfied.

First, we have proposed a tennis sports analysis system which is intended
to be part of a larger consumer media server featuring analysis applications.
The analysis system is an aid for the consumer in classifying sports video
programs that are recorded in large quantities and stored on the media server.
The automatic sports analysis system can generate metadata that can be
used for categorizing the video scenes and give support for fast searching and
retrieval. The new proposed sports video analysis system features high-level
scene analysis based on real-world visual clues. The main contribution is that
a selected list of real-world visual clues is applied to a set of linearly-weighted
models of individual events. Robustness of event detection is achieved by using
time-line models, in which the player actions become sequantially visible. This
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produces probabilistic values indicating the reliability of the event occurrence.
Furthermore, the high-level sub-event extraction rate of this system is about
90%. The complete proposed application is efficient enough to obtain a real-
time or near real-time performance (2-3 frames/second for 720×576 resolution,
and 5-7 frames/second for 320 × 240 resolution, with a P-IV PC running at
3 GHz). The system may be extended to analyze other sport types [32], like
volleyball, badminton and basketball, since several techniques, such as court
detection, camera calibration, player segmentation and high-level analysis, are
generally applicable to other sports.

In the second part of this chapter, we have presented a scheme for au-
tomatic sports video analysis, based on audio signals only and specific game
context knowledge. A three-step racket-hit detection algorithm is employed
to achieve accurate event classification. The algorithm applied a linear combi-
nation of short-time energy and spectral power, followed by a refinement step.
Besides this, heuristic rules, based on specific knowledge of the tennis game,
are used for mapping the sample-level features to the semantic level. It was
shown that the system implementation can identify meaningful events such
as rally, scoring, different types of service, and return. The experimental re-
sults indicate that we have achieved a detection accuracy up to about 90% for
racket-hit detection. It is very difficult to recognize some scenes (e.g. cheers
of audience and scoring moment) only by using visual signals. Therefore, we
have explored the audio signal and associate it with the video for additional
scene understanding.

In the third part of this chapter, we have discussed a scheme for automatic
tennis-ball-path inference for tennis sports video analysis, based on simultane-
ously combining audio and video information. First, an effective serving-player
detection algorithm is employed which aims at locating each player in the im-
age domain, corresponding to each racket-hit that is detected by audio-based
analysis. The player detection and tracking is an aid in finding the service by
the aspect ratio of the player silhouette and afterwards accurately classifying
the service into several categories such as left-court/right-court service and
front-court/back-court service. Second, the tennis-ball-path is generated for
tennis game tactics analysis without detecting and tracking the ball itself, by
projecting players in a real-world model and combining previous analysis with
game rules. It was shown that our scheme can deliver a tactical analysis based
on the fusion of video and audio analysis modules. The player/tactics analysis
is improved by showing the ball path.

This chapter has discussed a study case how to integrate the domain
knowledge in event-based understanding and employ 3-D camera calibration
to perform semantic analysis of the scene. In order to meet the real-time
requirement for embedded applications, fast and effective algorithms are se-
lected and implemented at each processing step. We can also extend the
AV-based analysis system for robust event understanding by employing audio
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information. Audio signals can be utilized to recognize cheers of audience and
scoring moments, which are unlikely detected by using only visual signals.
Therefore, it is interesting and useful to include audio-analysis functions into
consumer/embedded content-analysis systems for enhanced robustness. More
importantly, the techniques utilized for visual analysis of tennis sports can also
be applied to other embedded applications, such as surveillance. For example,
a gun-shot detection [79] significantly attributes to a robust detection of bank
robbery. Evidently, new specific domain knowledge (e.g. the definition of
abnormal event and environment configuration) is required for system design
and algorithm selection. We will discuss the associated technical details for
surveillance applications in Chapter 5.
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Chapter5
Event understanding in a

surveillance application

5.1 Introduction

5.1.1 Motivation

The previous chapters have discussed the fundamental techniques for human
motion analysis and have applied them in a specific application: sports video
analysis (Chapter 4). In this application, scene understanding is achieved
by tracking the players in the field and interpreting their playing actions.
In this chapter, we will apply person detection to different application from
the surveillance area. Moreover, we also study and present an experimental
architecture featuring software components and close to real-time execution.

Video surveillance can contribute to the safety of people in the home or
other places and also facilitate and ease control of home-entrance and pub-
lic areas. A key function in a surveillance system is the understanding of
human behavior. The automated analysis of human behavior in surveillance
applications is the subject of this chapter, with the aim to explore efficient
algorithms for safety use. As a consumer video application, automatic surveil-
lance requires a sufficiently high accuracy and the computation complexity
should enable a real-time performance. For such a system, we need to ana-
lyze not only the motion of people, but also the posture of the person, as the
postures of the persons can provide important clues for the understanding of
their activities. Hence, accurate detection and recognition of various human
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postures contribute to the scene understanding. Furthermore, there is a re-
lentless pursuit of more effective and efficient management of human-motion
analysis results, which enables quick retrieval of video sequences, containing
important events, such as a burglary and/or falling incidents of elderly people.
For example, a video database can be used to search for important events and
classify those events, based on the semantic analysis of the human motion and
their interaction behavior in the scene.

5.1.2 Related work in surveillance systems

Most real-time surveillance systems have focused on understanding the events
through the study of trajectories and positions of persons, using a-priori
knowledge about the scene. Such systems [11, 33] can monitor activities over
various scenarios, using single or multiple cameras. They can detect and track
multiple persons and vehicles within cluttered scenes and manage their ac-
tivities over a long period of time. However, the monitoring performances of
the above systems mainly rely on the detected trajectories of the concerned
objects. The results are not sufficient for event analysis in some cases. As
the local properties of the detected persons are missing, the developed sys-
tems lack the semantic recognition result of dynamic human activities. Some
visual systems for indoor human activity monitoring [108, 75] track humans
and classify postures in a home-living environment. Furthermore, the above
systems extract important activity statistics and functional assessment data
from videos in a hierarchical structure. However, no execution-time perfor-
mance is reported from [108, 75] and we assume that they cannot achieve
real-time performance. Therefore, it is important to find efficient algorithm
solutions while keeping the high analysis accuracy. Also, the combination of
using trajectory, posture recognition, and camera communication is required
to improve the semantic analysis of the human behavior.

Multiple cameras are utilized in surveillance systems to improve detection
accuracy. Different cameras are connected as a network and camera cali-
bration lays a solid ground for information fusion from different viewpoints.
However, most multi-camera setups [75, 9] rely on manual camera calibration
and they always require initialization when camera locations or capturing en-
vironments change. Therefore, it is necessary to design an automatic camera
calibration scheme to extend the feasibility and flexibility of a surveillance
system. Furthermore, camera calibration techniques facilitate scene recon-
struction in 3-D space, which plays a useful role in semantic-event analysis
of multimedia applications [27]. The accurate and realistic reconstruction in
a virtual space can significantly contribute to the scene understanding, like
crime-evidence collection and tactical analysis. Therefore, it is interesting
to extend scene-reconstruction functionality in advanced surveillance applica-
tions, such as home-care monitoring and robbery-detection surveillance. The
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3-D scene reconstruction can be conducted to visualize the scene for further
analysis. In the application of a bank-robbery detection, e.g., this extended
processing is useful in the crime-scene analysis, data retrieval and evidence
collection.

From the literature study, we find that it is important to design efficient
algorithm solutions, while keeping the high analysis accuracy. Also, we should
propose a behavior analysis system which can provide a combination of trajec-
tory, posture recognition, and event recognition, ranging from pixel-based to
event-based analysis. Furthermore, the system should be extensible for using
multiple cameras, which is necessary to address the occlusion problem. Also,
an effective scheme to perform camera communication is required.

5.1.3 Requirements of surveillance analysis systems

Surveillance analysis in embedded applications offers various interests for the
users of the system. The specific challenges for consumer applications are as
follows.

1. Scalable and accurate results should be provided for an embedded surveil-
lance application.

2. A description of behavior and semantic events should be provided and
transmitted over the network in order to exchange information between the
processing components of a large and distributed surveillance system.

In the sequel, we will discuss the above requirements in more detail.

• To address the challenging problem of accurately analyzing human mo-
tion and achieving high-level event analysis from monocular or multi-
view video sequences, the system should provide analysis at different
semantic levels. A joint analysis tool is required to bridge the gaps
between the pixel-level, object-level and event-level analysis and classi-
fications. For example, the trajectory can indicate whether the person
enters the restricted area in a scene. The individual posture can also
specify the individual action, and analyze interaction modeling. Our
system has been designed such that it incorporates multiple levels of
human motion and posture analysis from the object level onwards. The
system can be utilized in surveillance applications with analysis results
at four levels of processing, which will be addressed later in this chapter.

• With respect to the second requirement, we have organized an evalu-
ation of our framework by partly embedding it in a new experimental
real-time AV content-analysis system. This setup was developed in co-
operation with the industry in the framework of the European ITEA
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project Cantata. In that framework, the ViPER file format is applied to
provide an effective description of the information which communicates
over the network. The evaluation of this framework at the end of the
project has results in an experimental system achieving a near real-time
performance (13-15 frames/second). Further details will be presented in
Section 5.3.

To accurately analyze human motion and rapidly detect abnormal events
at a high semantic level, we contribute in three aspects in this chapter.

• Component-based architecture. First, human behavior analysis algo-
rithms are directly designed for real-time operation and embedded in an
experimental run-time AV content-analysis architecture. The run-time
architecture is designed to be generic for multiple streaming applications
with a component-based architecture. It facilitates advanced video con-
tent analysis for surveillance, featuring network-based communication.

• Hierarchical human motion. Second, a flexible framework is proposed to
enable hierarchical human motion analysis. It can be utilized in surveil-
lance applications with four-level analysis results, using single or multiple
cameras. The motion analysis at higher levels contributes to object and
event understanding.

