564 research outputs found

    Active Perception in Adversarial Scenarios using Maximum Entropy Deep Reinforcement Learning

    Full text link
    We pose an active perception problem where an autonomous agent actively interacts with a second agent with potentially adversarial behaviors. Given the uncertainty in the intent of the other agent, the objective is to collect further evidence to help discriminate potential threats. The main technical challenges are the partial observability of the agent intent, the adversary modeling, and the corresponding uncertainty modeling. Note that an adversary agent may act to mislead the autonomous agent by using a deceptive strategy that is learned from past experiences. We propose an approach that combines belief space planning, generative adversary modeling, and maximum entropy reinforcement learning to obtain a stochastic belief space policy. By accounting for various adversarial behaviors in the simulation framework and minimizing the predictability of the autonomous agent's action, the resulting policy is more robust to unmodeled adversarial strategies. This improved robustness is empirically shown against an adversary that adapts to and exploits the autonomous agent's policy when compared with a standard Chance-Constraint Partially Observable Markov Decision Process robust approach

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Cyber Threat Intelligence based Holistic Risk Quantification and Management

    Get PDF

    Special Topics in Information Technology

    Get PDF
    This open access book presents outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the best theses defended in 2021-22 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Towards Learning Feasible Hierarchical Decision-Making Policies in Urban Autonomous Driving

    Get PDF
    Modern learning-based algorithms, powered by advanced deep structured neural nets, have multifacetedly facilitated automated driving platforms, spanning from scene characterization and perception to low-level control and state estimation schemes. Nonetheless, urban autonomous driving is regarded as a challenging application for machine learning (ML) and artificial intelligence (AI) since the learnt driving policies must handle complex multi-agent driving scenarios with indeterministic intentions of road participants. In the case of unsignalized intersections, automating the decision-making process at these safety-critical environments entails comprehending numerous layers of abstractions associated with learning robust driving behaviors to allow the vehicle to drive safely and efficiently. Based on our in-depth investigation, we discern that an efficient, yet safe, decision-making scheme for navigating real-world unsignalized intersections does not exist yet. The state-of-the-art schemes lacked practicality to handle real-life complex scenarios as they utilize Low-fidelity vehicle dynamic models which makes them incapable of simulating the real dynamic motion in real-life driving applications. In addition, the conservative behavior of autonomous vehicles, which often overreact to threats which have low likelihood, degrades the overall driving quality and jeopardizes safety. Hence, enhancing driving behavior is essential to attain agile, yet safe, traversing maneuvers in such multi-agent environments. Therefore, the main goal of conducting this PhD research is to develop high-fidelity learning-based frameworks to enhance the autonomous decision-making process at these safety-critical environments. We focus this PhD dissertation on three correlated and complementary research challenges. In our first research challenge, we conduct an in-depth and comprehensive survey on the state-of-the-art learning-based decision-making schemes with the objective of identifying the main shortcomings and potential research avenues. Based on the research directions concluded, we propose, in Problem II and Problem III, novel learning-based frameworks with the objective of enhancing safety and efficiency at different decision-making levels. In Problem II, we develop a novel sensor-independent state estimation for a safety-critical system in urban driving using deep learning techniques. A neural inference model is developed and trained via deep-learning training techniques to obtain accurate state estimates using indirect measurements of vehicle dynamic states and powertrain states. In Problem III, we propose a novel hierarchical reinforcement learning-based decision-making architecture for learning left-turn policies at four-way unsignalized intersections with feasibility guarantees. The proposed technique involves an integration of two main decision-making layers; a high-level learning-based behavioral planning layer which adopts soft actor-critic principles to learn high-level, non-conservative yet safe, driving behaviors, and a motion planning layer that uses low-level Model Predictive Control (MPC) principles to ensure feasibility of the two-dimensional left-turn maneuver. The high-level layer generates reference signals of velocity and yaw angle for the ego vehicle taking into account safety and collision avoidance with the intersection vehicles, whereas the low-level planning layer solves an optimization problem to track these reference commands considering several vehicle dynamic constraints and ride comfort

