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Abstract

Modern learning-based algorithms, powered by advanced deep structured neural nets,
have multifacetedly facilitated automated driving platforms, spanning from scene charac-
terization and perception to low-level control and state estimation schemes. Nonetheless,
urban autonomous driving is regarded as a challenging application for machine learning
(ML) and artificial intelligence (AI) since the learnt driving policies must handle complex
multi-agent driving scenarios with indeterministic intentions of road participants. In the
case of unsignalized intersections, automating the decision-making process at these safety-
critical environments entails comprehending numerous layers of abstractions associated
with learning robust driving behaviors to allow the vehicle to drive safely and efficiently.

Based on our in-depth investigation, we discern that an efficient, yet safe, decision-
making scheme for navigating real-world unsignalized intersections does not exist yet. The
state-of-the-art schemes lacked practicality to handle real-life complex scenarios as they
utilize Low-fidelity vehicle dynamic models which makes them incapable of simulating
the real dynamic motion in real-life driving applications. In addition, the conservative
behavior of autonomous vehicles, which often overreact to threats which have low likeli-
hood, degrades the overall driving quality and jeopardizes safety. Hence, enhancing driving
behavior is essential to attain agile, yet safe, traversing maneuvers in such multi-agent en-
vironments. Therefore, the main goal of conducting this PhD research is to develop high-
fidelity learning-based frameworks to enhance the autonomous decision-making process at
these safety-critical environments.

We focus this PhD dissertation on three correlated and complementary research chal-
lenges. In our first research challenge, we conduct an in-depth and comprehensive survey on
the state-of-the-art learning-based decision-making schemes with the objective of identify-
ing the main shortcomings and potential research avenues. Based on the research directions
concluded, we propose, in Problem II and Problem III, novel learning-based frameworks
with the objective of enhancing safety and efficiency at different decision-making levels.
In Problem II, we develop a novel sensor-independent state estimation for a safety-critical
system in urban driving using deep learning techniques. A neural inference model is devel-
oped and trained via deep-learning training techniques to obtain accurate state estimates
using indirect measurements of vehicle dynamic states and powertrain states. In Problem
III, we propose a novel hierarchical reinforcement learning-based decision-making archi-
tecture for learning left-turn policies at four-way unsignalized intersections with feasibility
guarantees. The proposed technique involves an integration of two main decision-making
layers; a high-level learning-based behavioral planning layer which adopts soft actor-critic
principles to learn high-level, non-conservative yet safe, driving behaviors, and a motion
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planning layer that uses low-level Model Predictive Control (MPC) principles to ensure fea-
sibility of the two-dimensional left-turn maneuver. The high-level layer generates reference
signals of velocity and yaw angle for the ego vehicle taking into account safety and collision
avoidance with the intersection vehicles, whereas the low-level planning layer solves an op-
timization problem to track these reference commands considering several vehicle dynamic
constraints and ride comfort.
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Chapter 1

Introduction

In this chapter, we first introduce the decision-making hierarchy for autonomous urban
vehicles. Following that, we highlight the motivation for this PhD thesis along with the
research objectives. The thesis contributions are then outlined. Finally, we provide an
outline for the remainder of the thesis.

1.1 Decision Making in Autonomous Urban Vehicles

Autonomous Vehicles are considered autonomous decision-making systems as they provide
continuous decisions based on processing perceptual observations. Along with these obser-
vations and sensor models, the predefined road network data, driving rules and regulations,
dynamic behaviour of the vehicle, are utilized for predicting the vehicle’s motion and gener-
ating low-level control commands autonomously. Developing such decision-making systems
with a high degree of autonomy, is commonly organized by a well-defined multi-staged pro-
cess [1].

A hierarchy of the decision-making processes of autonomous urban vehicles is depicted
in Fig. 1.1. It consists of four cascaded layers, starting with the high-level route planning,
followed by the behavioural path planning and motion planning layers, and the low-level
feedback control completes the scheme. At the very top layer, given the predefined destina-
tion, the autonomous decision-making system must run inherent route planning algorithms
to compute the optimal path using the road network as a network graph. In this layer,
the edge weights are summed in order to effectively solve for the routes with minimum
cost. However, as the road network becomes larger, its graph network also becomes more
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Route
Planning

Behavioural
Path Planning

Motion
Planning

Local
Feedback control

Figure 1.1: Decision-making processes in urban autonomous vehicles.

complex making the use of the classical route planning schemes, namely Dijkstra [2] and
A* [3], inefficient as the search time may exceed seconds [4]. Intelligent route planning ap-
proaches have been introduced for transportation efficiency enhancement; advanced Deep
Learning and Internet of Things (IoT) technologies have been employed for efficient route
planning in complex urban transportation [5, 6]. Once the optimal route has been defined,
the next layer is focused on behavioral path planning. This layer is responsible for choos-
ing proper driving behaviour based on the observed behaviour of other road drivers, traffic
signals and road surface conditions. This behavior enables the AV to interact with road
participants while performing lane changing, lane following, and other more complicated
tasks like intersection-traversal. For instance, choosing a cautious behavior for intersection-
traversal maneuvers based on the road conditions is a responsibility of the behavioral path
planner. After the driving behavior has been determined by the behavioral path planner,
this behaviour has to be mapped into a vehicle’s trajectory which will be tracked by the
local embedded controller. Different aspects must be taken into account while choosing the
proper trajectory (e.g. it must be feasible taking into consideration the vehicle’s dynamic
model constraints, the guarantee of ride comfort and safety). Finding such trajectory is an
inherent component that must be accounted for by the motion planning layer. Finally, to
execute this trajectory, a feedback controller must be tuned to provide the correct input
to govern the planned motion and compensate for the tracking errors arising from the
assumptions made on the utilized vehicle dynamic model [7].

Besides the scene complexity, making decisions which lead to efficient and safe trans-
portation in urban driving settings, such as unsignalized intersections, is an entangled
task due to several factors: i) restricted sensing capabilities, specifically, vision and prox-
imity in such time-varying environment; ii) cluttering and occlusions in the scene which
impede achieving accurate perception; iii) legal and technical constraints on the vehicle’s
response, arising from the driving rules and regulations. Hence, the primary motivation
of this research is to provide more efficient learning-based solutions for enhancing decision
making, at several levels; starting from low-level state estimation and control to high-level
behavioral planning, of autonomous vehicles in urban environments.
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1.2 Motivation

Following the Defense Advanced Research Projects Agency (DARPA) Urban Driving Chal-
lenge (UDC), held in 2007, the research community has been encouraged to develop novel
technologies to address technical and social challenges concomitantly with driving in urban
settings autonomously [8, 9, 10]. These challenges stem from the nature of urban driving
itself, characterized by its complex multi-agent motion planning, in which the vehicle must
react to various different scenarios including the interaction with other vehicles and traffic
signals and signs [11, 12, 13]. Unlike highway autonomous Driving [14, 15], driving in ur-
ban environments requires effective handling of complex multi-agent scenarios with a high
level of uncertainty and occlusions [16, 17, 18]. More specifically, driving at intersections
is considered perilous for most human drivers. This can be justified by looking at the data
reported in [19]. The Fatality Analysis Reporting System (FARS) and National Automo-
tive Sampling System General Estimates System (NASS-GES) provide an estimation that
40% of the crashes recorded in the US in 2008 occurred at intersections. They reasoned
that among the factors contributing to these crashes, the most prevalent were related to
the crash-involved drivers, namely, their age, sex and driving behaviour. Hence, deriving
safe policies for autonomous vehicles that allow for safe crossing behaviour at intersections
has been a topic of a profound importance as it can provide useful guidelines for designing
preventive crash-mitigation schemes. Recently, academia and industrial partners have been
extensively testing the most advanced autonomous technologies on their platform to ensure
safe and efficient urban driving [20, 21, 22]. However, within the context of urban intersec-
tions, enabling an autonomous vehicle to perform dynamic tasks and navigate safely and
efficiently in such complex urban environments requires high degree of autonomy, accord-
ing to the Society of Automotive Engineers (SAE) J3016 standard [23]. Nonetheless, the
current automated vehicles, even the fully autonomous ones, cannot fully navigate safely
at all times, and cannot guarantee crash-free maneuvers due to critical decision-making
errors [24].