• 3-D reconstruction. Third, a 3-D reconstruction scheme is introduced
for scene understanding, based on automatic camera calibration. The
location and posture of persons are visualized in a 3-D space after context
knowledge is integrated. More specifically, the 2D-3D mapping provides
a platform for normalized motion configuration (i.e. location and speed)
and scene visualization in the real world.

A summary of frequently used terms and their definitions, which are pre-
sented in this chapter, is shown in Table 5.1.

In the sequel, we first introduce our system design, based on this soft-
ware architecture presented in Section 5.2. Afterwards, Section 5.3 presents
the overview of a run-time surveillance analysis system. As a key component
embedded in the run-time system, the human behavior analysis framework is
introduced later in Section 5.4. Then, Section 5.5 describes the techniques
applied for the behavior analysis framework. The experimental results on
surveillance video are provided in Section 5.6. Finally, Section 5.7 concludes
this chapter.
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Table 5.1: Frequently used terms and definitions

Level Term Definition
Feature-based State Spatio-temporal signal property valid at a

given instant or during a time interval. A state
characterizes only one or more features of a
moving object or a moving object with rela-
tions to other physical objects.

Trajectory Sequences of temporal locations of an object,
that is extracted by visual tracking. A path
reflects the trajectory of a moving object in 2-
D or 3-D space.

Object-based Action Resulting state of a moving object, that is con-
ducting a task (e.g. human posture indicating
pointing to a person).

Activity Specific action performed by a subject (human
in our investigated case).

Event The occurrence of an activity or some activi-
ties in a particular place during a specific time
interval. It is characterized by two attributes:
its spatial location (positions of the moving ob-
jects involved in the scene) and its temporal
relationship (during a certain interval).

Event-based Interaction Event that occurs as two or more objects have
a mutual influence on each other.

Behavior High description of human activities of one or
more persons, e.g. meeting, discussing, where
the context of the behavior indicates a certain
security impact (threating or not).

Scenario Predefined sequence of events.

5.2 System design based on software architecture

Software architecture deals with the design and implementation of the high-
level structure of the software. It results in assembling a certain number of
architectural components in some delicately chosen forms to satisfy specific
functionality and performance requirements of the system. To design a real-
time behavior analysis system and implement it into an architecture, we have
employed a well-known model of software architecting: the “4+1” view [77].
This model (see Figure 5.1) consists of five main views:
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Figure 5.1: “4+1” view model of architecture, after [77].

• The logical view, which describes the (object-oriented) system in terms
of abstractions, such as classes and objects. The logical view typically
contains class diagrams, sequence diagrams, and collaboration diagrams.
Other types of diagrams can be used when applicable.

• The development view, which describes the structure of modules, files,
and/or packages in the system. The package diagram can be used to
describe this view.

• The process view, addressing the processes of the system and how they
communicate with each other.

• The physical view, which describes how the system is installed and how
it executes in a network of computers. Deployment diagrams are often
used to describe this view.

• The use case view, which provides a scenario for the functional aspects
of the complete system. This view can be presented using case diagrams
and use-case specifications.

In the following, let us explain every view and associate it with our investi-
gated cases. Some examples are provided to explain individual views in our
architecture design, when the “4+1” view model is applied.
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A. Logical view
The logical view supports behavioral requirements and shows how the system
is decomposed into a set of abstractions. Classes and objects are the main ele-
ments studied in this view. We can use class diagrams, collaboration diagrams
and sequence diagrams to show the relationship between these elements from
a logical view. For example, class diagrams show classes and their attributes,
methods, and associations to other classes in the system.

The class diagram hardly provides a complete profile of the system for two
reasons. First, class diagrams are static, so they cannot indicate how the sys-
tem will react to user input. Second, class diagrams are often too detailed to
offer a useful overview of the system. Collaboration diagrams (or communica-
tion diagrams) and sequence diagrams are used to see how objects interact in
the system. A collaboration diagram is a simple way to show system objects
and the messages that pass between objects. Collaboration diagrams are very
practical for showing a birds-eye view of collaborating objects in the system.
If a more detailed window into the system’s logic is required, drawing of a
sequence diagram is a good option. Sequence diagrams provide more detailed
information than collaboration diagrams. Therefore, architects and designers
often use sequence diagrams to fine-tune system design.

B. Development view
The development view is used to describe the modules of the system. Modules
are bigger building blocks than classes and objects and vary according to the
development environment. Packages, subsystems, and class libraries are all
considered modules. The development view can be used to study the storage
locations of actual files in the system and development environment. Alter-
nately, it is a straightforward way to view the layers of a system in a layered
architecture. A typical layered architecture may contain a User Interface layer,
a Presentation layer, an Application Logic layer, a Business Logic layer, and
a Persistence layer.

C. Process view
The process view describes and studies the system processes and presents how
they communicate with each other. An overview of the processes and their
communication contributes to averting unintentional errors. This view is use-
ful when multiple and simultaneous processes or threads exist in a software.

The process view can be described from several levels of abstraction,
starting from independently executing logical networks of communicating pro-
grams. The process view takes into account many of the non-functional re-
quirements or quality requirements like performance, availability, etc. Activity
diagrams are typically used to describe this view.
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D. Physical view
The physical view discusses the mapping(s) of the software onto the hardware
and reflects its distributed aspect. Specifically, this view provides how the sys-
tem setup is installed and how it executes in a computer network. This view
takes non-functional requirements (e.g. availability, reliability, performance,
and scalability) into account. For example, the installation of a camera net-
work and the setup of the calibration grid in our surveillance application is
carefully considered in the physical view.

E. Extra view
The “plus-one” view takes alternative view on the architecture, which is spe-
cific for the study application. For example, in many systems, the real-time
performance of the architecture is essential in such system, a specific per-
formance analysis of the system is performed. Similarly, extra views can be
studied with respect to complexity, cost, etc.

In the “4+1” view model, use cases are employed to explain the func-
tionality and structures described by other views. The use-case view consists
of use-case diagrams and specifications, detailing the actions and conditions
inside each use case. Later in our experiments, several scenarios (home-care
monitoring and bank-robbery detection) are tested to show the adaptiveness
of the architecture design.

After the “4+1” view model for software architecture is considered, we
proceed to design a networked execution system for surveillance applications,
which will be discussed in the next section.

5.3 Networked execution system for surveillance ap-

plications

5.3.1 Overview of component-based framework

Surveillance analysis in consumer applications offers various ways for interact-
ing with the surveillance data for the user of the system. A specific challenge
for consumer applications is that it requires high-processing efficiency achiev-
ing (near) real-time operation with low-cost consumer hardware is highly re-
quired.

For this purpose, we have organized an evaluation of our framework by
partly (in this chapter, only the single-view case in robbery detection) em-
bedding it in a new experimental real-time AV content-analysis system, as
developed in the European project Cantata, which is illustrated in Figure 5.2.
The Cantata framework is aiming at real-time performance in surveillance ap-
plications. To this end, a special execution architecture is designed. More
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Figure 5.2: Block diagram of the Cantata framework.

specifically, this run-time system should be generic for multiple streaming
applications with component-based architectures. The system facilitates ad-
vanced video content analysis (a surveillance application in our case), con-
necting via a network. The surveillance video files, which are captured online
from an advanced embedded camera or is retrieved from a media database, are
streamed to our analysis component (VCA block, Figure 5.2). Afterwards, the
resulting XML data from the analysis component is streamed to the real-time
visualization GUI terminals (PDA, mobile, PC, etc.) through the Streaming
Memory Buffer (SMB). Besides this, resource management is applied to opti-
mize the content-analysis processing, even in resource-constrained conditions
(computation power, memory, etc.), i.e., when not all resource requirements
of all components can be satisfied at the same time.

In a component-based environment, an application is a collection of com-
ponents which are connected via their interfaces. By connecting them, the
functionality of all separate components is combined to an application. The
most important role of the Run Time Environment (RTE) is to build applica-
tions by loading the separate components (classes), thereby making instances
of the loaded components, and connecting these instances (objects) via the
interfaces. The structure and configuration of the application is modeled in
an XML file. This file is the input for the RTE when creating the application.
There are two cases of creating the application supported by the RTE.

In the first case, the components are dynamically loaded into memory.
When components communicate with each other, interfaces of these compo-
nents must be connected at run-time. Connecting an interface requires that
pointers to the interface functions inside the component should be available.
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Figure 5.3: Block diagram of the component-based data flow. The SMB com-
ponent is shown in detail.

This property requires support of the Operating System (OS). In the second
case, there is only limited OS functionality or even no OS at all. This case is
typical for embedded systems implementation. The components and interfaces
are linked statically to one executable module.

In Figure 5.2, the Resource Management Component (RMC) is a supple-
mentary part of the Cantata Runtime Environment. The RMC is responsible
for managing the memory for the components. It provides interfaces to re-
quest and release memory budgets, and to allocate and free memory within
the budgets. The RMC guarantees memory access by negotiating memory
budgets with components. Upon a budget request, the RMC checks and ac-
commodates for sufficient space, within the memory space managed by the
RMC. If so, then the budget is granted. Afterwards, the memory is allocated
within the budget for each component within the framework.

5.3.2 Specific components involved in the data flow

The component-based data flow is illustrated in Figure 5.3. Each component
within the data flow should describe its interfaces, which are employed by
the RTE to determine the functions and perform the tasks. Each component
within the component-based data flow is briefly introduced below.
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• SMB - Streaming Memory Buffer
Two streaming components are typically connected via a buffer mecha-
nism to pass data from one component to the next in the data-flow graph.
A component that produces output data requires memory chunks in the
buffer to write the output data. The consuming component obtains a
reference to these memory chunks containing the data written by the
producing component. These references are used to read the data from
the buffer. The data are read in the same sequence as they are written.
The buffer can be seen as a passive streaming component. Execution of
the functionality is performed on the thread of execution of the calling
component. The SMB component is used to connect components with
each other. It allows data to be written and read chronologically.

