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Abstract Remote sensing models that measure evapotranspiration directly from the Penman‐Monteith
or Priestley‐Taylor equations typically estimate the soil evaporation component over large areas using coarse
spatial resolution relative humidity (RH) from geospatial climate datasets. As a result, the models tend to
underperform in dry areas at local scales where moisture status is not well represented by surrounding areas.
Earth observation sensors that monitor large‐scale global dynamics (e.g., MODIS) afford comparable spatial
coverage and temporal frequency, but at a higher spatial resolution than geospatial climate datasets. In this
study, we compared soil evaporation parameterized with optical and thermal indices derived fromMODIS to
RH‐based soil evaporation as implemented in the Priestley Taylor‐Jet Propulsion Laboratory (PT‐JPL)
model. We evaluated the parameterizations by subtracting PT‐JPL transpiration from observation‐based flux
tower evapotranspiration in agricultural fields across the contiguous United States. We compared the
apparent thermal inertia (ATI) index, land surface water index (LSWI), normalized difference water index
(NDWI), and a new index derived from red and shortwave infrared bands (soil moisture divergence index
[SMDI]). Relationships were significant at the 95% confidence band. LSWI and SMDI explained 18–33% of
variance in 8‐day soil evaporation. This led to a 3–11% increase in explained ET variance. LSWI and SMDI
tended to perform better at the irrigated sites than RH. LSWI and SMDI led to markedly better performance
over other indices at a seasonal time step. L‐band microwave backscatter can penetrate clouds and can
distinguish soil from canopy moisture content. We are presently fusing red‐SWIR‐RADAR to improve soil
evaporation estimation.

1. Introduction

Earth system scientists increasingly use Earth observation (remote sensing) to estimate evapotranspiration
(ET) for water resources management, food security analysis, drought monitoring, assessing the impact of
land use/cover feedbacks on climate, and greenhouse gas emissions accounting (Fisher et al., 2017). How
we partition ET is an emerging area of research—a recent review can be found in Stoy et al. (2019). We
can partition evapotranspiration into three components: water movement through the canopy or transpira-
tion, evaporation from the soil and waterbodies, and evaporation from the canopy or other surfaces follow-
ing a wetting event. Transpiration accounts for approximately 57.2 ± 6.8% of global terrestrial ET, making it
the largest and most researched component of ET (Wei et al., 2017). Earth system scientists should further
investigate soil evaporation for three reasons. First, soil evaporation is considerable in agroecosystems and
other moisture‐limited ecosystems (Zhang et al., 2017). Second, studies estimate positive trends in ET glob-
ally that are partially offset by declining trends in soil evaporation in moisture‐limited areas due to rainfall
variability and change (Jung et al., 2010; Zhang et al., 2016). Finally, studies link much of the uncertainty in
simulations used to estimate ET and ET trends to the partitioning of ET between transpiration and soil eva-
poration (McCabe et al., 2019; Vereecken et al., 2015; Vinukollu et al., 2012).

Scientists use Earth observation to decompose ET into transpiration and soil evaporation using two distinct
approaches: indirect and direct (Biggs et al., 2015). Indirect methods estimate latent heat flux or the energy
equivalent of ET as the difference between available energy (net radiation) and sensible heat flux. The sen-
sible heat flux is determined as a function of land surface temperature (LST) (Norman et al., 1995). Examples
of this approach include the ALEXI (Anderson et al., 1997) and SEBS (Su, 2002) models. The basic concept
behind these models is that as LST and therefore the sensible heat flux between the surface and atmosphere
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increases, less energy is available at the surface for ET (Kustas & Norman, 2000). Indirect methods therefore
are sensitive to the moisture status of the entire evaporating surface regardless of whether it is vegetation or
soil. Soil evaporation is assumed to be a fraction of total LE using a remote sensing vegetation index, such as
the normalized difference vegetation index (NDVI: Tucker, 1977, 1979). Direct methods on the other hand
estimate latent heat flux as a fraction of potential evapotranspiration (PET), which is a function of net radia-
tion, temperature, humidity, and wind speed (Cleugh et al., 2007). Examples of this approach include
MOD16 (Mu et al., 2007, 2011) and Priestley Taylor‐Jet Propulsion Laboratory (PT‐JPL) (Fisher et
al., 2009, 2008). MOD16 uses the Penman‐Monteith equation, and PT‐JPL uses the Priestley‐Taylor approx-
imation for PET. Direct methods inform the capacity of the canopy for transpiration only, which is indirectly
related to themoisture status of soil in which the plants are rooted (Polhamus et al., 2013). They are therefore
sensitive to the vegetation component of the surface only. Soil evaporation is estimated as a function of the
moisture content of the overlying atmosphere that regulates the canopy.

Direct methods are widely used for large area studies, because they require fewer inputs than indirect
methods (Jiménez et al., 2011; Vinukollu et al., 2012; Vinukollu, Meynadier, et al., 2011; Vinukollu,
Wood, et al., 2011). In particular, PT‐JPL performs well if not better than other methods across different
ecosystem types and environments (Ershadi et al., 2014; McCabe et al., 2016; Miralles et al., 2016). Even
so, the performance of these methods suffers when applied locally to irrigated agriculture and other
moisture‐limited areas where the soil moisture status is not well represented by the surrounding region
and the overlying atmosphere (Biggs et al., 2016; Yilmaz et al., 2014). This is because researchers devel-
oped direct methods for regional‐scale application where we can assume quasi surface‐atmosphere
equilibrium.

We can attribute the poorer performance of direct methods when applied locally to moisture‐limited areas to
the formulation and sensitivity of soil evaporation to atmospheric moisture status (Talsma, Good, Miralles,
et al., 2018; Zhang et al., 2019). In these models, soil evaporation is a function of the relative humidity (RH)
of air immediately above the surface following the complementary hypothesis (Bouchet, 1963). Relative
humidity is the ratio of actual to saturation water vapor pressure of the overlying air of the surface.
Evaporative demand of the atmosphere drives evaporation from the surface and increases RH in the overly-
ing air. As evaporation proceeds, the air becomes more humid, which decreases the evaporative demand.
Eventually, the surface and atmosphere are in a state of equilibrium, and the evaporative demand of the
atmosphere is the complement to the evaporative supply at the surface. The major limitation of this method
is that equilibrium conditions are rarely ever met exactly. The closest they come occurs at synoptic spatial
scales and long enough time scales sufficient for full accommodation between the surface and the atmo-
sphere (Monteith, 1995). The drier the surface, the longer it takes to reach equilibrium, and the less likely
for atmospheric moisture to be diagnostic of surface moisture status. Consistent with this hypothesis, PT‐
JPL performed well for predicting ET from an irrigated field in the desert of Saudi Arabia when the humidity
was measured downwind of the irrigated field, but did not work well when humidity was measured in air
coming off the surrounding desert (Aragon et al., 2018). While the canopy transpiration component is well
constrained in direct methods particularly under unstressed conditions, we need alternative methods of
localizing the soil evaporation estimates when such models are applied at scales or in areas that are not in
equilibrium with the larger regional atmospheric environment. This physical bias is exacerbated when
RH is derived from coarse spatial resolution climate reanalysis instead of ground‐based weather data
(Marshall et al., 2013; Badgley et al., 2015).