Making decisions at urban unsignalized intersections is a highly intractable process.
The complex driving behaviour and the disappearance of traffic control signals makes
the motion inference of other intersection users highly-challenging [25, 26, 27]. The non-
stationarity problem, along with the large partially-observable state space of agents dictate
designing robust algorithms for safe intersection-traversal [28]. Numerous studies have
investigated motion planning and decision-making algorithms to enhance the driving safety
at unsignalized intersections. These algorithms have been introduced to tackle two main
problems; inferring the intention of other intersection users and planning the ego vehicle’s
motion while traversing the intersection [29]. While this PhD thesis is primarily concerned

4



with the latter problem, in Chapter 3, we shed light on the main state-of-the-art intention
inference schemes along with recommendations for enhanced driver intention predictions.

Recently, urban decision-making using advanced learning-based algorithms has been
the focus for numerous research projects [30, 31, 32]. However, these algorithms lacked
practicality to handle real-life complex scenarios for multiple reasons: First, most of these
schemes utilize Low-fidelity vehicle dynamic models which makes them incapable of sim-
ulating the real dynamic motion in real-life driving applications [33, 34, 35, 36]; Second,
these learning-based schemes are trained and tested via experiments conducted in a sim-
ulated environment which lacks realizations of the actual driving environment [37, 38].
Hence, the main goal of this research is to develop high-fidelity learning-based frameworks
to enhance the autonomous decision-making process at these safety-critical environments.
Therefore, our first research challenge is to conduct an in-depth and comprehensive survey
on the state-of-the-art learning-based decision-making schemes with the objective of iden-
tifying the main shortcomings and potential research avenues. Taking these directions into
account, in our second and third research problems, discussed in Chapter 4 and Chapter
5, we propose novel learning-based frameworks with the objective of enhancing saftey and
efficiency at different decision-making levels. These research problems include developing a
low-level sensor-independent state estimation technique for a safety-critical cyber-physical
system and feasible multi-layer decision-making in urban environments, respectively.

1.2.1 Learning-Based Decision-Making at Urban Unsignalized
Intersections: A Survey

Decision-making algorithms, in this survey, can be classified into three main categories:
cooperative approaches, including game-theoretic, heuristic-based approaches and hybrid
approaches which combine multiple classes of these algorithms for handling the unsignalized
intersection problem. Cooperative approaches entail the use of vehicle-to-vehicle (V2V)
communication technology to exchange the states between the subject vehicle and other
intersections users [39, 40, 41]. However, such technology is still an active area of research
and has not been sufficiently developed to allow its application in existing decision-making
schemes. Game-Theoretic-Based algorithms were adopted to model the vehicles’ interac-
tions in unsignalised intersections [42, 43]. These game-theoretic based approaches assume
that the states of the interacting vehicles are observed by the subject vehicle, which allows
for predicting their future trajectories and then plan its own. However, this assumption
is not likely to hold for current real-life decision making at unsignalized intersections.
Heuristics-based approaches have been engineered to tackle safety-oriented problems asso-
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ciated with traversing urban intersections [44]. Researchers commonly classify these ap-
proaches into two main groups: rule-based and ML approaches [30]. Rule-based approaches
use safety intersection metrics, namely TTC, to generate distance-based traversing rules.
However, engineering such rules to adapt with various possible crossing situations is a
tedious process due to the large number of rules which need to be tuned. ML-based ap-
proaches, especially RL approaches, focus on learning driving policies from the interaction
between the vehicle and the intersection environment.

Applying modern RL-based approaches for approximating optimal driving policies
at unsignalized intersections has been studied extensively in the literature. Researchers
have been motivated to develop these algorithms, owing to their capabilities in handling
partially-observable environments by training its data-driven models based on mapping the
environmental observations into actions [45]. Nevertheless, design challenges behind devel-
oping crash-free intersection maneuvers and deploying them in real driving environments
still need to be overcome. The surveyed schemes still suffer from several problems,i.e, the
proposed design assumptions, the scalability of the proposed scheme to deal with more
challenging urban driving scenarios, and the experimental validation in real urban driving
settings. Hence, motivated by the published works, a review of the current and emerging
trends in aspects related to decision-making in urban unsignalized intersections is recom-
mended to lay the groundwork for potential advancement in this research direction. Thus,
in Chapter 3, we offer an overview of algorithms and applications of decision-making
in urban autonomous vehicles at unsignalized intersections, with the goal of identifying
knowledge gaps in this literature and introduce our contributions, presented in Chapter
4 and Chapter 5, to enable safe and effective decision-making in the autonomous driving
scenarios this thesis is focusing on.

1.2.2 Cyber-physical System State Estimation in Urban Driving

Since the focus of this PhD dissertation is to develop safety-critical decision-making al-
gorithms, accurate observations of the driving environment, including the vehicle’s cyber-
physical safety-critical systems, such as braking [46, 47, 48], is required. With increased
autonomy and control authority, however, it becomes increasingly pivotal that the braking
system be accurate and safe against faults. Braking control generally uses measurements
of the hydraulic pressure in brakes to decide actions to be taken, measured by pressure
sensors [49]. If a hardware or software fault occurs in these sensors, however, brake control
can be compromised, leading to potentially dangerous safety issues. This can be circum-
vented by developing data-driven brake pressure state estimation technique using indirect
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measurements, with the potential to evolve the system into a sensor-independent system
with sufficiently accurate estimation [50].

Obtaining highly expressive state estimator’s model is linked in practice to the training
method utilized. Despite the effectiveness of conventional training techniques, modern
deep-learning-based structures have shown superiority in terms of improving the associated
overfitting and achieving significant generalization capabilities. In [51], a neural net was
utilized to perform estimation of brake pressure, using data obtained from an electric
vehicles (EV). A conventional back-propagation is adopted for training the ANN-based
state estimator. However, conventional back-propagation suffers from problems, such as
overfitting and vanishing gradient, as well as higher computational burden in training.
Nevertheless, these problems have been resolved by implementing the recent advances
of Deep Learning techniques to augment the training process of the deep neural network
(DNN) [52]. Inspired by these significant features, in Chapter 4, a DNN is introduced and
trained using deep-learning training techniques to infer state estimates of a safety-critical
system with high-accuracy.

1.2.3 Hierarchical Reinforced-learning for Feasible Decision-Making

Deep Reinforcement Learning (DRL) techniques have been employed for deriving safe driv-
ing policies at unsignalized intersections for autonomous vehicles due to their significant
capabilities in handling high-dimensional perceptual observations with discrete and con-
tinuous action spaces [53, 54]. However, the more complicated the driving scenario, the
more training time is required for the DRL algorithm to converge. Hence, for learning
complex behaviors efficiently with less training iterations, Curriculum Learning (CL) prin-
ciples were applied while training an autonomous agent. CL was proposed in [55] as a
way to accelerate learning by first training the system on simple tasks and thereafter pro-
gressively increasing the difficulty of the tasks given to the learning agent. Apart from
learning high-speed autonomous overtaking [56], learning through designed curricula has
also manifested significant learning benefits in terms of training time reduction and faster
convergence in urban driving settings at unsignalized intersections. For instance, in [30],
a curriculum DRL-based motion planning system was proposed for crossing a four-way
unsignalized intersection autonomously. The proposed algorithm was designed to generate
curricula in order to learn the crossing policy with fewer training iterations. However,
simple one-dimensional crossing behavior is learned, while other more complex scenarios,
such as two-dimensional left-turn was not investigated.