• DISP - Display Alert Component
This component visualizes the alert that is generated by the semantic-
based alert generation component. Furthermore, the bounding boxes are
generated by the 3-D behavior analysis component and superimposed on
the live decompressed video on the output display. This will combine the
output of the decompression component, the output of the 3-D behavior
analysis component and the alert generation component. DISP can show
two windows. The first window presents the input video, overlaid with
metadata information from bounding boxes around persons, texts about
posture characteristics, reliability figures and alert messages. Option-
ally, the second window shows the floor map of the scenario containing
objects like a counter and restricted areas in a bank hall, where also
ground location coordinates of identified persons are rendered. DISP is
flexible in accepting metadata from the VCA component, as DISP can
be instantiated multiple times and share the GUI resources.

• VCA - Human behavior modeling
This component performs the human behavior modeling and provides
the alert signal when abnormal event is detected. The technical detail
will be presented in Section 5.4. It consists of three main functions:
First, at the trajectory-based level, every moving person in the scene is
detected and tracked. The position of every person is indicated in the
2-D image domain and the 3-D world domain. An automatic camera-
calibration algorithm is implemented to facilitate the transform between
2-D position and 3-D position. Second, at the body-based level, the
posture of each person (e.g. pointing, squatting, raising hands above,
etc.) is classified and analyzed. Third, in the event-based analysis,
this component aims to detect, in (nearly) real-time, abnormal or risky
situations using a semantic representation of the context (e.g. a bank
robbery) and logic rules describing such situations. Various alert levels
associated with corresponding information, such as the situation, people
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Configuration section Data section

Framespan ID
Name 

(OBJECT / PERSON)
File /Content / Object

Figure 5.4: Basic structure of the ViPER file format.

and objects involved, will be generated. The above results are repre-
sented in the ViPER xml format and passed to other components in the
run-time environment.

• ACTL - Application Controller
This component accepts user input and controls other components. The
Application Controller will tell the other components to either start or
stop. A user can tell the application to stop the whole process and
terminate. ACTL cannot interrupt the sequence once it has started.

• VINP - Video Input
This component reads a file with recorded video, and passes control
information and video frames. VINP is used during the development of
the RTE platform. Each video frame is passed to the VCA component
through the SMB component.

• MDAT - Metadata utility component
This component parses a metadata stream, stores metadata-based infor-
mation, and returns information to retrieving components. The MDAT
component is able to parse a streamed XML sequence. The VCA com-
ponent passes this XML sequence on to the MDAT through the DISP
component.

We utilize the ViPER file format to represent XML data within the frame-
work. The ViPER format is often used at the VCA component as a suite of
tools. This suite was originally designed for the evaluation of video analysis,
such as tracking people, detecting text, etc. The original ViPER file format
does not provide a special description, when the format is used in a streaming
environment. The structure of the ViPER file is described in Figure 5.4. The
ViPER file format is an XML format, the root element of its XML structure
is <viper>. There are two sections in this element, <config> and <data>.
The configuration section defines the descriptors and the data section instan-
tiates descriptors for recognized objects or persons. For more detail, we refer
to Appendix B in the thesis.

Some problems occur because a streaming file cannot provide the actual
timeline, when real-time performance is required. For example, the end time
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Table 5.2: Example of XML file for robbery detection.

<?xml version=“1.0” encoding=“UTF-8”?>
<viper>

<config>
<descriptor name=“ALERT” type=“CONTENT”>

<attribute name=“ALERT LEVEL” type=“dvalue” />
<attribute name=“LABEL” type=“svalue” />
<attribute name=“DESCRIPTION” type=“svalue” />
<attribute name=“INVOLVED OBJECT” type=“svalue”/>

</descriptor>
</config>
<data>

<sourcefile filename=“alert.mpg”>
<content timespan=“154245:156483” id=“Alert1” name=“ALERT”>

<attribute name=“ALERT LEVEL”>
<data:dvalue value=“1” />

</attribute>
<attribute name=“LABEL”>
<data:svalue value=“RobberyDetected” />

</attribute>
<attribute name=“DESCRIPTION”>
<data:svalue value=“A robbery has been detected.” />

</attribute>
<attribute name=“INVOLVED OBJECT”>
<data:svalue value=“125” />

</attribute>
</content>
...
</sourcefile>

</data>
</viper>

of the meta data is not known on the first appearance of the meta data. Fur-
thermore, if circular storage is used for security reason, the static file storage
cannot be used as the meta data file continuously changes. To address the
above problems, we modify the original ViPER file format. The frame-span
attribute of each object is replaced by a time-stamp attribute. Meanwhile,
to avoid data redundancy, the VCA component should send new or updated
data (the modified part) on objects only when their states change. Here we
show an example of reference XML data (in the ViPER file format) for alert
generation when a robbery is detected in Table 5.2.
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Figure 5.5: Example of result comparison with different segmentation algo-
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Figure 5.6: System performance: average execution-time percentage of each
module.

5.3.3 Execution-time aspect in the system design

An increase of intelligent processing functions are integrated into an embedded
system with limited hardware and software resources. These constraints limit
the performance of the VCA algorithms and require design trade-offs. With
the increased use of programmable hardware a set of processing functions can
be implemented in software. However, the associated computations for various
image processing functions are fluctuating and data dependent. Therefore, it
is indispensable to address execution-time aspect for VCA functions, when the
complexity of the scene and the associated processing are within the capabil-
ities of the embedded platform.

To obtain a flexible, though powerful computing platform for VCA in
a specific application, more dedicated solutions are required to improve the
computation power of the platform and to be able to implement the advanced
video processing algorithms. With respect to algorithm choices, the available
algorithms seems to be broad and powerful enough to usefully supply the
embedded applications in surveillance, etc. In addition, it requires algorithm
knowledge to make efficient and powerful combinations of the algorithms for
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Figure 5.7: Block diagram of our four-level motion analysis system.

the embedded applications. Figure 5.5 shows an example of algorithm selection
in the segmentation step. Although the texture MRF algorithm [25] obtains
better segmentation result, it has higher complexity while it operates 2 times
slower than the GMM algorithm. To guarantee the real-time performance in
the surveillance application, the GMM algorithm is therefore selected while
keeping the balance between the accuracy and efficiency.

To explore the execution-time difference associated with different process-
ing blocks, an example of system performance is summarized in Figure 5.6.
It presents the average cycle-consumption percentage of every module. We
have assumed that camera calibration is an off-line process taking place first.
As can be noticed, foreground/background segmentation (39.5%) and track-
ing (49.9%) consume most computing cycles. Therefore, the optimization of
the resource consumption is mainly required for segmentation and tracking
modules.

5.4 Proposed system framework

Our work aims at the object/scene analysis and behavior modeling of de-
formable objects. The proposed framework provides several layers of process-
ing, starting from pixel-based processing, object-based processing, event-level
analysis and visualization. The overall requirement is that the complete frame-
work offers sufficiently high performance and enable surveillance applications.
In the sequel, the home-care monitoring and the detection of a robbery are
our key study cases.

The block diagram of our multi-level event-analysis system is shown in Fig-
ure 5.7. It consists of four different conceptual levels: pixel-based processing,
object-based analysis (including trajectory estimation, posture classification),
event-based analysis and visualization.
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• Pixel-based level. The background modeling and object detection
are implemented. Each image within the video covering an individual
human body is segmented to extract the ‘blobs’ representing foreground
objects. Afterwards, these detected blobs are refined to produce the
human silhouette.

• Object-based level. It performs trajectory estimation and posture
classification. We first track every moving person. Afterwards, a shape-
based analysis is conducted to classify different posture types.

• Event-based level. Interaction relationships are modeled to infer a
multiple-person event. This semantic analysis is thus responsible for the
human activity recognition.

• Visualization level. With the aim of 2D-3D mapping calibration, the
3-D scene reconstruction can be conducted to visualize the scene for
further analysis. This level can be simple for home use, but advanced
for professional use (e.g. after crime analysis in 3-D).

The framework can be applied in single-camera or multiple-camera setups.
The choice of using single or multiple cameras is basically independent on the
type of surveillance applications and it is more ruled by the quality require-
ments or the occurrence of occlusions. If the efficiency is enforced and fast
execution is highly required, a single-camera setup is conducted. To tackle the
occlusion problem and improve the event-detection accuracy, multiple cameras
are employed for capturing the same scene from different angles. Then the ex-
tracted information from multiple cameras is fused based on a 3-D camera
calibration scheme. Finally, a 3-D scene reconstruction and communication
among different cameras are achieved.

5.5 Specific issues of human motion analysis

5.5.1 Segmentation and trajectory generation

This subsection presents a brief introduction of segmentation and trajectory-
generation steps involved in our motion analysis system. Figure 5.8 illustrates
the block diagram of processing.

At the pixel-based processing level, the human silhouette is detected based
on background subtraction. This general method can be used to segment
moving objects in a scene, assuming that the camera is stationary and the
lighting condition is fixed. To improve the blob segmentation, a shadow-
removing approach [110] is used in our scheme. The false segmentation caused
by shadows can be minimized by computing differences in a color space that
is less sensitive to intensity changes.
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Figure 5.8: Block diagram of segmentation and trajectory generation.

Suppose the RGB values of a pixel with coordinates (i, j) at time t or the

values of some other color-space are denoted by a vector ~x(t). In the sequel,

we will leave out the coordinates for simplicity and use the short notation ~x(t).
Pixel-based background subtraction involves an indication whether the pixel
belongs to a background (indicated by parameter BGij) or some foreground
object (indicated by parameter FGij). Again, we will leave out the pixel-based
coordinates for simplicity.