A number of studies aim to improve upon atmospheric‐driven soil evaporation in PT‐JPL. The alternatives
more directly measure moisture supply, use comparatively higher spatial resolution remote sensing, and/or
reduce model dependence on climate reanalysis. Famiglietti et al. (2018) proposed a methodology for deriv-
ing near‐surface air temperature and dew point temperature from the MODIS sensor to improve the spatial
resolution of RH estimation globally. Perhaps the most prominent alternative to the RH‐based soil evapora-
tion formulation due to the widespread use of indirect methods in agroecosystems involves the apparent
thermal inertia index (ATI: García et al., 2013; Yao et al., 2013, 2017). MODIS or geostationary weather satel-
lite thermal bands drive ATI. ATI showed better performance in rainfed areas when substituted in for the
PT‐JPL RH formulation for soil evaporation. In irrigated areas, however, soil evaporation derived from
ground‐based soil moisture performed better than RH and ATI. A recent study used the topsoil (5 cm) moist-
ure content detected by SMAP L‐band microwave emissivity to replace RH formulation for soil evaporation
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in PT‐JPL (Purdy et al., 2018). The results were promising inmoisture‐limited regions, leading to a 29.9% and
22.7% reduction in ETmean bias and RMSE, respectively. The shortwave infrared (SWIR) region of the elec-
tromagnetic spectrum is sensitive to changes in canopy and soil moisture content—water absorbs strongly in
the SWIR (Gao, 1996). Yao et al. (2018) used the MODIS‐derived land surface water index (LSWI) and a soil
moisture index derived exclusively with MODIS SWIR bands to estimate transpiration and soil evaporation
in PT‐JPL, respectively (Yao et al., 2018). The combined indices resulted in 7% to 23.9% lower RMSE in LE
compared to ground‐based soil evaporation derived from soil moisture, but tended to underperform in eco-
systems with weak seasonality. Lastly, Marshall et al. (2016) compared several hyperspectral narrowband
and multispectral broadband indices derived from ground spectroscopy with soil evaporation as a residual
of eddy covariance flux tower ET and PT‐JPL transpiration. They identified important spectral features in
soil evaporation centered on 428 nm (visible blue) and 1,518 nm (SWIR). Canopies and soil absorb strongly
in the visible blue and SWIR, but around 1,450 nm (near 1,518 nm), soil water absorbs more strongly than
canopy water (Penuelas et al., 1995).

We have not performed a comprehensive analysis of the alternatives to atmospheric‐driven soil evaporation
in direct remote sensing models of ET such as PT‐JPL, particularly in irrigated croplands where atmo-
spheric‐driven soil evaporation tends to underperform. In this study, we compared the performance of atmo-
spheric‐driven soil evaporation as implemented in PT‐JPL to alternatives derived from MODIS optical and
thermal band combinations identified in the literate at 10 eddy covariance flux towers across important
rainfed and irrigated agroecosystems of the contiguous United States. Although microwave‐based formula-
tions are a viable alternative to RH for soil evaporation (e.g., GLEAM; Miralles et al., 2011), our aim was to
better understand the opportunities for leveraging currently available Earth observations that are already
provided alongside the vegetation indices (e.g., NDVI) used by direct methods such as PT‐JPL. Not to com-
pare different satellite platforms. We therefore focus the comparison on MODIS optical and thermal bands,
because they offer a number of presently used and proposed alternatives to the current implementation of
soil evaporation in PT‐JPL.

2. Data Acquisition and Processing

Observation‐based and simulated soil evaporation consisted of 72 site years of micrometeorological and
Earth observation data collected at 10 eddy covariance flux towers across major agroecosystems of the con-
tiguous United States. The flux towers are part of the Ameriflux network (https://ameriflux.lbl.gov/) and
represent various crop types, climates, and watering regimes (Table 1). Each flux tower had at least 3 years
of data, which is sufficiently long enough to capture interannual variability in soil evaporation. We acquired
Earth observation data using the United States Geological Survey's Application for Extracting and Exploring
Analysis Ready Samples download data tool (AρρEEARS: https://lpdaacsvc.cr.usgs.gov/appeears/).

2.1. Micrometeorological Data

The micrometeorological data consisted of half‐hourly or hourly energy terms (net radiation, sensible heat
flux, soil ground heat flux, and latent heat) measured in W m−2 and weather terms (air temperature and
vapor pressure deficit) measured in °C and kPa. We filled the data gaps in the energy and weather terms
using the marginal distribution sampling method (Reichstein et al., 2005) and linear interpolation with a
locally weighted regression. Following Fisher et al. (2008), we aggregated half‐hourly and hourly data to day-
time averages in units of MJ m−2 d−1. Convection is high, and the correlation between energy and weather
terms tends to be strongest during the day. Nighttime values were masked out using an incoming shortwave
radiation threshold of ≤5 W m−2, which is outside of instrument error. We applied an 8‐day exponential
moving average to daytime averages to approximate the compositing period of the Earth observation data.
Lastly, we omitted values outside the growing seasons using planting and harvesting dates provided by
the growers or farm managers via the flux tower investigators. Flux towers are considered the gold standard
of field‐level energy balance estimation, but can produce underestimates of 10–30% in surface energy fluxes
(Wilson et al., 2002). Two approaches are generally used to close the gap: Bowen ratio (Twine et al., 2000)
and energy balance residual (Amiro, 2009). The former distributes the imbalance between sensible and
latent heat, while the latter distributes the imbalance to latent heat only. We closed the fluxes using both
approaches, but in the end, we present the results of the uncorrected fluxes. We did this for three reasons.
First, the performance of each approach can vary considerably due to instrumentation and climate, so the
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flux community generally accepts neither approach (Pan et al., 2017). Second, both approaches resulted in
large systematic errors between simulated and observed latent heat. Lastly, neither correction changed
the relative performance of the parameterization.

