3,176 research outputs found

    Infrared Thermography Investigation of Heat Transfer on Outlet Guide Vanes in a Turbine Rear Structure

    Get PDF
    Aerothermal heat transfer measurements in fluid dynamics have a relatively high acceptance of uncertainty due to the intricate nature of the experiments. The large velocity and pressure gradients present in turbomachinery application add further complexity to the measurement procedure. Recent method and manufacturing development has addressed some of the primary sources of uncertainty in these heat transfer measurements. However, new methods have so far not been applied in a holistic approach for heat transfer studies. This gap is bridged in the present study where a cost-effective and highly accurate method for heat transfer measurements is implemented, utilising infrared thermography technique (IRT) for surface temperature measurement. Novel heat transfer results are obtained for the turbine rear sturcture (TRS), at engine representative conditions for three different outlet guide vane (OGV) blade loading and at Reynolds Number of 235000. In addition to that, an extensive description of the implementation and error mitigation is presented

    Earth Resources: A continuing bibliography with indexes, Issue 35

    Get PDF
    This bibliography list 587 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July 1, and September 30, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    Get PDF
    The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model

    Sensitivity of evapotranspiration retrievals from the METRIC processing algorithm to improved radiometric resolution of Landsat 8 thermal data and to calibration bias in Landsat 7 and 8 surface temperature

    Get PDF
    We made an assessment on the use of 12-bit resolution of Landsat 8 (L8) on evapotranspiration (ET) retrievals via the METRIC process as compared to using 8-bit resolution imagery of previous Landsat missions. METRIC (Mapping Evapotranspiration at high Resolution using Internalized Calibration) is an ET retrieval system commonly used in water and water rights management where the surface energy balance process is coupled with an extreme- end point calibration process to remove most impacts of systematic bias in remotely sensed inputs. We degraded L8 thermal images by grouping sequential digital numbers to reduce the apparent numerical resolution and then recomputed ET using METRIC and compared to nondegraded ET products. The use of 8-bit thermal data did not substantially impair the accuracy of ET retrievals derived from METRIC, as compared to the use of 12-bit thermal data. The largest error introduced into ET was \u3c1%. We also compared ET retrieved from images processed during the L8 and Landsat 7 (L7) March 2013 underfly to assess differences in ET caused by differences in signal to noise ratio (SNR) and scaling of the two systems. We evaluated the impact of bias in land surface temperature (LST) retrievals on ET determination using the CIMEC calibration approach (Calibration using Inverse Modeling using Extreme Member Calibration) employed in METRIC by introducing globally systematic biases into LST retrievals from L7 and L8 and comparing to ET from non-biased retrievals. The impacts of the introduction of both additive and multiplicative biases into surface temperature on ET were small for the three regions of the US studied, and for both L7 and L8 satellite systems. An independent study showed that METRIC-produced ET compared to within 3% of measured ET for the California site. The study assessed the impact of the February 2014 recalibration of L8 thermal data that caused a 3 K downward shift in LST estimation and changed reflectance values by about 0.7%. We found that the use of the recalibrated LST and shortwave data sets in METRIC did not change the accuracy of ET retrievals due to the automatic compensation for systematic biases employed by METRIC

    On Parameterizing Soil Evaporation in a Direct Remote Sensing Model of ET: PT-JPL

    Get PDF
    Remote sensing models that measure evapotranspiration directly from the Penman-Monteith or Priestley-Taylor equations typically estimate the soil evaporation component over large areas using coarse spatial resolution relative humidity (RH) from geospatial climate datasets. As a result, the models tend to underperform in dry areas at local scales where moisture status is not well represented by surrounding areas. Earth observation sensors that monitor large-scale global dynamics (e.g., MODIS) afford comparable spatial coverage and temporal frequency, but at a higher spatial resolution than geospatial climate datasets. In this study, we compared soil evaporation parameterized with optical and thermal indices derived from MODIS to RH-based soil evaporation as implemented in the Priestley Taylor-Jet Propulsion Laboratory (PT-JPL) model. We evaluated the parameterizations by subtracting PT-JPL transpiration from observation-based flux tower evapotranspiration in agricultural fields across the contiguous United States. We compared the apparent thermal inertia (ATI) index, land surface water index (LSWI), normalized difference water index (NDWI), and a new index derived from red and shortwave infrared bands (soil moisture divergence index [SMDI]). Relationships were significant at the 95% confidence band. LSWI and SMDI explained 18–33% of variance in 8-day soil evaporation. This led to a 3–11% increase in explained ET variance. LSWI and SMDI tended to perform better at the irrigated sites than RH. LSWI and SMDI led to markedly better performance over other indices at a seasonal time step. L-band microwave backscatter can penetrate clouds and can distinguish soil from canopy moisture content. We are presently fusing red-SWIR-RADAR to improve soil evaporation estimation.Fil: Marshall, Michael. University of Twente. Faculty of Geo‐information Science and Earth Observation. Department of Natural Resources; Países BajosFil: Tu, Kevin. Corteva Agriscience; Estados UnidosFil: Andreo, Verónica Carolina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin

    MODIS: Moderate-resolution imaging spectrometer. Earth observing system, volume 2B