Both parameters take the value zero or unity only. The estimated back-
ground model is denoted as χT . The estimated model is expressed by a prob-
ability measure p(~x|χT , BG) and depends on the training set, as indicated
explicitly in the conditional argument. In practice, the illumination in the
scene can change gradually (variable sunlight in daytime or variable weather
conditions in an outdoor scene), or suddenly (switching light in an indoor
scene). Furthermore, a new object can enter the scene or a present object
may disappear. In order to adapt to changes, we can update the training
set χT by adding new samples and discarding the old ones. We choose a
reasonable time interval T starting at time t for training, so that we obtain
χT = {x(t), ...,x(t−T )}. For each new sample ~x, we update the training data
set χT and re-estimate the probability p(~x|χT , BG). However, among the
samples from the recent history, there may be some values that belong to the

foreground objects and we should denote this estimate as p(~x(t)|χT , BG+FG).
We use Gaussian Mixture Models with M components for modeling the prob-
ability measure, given by:

p̂(~x|χT , BG + FG) = ΣM
m=1π̂mN(~x; ~̂µm, σ̂2

mI), (5.1)

where ~̂µ1, ..., ~̂µM are the estimates of the means and σ̂1, ..., σ̂M are the esti-
mates of the variances describing the Gaussian components. The covariance
matrices are assumed to be diagonal and the identity matrix I has proper di-
mensions. The mixing weights denoted by π̂m are non-negative and add up to

unity. Given a new data sample ~x(t) at time t, the recursive update equations
are calculated by

π̂m ← π̂m + α(o(t)
m − π̂m), (5.2)
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~̂µm ← ~̂µm + o(t)
m (

α

π̂m

)~δm, (5.3)

σ̂2
m ← σ̂2

m + o(t)
m (

α

π̂m
)(~δT

m
~δm − σ̂2

m), (5.4)

where ~δm = ~x(t)−~̂µm. Here the constant α describes an exponentially decaying
envelope that is used to limit the influence of the old data. We keep the same
notation, having in mind that approximately α = 1

T
.

At the object-based level, the tracking of persons (trajectory generation)
and posture classification are performed. In the trajectory-generation step, we
employ the broadly accepted mean-shift algorithm for tracking persons, based
on their individual appearance model represented as a color histogram. When
the mean-shift tracker is applied, we extract every new person entering the
scene and calculate the corresponding histogram model in the image domain.
In subsequent frames for tracking that person, we shift the person object to
the location whose histogram is the closest to the previous frame. After the
trajectory is located, we can conduct the body-based analysis at the location
of the person in every frame. When the trajectory is obtained, we can also
estimate the position of the persons involved in the video scene. From our
previous work [29], we have also adopted the Double Exponential Smoothing
(DES) operator to track moving persons, which runs approximately 135 times
faster than the popular Kalman filter-based predictive tracking algorithm,
with equivalent prediction performance. After the trajectory is located, we
can conduct the body-based analysis at the location of the person in every
frame.

5.5.2 Individual posture recognition with CHMM

We adopt a simple but effective shape descriptor to analyze the human sil-
houette prior to conducting the temporal modeling scheme of a Continuous
Hidden Markov Model (CHMM) to recognize the posture type.

Individual posture classification is important for human-activity recogni-
tion. First, we adopt a shape-based descriptor to analyze the human silhou-
ette. Our posture classifier utilizes two features commonly used for object
classification: area, and the aspect ratio of the bounding box attached to each
detected object. This approach is simple but efficient, and it contributes signif-
icantly to the tracking and avoids a complex procedure for training data. The
non-person objects and image noise can be effectively removed. The distur-
bance generated from different person heights is also considered. We conduct
a training step regarding different heights in the scene prior to applying an
adaptive threshold. Afterwards, the temporal modeling scheme of a Contin-
uous Hidden Markov Model (CHMM) is conducted to recognize the posture
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Figure 5.9: Interaction relations between two actions E1 and E2 in inter-
action temporal logic: (a)after, (b)meets, (c)during, (d)finishes,
(e)overlaps, (f)equal, (g)starts.

type (more details can be found in Section 3.2). Finally, we can obtain the
observed 2-D feature vector of the silhouette.

In our investigated case, every given posture is finally classified into one of
the following types: pointing, squatting, raising hands overhead and normal
standing. The above posture types are chosen because they provide important
clues for scene understanding in surveillance applications.

5.5.3 Interaction modeling supporting the event classification

After the individual posture (here it is defined as an action) is classified, it is
useful to further analyze the interaction between different persons, which is
an important requirement for intelligent automated surveillance systems. The
growing demand for safety and security has led to designing an event classi-
fier when multiple persons are involved. In this session, we focus on the event
analysis based on understanding the interactions among people involved in the
scene. The temporal constraints of two-person interactions are defined by two
actions in terms of causal and coinciding relations of the posture changes of
the two persons. The events are seldom instantaneous and often significantly
rely on the temporal order and relationship of their actions (Suppose the indi-
vidual posture is the concerning action). We introduce appropriate spatial and
temporal constraints for each of the various two-person interaction patterns as
domain knowledge. The satisfaction of specific spatial/temporal constraints
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Table 5.3: List of temporal relations for two actions E1 and E2.

Relation Definitions and logical expressions

after Estart
2 > Eend

1

meets Eend
1 = Estart

2

during (Estart
1 < Estart

2 ) ∧ (Eend
1 > Eend

2 )

finishes (Eend
1 = Eend

2 ) ∧ (Estart
1 < Estart

2 )

overlaps (Estart
1 < Estart

2 ) ∧ (Eend
1 > Eend

2 ) ∧ (Eend
1 < Eend

2 )

equal (Estart
1 = Estart

2 ) ∧ (Eend
1 = Eend

2 )

starts (Estart
1 = Estart

2 ) ∧ (Eend
1 6= Eend

2 )

contributes to the semantic recognition of the interaction. Therefore, the
event-level recognition is characterized by the integration of domain-specific
knowledge, whereas the object-level recognition is more closely related to the
pure motion of a human body.

In order to represent temporal relationships of different actions, we apply
the temporal logic based on the interval algebra of [1]. Seven temporal rela-
tionships are indicated in the set TR={after, meets, during, finishes, overlaps,
equal, starts}. These keywords can link different actions after the individual
action is analyzed. The causal and possible relations of two actions (E1 and
E2) are illustrated in Figure 5.9. Their definitions and logical expressions are
presented in Table 5.3. With this definitions and relationships, we can apply
the heuristic rules to understand the scene. For example, in the application of
a bank-robbery detection, the heuristic rules are based on expert knowledge.
In our investigated case of robbery detection [51], the posture “pointing” is
a key reference posture. It can significantly infer the robbery event. Other
postures are also estimated to improve the recognition accuracy based on spe-
cific temporal constraints. An example is shown in Figure 5.10, showing the
possible event of bank robbery. This event requires that person A is labeled
as “pointing”, person B is detected to be “raising both hands” and person C
is “squatting” during the action from person A all at the same time. After
performing the interaction modeling and definition of actions and events, the
collecting of knowledge of action, we are able to identify the current abnormal
behavior. degree of abnormality. If the value is above a predefined threshold,
the surveillance system will trigger the alarm, e.g., when a detected robbery
event occurs with sufficiently high possibility.

5.5.4 3-D scene reconstruction

Since we have seen in Section 2.6 that a projective transformation is equivalent
to a plane-to-plane mapping, it is clear that the transform can model arbitrary
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Figure 5.11: Visualization procedure with visualization of the corresponding
homography based on camera calibration.

camera motion, as long as the observed object is planar.

The essence of the camera calibration is to provide a geometric transforma-
tion that maps the points in the image domain to the real-world coordinates.
Scene reconstruction in 3-D is a useful tool in semantic-event analysis, which is
generally utilized in multimedia applications [26]. An example of mapping the
scene perspective using references points into a physical model is visualized
in Figure 5.11. In our system, we analyze the human behavior based on the
person’s trajectory and/or speed on the ground, so that the height information
of the human is not required. Since both the ground and the displayed image
are planar, the mapping between them is a homography. The homography
represents the mapping between the reference points to the 2-D image into
the ground plane of the physical model (Figure 5.11). This mapping can be
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specified as a 3 × 3 transformation matrix H, transforming a point in real-
world coordinates p’ = (X,Y,Z)T to the image coordinates p = (x, y, z)T

with p = Hp’. This transformation can be presented:




x
y
z



 =




h11 h12 h13

h21 h22 h23

h31 h32 h33








X
Y
Z



 . (5.5)

The transformation matrix H can be calculated from four points whose
positions are known both in the real world and in the image. In our previous
work [29], we have developed an automatic algorithm to establish the homog-
raphy mapping for analyzing a tennis video, where the court lines and their
interaction points are identified in the image. Such lines and points are related
to the lines and points in a standard tennis court. Therefore, the homography
mapping described in Equation (5.5) can be established after the correspon-
dences are found. We have conducted a similar technique in our surveillance
system. The basic idea is to manually put four white lines forming a rectangu-
lar on the ground (see Figure 5.11). We have measured the length of each line
in the real world, thereby defining their coordinates in the real-world domain.
Afterwards, the algorithm proposed in our previous work can be applied for
calculating parameters of the homography mapping. The complete algorithm
comprises four steps, which are white-pixel detection, line detection, finding
intersection points and calculating the parameters. For more details, we refer
to an earlier publication [29].

Note that these four points need not be fixed, but should be rather se-
lected on a case-by-case basis, as some reference points may be occluded in
some views. Instead of using point features directly, we base our calibration
algorithm on lines, because detecting the accurate position of a specific ref-
erence point on the ground is more difficult than estimating the position of
line segments. Moreover, the detection of lines is more robust, since they
are hardly occluded completely. The basic approach of the algorithm is to
extract a number of straight lines from the input image, providing a set of
ground candidates. Using a combinatorial search, line candidates are assigned
to lines in the ground model. For each assignment, the corresponding geomet-
ric transformation can be determined. This transformation is used to project
the complete ground model back to image coordinates. Each transformation is
measuring the match between the back-projected model lines and the ground
lines in the input image. The transformation with the best match is selected
as the final solution.