2.2. Earth Observation Data

The Earth observation data consisted of three MODIS Aqua Version‐6 products: 8‐day 500 m Surface
Reflectance Bands 1–7 (MYD09A), 8‐day 1 km Land Surface Temperature & Emissivity (MYD11A2), and
daily 1 km Ocean Reflectance Bands 8–16 (MYDOCGA) (Table 2). We used MYD09A andMYD11A2 to esti-
mate optical and thermal indices, such as LSWI and ATI, respectively. We also used MYD09A to estimate
NDVI and the enhanced vegetation index (EVI: Huete et al., 2002). PT‐JPL does not use these indices to esti-
mate soil evaporation, but to constrain transpiration. Until recently, MYDOCGA masked out the land,
because the bands are mainly for ocean reflectance applications. The product is now available for the land.
It includes blue bands (bands 8–10) that we used to develop additional optical indices for soil
evaporation estimation.

We downloaded the time series of each product for the pixel overlapping half the footprint distance of each
tower. The footprint distance is defined by the upwind area collected by the flux tower detectors. In this
study, we define the average upwind area by the dominant wind direction during the primary growing sea-

son. We resampled the three products where necessary to an 8‐day time
step and 1 km spatial resolution for comparison purposes. An 8‐day time
step approximates the cumulative response of plants over several days to
changing growth conditions (Pearcy & Sims, 1994). Further, the focus of
the comparison was on the spectral resolution of the products and aggre-
gating to the coarsest resolution resolves spatial discrepancies between
the products.

The MYD09A product is generated by ranking daily reflectance data over
an 8‐day compositing period (Vermote et al., 2011). We use this ranking to
align the dates of the MODIS and climate data over each 8‐day composite.
Pixels that are cloudy or impacted by other sources of noise receive a low
rank, while pixels that are less impacted by noise (e.g., aerosols or haze)
receive a high rank. Reflectance from the day with the highest rank and
lowest view angle are selected for each 8‐day composite. We used the
selected dates in each composite to extract 8‐day composites for
MYDOCGA and the micrometeorological data. We retained pixels for
each product ranked “highest quality” as defined in the MODIS quality
assessment approach (Roy et al., 2002) and labeled in the AρρEEARS data
files, while we dropped pixels tagged with a poorer quality flag. We filled
remaining gaps by linear interpolation with locally weighted regression.

Table 1
Study Area Defined by the Footprint of 10 Eddy Covariance Flux Towers in Flooded (F), Rainfed (R), and Irrigated (I) Agricultural Fields Across the United States

Site Year Latitude Longitude Crop type Regime Elev (m) Climate T (°C) PPT (mm)

US‐Twt 2009–2014 38.11 −121.66 Rice F <0 Mediterranean 15.6 421
US‐Arm 2003–2012 36.60 −97.49 Mixed R 314 Humid, subtropical 14.8 843
US‐Crt 2011–2013 41.63 −83.35 Soy‐wheat R 180 Humid, continental 10.1 849
US‐Ib1 2006–2011 41.86 −88.23 Corn‐soy R 227 Humid, continental 9.2 929
US‐Ne1 2003–2012 41.17 −96.48 Corn I 361 Humid, continental 10.1 790
US‐Ne2 2003–2012 41.16 −96.47 Corn I 362 Humid, continental 10.1 789
US‐Ne3 2003–2012 41.18 −96.44 Corn‐soy R 361 Humid, continental 10.1 790
US‐Bo1 2003–2007 40.00 −88.29 Corn‐soy R 219 Humid, continental 11.0 991
US‐Ro1 2004–2012 44.71 −93.09 Corn‐soy R 290 Humid, continental 6.4 879
US‐Ro3 2004–2006 44.72 −93.09 Corn‐soy R 260 Humid, continental 6.4 879

Table 2
Spectral Depth of MODIS Reflectance Products

Product Band Bandwidth (nm)

MYD09A 1 620–670
2 841–876
3 459–479
4 545–565
5 1,230–1,250
6 1,628–1,652
7 2,105–2,155

MYDOCGA 8 405–420
9 438–448
10 483–493
11 526–536
12 546–556
13 662–672
14 673–683
15 743–753
16 862–877
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3. Methods

We estimated soil evaporation as a residual of the energy balance after partitioning evapotranspiration with
the transpiration component of the PT‐JPLmodel. Flux towers do not measure soil evaporation directly. The
transpiration component of PT‐JPL was selected to partition evapotranspiration for three reasons: (i) the
overall performance of PT‐JPL is superior to other vegetation‐based remote sensing models and has been
widely used to analyze atmospheric‐based alternatives for soil evaporation (García et al., 2013; Purdy et
al., 2018; Yao et al., 2013, 2017); (ii) the evapotranspiration‐CO2 correlation approach, which can readily
be employed to partition evapotranspiration with flux tower data, remains in the testing phase (Kool et
al., 2014); and (iii) the performance of the transpiration component of PT‐JPL shows much lower bias with
reference data than the soil evaporation component (Talsma, Good, Jimenez, et al., 2018). We compared the
observed ET and PT‐JPL transpiration residuals to the original atmospheric‐based formulation and three
Earth observation indices commonly used to evaluate plant‐soil‐water status (ATI, LSWI, and NDWI). We
then expanded the comparison to include indices suggested in Marshall et al. (2016), which we derived from
MODIS blue band combinations (bands 3 and 8–10). We evaluated each band combination on an 8‐day basis
using standard model performance metrics. Some applications, such as crop water productivity (Zwart &
Bastiaanssen, 2004), assess cumulative ET effects, so we also evaluated the indices on a seasonal basis
as well.

3.1. Observation‐Based Soil Evaporation

We estimated soil evaporation on an 8‐day basis for each flux tower and corresponding MODIS pixels using
the following energy balance equation:

LEs;resp ¼ Rn −H − G − LEc;ptjpl (1)

where LEs,resp is the soil evaporation response defined by the residual of the energy terms (net radiation,
Rn, sensible heat flux, H, and soil ground heat flux, G) and transpiration as simulated by PT‐JPL (LEc,ptjpl).

The Priestley‐Taylor Jet Propulsion Laboratory model (Fisher et al., 2008) estimates evapotranspiration in
energy terms (latent heat). Latent heat is the sum of three components: LEc, LEs, and evaporation from
the canopy itself following a wetting event. We set the surface wetness constraint that accounts for evapora-
tion from precipitation intercepted by the canopy to zero according to García et al. (2013). Intercepted eva-
poration can be high in humid and densely vegetated ecosystems, but it is generally negligible in drier
ecosystems such as those analyzed in this study (Jasechko et al., 2013). The model diagram in Figure 1
defines PT‐JPL in terms of its inputs (EVI, NDVI, average daily air temperature, Tav, net radiation for the
canopy, Rnc, net radiation for the soil, Rns, and soil ground heat flux, G), environmental constraints (green
canopy fraction, Fg, temperature, Ft, moisture, Fsm, and leaf age, Fa), and outputs (LEc and LEs). Readers can
find an exhaustive list of model equations and other pertinent details in Fisher et al. (2008) and García
et al. (2013).

