540 research outputs found

    A GROWTH-BASED APPROACH TO THE AUTOMATIC GENERATION OF NAVIGATION MESHES

    Get PDF
    Providing an understanding of space in game and simulation environments is one of the major challenges associated with moving artificially intelligent characters through these environments. The usage of some form of navigation mesh has become the standard method to provide a representation of the walkable space in game environments to characters moving around in that environment. There is currently no standardized best method of producing a navigation mesh. In fact, producing an optimal navigation mesh has been shown to be an NP-Hard problem. Current approaches are a patchwork of divergent methods all of which have issues either in the time to create the navigation meshes (e.g., the best looking navigation meshes have traditionally been produced by hand which is time consuming), generate substandard quality navigation meshes (e.g., many of the automatic mesh production algorithms result in highly triangulated meshes that pose problems for character navigation), or yield meshes that contain gaps of areas that should be included in the mesh and are not (e.g., existing growth-based methods are unable to adapt to non-axis-aligned geometry and as such tend to provide a poor representation of the walkable space in complex environments). We introduce the Planar Adaptive Space Filling Volumes (PASFV) algorithm, Volumetric Adaptive Space Filling Volumes (VASFV) algorithm, and the Iterative Wavefront Edge Expansion Cell Decomposition (Wavefront) algorithm. These algorithms provide growth-based spatial decompositions for navigation mesh generation in either 2D (PASFV) or 3D (VASFV). These algorithms generate quick (on demand) decompositions (Wavefront), use quad/cube base spatial structures to provide more regular regions in the navigation mesh instead of triangles, and offer full coverage decompositions to avoid gaps in the navigation mesh by adapting to non-axis-aligned geometry. We have shown experimentally that the decompositions offered by PASFV and VASFV are superior both in character navigation ability, number of regions, and coverage in comparison to the existing and commonly used techniques of Space Filling Volumes, Hertel-Melhorn decomposition, Delaunay Triangulation, and Automatic Path Node Generation. Finally, we show that our Wavefront algorithm retains the superior performance of the PASFV and VASFV algorithms while providing faster decompositions that contain fewer degenerate and near degenerate regions. Unlike traditional navigation mesh generation techniques, the PASFV and VASFV algorithms have a real time extension (Dynamic Adaptive Space Filling Volumes, DASFV) which allows the navigation mesh to adapt to changes in the geometry of the environment at runtime. In addition, it is possible to use a navigation mesh for applications above and beyond character path planning and navigation. These multiple uses help to increase the return on the investment in creating a navigation mesh for a game or simulation environment. In particular, we will show how to use a navigation mesh for the acceleration of collision detection

    Surgical Subtask Automation for Intraluminal Procedures using Deep Reinforcement Learning

    Get PDF
    Intraluminal procedures have opened up a new sub-field of minimally invasive surgery that use flexible instruments to navigate through complex luminal structures of the body, resulting in reduced invasiveness and improved patient benefits. One of the major challenges in this field is the accurate and precise control of the instrument inside the human body. Robotics has emerged as a promising solution to this problem. However, to achieve successful robotic intraluminal interventions, the control of the instrument needs to be automated to a large extent. The thesis first examines the state-of-the-art in intraluminal surgical robotics and identifies the key challenges in this field, which include the need for safe and effective tool manipulation, and the ability to adapt to unexpected changes in the luminal environment. To address these challenges, the thesis proposes several levels of autonomy that enable the robotic system to perform individual subtasks autonomously, while still allowing the surgeon to retain overall control of the procedure. The approach facilitates the development of specialized algorithms such as Deep Reinforcement Learning (DRL) for subtasks like navigation and tissue manipulation to produce robust surgical gestures. Additionally, the thesis proposes a safety framework that provides formal guarantees to prevent risky actions. The presented approaches are evaluated through a series of experiments using simulation and robotic platforms. The experiments demonstrate that subtask automation can improve the accuracy and efficiency of tool positioning and tissue manipulation, while also reducing the cognitive load on the surgeon. The results of this research have the potential to improve the reliability and safety of intraluminal surgical interventions, ultimately leading to better outcomes for patients and surgeons

    A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection and Collision Avoidance