Designing autonomous left-turn decision-making frameworks at unsignalized intersec-
tions is deemed a challenging engineering problem as intersection-users turning behaviors
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are not governed by traffic control signals [57]. This problem can be modeled as a Markov
Decision Process (MDP) where solutions can be obtained by utilizing online solvers or
through optimal policy approximation using RL approaches. For instance, in [57, 58], the
Adaptive Belief Tree (ABT) solver is used to solve the formulated Partially-Observable
Markov Decision Process (POMDP) [59] of the decision-making problem. Authors use the
Critical-Turning-Point (CTP) approach where the left turn trajectory is simply assumed
as a straight line with a quarter circle curve. However, online solvers work only for fairly
small state spaces, and for larger state spaces the complexity of solving MDP scales dra-
matically. On the other hand, Deep Reinforcement Learning (DRL), can work with much
larger, or even continuous spaces, such as Atari [60]. Furthermore, DRL approaches can
also approximate their optimal policies without the requirement of observing the full state
space. Considering these qualities of DRL architectures, [61, 62] introduced reinforcement-
learning-based frameworks to generate safe driving policies for left-turn. However, On the
behavioral planning side, the utilization of Deep Q-network (DQN) method is inefficient
for urban driving environment which requires continuous actions rather than discrete ones.
On the low-level side, similar to Stanley and Pure Pursuit controllers, they used geometric
controller does not represent actual vehicle constraints, e.g. max steering rate, although it
can minimize the tracking error. In addition, as the error does not consider error dynamics
over time, their performance deteriorates significantly at high speeds which makes them
suitable only for low-speed maneuvers.

Numerous research papers have addressed the low-level motion planning problem and
control at urban unsignalized intersections using Model Predictive Control (MPC) princi-
ples. For instance, Hu et al. [63] proposed an event-triggered model predictive adaptive
dynamic programming technique for motion planning at urban intersections. The method
takes urban speed, vehicle kinematics and road constraints into consideration while solv-
ing a multi-objective optimization problem. However, for high-fidelity decision-making
applications in urban autonomous driving, incorporating the local motion planning and
low-level control layers and taking into account vehicle dynamics is essential to ensure the
feasibility of the high-level RL commanded actions. Such integration has been attempted
for intersection-management applications, where centralized reference signals being dis-
tributed to the intersections agents via V2V communication [64, 65]. In [65], an integration
between high-level decision-making layers and low-level MPC-based motion planing layer
has been proposed for learning supervisory intersection-management policy in connected
driving fashion. However, as far as we know, such integration has not been developed for
learning intersection-traversal policy of the ego vehicle agent. Hence, having the motion
planing layer integrated while approximating, non-conservative yet safe [66], intersection-
traversal policies would facilitate learning, with feasibility guarantees [67], taking into
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account lateral and longitudinal dynamics.

1.3 Research Contributions

In this section, we show the research contributions for proposed research problems.

1.3.1 Learning-Based Decision-Making at Urban Unsignalized
Intersections: A Survey

In Chapter 3, we direct our attention towards various aspects related to behavioral mo-
tion planning for autonomous vehicles at unsignalized intersections. To be more specific,
we focus this chapter on learning-based decision making schemes with a greater attention
to algorithms that combine the recent advances of RL and deep learning for learning driv-
ing policies at unsignalized intersections. However, decision-making based on imitation
learning or V2V communication, in a connected driving fashion, is out the of proposed
Chapter’s scope. Using V2V communications [68, 69] can be a potential solution for antic-
ipating vehicle behaviour and transferring it to the ego vehicle. However, for this solution
to be fully viable, vehicular communication and connected vehicle technologies must be
widely deployed. It should be noted that the vehicle-pedestrian interaction behavior is not
covered in this proposed research work.

The main novelty of this research work, can be stated as follows:

• an organised and in-depth state-of-the-art literature survey for decision-making at
unsignalized intersections is proposed, highlighting the main navigational challenges
and cutting-edge learning-based solutions.

• an exploration of the Driver Intention Inference (DII) schemes at unsignalized inter-
sections is carried out, with the goal of identifying key remarks for better handling
the large partially-observable state space of the problem.

• based on the in-depth investigation, limitations of the published learning-based decision-
making frameworks are identified and potential research directions are suggested
to achieve better generalization characteristics of the trained traversing policies in
real-life driving scenarios. Some of these research directions have been followed in
Chapter 3 and Chapter 4.
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This work is associated with the following journal submission:

Al-Sharman, M., Melek, W., & Rayside, D., (2022). Autonomous Driving at
Unsignalized Intersection: A Review of Decision-Making Challenges and Reinforce-
ment Learning-Based Solutions. IEEE Transactions on Vehicular Technology (under
review).

1.3.2 Cyber-physical System State Estimation in Urban Driving

In Chapter 3, we propose a novel deep learning-based training technique for a sensor-
independent safety-critical system state estimation in urban driving settings. The proposed
learning scheme uses the dynamic vehicle states and powertrain states as inputs and the
ground truth of the brake pressure values are the outputs while training the neural network.
Compared with the conventional training technique, the proposed model has resulted in
improved estimation accuracy.

The main novel contributions of the proposed state estimation algorithm can be sum-
marized as follows:

• A novel sensor-independent deep-learning-based algorithm is developed for brake
pressure state estimation of an electric vehicle;

• Compared with conventional training methods [51], the proposed approach demon-
strates more accurate brake pressure state estimation with RMSE errors of 0.048
MPa;

• The proposed deep learning structure is expandable, hence, it can estimate other EV
states in urban and high-way environments.

This work is associated with the following journal publication [70]:

Al-Sharman, M., Murdoch, D., Cao, D., Lv, C., Zweiri, Y., Rayside, D., & Melek,
W. (2020). A Sensorless State Estimation for A Safety-Oriented Cyber-Physical Sys-
tem in Urban Driving: Deep Learning Approach. IEEE/CAA Journal of Automatica
Sinica, 8(1), 169-178.

1.3.3 Hierarchical Reinforced-learning for Feasible decision-making

Taking on the concluded research directions obtained from Problem I, in Chapter 5,
we emphasize that the state-of-the-art decision-making approaches focus on advancing the
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high-level behavioral reasoning neglecting the importance of feasibility guarantees provided
by motion planning and low-level feedback control layer [7]. We illustrate, in Chapter
3, that low-level control integration is required to obtain efficient policies for driving in
safety-critical environments [22]. Motivated by the aforementioned features of DRL archi-
tectures, particularly the soft-actor-critic (SAC) architecture [71], which has demonstrated
remarkable ability in learning driving policies for overtaking and maneuvering at round-
abouts [72]. In Chapter 5, we propose a novel hierarchical learning-based technique for
left-turn decision-making at unsignalized intersections. The Chapter offers the following
main contributions:

• A novel hierarchical soft-actor-critic reinforcement learning framework is proposed,
in which an integration between the behavioral planning and motion planning layers
is developed to learn feasible driving policies for left-turn maneuvers at unsignalized
intersection.

• High-fidelity driving policies are being trained while accounting for real-world con-
straints including vehicle dynamic constraints and ride comfort.

• RL baselines comparison is conducted, in which we carry out several urban driving
simulation experiments to evaluate the performance of the proposed integration with
other model-free algorithms.

The work of this Chapter is associated with the following journal submission:

Al-Sharman, M., R. Dempster, Rayside, D., & Melek, W. (2022). Self-Learned Au-
tonomous Driving at Unsignalized Intersections: A Hierarchical Reinforced Learning
Approach for Feasible Decision-Making. IEEE Transactions on Intelligent Trans-
portation Systems [73].

1.4 PhD Scholarly Contributions

We would like to emphasise that, at the time of writing this thesis, multiple research
contributions were published as part of my PhD thesis. Non-thesis published conferences
were produced as part of WATOnomous research projects where I led several research
projects for graduate and undergraduate students [74, 75, 76].

1. Al-Sharman, M., Murdoch, D., Cao, D., Lv, C., Zweiri, Y., Rayside, D., & Melek,
W. (2020). A sensorless state estimation for a safety-oriented cyber-physical system
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in urban driving: deep learning approach. IEEE/CAA Journal of Automatica Sinica,
8(1), 169-178.

2. Al-Sharman, M., Melek, W., & Rayside, D. (2022). Autonomous Driving at
Unsignalized Intersection: A Review of Reinforcement Learning-based Decision-Making.
IEEE Transactions on Vehicular Technology (under review).

3. Al-Sharman, M., Melek, W., & Rayside, D. (2022). Self-Learned Autonomous
Driving at Unsignalized Intersections: A Hierarchical Reinforced Learning Approach
for Feasible Decision-Making. IEEE Transactions on Intelligent Transportation Sys-
tems (under review).