    Threat Assessment for Multistage Cyber Attacks in Smart Grid Communication Networks

    Get PDF
    In smart grids, managing and controlling power operations are supported by information and communication technology (ICT) and supervisory control and data acquisition (SCADA) systems. The increasing adoption of new ICT assets in smart grids is making smart grids vulnerable to cyber threats, as well as raising numerous concerns about the adequacy of current security approaches. As a single act of penetration is often not sufficient for an attacker to achieve his/her goal, multistage cyber attacks may occur. Due to the interdependence between the power grid and the communication network, a multistage cyber attack not only affects the cyber system but impacts the physical system. This thesis investigates an application-oriented stochastic game-theoretic cyber threat assessment framework, which is strongly related to the information security risk management process as standardized in ISO/IEC 27005. The proposed cyber threat assessment framework seeks to address the specific challenges (e.g., dynamic changing attack scenarios and understanding cascading effects) when performing threat assessments for multistage cyber attacks in smart grid communication networks. The thesis looks at the stochastic and dynamic nature of multistage cyber attacks in smart grid use cases and develops a stochastic game-theoretic model to capture the interactions of the attacker and the defender in multistage attack scenarios. To provide a flexible and practical payoff formulation for the designed stochastic game-theoretic model, this thesis presents a mathematical analysis of cascading failure propagation (including both interdependency cascading failure propagation and node overloading cascading failure propagation) in smart grids. In addition, the thesis quantifies the characterizations of disruptive effects of cyber attacks on physical power grids. Furthermore, this thesis discusses, in detail, the ingredients of the developed stochastic game-theoretic model and presents the implementation steps of the investigated stochastic game-theoretic cyber threat assessment framework. An application of the proposed cyber threat assessment framework for evaluating a demonstrated multistage cyber attack scenario in smart grids is shown. The cyber threat assessment framework can be integrated into an existing risk management process, such as ISO 27000, or applied as a standalone threat assessment process in smart grid use cases

    La reconnaissance de plan des adversaires

    Get PDF
    Ce mĂ©moire propose une approche pour la reconnaissance de plan qui a Ă©tĂ© conçue pour les environnements avec des adversaires, c'est-Ă -dire des agents qui veulent empĂȘcher que leurs plans soient reconnus. Bien qu'il existe d'autres algorithmes de reconnaissance de plan dans la littĂ©rature, peu sont adaptĂ©s pour de tels environnements. L'algorithme que nous avons conçu et implĂ©mentĂ© (PROBE, Provocation for the Recognition of Opponent BEhaviours ) est aussi capable de choisir comment provoquer l'adversaire, en espĂ©rant que la rĂ©action de ce dernier Ă  la provocation permette de donner des indices quant Ă  sa vĂ©ritable intention. De plus, PROBE utilise des machines Ă  Ă©tats finis comme reprĂ©sentation des plans, un formalisme diffĂ©rent de celui utilisĂ© par les autres approches et qui est selon nous mieux adaptĂ© pour nos domaines d'intĂ©rĂȘt. Les rĂ©sultats obtenus suite Ă  diffĂ©rentes expĂ©rimentations indiquent que notre algorithme rĂ©ussit gĂ©nĂ©ralement Ă  obtenir une bonne estimation des intentions de l'adversaire dĂšs le dĂ©part et que cette estimation s'amĂ©liore lorsque de nouvelles actions sont observĂ©es. Une comparaison avec un autre algorithme de reconnaissance de plan dĂ©montre aussi que PROBE est plus efficace en temps de calcul et en utilisation de la mĂ©moire, sans pourtant sacrifier la qualitĂ© de la reconnaissance. Enfin, les rĂ©sultats montrent que notre algorithme de provocation permet de rĂ©duire l'ambiguĂŻtĂ© sur les intentions de l'adversaire et ainsi amĂ©liorer la justesse du processus de reconnaissance de plan en sĂ©lectionnant une provocation qui force l'adversaire, d'une certaine façon, Ă  rĂ©vĂ©ler son intention

    Special Topics in Information Technology

    Get PDF
    This open access book presents outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the best theses defended in 2021-22 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists
    • 

    corecore