After the mapping from image to real world is performed, we can estimate
the position pi and calculate the real speed of the persons vi for the i-th person
involved in the video scene. The classification into walking or standing can be
therefore determined for an individual person by
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vi =






> Tv1,person i is running, or

< Tv2,person i is standing, or

otherwise, person i is walking,

(5.6)

where Tv1 and Tv2 are two thresholds determining the motion types. In our
experiments, we have used Tv1=5m/s and Tv2=1m/s.

5.5.5 Multiple-camera tracking of humans

The requirement for using multiple cameras for tracking arises for two reasons.
First, the limitation of tracking human motion from a single view is that
the field of view of a single camera can only monitor a limited area in the
scene. This limitation results from several cost constraints, such as inexpensive
lens and sensors. One strategy to increase the size of the monitored area
is to mount multiple cameras at various locations surrounding the area of
interest. The use of multiple cameras is motivated by several aspects. As
long as the object is within the area of interest, it will be captured from
at least one of the perspectives of the camera network. Second, tracking
from multiple perspectives also helps to solve ambiguities in matching when
objects are occluded from certain viewing angles. Occlusion handling is a
major problem in visual human tracking. Then objects are occluded by static
scenery elements, such as buildings and street lamps. However, when multiple
moving objects occlude each other, especially when their speeds, directions and
shapes are very similar, their motion regions merge in the image, which makes
the location and tracking of objects particularly difficult. In addition, the self-
occlusion of a human body is a significant and difficult problem. Therefore, the
most promising practical method for addressing occlusion is to use multiple
cameras.

However, compared with tracking moving humans from a single view, es-
tablishing features correspondence between images captured from multiple
perspectives is more challenging. As object features are recorded from differ-
ent spatial coordinates, they must be adjusted to the same spatial reference
prior to matching is performed.

Most tracking techniques fail in complex situations when a lot of interact-
ing objects are involved. Several works have studied active vision methods [91]
and mainly fusion of visual information with multiple cameras [15] to improve
results and robustness. This fusion is either performed on the output of differ-
ent algorithms applied to the same camera [89], or on information fusion com-
ing from the individual output of several cameras [3]. For example, Mittal [62]
has addressed the problem of multi-view tracking using synchronized cameras.
This system is able to combine information coming from multiple camera pairs
(i.e., up to 16 synchronized cameras were used in the experiments) in order
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Figure 5.12: Setup of the cameras in the experiment.

to handle occlusions and correctly track densely located objects in a cluttered
scene. However, due to the complexity, the system is not yet able to operate
at real-time speed (i.e., it takes 5 seconds per processing step). The proposed
system in [38] is able to track the objects in the scene using camera setup with
non-overlapping field of view. First, the system learns the camera topology
and the path probabilities of objects during a training phase. This is based on
the assumption that people and cars tend to use the path in the surrounding.
Then, the associations are performed with a maximum a-posteriori estimation
framework.

In order to set up a real-time system for robust event detection, we intend
to design a multiple-camera analyzer with the introduction of a 3-D camera
calibration scheme for hierarchical and multi-view scene understanding. The
camera calibration can also facilitate the information communication between
different views. Its fundamental techniques refer to Section 2.6. In a multiple-
camera setup, the camera calibration also provides a platform for communi-
cating different cameras. They are connected based on a uniform real-world
coordinate system. Therefore, behavior analysis from a single camera can fur-
ther generate the information fusion as a whole from different viewpoints. An
example of our multi-camera setup is illustrated in Figure 5.12.

Suppose the value of the person s’s location with coordinates (i, j), which
is captured from the w-th camera at the frame t, is denoted as P t

w. This
short notation is used after we leave out the coordinates and the person’s ID
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Table 5.4: Key steps of the algorithm for multiple-camera tracking.

Given: the number of cameras involved M and the location P t
w for each person

at the frame t.
1. Initialize the parameter Kt+1 = M at the frame t + 1 for the w-th camera.

2. From each viewpoint, calculate the estimation of the updated location P̂ t+1
w at

the frame t + 1, by employing mean-shift tracking algorithm.

3. Conduct the occlusion detection at the frame t+1 for the person i, by analyzing
whether the foreground objects merge in the image domain.

4. Obtain the occlusion-related parameter ow by

ow =

{
0 if occlusion occurs,

1 if occlusion is not detected.
(5.7)

5.Update Kt+1 by
For w = 1..M

if ow = 0, then Kt+1 = Kt+1 − 1

6. Find the updated location of the target candidate at the frame t + 1

P t+1 =

∑M

w=1
owP̂ t+1

w

Kt+1
. (5.8)

for simplicity. In summary, the key steps for multiple-camera tracking are
presented in Table 5.4. Finally, the detected location for each person P t+1 is
obtained.

5.6 Experimental results

We have conducted experiments in three different scenarios presented in the
following subsections.

5.6.1 Single-camera: home-care monitoring

In our first case study on home-care monitoring, the experiment demonstrates
the capability of the framework for activity classification based on the ex-
tracted location and speed of the human after performing 3-D camera calibra-
tion. Within our behavior-analysis framework, we can calculate the speed and
estimate the real-world location of each individual person based on the trajec-
tory estimation and camera calibration. The experimental videos have been
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Figure 5.13: Example image of corresponding 2-D/3-D mapping in home-care
monitoring.

Table 5.5: The detection results for human activity recognition in home-
care monitoring, the ratio m/n stands for m correct detections
resulting from n experiments. (Note: A-In kitchen, B-Sitting at
dining table, C-Sitting on couch, D-Playing piano, E-To balcony,
F-In bedroom, G-In bathroom, H-Enter/Leave by door)

A B C D E F G H

A 14/16 2/16 0 0 0 0 0 0

B 0 8/8 0 0 0 0 0 0

C 0 0 10/10 0 0 0 0 0

D 0 1/8 0 7/8 0 0 0 0

E 0 0 0 0 10/10 0 0 0

F 0 0 0 0 2/12 10/12 0 0

G 0 1/7 0 0 0 0 6/7 0

H 0 0 0 0 0 0 0 5/5

captured in an apartment involving 6 persons (with different gender, height,
age and clothes). The length of video sequences is more than 2 hours. The
layout of the apartment is illustrated in Figure 5.13. Based on the detected
location in the layout after the 2D-3D mapping, the human daily activity
is classified into 8 types (A-in kitchen, B-sitting at dining table, C-sitting
on couch, D-playing piano, E-to balcony, F-in bedroom, G-in bathroom, and
H-enter/leave by door). The classification results of the above activity recogni-
tion are summarized in Table 5.5. It is noted that the classification accuracy
achieves 93.4% in the testing data sets. The classification error is mainly
caused by the strong lighting reflection from the floor. This leads to segmen-
tation errors of foreground object and its detected location is not accurate.
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Figure 5.14: Comparison of estimated motion trajectory of a person its
ground truth in the real world.

5.6.2 Single-camera: robbery-event detection

In our second experiment, we aim at detecting a robbery event from a monoc-
ular video. The abnormal event (a robbery detection in our investigated case)
is detected based on domain knowledge (such as restricted area in the actual
scene, person’s abnormal moving speed, and abnormal multi-person interac-
tion) learned at a training stage. We have trained our framework using 10
video sequences of various single/multi-person motion (15 frames/s) in a sim-
ulated robbery-event scenario. Persons with different heights, ages, clothes
and individual activities (running, walking, standing which includes pointing,
raising both hands, squatting and normal standing) are involved. For testing,
we have applied 24 similar sequences. The system implementation features
automatic camera calibration at the start of the analysis. By calculating the
ratio between correct frames detected and total frames involved in the testing
sequences, we have obtained a 98% accuracy rate on person detection, 95%
detection rate on person tracking (where the criterion is that at least 70% of
the human body is included in the detection window). In the non-occlusion
situation, the posture classification (pointing, raising both hands, squatting
and normal standing) is conducted. Its detection accuracy is calculated based
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Figure 5.15: Example of our robbery-detection result. The trajectory of every
person is visualized after persons tracking. The postures are es-
timated and the semantic event is highlighted after interaction
modeling. The camera calibration is performed and the 2D-3D
mapping is visualized in the right part.

on the ratio between the number of frames detected and the total number
of the evaluated frames during testing. Employing the feature described in
Section 5.5.2, the posture-classification rate is summarized in Table 5.6.

Table 5.6: Confusion matrix for posture classification.

Posture type Pointing Raising hands Squatting N-standing

Pointing 78% 3% 1% 18%

Raising hands 5% 86% 2% 7%

Squatting 2% 9% 83% 6%

N-standing 1% 7% 4% 88%

To evaluate the performance of the proposed 3-D reconstruction algorithm
for detected person’s physical location, we have captured test videos and manu-
ally measured the ground truth. Figure 5.14(a) shows a frame example selected
from one of our test sequences. Figure 5.14(b) shows the 3-D reconstructed
moving trajectory of the detected person and its ground truth in the physical
layout of the room. It can be seen that the estimation error is very small,
which is mostly less than 5%. Figure 5.15 shows an example of a simulated
bank-robbery event. After the individual-posture classification and activity
recognition, the semantic event is labeled on the images. The robbery detec-
tion rate is 83.3% in our captured simulated-robbery video sequences (in total
24 sequences), after performing interaction modeling.

Our run-time networked system performance was tested by video sequences
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Figure 5.16: Example of our simulated multi-camera robbery-detection result
at Frame 1123.

at 640×480 resolution (VGA), with a P-IV 3-GHz PC. We have assumed that
camera calibration is an off-line process taking place first. The experiments
have reviewed that a frame rate of 13-15 frames/second is obtained for monoc-
ular video sequences. This frame rate is close to real-time performance.