Potential evapotranspiration in PT‐JPL is defined in terms of the Priestley‐Taylor equilibrium equation:

PET ¼ α
Δ

Δþ γ
Rn (2)

where α is the Priestley‐Taylor coefficient (1.26°C kPa−1), Δ is the slope of the saturation vapor pressure
curve, and γ is the psychometric constant (0.066 kPa−1°C−1). Net radiation is partitioned into Rnc and
(Rns‐G) according to an exponential decay function of leaf area index (LAI) and the Beer‐Lambert extinc-
tion coefficient (Ross, 1976). LAI is estimated as a function of the NDVI‐driven vegetation fraction. The
normalized difference vegetation index is sensitive to changes in vegetation abundance via the absorption
and scattering characteristics of canopies in the visible red and NIR (Tucker, 1977, 1979). As canopies
become more photoactive, the absorption of chlorophyll in the visible red increases. At the same time,
NIR is scattered due to the internal structure of the canopy. We derived it from MYD09A red and NIR
bands. Evapotranspiration is downregulated by the four environmental constraints to maintain equili-
brium with PET. Plants adjust stomatal conductance according to changing light levels and therefore
available energy for photosynthesis, which the model constrains by EVI (Huete et al., 2002) via Fg. The
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Enhanced Vegetation Index is more sensitive to the chlorophyll content of the canopy then NDVI, because
it makes corrections for canopy background and the atmosphere. We derived it from MYD09A blue, red,
and near‐infrared (NIR) bands. As with other chemical reactions, plants tend to photosynthesize at an
optimal temperature. The reaction slows (speeds up) when air temperatures cool (warm) according to
an asymptotic curve (Ft: June et al., 2004). When air temperatures exceed this optimum and/or
conditions become too dry, plants reduce stomatal conductance to prevent an excessive loss of moisture.
The leaf age constraint (Fa) is defined in terms of relative changes in canopy light absorptance during
senescence. When plants transition into the senescence phase after peak productivity, stomatal
conductance declines as the plants no longer photosynthesize. The seasonal effect in PT‐JPL is
estimated as a function of peak productivity or maximum seasonal NDVI.

Soil evaporation is constrained by Fsm, so that

LEs ¼ Fsmα
Δ

Δþ γ
Rns − Gð Þ (3)

Fsm is defined in terms of relative humidity and the vapor pressure deficit (VPD): RH(VPD/β). Vapor pres-
sure deficit is essentially the reciprocal of RH. It is defined as the difference between the vapor pressure of
an air parcel above the surface that is saturated with moisture and the current vapor pressure. β is a con-
stant equal to 1.0 kPa.

Figure 1. Schematic representation of the Priestley‐Taylor Jet Propulsion Laboratory assuming evaporation from precipitation intercepted by the canopy is zero (i.
e., evapotranspiration is the sum of transpiration and soil evaporation). Transpiration is a function of canopy net radiation (Rnc) constrained by the green canopy
(Fg), temperature (Ft), and leaf age (Fa) fractions. Soil evaporation is a function of soil net radiation (Rns‐G) constrained by the soil moisture (Fsm) fraction. Fg, Ft,
Fa, and Fsm are derived from the enhanced vegetation index (EVI), average daily temperature (Tav), the normalized difference vegetation index (NDVI), and the
vapor pressure deficit (VPD).
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3.2. Band Selection for Soil Evaporation Prediction

The apparent thermal index capitalizes on the response of the diurnal temperature range to changes in plant
and soil moisture status. Water has a higher heat capacity than air, so the diurnal temperature range tends to
be lower (higher) under moist (dry) canopy conditions all other factors (e.g., solar irradiance and declina-
tion) being equal (García et al., 2013).

ATI ¼ 1
DT

� �DT=DTmax

(4)

where DT is the diurnal temperature range, defined as daytime‐nighttime land surface temperature, and
DTmax is the maximum diurnal temperature range (60°C). We took daytime and nighttime thermal values
from MYD11A2. Yao et al. (2013) first presented this version of ATI, which is a simplification of García et
al. (2013) as it assumes a linear relationship between DT and Fsm. We selected the Yao et al. (2013) ver-
sion, because neither version has been compared to one another. In addition, the Yao et al. (2013) version
is derived from MODIS thermal bands. ATI is a scalar (0–1) like the original Fsm, so we substituted it
directly into equation 4 for the analysis.

The normalized difference water index and LSWI are essentially the same index, but each capitalizes on two
different regions of the shortwave infrared (SWIR). The SWIR region at approximately 1,240 nm (Gao, 1996)
and 2,130 nm (Chandrasekar et al., 2010) is sensitive to liquid water molecules in the canopy, while NIR
serves to normalize the relationship across different canopies, because this region of the electromagnetic
spectrum is less sensitive to changes in water content (Chen et al., 2005). Previous studies featured another
index with SWIR at 1,640 nm (MODIS band 6), but this region is adversely affected by water vapor and aero-
sols in the atmosphere, so we did not consider it for our analysis.

NDWI; LSWI ¼ NIR − SWIR1240;2130

NIRþ SWIR1240;2130
(6)

where SWIR in the case of NDWI and LSWI is taken from MYD09A bands 5 and 7, respectively. Unlike
Fsm and ATI, NDWI and LSWI are not scalars. We therefore converted them to scalars according to Xiao
et al. (2004):

NDWInorm; LSWInorm ¼ 1þ NDWI; LSWI
1þ NDWImax; LSWImax

(7)

where NDWInorm and LSWInorm are NDWI and LSWI scaled to the maximum seasonal values NDWImax

and LSWImax.

We also scaled all possible band combinations from MYD09A and MYDOCGA to seasonal maxima analo-
gous to NDWI and LSWI to evaluate the performance of potentially new indices. We only included the blue
bands (8–10) from MYDOCGA, because bands 11–16 were consistently of poor quality.