4. Rowan Dempster, Al-Sharman, M., Yeshu Jain, Jeffery Li, Derek Rayside, &
William Melek. In 2022 IEEE International Conference on Robotics and Automation
(ICRA) (pp. 4913-4919). IEEE.

5. Hu, C., Hudson, S., Ethier, M., Al-Sharman, M., Rayside, D., & Melek, W.
(2022). Sim-to-Real Domain Adaptation for Lane Detection and Classification in
Autonomous Driving. In 2022 IEEE Intelligent Vehicles Symposium (IV).

1.5 Thesis Outline

We now present an outline for the remainder of the thesis. In Chapter 2, we briefly
present background preliminaries of the research studies addressed in this thesis. We
provide fundamental details of deep neural networks, model-free reinforcement learning,
and longitudinal vehicle dynamics. In Chapter 3, we present a comprehensive survey of
the learning-based decision-making schemes. We highlight the recent advances made in
aspects related to the decision-making problem at unsignalized intersections. Concluded
remarks and suggested research directions are then illustrated. In Chapter 4, our second
research problem is presented. We address the problem of developing a sensor-independent
state estimation for a safety-critical cyber-physical system in urban driving settings. Then,
in Chapter 5, we demonstrate the development of an integrated behavioral planning and
motion planning layers for navigation unsignalized intersections with feasibility guarantees.
Finally, a summary of results and a discussion about the limitations of our decision-making
approach and future directions are provided in Chapter 6.
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Chapter 2

Background

2.1 Deep Neural Network

A deep neural network is chosen in this study to perform brake pressure state estimation.
The basic architecture design of the Multilayer Neural Network which is composed of a
single input layer, one or more hidden layers and a single output layer.

The elements of the input vector I = [i1, i2, . . . , ik] are weighted by the weight matrix
W and then summed with the neuron bias b to yield the net input n.

n =
k∑
i=1

wjij + b (2.1)

Then the neuron output a is generated using an activation function f .

a = f(n) (2.2)

2.2 Decision-making modeling as a MDP

Several research works have envisaged the decision-making problem at intersections as a
reinforcement learning problem, where the agent and the environment interact continuously
to learn an optimal policy that governs the vehicles’ motion. The agent takes an action and
the environment responds to this action and present new scenarios to the agent. A Markov
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Figure 2.1: Dropout Training Technique

Decision Process (MDP) is used to describe the environment for the RL problem [30], where
we assume that the environment for this specific problem is fully observable. Technically,
MDP is described as a tuple {S,A,R, T, γ} in which S represents the observed states.
These states may include information about the ego vehicle and states of other vehicles
crossing the intersection. Among these states, velocities, position, and states related to
the geometry of the intersection. A and T represents the set of actions and the transition
function that maps state-action pairs to a new state. The immediate reward is defined by
the reward function R, whereas γ represents the discount factor for long-term rewards.

In occluded intersections where the environment is not fully observed due to limited
sensor range, occlusions in the scene, or uncertainty related to the pedestrians/ drivers
intentions, a Partially-Observable Markov Decision Process (POMDP) is adopted to model
these types of intersections. These cases shall be discussed in more detail in Chapter 3.

2.3 Safety Assessment at Intersections

At high-level decision-making, drivers perform safety assessment to avoid crashes and po-
tential hazards. Shirazi et al. [77] introduces five topics pertaining the safety assessment
at intersections: Gap, Threat, Risk, Conflict and Accident. Gap assessment is an esti-
mate used to anticipate the free distance between the leading and trailing vehicles. Gap
distance-based and time-to-collision (TTC) algorithms have been proposed for traversing
intersection [78, 79]. However, these simple approaches require laborious parameter-tuning
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to deal with different intersections scenarios. Given the locations of the subject vehicle, a
threat assessment process is usually conducted to anticipate the potential threats of other
road participants [80]. In [81], by inferring the intention of the road participants, threat
predictions were obtained using random decision trees and particle filtering. A survey on
the threat assessment technologies and state-of-the-art approaches can be found in [82]. A
risk assessment approach is used to detect risky scenarios which are related to the limited
capabilities of the perception sensors or occluded environment which may result in incorrect
decisions [83]. Risk assessment is usually coupled with predictions about the intention of
other road participants. Intention-aware risk assessment has been done extensively to eval-
uate maneuvers at occluded intersections with limited perception capabilities. For detailed
risk assessment at unsignalized intersection, the reader is referred to Section 3.1.2 which
describes the state-of-the-art approaches of risk assessment for decision-making at urban
intersections. Based on the environmental observations collected, conflict assessment is
concerned with predicting the potential conflict scenarios of two or more vehicles that are
going to collide if their movements remained unchanged [29]. Lastly, accident assessment
is based on conducting precise analysis using data mining and machine learning techniques
to make predictions that help in preventing crashes [84].

2.3.1 RL Approaches

Preliminaries

Reinforcement learning is a group of algorithms that focus at learning optimal policies via
performing iterative experiments and evaluations for the sake of self-teaching overtime to
achieve a specific goal. RL can be distinguished from other learning techniques such as
supervised learning because the labels are timely delayed. The aim of RL is to learn an
optimal policy π which in charge of mapping the system states to control inputs that can
maximize the expected reward J(π). In eq. (2.3), the reward rt indicates how successful
the agent was at a given time step t. For instance, large rt values are given when the agent
is close to the desired trajectory, while small rt values are given when large deviations
occur [85]. The discounted accumulated reward is given as

J(π) = E

[
∞∑
t=0

γtrt | π

]
(2.3)

The discount factor γ, where γ ∈ [0, 1], is used to adjust whether the agent is far-sighted
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or short-sighted. The desired policy can be described as

π∗ = argmax
π

J(π) (2.4)

The value of the state x, is evaluated by calculating the expected return starting from
x and, subsequently, governed by policy π

V π(x) = E

[
∞∑
t=0

γtrt | x0 = x, π

]
(2.5)

where V π (xt) is defined by [86] as the value function. Similarly, the action value in state
x is evaluated by calculating the expected reward starting from the action u in a state x
and, subsequently, following policy π

Qπ(x,u) = E

[
∞∑
t=0

γtrt | x0 = x,u0 = u, π

]
(2.6)

where Qπ (xt,ut) is defined as the action-value function.

Modern machine learning-based algorithms, powered by advanced deep learning, have
leveraged the use of RL principles in compact forms called Deep Reinforcement Learning
(DRL) [87, 88]. These techniques have been used in the area of decision-making and
motion planning for autonomous vehicles due to their significant capabilities in handling
high-dimensional sensor’s observations with discrete and continuous action spaces [53, 54].
In the following subsection, we will discuss several variants of DRL and their applications
in navigating urban intersections.

RL Techniques

In the current literature, the problem of navigating an unsignalized intersection has been
modeled as a MDP. Model-free RL learners are employed to sample the MDP to infer
information about the unknown model. Numerous variants based on Monte-Carlo (MC)
and Temporal-difference (TD) schemes were utilized for learning optimal policy for travers-
ing intersections. In this review, we surveyed these approaches and their corresponding
applications with greater details in the following sections.

Monte-Carlo Approaches. These learning methods can be grouped into on-policy or
off-policy based on the updates that are conducted by the same policy or a different policy.
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The on-policy approach uses the same policy for policy value estimation and control. On
the other hand, off-policy algorithms use two separate policies; the behaviour policy and
the target policy for both behaviour generation and learning the rewards corresponding to
its actions, respectively [89]. An advantage of this uncoupling between the two policies is
that the target policy can be deterministic (greedy), whereas the behaviour policy samples
all probable actions. For convergence guarantees, two essential assumptions are made by
the MC methods; first, the generated episodes must be large and, second, the states and
actions have to be explored sufficiently.

Temporal-Difference Approaches. Unlike Monte-Carlo learning schemes, TD ap-
proaches make faster updates within the episode itself by using the Bellman equation.
This is advantageous because it can provide faster convergence characteristics. Both MC
and TD learning schemes adopt tabular methods for storing value functions of the states
or the state-action pairs which make them sample inefficient when it comes to handling
problems with large state space. As an example of these value based approaches, Deep
Q-networks, and several of its variants, were applied to discrete state-action problems [90].
Hence, Actor-Critic approaches were designed to deal with these spaces. Actor-critic (AC)
algorithms implement both the value-based approaches and the policy-based approaches.
It comprises a couple of estimators: the actor network estimator which is based on Q-
value, whereas the critic network utilizes the state-value function estimation. Whilst the
agent’s behaviour is controlled by the actor using the policy, the action is evaluated based
on the value function. Deep learning-based actors and critics are introduced as DNN for
function approximation purposes. A Deep deterministic policy gradient (DDPG) scheme
is an example of tuning both actor and critic deep neural networks for continuous action
space problems.