5.6.3 Dual-camera: robbery-event detection

To further address the problem of occlusion, multiple cameras are employed
for capturing the same scene from different angles. We have conducted a
dual-camera experiment within our behavior-analysis framework. Two syn-
chronized cameras are used to capture the scene. The setup of the cameras
is depicted in Figure 5.12. The testing data set is summarized in Table 5.7.
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Figure 5.17: Example of our simulated multi-camera robbery-detection result
at Frame 1165.

We analyze both camera views and combined the semantics of both views
into one degree of abnormality into one measurement of abnormal behavior.
Currently, a logical OR operator is applied to link the two viewpoints at the
level of the abnormal-event detection. The True Positive (TP), True Negative
(TN), False Positive (FP), False Negative (FN) are computed respectively.
Then the event-detection accuracy is calculated by

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%. (5.9)

The result is summarized in Table 5.8. It is noted that the dual-camera
setup achieves 75.0% in accuracy rate. It is 8.3-16.7% higher than the setup
with individual camera. The classification results show that the dual-camera
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Figure 5.18: Example of our simulated multi-camera robbery-detection result
at Frame 1192.

scheme significantly improves the event-based semantic analysis. The major
reason for a possible detection error is that multi-person occlusion occurs in
both viewpoints. When this occurs, the posture classification is not sufficiently
accurate. Figure 5.16 through Figure 5.21 show a detection example of a sim-
ulated bank-robbery event. The position of every person is visualized after
trajectory generation. The postures are estimated and the semantic event
is highlighted after interaction modeling from two different viewpoints. The
degree of abnormal behavior is calculated and graphically visualized in each
figure. The camera calibration is performed and the resulting 2D-3D mapping
is visualized. Although the posture pointing is not recognized in one camera
(see Figure 5.21(a), it is correctly recognized in the other camera (see Fig-
ure 5.21(b)), so that the robbery event is successfully detected. This system
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Figure 5.19: Example of our simulated multi-camera robbery-detection result
at Frame 1279.

was inserted in a component-based architecture and successfully executed for
live demonstrations in the European ITEA project CANTATA. The whole
system was executed on a P-IV PC running at 3 GHz. In our experiments, we
have achieved a 6-8 frames/second frame rate for two video sequences.

5.6.4 Extension to street-fighting game application

Our proposed multi-level framework can be extended to other applications,
e.g. interactive gaming in augmented reality. The techniques for the surveil-
lance application are reused in a new video-based scenario of an interactive
street-fighting game. A visual example of the result is shown in Figure 5.22.
The new virtual environment image is defined by the user. The original frame
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Figure 5.20: Example of our simulated multi-camera robbery-detection result
at Frame 1304.

involving players is online captured by the camera and shown in Figure 5.22(a).
The result of the augmented reality scene of reconstruction is shown in Fig-
ure 5.22(b). Based on the detected position of players’ hands, virtual attacking
blocks in the form of red squares are moving at a predefined speed in the hor-
izontal direction of the detected hands. Then the players’ score is calculated
based on the times when the flying block hits the opponent in the image.
Finally, the score bar for each person is visualized in the output frame.

5.7 Conclusions

This chapter has discussed various aspects for the design of a complete frame-
work aiming at efficient event understanding in surveillance applications. First,
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Figure 5.21: Example of our simulated multi-camera robbery-detection result
at Frame 1323.

it reviews existing surveillance systems and summarizes requirements of surveil-
lance analysis systems. Then, we have introduced our system design based
on a specific software architecture, by employing the well-known “4+1” view
model [77]. This model describes a software architecture using five comple-
mentary views, each of which addresses specific concerns. For example, in
the physical view, the installation of a camera network and the setup of the
calibration grid in our surveillance application is carefully considered.

To design an efficient system, human behavior analysis algorithms are di-
rectly designed for real-time operation and embedded in an experimental run-
time AV content-analysis architecture. This run-time architecture is designed
to be generic for multiple streaming applications with a component-based archi-
tecture design. It facilitates advanced video content analysis for surveillance,
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Table 5.7: The testing data set involved in event detection based on
single/multiple-camera setups. (Note: A-Running, B-Walking,
C-Pointing, D-Raising hands overhead, E-Squatting)

ID Scenario No. of Ground Cam1 Cam2 Cam1+Cam2

persons truth detection detection detection
1 A 1 Yes Yes Yes Yes

2 A 1 Yes Yes Yes Yes

3 A 2 Yes Yes Yes Yes

4 B 1 Yes Yes No Yes

5 C+D 2 Yes No No No

6 C+D 2 Yes Yes Yes Yes

7 C+D+E 3 No Yes No Yes

8 C+D 2 No No No No

9 C+D 2 Yes Yes No Yes

10 C+D+E 3 Yes No Yes Yes

11 C+D 2 No Yes Yes Yes

12 C+D 2 Yes Yes No Yes

Table 5.8: The detection results for abnormal event.

TP TN FP FN Accuracy
Cam1 7 1 2 2 66.7%
Cam2 5 2 1 4 58.3%

Cam1+Cam2 8 1 2 1 75.0%

featuring network-based communication. We utilize the modified ViPER file
format to represent XML data within the architecture. First, the frame-span
attribute of each object is replaced by a time-stamp attribute. Second, the
Video Content Analysis (VCA) component sends new or updated data on ob-
jects, e.g. location and action, without data redundancy. Furthermore, the
execution-time aspect is considered in the system design. Although the texture
MRF algorithm [25] obtains better segmentation result, it has higher complex-
ity, as it operates two times slower than the GMM algorithm. To guarantee
the real-time performance in the surveillance application, the GMM algorithm
is selected and executed in the CANTATA online demo in Madrid. Besides
this, the average cycle-consumption percentage of each processing module is
calculated. We have found that foreground/background segmentation (39.5%)
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(a) (b)

Figure 5.22: Extensibility to application of interactive street-fighting game:
(a) the original frame captured from the camera; (b) the detected
person with fists and score superimposed in the new user-defined
background image.

and tracking (49.9%) modules consume most computing cycles.

Afterwards, we have proposed a layered framework that enables multi-level
human motion analysis, featuring layers at pixel, object, event and visualiza-
tion level. At the object-based level, both trajectory generation and posture
classification are performed. We first track every moving person. Later, a
shape-based analysis is conducted to classify different posture types. At the
event-based level, interaction relationships are modeled, based on temporal
logic between two different actions, to infer a multiple-person event. This
semantic analysis is responsible for the human activity recognition. At the
visualization level, the 3-D scene reconstruction is conducted to visualize the
scene based on 2D-3D mapping technique. This level can be simple for home
use, but advanced for professional use (e.g. after crime analysis in 3-D).

Our proposed layered framework has been implemented in software and
embedded in a run-time architecture and we have first applied this system
architecture with a single camera. The experimental platform operates at two
Pentium Quadcore (2.33 GHz) and 4 GB memory. Performance evaluations
have shown that this networked framework is efficient and achieves a fast
performance, of about 13-15 frames/second, for a monocular video sequence.

In addition, we have tested a dual-camera setup within the behavior-
analysis framework. Based on our automatic camera calibration scheme, the
3-D reconstruction and communication among different cameras are achieved.
It is possible to benefit from the extra camera view in case of occlusion and
it may also add to after-crime analysis. We have proposed a multi-camera
tracking algorithm. If occlusion is detected for an individual camera view, the
tracking is conducted based on another view. If occlusion is detected for both
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views, the moving person’s location is estimated from preview frames. The
extension of multiple-view fusion improves the event-based semantic analy-
sis by 8.3-16.7% in accuracy rate. Moreover, we achieve a 6-8 frames/second
frame rate for two video sequences with a P-IV PC running at 3 GHz. With
optimization and multi-streaming implementation, our designed multi-camera
setup for behavior analysis can be further used in a real-time system imple-
mentation.

Furthermore, our proposed behavior analysis system can be extended to
interactive gaming application, which shows the extensibility of our applied
motion analysis techniques.

This chapter has discussed how to integrate specific domain knowledge and
we have employed 3-D camera calibration to support further semantic analysis
of the scene in surveillance applications.
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Chapter6
Conclusions and Outlook

6.1 Conclusions of each chapter

In this thesis, we have addressed selected improvements in human behavior
analysis and two complete real-time applications based on such behavior anal-
ysis. Essentially, the thesis consists of three parts. Chapter 2 and Chapter 3
describe some fundamental techniques and provide an overview of visual hu-
man motion analysis and individual person analysis, respectively. Chapter 4
and 5 employ these analysis techniques and describe the created full appli-
cations for tennis sports and surveillance. These chapters contain our major
new contributions. In the following, we summarize the contents and findings
of each individual chapter.

In Chapter 1, we have introduced the background of human motion anal-
ysis and have motivated the research contributions of this thesis. We introduce
a generic motion-analysis framework consisting of three processing-stages:
pixel-based processing (background modeling and segmentation), object-based
modeling (human tracking and posture analysis), and event-based analysis
(semantic event understanding). We have discussed the requirements such as
efficiency and extensibility for designing smart systems using human behav-
ior analysis, e.g. in the consumer and security domain. After presenting the
problem statement, we summarize our contributions and provide the scientific
published papers that form the background of the succeeding chapters.