3.3. Model Evaluation

We evaluated the indices differently for the 8‐day and seasonal time steps. For the 8‐day time step, we used
the coefficient of determination (R2), cross‐validated root mean square error (RMSE), normalized RMSE,
and two error metrics that decompose RMSE into systematic error or bias (RMSEs) and unsystematic or ran-
dom error (RMSEu) (Willmott, 1981). All relationships were statistically significant at the 95% confidence
band (p< 0.05). We used λ‐λ plots, which are essentially cross correlation plots for R2, to pinpoint potentially
new indices that perform better then indices identified in the literature. To isolate model performance of LEs,

resp from overall performance of simulated LE, we also evaluated the performance of LEc,ptjpl with observed
LE. We compared seasonal estimates with a two‐sided t test for independent samples of unequal variance.
We used the two‐sample t test in this case to determine if the difference in seasonal means of observed
and simulated LE was zero (null hypothesis) at the 95% confidence band. A rejection of the null hypothesis
meant that significant differences in the means could affect interpretation of cumulative effects in ET over
the growing season.
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4. Results
4.1. Indices From the Literature

Three of the indices (Fsm, LSWI, and ATI) exhibited similar seasonality while NDWI showed little to no sea-
sonality (Figure 2). LSWI showed less variation from 8‐day period to 8‐day period, while ATI wasmuchmore
sporadic. The original Fsm, LSWI, and ATI tended to have two major oscillations throughout the year. The
indices were high outside the analysis window (i.e., pre‐planting and post‐harvest) when little vegetation
was on the surface and LEs → LE. Another minor peak occurred during the period of maximum crop pro-
ductivity when the canopy is closed and LEs → 0. The troughs in between these peaks corresponded to
the green‐up and brown‐down phases of crop development. Two general patterns in the seasonality of the
original Fsm, LSWI, and ATI with relation to LEs emerged across the sites. US‐Ib1 (Figures 2a and 2c) is
rainfed, because it has a continental climate and receives ample rainfall during the growing season.
Conversely, US‐Twt (Figures 2b and 2d) has aMediterranean climate, receives little rainfall during the grow-
ing season, and consists of rice. The rice fields are flooded throughout the growing season. The gap between
LEc and LEs during the growing season was therefore much wider (narrower) for US‐Ib1 (US‐Twt). LSWI
tended to correspond better to LEs than other indices for irrigated sites, because it remained comparatively
high during the growing season. The original Fsm formulation on the other hand dropped during the grow-
ing season and therefore tended to correspond better to LEs than other indices for rainfed sites.

These patterns were confirmed by the performance statistics at irrigated/flooded sites (US‐Ne1, US‐Ne2, and
US‐Twt). Neither the RH‐based Fsm or LSWI were particularly strong performers, since they only explained
19–31% in LEs,resp variance (Table 3). Their integration with LEc did however lead to an overall improve-
ment in LE estimation over LEc alone, explaining an additional 3–11% in observed LE variance. LSWI
tended to explain more variance (i.e., higher R2) and be less prone to over‐fitting (i.e., lower RMSE) than
the original Fsm. As illustrated in Figures 3a and 3b, the original Fsm produced a negative LE bias during
the growing season around maximum productivity when LE is high. If either the original Fsm or LSWI are
used to estimate LEs, bias‐correction over irrigated/flooded fields is feasible, since both had more than dou-
ble the systematic error as unsystematic error. The performance of ATI was slightly worse than the original
Fsm and LSWI, followed by NDWI, which was clearly the worst performing index. ATI explained an addi-
tional 1% in LEs,obs variance at US‐Ne1 than LSWI and the original Fsm, but had much higher RMSE. The
performance of LSWI at the flooded site (US‐Twt) was markedly stronger than the other indices. LSWI
explained an additional 5% and 15% of LEs,obs variance compared to the original Fsm and ATI, respectively.

The performance of the original Fsm and LSWI was more mixed at the rainfed sites (Table 3). The original
Fsm performed better than LSWI for four sites (US‐Ne3, US‐Ro1, US‐Ib1, and US‐Crt) explaining 20–34%
in LEs,obs variance. LSWI performed better than the original Fsm for the other two sites (US‐Ro3 and US‐
Bo1) explaining 20–23% in LEs,obs variance. At these two sites, the original Fsm performed particularly poorly
(R2 = 0.01, RMSE = 2.49 MJ m−2 d−1 and R2 = 0.16, RMSE = 1.53 MJ m−2 d−1). Both indices performed
poorly at US‐Arm. As with the irrigated sites, the LSWI LEs parameterization combined with LEc,ptjpl led
to an overall model improvement, explaining an additional 3–10% in observed LE variance. As illustrated
in Figures 3c and 3d, the bias in the original Fsm and LSWI tended to lead to underestimates of LE through-
out the growing season. Although systematic errors were closer to unsystematic errors, some gains could be
made with bias‐correction. NDWI performed considerably better at US‐Bo1 and other rainfed sites, but was
prone to leveraging (over‐fitting) as shown by the high RMSE. ATI was the worst performing of the indices at
rainfed sites.

4.2. Other Two‐Band Combinations

The additional bands afforded by MYDOCGA in one case (US‐Ib1) led to higher correlations with LEs,obs

than other band combinations (Figure 4a), but as shown at US‐Twt (Figure 4b), MYD09A bands in general
were comparable or superior. As with indices from the literature, the new band combinations performed
very poorly at US‐Arm. The MODIS red band (b1) was consistently the most important band and explained
18–35% in LEs,obs variance in combination with the MODIS NIR (b2), green (b4), and SWIR (b5) bands.
MODIS bands 1 and 5 were the top‐performing combination for only one site (US‐Crt), but were selected
for comparison with indices from the literature, because the combination was consistently among the top
performers at each site. We refer to the band combination as the soil moisture divergence index (SMDI).
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The soil moisture divergence index responded similarly to LSWI (Table 1). It tended to underpredict during
the growing season at rainfed sites and was closer to observation‐based values during the growing season at
irrigated/flood sites than the RH‐based Fsm. It outperformed LSWI for four of the sites: US‐Ro1, US‐Ro3, US‐
Twt, and US‐Crt. The most significant improvement was at US‐Twt where SMDI increased explained
variance by 2% with a 0.04 MJ m−2 d−1 lower RMSE (Figure 5).

Much of the variability in the indices was averaged out on a seasonal basis. As a result, the distinction in per-
formance between rainfed and irrigated crops was less apparent. The soil moisture divergence index clearly
produced mean estimates closer to observed seasonal means than the other indices (Figure 6). With the
exception of US‐Arm, SMDI had a mean t‐statistic ranging from −1.09 to 0.23, meaning it was not statisti-
cally different from the observed mean at each site (Table 4). This was followed by the SWIR‐based

Figure 2. Time series of (a and b) Fsm ( ), LSWI ( ), NDWI ( ), and ATI ( ) and (c and d) observed LE (•••), LEc,ptjpl ( ), and LEs,resp ( ) for the
rainfed site US‐Ib1 for soy (left) and the flooded site US‐Twt for rice (right) rotation.
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Table 3
Performance Statistics for LEs Against Observation‐Based LEs and LEc and LEc + LEs Against Observed LE

LES LEC LES + LEC

Site N Index R2 RMSE RMSEU RMSES R2 RMSE R2 RMSE %RMSE

US‐Ne1 435 SMDI 0.23 1.52 0.77 1.31 0.84 2.54 0.88 1.52 0.40
LSWI 0.23 1.38 0.47 1.30 0.88 1.38 0.37
NDWI 0.17 1.49 0.62 1.36 0.88 1.49 0.40
ATI 0.24 1.70 1.10 1.29 0.89 1.70 0.45
Fsm 0.23 1.36 0.38 1.31 0.89 1.36 0.36