Due to its ability in handling large continuous action space, DDPG has been employed
for learning traversing behaviours at unsignalized intersections. DDPG is a model-free,
off-policy actor-critic algorithm [91, 92], which combines the actor-critic feature from the
Deterministic Policy Gradient (DPG) with the target neural network and replay buffer
shuffling from the DQN. With the actor-critic component, DDPG is allowed to work with
the continuous action domain while learning a deterministic policy. Whereas, the experi-
ence replay stabilizes the learning of the Q-function. However, the exploration in learning in
a continuous action is considered challenging. Therefore, for better exploration in DDPG,
noise sequences N for the exploration policy µ′is formulated by adding noise sequences N
as follows.

µ′ (st) = µ (st | θµt ) +N (2.7)

Furthermore, DDPG performs soft updates on the parameters that tune the actor and
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Table 2.1: Comparison of the surveyed model-free RL schemes used in intersection navi-
gation problem

RL Approach Features Limitations
MC • MC methods are model-free.

Hence, information of transition
probabilities is not required.
• Off-policy variants of MC are
Simple to design, whereas On-
policy methods own better sta-
bility characteristics when inte-
grated with a function approxi-
mator i.e. (Neural networks [93]).

• Slower updating process. MC
method normally waits until the
episode finishes to update V(s)
and Q(s). As a result, they
converge slower compared to TD
methods.
• Similar to TD, MC uses tab-
ular method to store the value
function of states which makes
them ill-suited for handling com-
plex problems (i.e multi-agent au-
tonomous driving problems).

TD • Similar to MC, TD methods
are also model-free RL methods.
• Faster updates. Compared to
MC methods, TD performs up-
dates using Bellman Formula at
every step within the episode.

• Like MC methods, TD meth-
ods are inefficient for dealing with
large and complex state spaces
due to the lack of memory used
for storing the value function of
state-action pairs.

critic neural networks, θ′ ← τθ + (1− τ)θ′ with τ ≪ 1. This means that the target values
are constrained and change slowly which improves the stability of learning. DDPG has
also adopted the batch normalization feature from deep learning to resolve the problem of
learning from low dimensional feature vector observations that have various physical units
(i.e. acceleration vs angular velocity). This technique performs normalization for each
dimension across the feature vector in a minibatch to have unit mean and variance. This
can facilitate the learning process by finding the proper hyper-parameters which provide
better generalization across the vehicle dynamic states that have diverse scales and units.
In section 3.1.3, we illustrate the utilization of model-free DRL techniques, including DDPG
and other more recent actor-critic algorithms, for learning crossing policies in continuous
action spaces.
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2.4 Braking Performance

This section illustrates the braking dynamics and its basic equations which are needed
for understanding the vehicle’s deceleration profile and corresponding stopping distances.
Using Newton’s Second Law, the general equation of the braking performance is given as
[94]

Max =
W

g
(−DX) = −FXf − FXr −DA −W sin θup (2.8)

where W , g and DX denote the vehicle’s weight, gravitational acceleration and linear
deceleration, respectively, FXf and FXr denote the front and rear axle braking forces,
respectively, DA and θup represent the aerodynamic drag and the uphill grade, respectively.

2.4.1 Deceleration and Stopping Distance

The braking force terms are created by the applied braking torque along with the rolling
resistance, internal driveline drag and bearing friction effects. Assuming that the forces
acting on the vehicle are constant while braking, the fundamental deceleration relationship
is obtained as

DX = −FXt
M

= −dV
dt

(2.9)

where FXt denotes the total longitudinal deceleration forces and V is forward velocity.

By integrating (2.9), the velocity change can be evaluated as

∫ Vf

Vo

dV = −FXt
M

∫ ts

0

dt (2.10)

where ts is the time to stop.

From (2.10), in case of full stop (Vf=0), the distance traveled during the deceleration
is given as:

SD =
V 2
o

2FXt

M

=
V 2
o

2DX

(2.11)
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and the time to stop is

ts =
V 2
o

2FXt

M

=
Vo

2DX

(2.12)

It can be concluded from (2.11) and (2.12) that the distance is proportional to the
velocity squared, whereas the time to stop is proportional to the velocity. Taking into
account the wind resistance while calculating SD, the aerodynamic drag will be involved
as it depends on the square of the speed and the vehicle drag factor

∫ SD

0

dX = M

∫ 0

Vo

VdV

Fb + CV 2
(2.13)

where C is the vehicle drag factor and Fb is the total brake force acting on rear and front
wheels.

SD =
M

2C
ln

[
Fb + CV 2

o

Fb

]
(2.14)

2.4.2 Braking Forces

The braking torque is applied to generate a braking force on the surface of the ground to
decelerate the driveline and the wheel. This force is expressed as

Fb =
Tb − Iwαw

r
(2.15)

where αw and Iw denote the rotational deceleration and the rotational inertia of the vehicle.

The consistent performance of the braking torque results in consistent deceleration in
braking maneuvers leading to steady stopping distances. Disc brakes have shown superior-
ity over the Drum brakes in terms of consistent torque properties during the stop. Drum
brakes show a “sag” during the intermediate region of the stop [94].
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2.5 Longitudinal Vehicle Dynamics

The longitudinal vehicle dynamic model is comprised of two major dynamic models: the
vehicle dynamics and the powertrain dynamics. The vehicle dynamics are affected by the
forces of rolling resistances, longitudinal tire forces, aerodynamic drag forces and other
gravitational forces.

mẍ = FXf + FXr − Faero −Rxf −Rxr − w sin θup (2.16)

where FXf and FXr denote the Front and rear axle longitudinal forces, respectively, Faero
denotes the longitudinal aerodynamic drag force, RXf and RXr represent the rolling resis-
tance for the front and the rear tires, respectively.

Longitudinal Tire Forces

The longitudinal tire forces represent the friction forces of ground acting on the tires. These
forces depend on the friction coefficient µ, slip ratio and the vertical (normal) load on the
tire.

Slip Ratio The longitudinal slip is the difference between the actual longitudinal velocity
at the axle of the wheel Vx and the rotational velocity of the tire reff ωw. The longitudinal
slip ratio is described under braking as

σx =
reffωw − Vx

Vx
(2.17)

and during the acceleration can also be described as

σx =
reffωw − Vx
reffωw

(2.18)

Assuming that the friction coefficient of the road-tire interaction to be 1 and the vertical
normal force is constant, the longitudinal tire force can be described as a function of the
slip ratio as illustrated in Fig. 2.2.

As seen in Fig. 2.2, at small slip ratio (< 0.1), the longitudinal tire force is proportional
to the slip ratio. Hence, the longitudinal tire force can be modeled as
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Figure 2.2: Longitudinal tire force as a function of slip ratio [94].

Fxf = Cσfσxf (2.19)

Fxr = Cσrσxr (2.20)

Where Cσf and Cσr define the longitudinal tire stiffness parameters for the front and rear
tires, respectively.

At large slip ratio or if the road is slippery, a nonlinear tire model needs to be utilized
to calculate the longitudinal tire force. For instance, “the magic formula” model or the
tire model can be used to model the tire forces in this case.