Chapter 2 presents an overview of state-of-the-art motion-analysis tech-
niques, which cover the various, different processing techniques required to
perform human motion analysis. These techniques are background modeling,
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human-body profile detection, human tracking and behavior understanding.
We discuss a generic diagram addressing three levels of techniques within
a general processing framework: pixel-level processing, object-level model-
ing and event-level analysis. We have found that Gaussian Mixture Models
(GMMs) are suitable for fast algorithm deployment, while offering sufficient
accuracy. These models can be used to segment the players at the foreground
within the tennis court. We have used features like shape parameters and
silhouette to distinguish a human from other moving objects. We present sev-
eral techniques for human tracking and focus on region-based tracking. At the
event-based modeling, the constraint-based approach is simple to implement
and suited for real-time operation. For the behavior analysis, we have taken
a mathematical solution in the form of analyzing the timeline of individual
person of interaction of those persons.

In Chapter 3, we have discussed the techniques involved in motion analy-
sis of each individual person. This chapter presents a multi-module framework
for the multi-level analysis of human motion. The framework captures the hu-
man motion, classifies various postures and perform body-part detection.

First, we discuss a layered framework for posture modeling and represen-
tation. We contribute with an efficient HV-PCA shape-based descriptor using
horizontal and vertical projections, and obtain more accurate and compact
representation. The proposed HV-PCA descriptor combined with temporal
modeling achieves a posture-recognition accuracy rate of about 86% and out-
performs other existing proposals. Our human motion scheme is optimized for
efficient operation offering a fast performance (6-8 frames/s), to enable further
analysis of human behavior in a surveillance application.

Second, we have proposed a novel approach for body-part detection. The
trajectory-based estimation and body-based analysis are combined simulta-
neously to capture the human motion and locate the different body parts.
The trajectory-based module performs the human tracking. The body-based
module infers the posture of the human body and presents the body geometry
efficiently by a skeleton model. To locate reliably the skeleton model, both
Nearest-Neighbor filtering and a tracking filter are employed. In addition,
we have presented a new algorithm for accurately locating the body center
point, based on the body silhouette and an upper/lower-body separation line.
This algorithm outperforms the conventional center-of-gravity approach from
existing literature, addressing the same center-point usage. Furthermore, the
conventional assumption of upright body posture is not required. The pro-
posed scheme achieves a near real-time speed (10 frames/s) within monocular
video sequences in indoor/outdoor areas.

Chapter 4 develops a tennis sports video analysis system, featuring high-
level scene analysis based on real-world visual cues. First, playing-frame de-
tection involves the selection of the tennis playing field sequences out of a full
broadcast sports program, including special scenes, like interrupting commer-
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cial breaks. Afterwards, court detection identifies the court location in the
scenes and provides its specific information, such as size and shape. Then,
segmentation of players and a subsequent tracking module calculate the posi-
tion and speed of each player, which are required to derive individual player
behavior and tactic. Afterwards, the camera calibration deduces a semantic
meaning from the position and movements of the players, which takes the
camera motion into account and computes the player positions in the real-
world coordinates, based on the 2D-3D transformation. Finally, we perform
semantic analysis, classify different events (e.g. service, base-line rally and
net-approach) and derive a game abstract showing various types of informa-
tion, such as real running distance and behavior of the players. In this chapter,
a main contribution is that several selected real-world visual cues are applied
to a set of linear-weighted models of individual events. Timeline functions are
additionally exploited to achieve robust event detection, as probabilistic values
are produced to indicate the reliability of the event occurrence. Experiments
show that the complete proposed application is efficient enough to obtain a
real-time or near real-time performance (2-3 frames/second for 720× 576 res-
olution (4CIF), and 5-7 frames/second for 320 × 240 (CIF) resolution, with
a P-IV PC running at 3 GHz). Furthermore, the system may be extended
to analyze other sport types [32], like badminton, volleyball and basketball,
where many functions can be reused, like court detection, camera calibration,
player segmentation and high-level analysis.

Second, we have presented a scheme for automatic audio analysis of a
broadcasted sports program which employs specific game context knowledge.
We contribute with a three-step racket-hit detection algorithm to accurately
classify various events. After the refinement step, this algorithm applies a lin-
ear combination of short-time energy and spectral power. As the third step,
heuristic rules, based on specific knowledge of the tennis game, are employed
for mapping between the sample-level features and the semantic level. The
system implementation can classify various events such as rally, scoring, dif-
ferent types of service, and return. The experimental results show that a
detection accuracy up to around 90% is achieved for racket-hit detection.

Finally, we have presented a scheme for automatic tennis-ball-path in-
ference for tennis sports video analysis, based on simultaneously combining
audio and video clues. For example, the audio analysis reveals the service
point which is combined with detecting the service player and its location in
the video. The main contribution is that the tennis-ball-path is generated for
tennis game tactics analysis without detecting and tracking the ball itself, by
projecting players in a real-world model and combining previous analysis with
game rules. The experiments showed that our system can deliver a tactical
analysis based on the fusion of video and audio analysis modules.

In Chapter 5, we have discussed various aspects for the design of a com-
plete framework aiming at efficient event understanding in surveillance appli-
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cations. First, we have introduced our system design based on a specific soft-
ware architecture, which is reported in the well-known “4+1” view model [77].
Different complementary views are analyzed, like physical and network views.
In the system, human behavior analysis algorithms are directly designed for
real-time operation and embedded in an experimental run-time AV content-
analysis architecture. This run-time architecture is designed to be generic for
multiple streaming applications with a component-based architecture design.
We utilize the modified ViPER file format to represent XML data within the
architecture, where we have carefully considered execution time in the system
design. Compared with the-state-of-the-art segmentation algorithm texture
MRF [25], the GMM algorithm operates two times faster, so that the GMM
algorithm is chosen in the surveillance application, although texture MRF
provides relatively better segmentation results. Moreover, the average cycle-
consumption percentage of each processing module is calculated. It is noted
that foreground/background segmentation and tracking modules are the most
expensive and consume 39.5% and 49.9% of computing cycles, respectively.

A layered, flexible human motion analysis framework captures the human
motion, classifies its posture, infers the semantic event exploiting interaction
modeling, and performs the 3-D scene reconstruction. To evaluate the per-
formance, the framework is embedded in a run-time architecture and we have
applied this networked system in a single-camera setup. The experimental
platform operates at two P-Quadcore CPUs (2.33 GHz) and 4 GB memory.
Performance evaluations have shown that this networked framework is efficient
and achieves a fast performance (13-15 frames/s) for a monocular video se-
quence. Moreover, a dual-camera setup is tested within the behavior-analysis
framework. After automatic camera calibration, the 3-D reconstruction and
communication among different cameras are achieved. The extra view in the
multi-camera setup improves the human tracking and event detection in case
of occlusion. This extension of multiple-view fusion improves the event-based
semantic analysis by 8.3-16.7% in accuracy rate. As we achieve a 6-8 frames/s
efficiency for two-view video sequences with a P-IV PC running at 3 GHz, we
conclude that the multi-camera system and behavior analysis can be imple-
mented as an embedded system after some further optimizations.

6.2 Discussion on research questions

Let us review the three research questions that we have posed in Chapter 1 of
this thesis. The following paragraphs describe how we have addressed these
research questions in this chapter.

RQ1:How can we efficiently represent the human body in order to facili-
tate real-time behavior analysis?
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In Chapter 3, we have addressed the problem of individual behavior anal-
ysis of a single human, involving action recognition and body-part detection.
The contributions in this chapter are both on detecting body parts and efficient
body representation. We have proposed a novel body representation based on
a silhouette feature. This feature is obtained by analyzing the horizontal and
vertical projection of a human body’s silhouette. A main advantage of this
representation is that only pure binary-shape information is used for posture
classification without texture/color or any explicit body models, so that it is
fairly robust with limited complexity. After temporal modeling, we achieve an
accuracy rate of about 86% for posture recognition, which outperforms other
existing proposals. The developed human motion scheme is efficient achieving
a fast performance (around 10 frames/s), and is suited for broader surveil-
lance applications. In addition, to find the minimum amount of features for
detecting human body, we present a scheme with only three features (body
ratio, shape, color). This simple scheme is generic and integrated into a fast
framework for body-part detection, without the conventional assumption of
the human’s posture being upright.

RQ2:How should we efficiently use 3-D modeling for improved scene un-
derstanding?

The use of multiple cameras is very helpful for a robust understanding
of the human behavior, because the human body can be observed from mul-
tiple directions and occluding situations in one camera can be circumvented
by using another camera view. It is beyond doubt that this will improve the
behavior interpretation and event classification. The use of multiple cameras
allows to reconstruct the scene in 3-D space, so that the position of objects
can be calculated and a different view of actual events can be presented. More
specifically, an efficient 2D-3D mapping has been solved by incorporating a
fast 3-D camera calibration algorithm which was adopted from joint earlier
work in the research group. This 3-D mapping then enables a computation
of location and speed of objects and more detailed scene visualization, where
these data can be used to create a top view of the scene where the motion
and position of objects is shown for analysis purposes. This feature can sig-
nificantly contribute to the scene understanding, like after-crime analysis and
health-care behavior analysis of people. In this thesis, we have provided a
scheme with integrated 2D-3D mapping for both tennis sports analysis and
surveillance applications.

RQ3:How can we implement behavior analysis for a complete application
and facilitate real-time execution?
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For consumer and embedded applications, a (near) real-time performance
is generally required while using low-cost hardware. Therefore, the algorithms
have to be executed with limited processing resources and capacity. It means
that algorithms have to be efficient and their complexity is constrained. Real-
time execution is indispensable for surveillance applications, where the behav-
ior sometimes should lead to direct action. In sports applications, the system
should be fast enough to understand the proceeding of the game.

In Chapter 4, we have proposed a near real-time AV-based tennis sports
analysis system, featuring high-level scene analysis based on real-world vi-
sual or audio cues. The real-time execution has been considered by using
relatively simple cues and computations and considering data exchange with
low-complexity interfaces. For example, playing field detection is based on
white line detection and filtering, instead of applying advanced transforms.
Computationally rich functions like a calibration algorithm was optimized for
fast performance. Moreover, the automatic sports analysis system can gener-
ate metadata and with modelling, this supports faster categorizing of sports
videos and fast searching and retrieval of specific sports video. In this chapter,
audio signals are also used but with moderate complexity functions, this leads
to higher event detection scores and robustness.