US‐Ne2 442 SMDI 0.21 1.62 0.92 1.34 0.83 2.54 0.87 1.62 0.45
LSWI 0.22 1.42 0.52 1.33 0.87 1.42 0.39
NDWI 0.15 1.60 0.80 1.38 0.86 1.60 0.44
ATI 0.20 1.69 1.02 1.35 0.86 1.69 0.47
Fsm 0.19 1.50 0.64 1.36 0.86 1.50 0.41

US‐Ne3 402 SMDI 0.20 1.57 0.97 1.23 0.85 2.30 0.88 1.57 0.45
LSWI 0.20 1.38 0.61 1.23 0.88 1.38 0.39
NDWI 0.13 1.52 0.81 1.29 0.87 1.52 0.43
ATI 0.19 1.48 0.81 1.24 0.88 1.48 0.42
Fsm 0.20 1.28 0.35 1.23 0.89 1.28 0.37

US‐Ro1 370 SMDI 0.23 1.74 0.97 1.44 0.87 1.74 0.46
LSWI 0.22 1.86 1.17 1.45 0.81 2.79 0.87 1.86 0.49
NDWI 0.19 1.79 1.00 1.48 0.87 1.79 0.47
ATI 0.18 2.19 1.60 1.50 0.87 2.19 0.58
Fsm 0.23 1.76 1.01 1.44 0.88 1.76 0.46

US‐Ro3 125 SMDI 0.21 1.69 0.60 1.57 0.70 2.57 0.79 1.69 0.50
LSWI 0.20 1.77 0.78 1.59 0.79 1.77 0.53
NDWI 0.14 1.77 0.66 1.65 0.77 1.77 0.53
ATI 0.09 2.07 1.19 1.69 0.76 2.07 0.62
Fsm 0.01 2.49 1.75 1.76 0.74 2.49 0.74

US‐Twt 240 SMDI 0.33 1.79 0.67 1.65 0.71 3.97 0.82 1.79 0.46
LSWI 0.31 1.88 0.82 1.69 0.82 1.88 0.48
NDWI 0.30 1.83 0.69 1.70 0.81 1.83 0.47
ATI 0.16 2.93 2.27 1.85 0.78 2.93 0.75
Fsm 0.26 2.35 1.58 1.74 0.81 2.35 0.60

US‐Ib1 230 SMDI 0.27 1.76 1.18 1.31 0.81 2.87 0.88 1.76 0.46
LSWI 0.28 1.65 1.02 1.30 0.88 1.65 0.43
NDWI 0.27 1.71 1.10 1.31 0.88 1.71 0.45
ATI 0.19 1.98 1.42 1.38 0.87 1.98 0.52
Fsm 0.34 1.50 0.83 1.25 0.90 1.50 0.39

US‐Crt 128 SMDI 0.18 1.45 1.10 0.95 0.86 2.33 0.93 1.45 0.40
LSWI 0.16 1.27 0.83 0.96 0.93 1.27 0.35
NDWI 0.14 1.47 1.10 0.97 0.93 1.47 0.41
ATI 0.28 1.12 0.68 0.89 0.94 1.12 0.31
Fsm 0.34 1.02 0.56 0.85 0.94 1.02 0.28

US‐Bo1 199 SMDI 0.24 1.50 0.87 1.23 0.75 2.72 0.85 1.50 0.47
LSWI 0.23 1.41 0.67 1.24 0.85 1.41 0.44
NDWI 0.25 1.53 0.92 1.22 0.86 1.53 0.48
ATI 0.11 1.74 1.12 1.32 0.83 1.74 0.54
Fsm 0.16 1.53 0.82 1.29 0.84 1.53 0.48

US‐Arm 436 SMDI 0.01 2.93 2.61 1.33 0.64 2.54 0.69 2.93 1.24
LSWI 0.02 2.49 2.11 1.32 0.69 2.49 1.05
NDWI 0.00 3.03 2.72 1.33 0.69 3.03 1.28
ATI 0.04 1.54 0.82 1.30 0.70 1.54 0.65
Fsm 0.08 1.46 0.70 1.28 0.71 1.46 0.62

Note. SMDI is a newly proposed soil moisture index derived MODIS bands one and five. Relationships are significant at the 95% confidence band.
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indices, LSWI and NDWI, with a mean t‐statistic ranging from −1.42 to 0.06 and −1.36 to 0.14, respectively.
These indices on average deviated from the observed mean one season at each site. ATI was again the worst
performing index with a mean t‐statistic ranging from −2.87 to −0.41 and an average deviation from the
observed LE mean of two seasons at each site. The original Fsm on average was closer to the observed
means than ATI, with an average t‐statistic ranging from −2.39 to −0.09. It was statistically different from
the observed mean at each site on average approximately 1.5 seasons.

5. Discussion

Global ET is trending upward in response to global heating induced increases in atmospheric moisture
demand (Jung et al., 2010). Scientists attribute these trends to increases in transpiration in humid regions
of the world. Soil evaporation is much more important and partially offsets transpiration rates in dry regions
of the world, leading to some dispute on the magnitude and direction of ET trends (Zhang et al., 2016).

Figure 3. Scatterplots of simulated LE using Fsm (a and b) and LSWI (c and d) versus observed LE for the flooded site US‐Twt (upper) and rainfed site US‐Ib1
(lower) across growing seasons. The symbols correspond to data points outside the growing season (●) and within the growing season (green) for corn (○),
soy (□), and rice (◊).
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Accurate simulation of trends in these regions is important, because they are generally the most vulnerable
to water shortages and food insecurity. Further, some regions (e.g., the Sahel) are major zones of transition
between monsoon and dry interior climates that have undergone significant land use/cover shifts over the
past several decades. Researchers have linked these shifts to regional moisture feedbacks that if
sufficiently quantified could inform water pricing and other initiatives aimed at reducing the amount of
water we consume for the amount of food we produce (Ellison et al., 2017). The substitution of RH‐based

Figure 4. λ‐λ (cross‐R2) plots of all MODIS band combinations 1–5 and 7–10 for (a) the rainfed site US‐Ib1 and (b) the flooded site US‐Twt.

Figure 5. Scatterplots of simulated LE using the soil moisture divergence index (MODIS bands 1 and 5) versus observed LE for (a) the rainfed site US‐Ib1 and (b)
the flooded site US‐Twt across growing seasons. The symbols correspond to data points outside the growing season (●) and within the growing season (green) for
corn (○), soy (□), and rice (◊).
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Fsm with the new index presented here (SDMI) or LSWI could lead to modest improvements in soil
evaporation estimates and therefore ET partitioning and trend analysis in dry regions of the world. Not
only are they a more direct measure of moisture supply, but they are derived from the MOD09A product,
which has a native spatial resolution of 500 m—much higher than climate reanalysis (typically ≥9 km).