In the proposed decision making scheme, we will include relevant longitudinal dynamic
stats along with the states that are required for slip ratio calculation while the vehicle is
approaching the intersection.
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Figure 2.3: Longitudinal force in driving wheel [94].
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Chapter 3

Learning-based Decision-Making at
Urban Unsignalized Intersections: A
Survey

Autonomous driving at unsignalized intersections is still considered a challenging appli-
cation for machine learning due to the complications associated with handling complex
multi-agent scenarios with a high degree of uncertainty. Automating the decision-making
process at these safety-critical environments involves comprehending multiple levels of ab-
stractions associated with learning robust driving behaviors to enable the vehicle to nav-
igate efficiently. In this Chapter, we aim at exploring the state-of-the-art learning-based
techniques implemented for decision-making applications, with a focus on algorithms that
combine Reinforcement Learning (RL) and deep learning for learning traversing policies
at unsignalized intersections. The reviewed schemes vary in the proposed driving scenario,
in the assumptions made for the used intersection model, in the tackled challenges, and in
the learning algorithms that are used. We have presented comparisons for these techniques
to highlight their limitations and strengths. Based on our in-depth investigation, it can
be discerned that a robust decision-making scheme for navigating real-world unsignalized
intersection does not exist yet. Along with our analysis and discussion, we recommend
potential research directions encouraging the interested players to tackle the highlighted
challenges. By following our recommendations, non-overcautious, yet safe, motion planning
models can be trained and validated in real-world urban environments.

In this Chapter, we illustrate the challenges and solutions for navigating unsignalized
intersections in section ??. We mainly focus on the start-of-the-art learning-based schemes
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developed for tackling the intention inference challenge at unsignalized intersections. Then,
with an emphasis on DRL-based schemes, we evaluate the learning-based decision-making
schemes, emphasising our views on their intrinsic logic. Section 3.2 presents the possible
research directions. Finally, Section 3.3 concludes the proposed and future works.

3.1 Unsignalized Intersection-Traversal: Challenges

and Solutions

To enhance the AVs’ ability to navigate complex urban unsignalized intersections, major
navigational challenges need to be investigated. In this section, we survey these challenges
which need to be taken into account while designing an automated learning-based decision-
making algorithm for safe maneuverability at these safety-critical driving environments.

3.1.1 Autonomous Driving Under Uncertainty

The uncertainty associated with motion prediction of other intersections vehicles at unsignal-
ized intersection is caused by the following factors [28]:

• Unknown intention of intersection users. The motion of other intersection
participants is highly connected to the future trajectory of the ego vehicle [95]. Hence,
for safe intersection navigation, precise motion predictions of the intersection users
must be obtained. The main difficulty with inferring intention arises from the intrinsic
uncertainty in the unknown current states and hidden variables, namely, unknown
final destinations as well as their unforeseeable future longitudinal path [96], and
their likelihood of interaction with the subject vehicle [?].

• Noise characteristics of sensors’ observations. The noise associated with the
measurements collected from the mounted sensors adds another layer of uncertainty
to the decision-making problem.

• Occluded environments and limited perception. The ability to observe the
scene accurately is hindered by environmental obstructions and occlusions. [97].

Fig. 3.1 depicts an illustrative example of where these uncertainties originate from at
a four-way stop unsignalized intersection.
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Figure 3.1: An intersection-traversal scenario where the ego vehicle is required to handle
several sorts of uncertainties associated with the approaching vehicle.

Considering these uncertainties when designing learning-based decision-making schemes
in a complex intersection environment is essential for the ego vehicle to traverse intersec-
tions safely. For example, predicted motion and future trajectories of the target vehicles
[98], which share potential conflict points with the ego vehicle need to be incorporated
while solving for an optimal traversal policy of the ego vehicle. This policy needs to be
optimized for the most probable future scenarios coming from stochastic and interactive
motion models of the other target vehicles. Considering these scenarios, in real time set-
tings, these policies allow the autonomous vehicle to incorporate the estimated change in
future prediction accuracy in the optimal policy [99]. This yields a compact representation
with reduced-dimensions state-space

Based on our observation, we found that researchers have been mainly focusing at
developing learning-based frameworks to tackle two main technical problems; inferring the
intention of the intersection users and designing the decision process. Hence, in sections
3.1.2 and 3.1.3, we focus on exploring the published works on the unsignalized intersection-
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traversal problem.

3.1.2 Driver Intention Inference Challenge

Accurately inferring and forecasting the intentions of drivers at unsignalized intersections
is crucial for addressing the cause of an accident and ensuring road safety in such di-
verse multi-agent environments. Several research efforts have been exerted in order to
develop algorithms for DII applications. These algorithms tackle the intention inference
problem as a classification problem where intentions are classified based on the driving
behaviour [100, 101]. These DII approaches can be classified into two groups: index-
based and ML-based. In index-based approaches, safety metrics are utilized to examine
driving behaviors at intersections in order to formulate risk assessment schemes. For exam-
ple, time-to-intersection (TTI), time-to-stop (TTS), time-to-collision, Perception Reaction
Time (PRT), Required Deceleration Parameter (RDP), along with brake application were
taken into account for inferring the driver’s intent at intersections [102, 103]. These index-
based approaches, however, are designed for only frontal-crash prevention systems, where,
in real driving scenarios, careless drivers may collide with the ego vehicle from different
angles. ML-based classification techniques have been also employed for intention inference
applications. For instance, Aoude et al. [80] proposed a Support Vector Machine-based
(SVM) intention predictor that was developed as part of the proposed threat assessor
scheme. Subsequently, the developed threat assessor warns the host vehicle with the iden-
tified threat level and advises the best escape path. Hidden Markov Models (HMM) were
implemented for intention inference along with Gaussian Processes which were used for
collision risks prediction of multiple dynamic agents [104]. Lefevre et al. [105] reported
using a Dynamic Bayesian Network (DBN) for developing a probabilistic motion model
where intentions are estimated from the joint motion of the vehicles. However, these ML-
approaches fall short as they cannot capture the long-term temporal dependencies in the
data.

Motivated by their efficacy in modelling sequential tasks, researchers have employed
deep-structured Recurrent Neural Nets (RNN) for determining the intentions of drivers
at non-signalized intersection. Zyner et al. [106] introduced the use of long short-term
memory (LSTM) for intention inference at unsignalized intersections. Observations on the
dynamic states, namely, position, velocity and heading states, were captured by the on-
board set of sensors and used to train the network. In [107], a group of 104 features were
utilized from the NGSIM dataset to train the proposed LSTM-based intention classifier.
These features encompass ego position and dynamics, surrounding vehicles and their past
states, and rule features which highlight what legal actions can be taken in the current lane.
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The proposed method demonstrated high classification accuracy for intention prediction
at intersections with different lanes or shapes. However, these methods rely heavily on
the mounted on-board positioning/tracking system. This means that tracking data from
GPS and Inertial Measurement Units (IMUs) are required in order for the system to
operate effectively, restricting their usage to vehicles where streaming from these sensors
is available. Zyner et al. [108] proposed a solution to this problem by using data from a
Lidar-based tracking system which will be implemented in future intelligent vehicles. The
proposed model was validated using a large naturalistic dataset which was collected from
two days of driving at an unsignalized roundabout intersection. Recently, Jeong et al. [109]
proposed a LSTM-based architecture for predicting the target vehicle’s intention based on
their estimated future trajectory at unsignalized intersections. This network was developed
to study long-term dependencies between vehicles in complex multi-lane turn intersections,
and was based on the previous sequential motion of the target vehicles measured by the
sensors equipped with the AV. The predicted target motion is integrated with Model
Predictive Control (MPC) which is responsible for planning the motion of the subject
vehicle. Girma et al. [110] introduced the use of Bidirectional LSTM with an attention
mechanism for intention inference at signalized intersections based on sequence-to-sequence
modeling principles (i.e. Surrounding vehicles trajectory analysis with recurrent neural
networks). Bidirectional LSTM is used due to its capability for exploring information from
previous and future time steps. However, the proposed method is agnostic to the decision-
making problem. Thus, integrating the proposed method with decision-making scheme in
real-time format is a research direction to be explored. Table 3.1 summarizes the surveyed
deep-learning-based intention inference schemes highlighting their research objectives and
significant remarks.