In Chapter 5, we have constructed an experimental real-time video-analysis
system based on analyzing events with one or two cameras. This system was
inserted in a component-based architecture and successfully executed for live
demonstrations in the European ITEA project CANTATA. Here the efficient
communication in a specific dedicated file format within the architecture, to-
gether with the simple modeling and associated data exchange between func-
tions has ensured highly efficient execution of the complete application. Also in
this application, human behavior analysis algorithms are specifically designed
for real-time operation, such as the GMM algorithm chosen in the segmenta-
tion. The whole system has been executed on a single regular PC, so that it
is feasible for mapping into an embedded application.

6.3 Future work

The holy grail of visual motion analysis is a system that can accurately in-
terpret the motion of a human wearing clothing of any description and under
varying lighting conditions with a camera that is moving and tracking the
subject. The system should work in real time and provide feedback regard-
ing the visual accuracy to its users. This system can even recognize parts of
the motion as identifiable known gestures, and be able to label or interpret
accordingly. At the time of writing this thesis, this goal is still to be achieved.

Despite the successful applications of our work as described in the previous
chapters, we identify several interesting aspects that need further investigation.
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1. Fusion of data from multiple sensors
It is obvious that future visual surveillance systems will greatly benefit from
the use of multiple cameras. It is interesting to utilize other sensors including
audio, infrared, ultrasonic, and radar, etc. Each of these sensors has its own
characteristics. Surveillance using multiple different sensors seems to be a very
challenging subject. The main problem is how to make use of their respective
merits and fuse information from such kinds of sensors.

2. New hardware and software embedding implementations
In this thesis, computation efficiency is an important performance objective
in the algorithm design. It is interesting to further exploit implementation
issues to deploy the algorithms on suitable embedded platforms. For exam-
ple, for mobile applications, it is interesting to exploit very efficient mapping
of algorithms on DSP media processors. It is useful to optimize algorithms
for embedded processing in cameras to facilitate intelligent video surveillance,
e.g. home-use entrance control. The developed system should be extensible
enough, be based on standard hardware and exploit plug-and-play technology.

3. Real-time scene reconstruction in 3-D space
The growing demand for safety and security has led to more research in build-
ing more efficient and intelligent automated surveillance systems. Therefore,
a future challenge is to develop a 3-D real-time scene reconstruction, which is
able to perform with minimal manual reconfiguration for various applications.
Such systems should be sufficiently adaptive to adjust automatically and cope
with changes in the environment like lighting, scene geometry or scene activity.
An example of such a modeled presentation is portrayed by Figure 6.1. The
realistic visualization shows some extensibility of our proposed framework in
this thesis, which significantly facilitates the user understanding of the actual
scene. However, with the trend in surveillance towards HD resolution imag-
ing, a system design for full 3-D understanding would certainly need a notable
number of extensions and efficiency optimizations would again be necessary
to safeguard acceptable system costs.
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(a) (b)

(c) (d)

Figure 6.1: Example of the reconstruction result of multi-person activity in
a simulated bank-robbery scene: (a) original frame, (b)-(d) three
different viewpoints and focal lengths to show the reconstructed
3-D scene.
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Appendix

A.1 Projective geometry

The geometric relations between objects in the 3-D world and a 2-D image
is of central importance when we want to estimate the motion of the camera
from a sequence of images. In particular, we need a geometric model that
describes the observed motion fields captured by cameras. Object motion can
be presented mathematically with the concept of projective geometry.

The theory of projective geometry establishes the basis for 3-D computer
vision and computer graphics. Compared to Euclidean geometry, projective
geometry facilitates the description of rigid 3-D motion and the perspective
projection onto planar images, because it enables to formulate both with linear
algebra techniques. In particular, projective geometry provides a uniform de-
scription of situations that require special cases in Euclidean geometry, like the
intersection of parallel lines. Consequently, projective geometry has become
the standard technique to describe 3-D geometry.

Projective geometry serves as a mathematical framework for 3-D multiview
imaging and 3-D computer graphics. It is used to model the image formation
process, generate synthetic images, and reconstruct 3-D objects from multiple
images. To model points, lines or planes in a 3-D space, the Euclidean geome-
try is usually employed. However, a disadvantage of the Euclidean geometry is
that points at infinity cannot be modeled and are considered as a special case.
This case can be illustrated by using a perspective drawing of two parallel
lines. In perspective, two parallel lines meet at infinity at the vanishing point.
However, the intersection of the parallel lines at infinity is not easily modeled
by the Euclidean geometry. A second disadvantage of Euclidean geometry is
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that projecting a 3-D point onto an image plane requires a perspective scaling
operation. As the scale factor is a parameter, the perspective scaling requires
a division that becomes a non-linear operation. Therefore, the use of the
Euclidean geometry should be avoided.

Projective geometry constitutes an attractive framework to circumvent the
above disadvantages of the Euclidean geometry. In Euclidean space, a point
defined in three dimensions is represented by a 3-element vector (X,Y,Z).
In the projective space, the same point is described using a 4-element vector
(X1,X2,X3,X4)

T such that

X =
X1

X4
, Y =

X2

X4
, Z =

X3

X4
, (A.1)

where X4 6= 0. In general, the coordinates (X,Y,Z)T and (X1,X2,X3,X4)
T

are called inhomogeneous coordinates and homogeneous coordinates, respec-
tively.

As a generalization, the mapping from a point in the n-dimensional Eu-
clidean space to an (n + 1)-dimensional projective space can be denoted as

(X1,X2, ...,Xn)T︸ ︷︷ ︸
Euclidean space

→ (λX1, λX2, ..., λXn, λ)T︸ ︷︷ ︸
Projective space

, (A.2)

where λ 6= 0 corresponds to a scaling parameter λ. This scaling parameter is
often called the homogeneous scaling factor. Using the presented projective
geometry framework.

While this appendix only gives a brief introduction, a thorough discussion
of 3-D geometry, estimation of camera parameters, and multi-view geometry
can be found in the book [34].

A.2 ViPER file format

The ViPER format is an initiative of the Language and Media Processing Lab-
oratory, University of Maryland. ViPER is an abbreviated name of The Video
Performance Evaluation Resource. It is originally the system for evaluating
video content analysis [58]. ViPER has been originally designed to enable the
evaluation of video analysis like tracking people, detecting text, etc. ViPER
is not only a toolkit of scripts and JAVA programs that enable the markup of
visual data ground truth, but also a system for evaluating how close between
sets of result data and their corresponding ground truth.

The ViPER toolkit is composed of:

• A graphical authoring tool, ViPER-GT. This program allows frame-by-
frame markup of video metadata stored in the ViPER format. It can
also be used for visualization of results of video content analysis (VCA);
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• A command line tool for evaluation of VCA performace, ViPER-PE;

• Other tools like the ViPER API which provides a set of Java interfaces
and classes to access data stored in the ViPER format.

Let us now describe the structure of the ViPER file format. The ViPER file
format is an XML format, the root element of its XML structure is <viper>.
There are two sections in this element, <config> and <data>. The configura-
tion section defines the descriptors and the data section instantiates descrip-
tors for recognized objects or persons. The configuration section contains the
definition of descriptors and it also permits using ViPER tools. A descriptor
in this section is defined as follow:

• It is a record that describes some elements of a video sequence.

• It is an object that conforms to a user defined schema.

• It is composed of several defined attributes.

• It has a unique ID and an associated span which is valid.

• It is one of three types: File, Content, or Object :
File:
It refers to data that reflects the video as a whole or other metadata
about the video, such as file format and frame rate.
Content:
Instances of this type may only occur once at a time, and any given
instance may not change over the course of its life. Each instance has a
time span and a set of attributes.
Object:
It refers to an object that may have many instances at any given time,
and the instances may change over time.

The data section instantiates descriptors and contains objects and people
description. For each object or person identified in the video, an <object>
element is used with the following attributes:

• framespan: string, named framespan to comply with ViPER specifi-
cation but could be just a frame number, e.g. framespan=“12:14” or
framespan=“12”;

• ID: a non-negative integer, which is the identifier of a specific object. It
should be conserved to identify the same object in all frames;

• name: OBJECT or PERSON.
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The element <object> should contain an element which indicates the ob-
ject’s spatial location. There are several attributes in the ViPER file format:

bbox
The bbox is a non-oriented rectangle shape. It can only be positioned with
the sides parallel to the axis of canvas. The string representation of a bbox,
used in the spreadsheet view, is x, y, h,w, where x and y are the coordinates
of the top-left corner of the box, h is the height and w is the width. It should
be noted that the coordinates of the image count down and to the right from
the top left corner.

obox
The obox is the oriented rectangle. It offers the features of the bbox, with
the addition of a fifth number, the orientation. The string representation of
an obox is (x, y), h, w, o, where x and y are coordinates of the top-left corner
of the box, h is the height, w is the width and o is the orientation (angle) in
counter-clockwise degrees.

ellipse
The ellipse shape acts exactly like an obox. Its string representation is the
same as the string representation of an obox that bounds the ellipse.

point
A point’s string representation is (x, y) where x and y are the coordinates of
the point.

circle
A circle is defined by its center and radius. The string representation is (x, y)r
where x and y are the center point’s coordinates, and r is the radius.

polygon
A polygon is an ordered list of points, with line segments connecting them.
Closed polygons have a line segment connecting the first and the last point,
while open polygons do not. The string representation for both is: (x1, y1),
(x2, y2),..., (xn, yn), where x1, y1, x2, y2, ..., xn, yn are the coordinates of
points of the polygon. Note that open polygons must have at least two points
and closed polygons must have at least three. Currently, only closed polygons
are supported.
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