5.1. Reformulated PT‐JPL Soil Evaporation Performance

Shortwave infrared in combination with the visible red (SMDI) or NIR (LSWI)MODIS bands captured short‐
term variability in and seasonal mean soil evaporation for irrigated/flooded agricultural fields more than
MODIS thermal bands or ground‐based estimates of RH as implemented in Fsm of PT‐JPL. The performance
of these band combinations was lower at rainfed sites, but comparable to the RH‐based Fsm. Yao et al. (2018)
produced a ΔR2 of 0.07 to 0.09 with SWIR bands over the RH‐based formulation for flux towers in croplands
in China, which is higher than the improvements made in this study. It is important to note that initial PT‐
JPL performance was lower in the China study and they considered SWIR in both the formulation of tran-
spiration and soil evaporation. Lastly, they did not make a seasonal comparison, which showed some very
clear distinctions among soil evaporation formulations. The fields that SMDI and LSWI performed better
than the original Fsm represent moisture‐limited agroecosystems for which direct remote sensing models,
such as PT‐JPL, tend to underperform compared to indirect methods.

Figure 6. Boxplots illustrating the seasonal distributions of LE simulated using Fsm ( ), LSWI ( ), NDWI ( ), ATI ( ), and SMDI ( ) versus observed
LE ( ) for (a) the flooded site US‐Twt and (b) the rainfed site US‐Ib1. The dividing line, boxes, and whiskers indicate the middle quartile, lower/upper quartile,
and minima/maxima, respectively.
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The shortwave infrared region of the electromagnetic spectrum (900–
2,500 nm) contains several wavelengths that absorb strongly due to the
moisture content of the Earth's surface. MODIS bands 5 and 7 proved par-
ticularly useful for estimating soil evaporation in irrigated/flooded fields
during the growing season(s) where the divergence between transpiration
and soil evaporation was low. Until now, the NIR region was used in
SWIR‐based indices to normalize the response of the surface to changes
in moisture content, but this may result in contradictory index response
to soil and canopy water (Gao, 1996). NDWI is particularly susceptible
and tended to perform poorly in this study.

Scientists typically do not use the visible red region for normalization, but
it clearly showed a clear advantage in this study via the new SMDI. SDMI
outperformed NDWI and LSWI on an 8‐day and seasonal basis.
Furthermore, the visible redMODIS band was themost important for esti-
mating soil evaporation in most band combinations. Photoactive canopies
absorb strongly in the visible red, because the photosynthetic pigment
chlorophyll preferentially absorbs in this region of the electromagnetic
spectrum (Ollinger, 2011). As the photoactivity of canopies increase over
the season, carbon assimilation and reciprocally transpiration increase.
Red and NIR in PT‐JPL therefore track phenological changes in transpira-
tion. Soil reflectance in the red increases proportionally to its albedo
(wet → dry) (Huete, 1988). This variation is smaller than canopy absorp-
tion, so perhaps the red region is more effective at normalizing for soil
than NIR. Further, the results indicate that the visible red has additional
explanatory power decoupled from phenology. Researchers should con-
sider addressing the issue of data redundancy in PT‐JPL to prove
this hypothesis.

The poor performance of ATI was surprising, since it is gaining popularity
in the Earth system science community to improve the soil evaporation
component of direct remote sensing models of ET. The apparent thermal
index was highly variable and this variability led to low performance at
both 8‐day and seasonal time steps. The index is sensitive to changing
weather conditions (air temperature, wind velocity, and air humidity) par-
ticularly in vegetated areas (Van doninck et al., 2011). These conditions
affect daytime and nighttime LSTs, which are in the denominator of and
therefore greatly affect ATI. Weather satellite data, which was used to
derive ATI in García et al. (2013), has a much higher temporal frequency
than MODIS. High‐frequency data may help to reduce noise from chan-
ging weather conditions. Researchers should compare ATI derived from
weather satellites and MODIS to see if there are clear advantages of one
derivation from the other.

5.2. Original PT‐JPL Soil Evaporation Performance

The lower performance of RH‐based Fsm compared to the SWIR‐based
indices in irrigated/flooded fields can be attributed to two factors: (i) poor
response of soil evaporation to overlying atmospheric moisture and (ii)
sensitivity of the RH formulation to changing weather conditions. We
would expect that irrigation/flooding would humidify the air. The RH‐

based Fsm according to Bouchet's hypothesis should decrease and lead
to higher soil evaporation rates. This was often not the case. PT‐JPL does
not include aerodynamic and surface resistance terms, as advection is sub-
sumed by the α term. This reduces the propagation of error in the model
and is well justified over large areas (Ershadi et al., 2014) but may also

Table 4
Mean t‐Statistic (T‐stat) for Simulated Versus Observed Seasonal Means
in LE