3.1.3 Decision Making Challenge

Owing to the strengths of deep-structured neural networks in handling large partially-
observable state-action space, major research directions have been followed aiming to
develop learning-based schemes for tackling problems related to traversing unsignalized
intersections autonomously. In this section, we present the main design challenges in-
volved in developing learning-based algorithms for decision-making under uncertainty, as
well as a review of relevant state-of-the-art solutions, emphasising key observations and
shortcomings.
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Partial Observability

In real multi-agent autonomous driving settings, the agents have incomplete information
about the environment with which they interact. Therefore, designing a robust decision-
making framework in such environments is considered an intractable problem. In practice,
such problems are typically modelled as (POMDPs), in which a driving policy is learned
to provide safe actions while accounting for the stochasticity inherent in the process of
inferring intention and motion planning [116]. Numerous works address the problem of
modeling the decision-making process of the partially-observable driving environments at
unsignalized intersections. Brechtel et al. [117] models the decision-making problem for
navigating an occluded T-junction intersection as a POMDP. Uncertainties of the driver’s
behavior and the limitations of the perception of the environment were taken into consider-
ation while solving the continuous POMDP. Sezer et al. [118] develops a mixed observable
MDP (MOMDP) model, which is a variant of POMDP, for intention-aware motion plan-
ning at a T-junction intersection under the uncertainty of drivers intentions. Along with
the unknown intentions of other drivers, their unknown future predictions in the longi-
tudinal direction and their interaction with the ego vehicle are modeled in the proposed
decision scheme in [28]. The problem is formulated as a POMDP where the solution of the
POMDP is a policy determining the optimal acceleration of the ego vehicle. However, the
scalability of the proposed scheme to deal with unknown intentions of oncoming vehicles
from multi-directions has not been addressed.

Inspired by the strengths of Deep Reinforcement Learning (DRL) approaches in learn-
ing driving policy without the necessity to learn the MDP model itself, several works have
recently adopted these methods to solve the designed MDPs. For instance, Isle at el. [119]
proposed a safe reinforcement learning algorithm for left turn intersection-traversal using
action prediction techniques. An optimal policy is trained using deep Q-learning to mini-
mize disruption to traffic which is measured by traffic braking and maximize the distance
to other vehicles. To solve for an optimal policy in such a multi-agent environment, the
problem was formulated as a Stochastic Game. Deep Q-learning Networks (DQN) have
been used for solving intersection crossing problems modeled by POMDPs [34]. A thresh-
olded lexicographic Q-learning scheme was adapted to the deep learning framework. This
algorithm mimics human driving in some challenging scenarios where safety is prioritized
over traffic rules and ride comfort. A factored MDP model was utilized instead of full MDP
to mimic the human driver behaviour and to improve the data efficiency. A SUMO (Simu-
lation of Urban Mobility) traffic simulator was then used as the simulation environment to
validate the proposed experiment. Given the limitation of the Deep Q-Network, Bouton
et al. [35] introduced an integration of the POMDP planning, model-checking and rein-

31



forcement learning to derive safe policies which can guarantee that the vehicle can traverse
urban intersections under multiple occlusions and perception faults. Empirically, an ab-
lation study was conducted showing that the proposed approach exhibits superiority over
conventional DQN methods. A Deep Distributional Q-learning algorithm was proposed to
deal with uncertainties associated with the variety of human driving styles [120]. The algo-
rithm generates risk-sensitive actions based on offline distribution learning and online risk
assessment. During the offline distribution learning, the distributions of the risk-neutral
and state–action return are learnt from unknown behavior type of a participant sampled
from a known environment. While the learned behaviour is being executed, the action
risks (collisions) are quantified using distortion risk metrics where the optimal action can
be then selected. Hoel et al. [121] introduced a method to evaluate the uncertain actions
(decisions) made by the agent in an unsignalized intersection environment. A Bayesian
reinforcement learning method using an ensemble of neural nets with Randomized prior
Functions (RPF) [122], has been introduced to estimate the distribution of Q-values which
are then utilized to estimate the action values. This proposed scheme shows robustness
in identifying highly uncertain actions within and outside the training set which helps in
choosing the safest actions for safe intersection traversing maneuvers. However, these pro-
posed approaches fall short in terms of the proposed hard assumptions and the tailored
intersection-traversal scenarios.

The development of robust DRL algorithms for better handling of POMDP problems
has piqued the interest of many researchers in the field. Zhu et al. [123] introduced a
scheme called Action-specific Deep Recurrent Q-Network (ADRQN) to improve the learn-
ing capability in partially-observable environments. A fully connected (FC) layer is utilized
to encode actions which are coupled with their corresponding observations to form action-
observation pairs. LSTM is then adopted to process the time series of action-observation
pairs. Similar to the conventional DQNs settings, the FC layer calculates the Q-Values
based on the latent states learnt by the LSTM network. Another LSTM-based Deep Recur-
rent Policy Inference Q-networks (DRPIQN) was also introduced to handle partial observ-
ability caused by imperfect and noisy state information in real-world settings [124]. Both
ADRQN and DRPIQN networks outperform other deep Q-learning techniques in terms of
learning capabilities and stability when applied to number of games. As an application to
unsignalized intersection, Qiao et al. [33] proposed a network based on the design concepts
of ADRQN and other deterministic gradient policy approaches for generating continuous
time actions from the previous observations of the earlier steps. Observations from the
previous 20 steps were used as inputs for the LSTM Network. Figure 5.1 exhibits the
developed LSTM-Network which handles the POMDP and represents the decision-making
problem of a four-way stop unsignalized intersection. The action output for each time step
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is obtained based on the observation inputs to the first LSTM and FC layers of the net-
work at each individual time step. Subsequently, the Q-values are generated by taking the
action of the previous step at−1 along with observation of the current step Ot as an input
to the second LSTM and FC layers. However, these approaches are entirely model-free
as they rely heavily on the LSTM network to remember the past instead of having true
belief states. Igl et al. [60] proposed a Deep Variational Reinforcement Learning approach
(DVRL), which relies less on a black box than the aforementioned DRPIQN and ADRQN,
for learning optimal policies for POMDPs. Applying DVRL concepts for learning driv-
ing policy in partially-observable unsignalized intersection environments is still an area of
research to be explored.
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Figure 3.2: LSTM for solving the formulated POMDP of intersection-traversal problem.

Intention-aware schemes. These probabilistic decision-making algorithms were de-
veloped to control the motion under the unknown intentions of intersections participants.
For instance, a continuous Hidden Markov model (HMM) was developed to infer the high-
level motion intentions including turning and continuing straight [125]. A POMDP was
then designed for the general decision-making framework, with assumptions and approxi-
mations used to solve the POMDP by calculating a policy to perform the optimal actions.
Online solvers have also been used to solve the formulated POMDPS of the decision-
making. In [58], an improved variant of the POMCP solver which is called The Adaptive
Belief Tree (ABT) is used to solve the proposed POMDP of an intention-aware left turn-
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ing problem. The proposed decision-making problem is based on mimicking the human
behavior of creeping slowly, upon reaching the stop line, to better understand the driver’s
intention. The left-turn trajectory is simply assumed as a straight line with quarter circle
curve. However, the intentions of the oncoming vehicles from only one direction is taken
into consideration. In [31], the uncertainties associated with human behavior of other
drivers on the road in the context of an intersection have been modeled as a POMDP. An
online solver has been utilized to find the optimal action that can be taken by the vehicle
to react to uncertain situations [31]. However, aside from a lack of real-world experimen-
tation, using online solvers to solve is impractical because they only work for relatively
small state spaces, and the complexity of solving the POMDP scales fairly quickly. Deep
Reinforcement Learning, on the other hand, can work with much larger, or even large and
continuous spaces, such as Atari [60]