    Get PDF
    [Abstract] Advances in Unmanned Aerial Vehicles (UAVs), also known as drones, offer unprecedented opportunities to boost a wide array of large-scale Internet of Things (IoT) applications. Nevertheless, UAV platforms still face important limitations mainly related to autonomy and weight that impact their remote sensing capabilities when capturing and processing the data required for developing autonomous and robust real-time obstacle detection and avoidance systems. In this regard, Deep Learning (DL) techniques have arisen as a promising alternative for improving real-time obstacle detection and collision avoidance for highly autonomous UAVs. This article reviews the most recent developments on DL Unmanned Aerial Systems (UASs) and provides a detailed explanation on the main DL techniques. Moreover, the latest DL-UAV communication architectures are studied and their most common hardware is analyzed. Furthermore, this article enumerates the most relevant open challenges for current DL-UAV solutions, thus allowing future researchers to define a roadmap for devising the new generation affordable autonomous DL-UAV IoT solutions.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431C 2016-047Xunta de Galicia; , ED431G/01Centro Singular de Investigación de Galicia; PC18/01Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-

    MaskRenderer: 3D-Infused Multi-Mask Realistic Face Reenactment

    Full text link
    We present a novel end-to-end identity-agnostic face reenactment system, MaskRenderer, that can generate realistic, high fidelity frames in real-time. Although recent face reenactment works have shown promising results, there are still significant challenges such as identity leakage and imitating mouth movements, especially for large pose changes and occluded faces. MaskRenderer tackles these problems by using (i) a 3DMM to model 3D face structure to better handle pose changes, occlusion, and mouth movements compared to 2D representations; (ii) a triplet loss function to embed the cross-reenactment during training for better identity preservation; and (iii) multi-scale occlusion, improving inpainting and restoring missing areas. Comprehensive quantitative and qualitative experiments conducted on the VoxCeleb1 test set, demonstrate that MaskRenderer outperforms state-of-the-art models on unseen faces, especially when the Source and Driving identities are very different

    Deep Learning Based Malware Classification Using Deep Residual Network

    Get PDF
    The traditional malware detection approaches rely heavily on feature extraction procedure, in this paper we proposed a deep learning-based malware classification model by using a 18-layers deep residual network. Our model uses the raw bytecodes data of malware samples, converting the bytecodes to 3-channel RGB images and then applying the deep learning techniques to classify the malwares. Our experiment results show that the deep residual network model achieved an average accuracy of 86.54% by 5-fold cross validation. Comparing to the traditional methods for malware classification, our deep residual network model greatly simplify the malware detection and classification procedures, it achieved a very good classification accuracy as well. The dataset we used in this paper for training and testing is Malimg dataset, one of the biggest malware datasets released by vision research lab of UCSB

    Proceedings, MSVSCC 2019

    Get PDF
    Old Dominion University Department of Modeling, Simulation & Visualization Engineering (MSVE) and the Virginia Modeling, Analysis and Simulation Center (VMASC) held the 13th annual Modeling, Simulation & Visualization (MSV) Student Capstone Conference on April 18, 2019. The Conference featured student research and student projects that are central to MSV. Also participating in the conference were faculty members who volunteered their time to impart direct support to their students’ research, facilitated the various conference tracks, served as judges for each of the tracks, and provided overall assistance to the conference. Appreciating the purpose of the conference and working in a cohesive, collaborative effort, resulted in a successful symposium for everyone involved. These proceedings feature the works that were presented at the conference. Capstone Conference Chair: Dr. Yuzhong Shen Capstone Conference Student Chair: Daniel Pere

    State of the Art on Neural Rendering

    Get PDF
    Efficient rendering of photo-realistic virtual worlds is a long standing effort of computer graphics. Modern graphics techniques have succeeded in synthesizing photo-realistic images from hand-crafted scene representations. However, the automatic generation of shape, materials, lighting, and other aspects of scenes remains a challenging problem that, if solved, would make photo-realistic computer graphics more widely accessible. Concurrently, progress in computer vision and machine learning have given rise to a new approach to image synthesis and editing, namely deep generative models. Neural rendering is a new and rapidly emerging field that combines generative machine learning techniques with physical knowledge from computer graphics, e.g., by the integration of differentiable rendering into network training. With a plethora of applications in computer graphics and vision, neural rendering is poised to become a new area in the graphics community, yet no survey of this emerging field exists. This state-of-the-art report summarizes the recent trends and applications of neural rendering. We focus on approaches that combine classic computer graphics techniques with deep generative models to obtain controllable and photo-realistic outputs. Starting with an overview of the underlying computer graphics and machine learning concepts, we discuss critical aspects of neural rendering approaches. This state-of-the-art report is focused on the many important use cases for the described algorithms such as novel view synthesis, semantic photo manipulation, facial and body reenactment, relighting, free-viewpoint video, and the creation of photo-realistic avatars for virtual and augmented reality telepresence. Finally, we conclude with a discussion of the social implications of such technology and investigate open research problems
    corecore