Site Nyears Index Nreject T‐stat

US‐Ne1 10 SMDI 0 −0.38
LSWI 1 −0.65
NDWI 1 −0.79
ATI 1 −1.55
FSM 2 −0.99

US‐Ne2 10 SMDI 1 0.01
LSWI 1 −0.37
NDWI 1 −0.41
ATI 2 −1.39
FSM 2 −0.50

US‐Ne3 10 SMDI 0 −0.13
LSWI 0 −0.47
NDWI 0 −0.66
ATI 3 −1.54
FSM 0 −1.05

US‐Ro1 9 SMDI 0 −1.09
LSWI 1 −1.42
NDWI 1 −1.36
ATI 3 −1.88
FSM 1 −1.43

US‐Ro3 3 SMDI 0 −0.99
LSWI 1 −1.27
NDWI 1 −1.29
ATI 1 −1.80
FSM 2 −2.39

US‐Twt 6 SMDI 1 −0.65
LSWI 1 −0.85
NDWI 1 −0.67
ATI 4 −2.87
FSM 3 −1.95

US‐Ib1 6 SMDI 1 −0.43
LSWI 1 −0.70
NDWI 1 −0.50
ATI 4 −1.29
FSM 3 −0.77

US‐Crt 3 SMDI 0 0.23
LSWI 0 0.06
NDWI 0 0.14
ATI 0 −0.67
FSM 0 −0.09

US‐Bo1 5 SMDI 1 0.03
LSWI 1 −0.43
NDWI 1 −0.02
ATI 1 −1.32
FSM 1 −0.39

US‐Arm 10 SMDI 3 1.62
LSWI 3 1.28
NDWI 3 1.54
ATI 1 −1.09
FSM 0 −0.17

Note. Nyears is the number of years in the time series, and Nreject is the
number of times the null hypothesis (difference in means is zero)
was rejected.
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present a limitation under certain local conditions. The canopy at US‐Twt consisted of rice cultivated in
flooded fields below sea level within a series of levees in the San Joaquin/Sacramento River Delta of
California. The site is particularly windy and has very low surface roughness. In this case, the advection
of moisture from the surface could be considerable, leading to drying of the atmosphere over the field. We
did not consider windspeed in this study, because PT‐JPL does not include it explicitly. The canopies at
the other two irrigated sites (US Ne‐1 and Ne‐2) were taller/rougher and the performance of atmospheric‐
driven soil evaporation was better. At these sites, we suspect that model bias and uncertainties were due
mainly to the structure of RH‐based Fsm than physical processes as with US‐Twt. Like ATI, RH‐based Fsm
is sensitive to weather conditions. It is a power relationship, so we would expect as with ATI that any
changes in RH would be amplified. On an 8‐day basis, the sensitivity did not greatly affect its performance
at the two sites. On a seasonal basis however, we saw clear differences in performance compared to SWIR‐
based indices. The sensitivity may be particularly problematic when considering climate reanalysis data with
its inherent bias and coarse spatial resolution.

5.3. Knowledge Gaps

We are currently expanding our analysis to include eddy covariance flux towers in croplands and grasslands
across the globe to address some gaps in the analysis presented here. First, we are comparing red‐SWIR‐
RADAR fusion to estimate Fsm. Red and SWIR bands are sensitive to both the moisture content of the
canopy and soil background. MODIS reflectance is at a higher temporal resolution than other spaceborne
products, but its signal still suffers from cloud cover, especially in the tropics. Scientists typically use
MODIS blue bands 8–16 to analyze ocean processes, so the land until recently with the release of
MYDOCGA was masked out. Marshall et al. (2016) revealed via ground spectroscopy the value of the visible
blue region of the electromagnetic spectrum for estimating soil evaporation, so we hoped MYDOCGA could
improve soil evaporation estimation, but unfortunately, it did not add much value to the analysis. This
region of the spectrum has a particularly narrow atmospheric window that greatly interferes with satellites,
but has little impact on ground spectroscopy. Microwave surface (L‐band) emissivity can better distinguish
soil from canopy moisture content than red‐SWIR, and cloud cover does not affect it. A red‐SWIR‐RADAR
index for Fsm could therefore be a powerful new tool to estimate soil evaporation. Since the fate of the L‐band
SMAP is still unknown, we are looking at other microwave L‐band sensors, such as Argentina's space agency
CONAE SAOCOM to perform the fusion. Second, we did not handle “mixed pixel” effects explicitly in our
analysis. In some cases, the flux tower footprints were quite small (~100 m), so 1 km spatial resolution
may not ably capture such localized processes. That said, the fields we analyzed were in heavily cultivated
areas, and 1 km remote sensing red‐SWIR in most cases did better than ground‐based RH. Perhaps course
resolution data in this case is able to pick up general patterns in soil moisture status across neighboring
fields. We analyzed the MODIS data at 1 km spatial resolution, because the thermal and ocean MODIS pro-
ducts are only available at that resolution. Disaggregating them therefore would add no explanatory power
and risk apples to oranges comparison. Since the 500 m MODIS bands were the most valuable, we will use
these at their native resolution for our red‐SWIR‐RADAR fusion. We will also perform the analysis for flux
towers in relatively more heterogeneous landscapes. Third, we did not analyze evaporation from precipita-
tion intercepted by the canopy, because it is generally low in the agroecosystems we analyzed. In the future,
we will consider modeling intercepted evaporation separately as in the original PT‐JPL formulation to see if
this component does in fact confirm our results. Lastly, we intend to see if the performance of RH‐based Fsm
in indeed greatly affected by wind and moisture advection.

A couple of avenues worth exploring to improve upon optical‐based Fsm go beyond our current work. The U.
S. National Academy of Sciences Decadal Survey's Surface Biology & Geology (SBG) proposes fusing 60 m
thermal with 30 m hyperspectral remote sensing in next generation NASA missions to better understand
plant processes on the Earth. Satellite‐based hyperspectral image analysis is undergoing a renaissance with
the recent and eminent launch of the Italian Space Agency's PRISMA and DLR Space Administration's
ENMAP hyperspectral satellites, respectively. Similarly, the extended ECOSTRESS mission includes a ther-
mal infrared radiometer onboard the international space station that measures canopy temperature at 70 m
resolution. The data are used to estimate evapotranspiration and its components for monitoring drought
(Fisher et al., 2020). Scientists can use these missions to perform a comprehensive analysis of hyperspectral
narrowband and thermal band combinations sensitive to soil evaporation, which would be invaluable
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information for NASA's upcoming Surface Biology and Geology (formerly HyspIRI) hyperspectral mission.
The mission promises to be the first long‐term mission to provide consistent and continuous global hyper-
spectral‐thermal coverage.

6. Conclusion

Evapotranspiration is an important land surface process and a decision‐support tool. We can largely estimate
it with biophysical parameters derived from Earth observation. Soil evaporation is an important component
of evapotranspiration, particularly in dry regions of the world, but has proved to be more difficult to estimate
than transpiration with Earth observation data. This could be due to the comparatively loose coupling of soil
evaporation to biophysical parameters. Visible blue, shortwave infrared, thermal, and microwave Earth
observation have been used to improve the simulation of soil evaporation, because they estimate soil moist-
ure supply more directly and are at a higher spatial resolution than more traditional climate‐based parame-
terizations. We have not made a broad comparison of Earth observation alternatives until now. Our study
evaluated the performance of visible blue, shortwave, thermal, and other regions of the electromagnetic
spectrum as detected by MODIS for estimating soil evaporation. It showed that shortwave infrared bands
normalized by the visible red band are particularly strong at estimating soil evaporation in irrigated/flooded
agricultural fields where the difference between transpiration and soil evaporation over the growing season
is low. Performance of these band combinations in rainfed croplands was lower, but comparable to climate‐
based parameterizations. We hypothesize the relatively low short‐term variation in the red‐shortwave infra-
red led to more representative seasonal estimates of evapotranspiration across the rainfed and irrigated/
flooded agricultural fields analyzed. Given these findings, we recommend red and shortwave infrared band
combinations be used to estimate soil evaporation in direct remote sensing models, such as PT‐JPL. We did
not include themicrowave region in our analysis, but we are currently fusingmicrowave (L‐band) emissivity
with red and shortwave infrared reflectance. An index that combines red, shortwave infrared, and micro-
wave could finally close the gap between transpiration and soil evaporation performance in direct remote
sensing models, such as PT‐JPL.
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