    Get PDF
    The Moderate-Resolution Imaging Spectrometer (MODIS), as presently conceived, is a system of two imaging spectroradiometer components designed for the widest possible applicability to research tasks that require long-term (5 to 10 years), low-resolution (52 channels between 0.4 and 12.0 micrometers) data sets. The system described is preliminary and subject to scientific and technological review and modification, and it is anticipated that both will occur prior to selection of a final system configuration; however, the basic concept outlined is likely to remain unchanged

    Atmospheric effects in astroparticle physics experiments and the challenge of ever greater precision in measurements

    Full text link
    Astroparticle physics and cosmology allow us to scan the universe through multiple messengers. It is the combination of these probes that improves our understanding of the universe, both in its composition and its dynamics. Unlike other areas in science, research in astroparticle physics has a real originality in detection techniques, in infrastructure locations, and in the observed physical phenomenon that is not created directly by humans. It is these features that make the minimisation of statistical and systematic errors a perpetual challenge. In all these projects, the environment is turned into a detector medium or a target. The atmosphere is probably the environment component the most common in astroparticle physics and requires a continuous monitoring of its properties to minimise as much as possible the systematic uncertainties associated. This paper introduces the different atmospheric effects to take into account in astroparticle physics measurements and provides a non-exhaustive list of techniques and instruments to monitor the different elements composing the atmosphere. A discussion on the close link between astroparticle physics and Earth sciences ends this paper.Comment: 27 pages, 8 figures, review paper, submitted to Astroparticle Physic

    A global long-term (1981–2000) land surface temperature product for NOAA AVHRR

    Get PDF
    Land surface temperature (LST) plays an important role in the research of climate change and various land surface processes. Before 2000, global LST products with relatively high temporal and spatial resolutions are scarce, despite a variety of operational satellite LST products. In this study, a global 0.05∘×0.05∘ historical LST product is generated from NOAA advanced very-high-resolution radiometer (AVHRR) data (1981–2000), which includes three data layers: (1) instantaneous LST, a product generated by integrating several split-window algorithms with a random forest (RF-SWA); (2) orbital-drift-corrected (ODC) LST, a drift-corrected version of RF-SWA LST; and (3) monthly averages of ODC LST. For an assumed maximum uncertainty in emissivity and column water vapor content of 0.04 and 1.0 g cm−2, respectively, evaluated against the simulation dataset, the RF-SWA method has a mean bias error (MBE) of less than 0.10 K and a standard deviation (SD) of 1.10 K. To compensate for the influence of orbital drift on LST, the retrieved RF-SWA LST was normalized with an improved ODC method. The RF-SWA LST were validated with in situ LST from Surface Radiation Budget (SURFRAD) sites and water temperatures obtained from the National Data Buoy Center (NDBC). Against the in situ LST, the RF-SWA LST has a MBE of 0.03 K with a range of −1.59–2.71 K, and SD is 1.18 K with a range of 0.84–2.76 K. Since water temperature only changes slowly, the validation of ODC LST was limited to SURFRAD sites, for which the MBE is 0.54 K with a range of −1.05 to 3.01 K and SD is 3.57 K with a range of 2.34 to 3.69 K, indicating good product accuracy. As global historical datasets, the new AVHRR LST products are useful for filling the gaps in long-term LST data. Furthermore, the new LST products can be used as input to related land surface models and environmental applications. Furthermore, in support of the scientific research community, the datasets are freely available at https://doi.org/10.5281/zenodo.3934354 for RF-SWA LST (Ma et al., 2020a), https://doi.org/10.5281/zenodo.3936627 for ODC LST (Ma et al., 2020c), and https://doi.org/10.5281/zenodo.3936641 for monthly averaged LST (Ma et al., 2020b)

    Experimental Aerothermal Study of Internal Jet Engine Structures

    Get PDF
    In commercial aviation, efficiency improvements may be gained by aerodynamic optimisation of its structural components, such as the intermediate compressor duct (ICD) and the turbine rear structure (TRS). These components have frequently been overlooked in favour of compressor and turbine module optimisation. This means that publicly available information on these structural components is relatively sparse, even though such components may offer substantial weight reduction and, with the introduction of hydrogen as aviation fuel, novel synergistic component integration. This thesis presents heuristic solutions to meet modern demands for verification data on two commercial aviation engine components, the ICD and TRS. The work spans separate research projects and addresses both method development and test facility design. The development of two measurement methods is presented. First, detailed uncertainty analysis of multi-hole probe implementation in the TRS has led to a 50\% reduction in uncertainty regarding total pressure measurement. Furthermore, a modern approach to measuring convective heat transfer has been developed and implemented on the outlet guide vane in the TRS. Neither of the two approaches presented here is limited to applications in the TRS or ICD and may be used in other applications. The aerothermal performance of the TRS for two different Reynolds numbers, several flow coefficients and three different surface roughness numbers have been investigated, and novel results on transition location, streamlines, heat transfer and loss distribution are presented. The second part of the thesis describes the design of a new, low speed, 2.5 stage low-pressure compressor (LPC) facility, built to investigate novel concepts of hydrogen integration in the ICD. Methods developed in the TRS are adopted and implemented in the new facility. A pre-study of the LPC and ICD instrumentation shows that compressor performance may be measured with better than 1% uncertainty using gas path studies.Disclaimer:\ua0The content of this article reflects only the authors’ view. The Clean Sky 2 Joint Undertaking is not responsible for any use that may be made of the information it contains
    corecore