Occlusion-aware schemes. As previously mentioned in 3.1.1, due to environmental
uncertainties and the limited capabilities of the sensors on the autonomous vehicle, occlu-
sions can pose significant challenges to safely traverse an urban unsignalized intersection.
Hence, many research papers have addressed this problem while integrating risk assessors
into the decision-making schemes. For example, an occlusion-aware algorithm for left turn
maneuver risk assessment at four-way unsignalized intersections was developed [126]. A
particle filter paradigm was utilized to represent the distribution of the possible unobserved
potential locations (particles) of the vehicle. However, this algorithm is not representative
of how the vehicle can make decisions, but can be coupled with any POMDP or any other
decision-making algorithm. The same group, based on the forward and background reach-
ability, developed a probabilistic risk assessment and planning algorithm for a four-way
intersection. The algorithm borders the risk-inducting regions arising from the occlusions
of the ego-perception sensors that can be used to generate collision-free routes [127]. How-
ever, none of these algorithms were tested in real-world environments. McGill et al. [32]
addressed the problem of navigating unsignalized intersections in the presence of occlusions
and faulty perception [32]. A risk model was proposed to assess the unsafe (risky) left turn
across traffic at an intersection. Their model accounts for the traffic density, sensor noise
and physical occlusions that hinder the view of other vehicles. By representing the inter-
section as a junction node with lanes entering and exiting the node, the risk assessment
is used to determine a ‘go’ and ‘no-go’ decision at an intersection. The risk is modeled
by defining near-miss braking incidents, collision incidents, traffic conflicts and small gap
spacing. The risk is defined as the expected number of incidents that will occur if the
ego-car enters an intersection. The overall risk is the sum of all expected incidents in all
lanes and for all segments. In [37], the occluded intersection-traversal problem was viewed
as a reinforcement learning problem. A deep Q-learning approach was utilized to traverse
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a partially observed four-way intersection. A creeping behavior upon reaching the intersec-
tion is learnt where the agent must perform an exploratory action to better comprehend the
environment. Three action representations were studied: Time-to-Go, Sequential Actions
and Creep-and-Go. In the Time-to-Go representation, the desired path is known for the
agent, and the agent decides whether to go or to wait at every point in time. While in the
latter scenarios, the agent can determine whether to accelerate or decelerate progressively.
However, a bird’s eye view image space is used to describe the position of the vehicles in
the space using Cartesian coordinates. This makes the implementation of the proposed
DQN method inefficient for urban driving environment which require continuous actions
rather than discrete ones. Moreover, in real AVs, it is infeasible to have a ”bird’s eye view’”
for acquiring the vehicle’s state for decision-making applications.

Table 3.2 summarizes the major classes of decision-making schemes under partial-
observability.

Continuous action Space

In real autonomous driving, a continuous action of the autonomous agent is required for safe
and efficient navigational tasks. DQNs, which are mostly adopted in the reviewed decision-
making schemes, are used to learn an optimal policy for safety-oriented decision-making in
a discrete action space domain. However, adapting such schemes to continuous domains,
i.e. autonomous driving, is considered challenging, and in some instances, sample ineffi-
cient. Practically speaking, DQNs determine an action that has the highest action-value
through an iterative optimization process at every step in the continuous action. For com-
plex multi-agent decision-making including urban intersections, we have high-dimensional
continuous action spaces. Discretizing these spaces to use conventional DQN schemes is
not always an effective idea due to the exponential number of action values which might
lead to the Curse of Dimensionality. Hence, to ensure convergence of the used model and
capability, these continuous spaces must be handled in a robust way. Deep Deterministic
Policy Gradient (DDPG) was adopted in [33, 132] for generating continuous actions rather
than discrete actions for driving in four-way unsignalized intersection settings. Xiong et
al. [133] presented an integration between Deep Reinforcement Learning and safety-based
continuous control for learning optimal policy for self-driving and collision avoidance ap-
plications. DDPG, which adopts the actor-critic concepts (see Fig.3.3), is implemented to
output the steering commands along with an Artificial Potential Field (APF) method for
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collision avoidance and path planning applications. As this integration proves its useful-
ness for learning collision-free driving policies at highways, integrating such high-level DRL
schemes with control laws can be vital for solving continuous control problems within the
framework of unsignalized intersections. Recently, soft-actor-critic (SAC) algorithm has
shown better performance in learning policies in continuous domains and stability charac-
teristics than other deep deterministic algorithms including DDPG [71]. For autonomous
driving applications, SAC has demonstrated remarkable ability in learning optimal policies
for overtaking and maneuvering at roundabouts [56, 72]. Hence, applying soft-actor-critic
(SAC) principles for learning traversing policies in complex driving scenarios can be a
significant research avenue to be pursued.
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Figure 3.3: An illustrative sketch of Actor-Critic approaches. Actor-critic algorithms im-
plement both the value-based approaches and the policy-based approaches. It comprises a
couple of estimators: the actor network estimator which is based on Q-value, whereas the
critic network utilizes the state-value function estimation.

36



Training in high-dimensional state-action space

As mentioned earlier in 2.3.1, DRL is centered on performing iterative optimization pro-
cesses to learn a policy for a specific task. However, the number of iterations grows expo-
nentially as the state-action space becomes larger. One discernible shortcoming of adopting
DQN and DDPG is that an extensive training has to be performed in order to achieve an
optimal behaviour. To accelerate the training process, Curriculum Learning (CL) ap-
proaches can be employed [55]. Qiao et al. [30] utilizes Curriculum Learning for reducing
the training time and improving the performance of the agent in unsignalized intersection
approaching and one-dimensional crossing behavior. However, applying CL concepts for
other more complex scenarios. i.e. two-dimensional left-turn was not investigated. In [33],
the same group proposed a DRL learning algorithm to traverse a four-way intersection
with a two-way stop sign by taking into account the uncertainties that exist in the urban
environment. This DRL algorithm is developed to utilize the preserved state-action values
and the current LIDAR information along with the ego car’s states information for design-
ing the decision process. For efficient training in a high-dimensional space, a combination
of LSTM and FC neural networks were designed to store the state-action pairs and gen-
erate continuous actions. Bouton et al. proposed a DRL algorithm for navigating urban
intersections using the scene decomposition method [35] to improve training and to scale
to a large number of agents. The decision-making under faulty perception is modelled as
a POMDP. An extra state variable has been integrated to the global state vector to model
the potential incoming traffic participant which is not present in the scene. A probabilistic
model checker was adopted to compute the probability of reaching the goal safely for each
state-action pair prior to learning a policy. Subsequently, a belief updater algorithm was
developed to update the states uncertainties. Given the prior belief value and the current
observations, the algorithm can integrate the perception error to the planning theme. It
uses an ensemble of 50 Recurrent Neural Networks (RNN) to store the observation his-
tory. The training process was done using a synthetic dataset generated from a simulation
environment. These techniques, however, have not been evaluated in real-world driving
scenarios, where convergence of the proposed models is not guaranteed due to the breadth
of possible crossing behaviors or directions of agents at unsignlized intersections.

Deep Reinforcement Learning from demonstrators has been introduced to enhance the
learning capabilities, yielding a significant decrease in the total time of the training process
by leveraging training sets with small demonstrations. Hester et al. [134] introduced Deep
Q-learning from demonstrations (DQfD) to significantly accelerate the training process
through leveraging sets with small demonstrations. A prioritised replay mechanism was
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adopted for assessing the required data-sets ratio automatically. Nair et al. [135] proposed
a technique based on DDPG and Hindsight Experience Replay for enhancing the training
policies while learning the optimal policy for solving complex tasks using RL. Although,
the proposed work has one major limitation which is the sample efficiency, a significant
speed up of the training process was recorded. These works have led to other modifications
of the training process of RL-based motion planning schemes. For instance, Hierarchical
Reinforcement Learning (HRL) architecture was developed based on inclusion of heurisitic-
based rules-enumeration policy to enhance agent’s exploration for behavioral planning at
intersections [136]. More recently, Huang et al. [137] developed an integration between the
imitative expert priors from expert demonstrations for learning driving policies at urban
environments. The priors of the imitative expert are learnt using imitation learning and
uncertainty quantification method, which governs the learning performance of the agent
while still allowing it to explore. In brief, Table 3.3 epitomizes the limitations of the most
relevant research works on decision-making using reinforcement learning-based schemes.

3.2 Discussion and Research Directions

In our discussion provided in sections 3.1, we emphasised key points on how the examined
systems might be further enhanced to better address the decision-making problem under
uncertainty at unsignalized intersections. However, there are still significant gaps in our
understanding of how to advance our efforts toward creating high-fidelity frameworks that
can operate autonomous cars in real-life environments.

Our thorough analysis has revealed that there is currently no reliable decision-making
method for negotiating real-world unsignalized intersections. We discern that the state-of-
art decision-making schemes focused on the high-level decision making layers, i.e high-level
reasoning for behavioral path planning, neglecting other low-level layers proposed earlier,
including low-level motion planning and control. Furthermore, implementation and testing
in real-world driving environments is not investigated. In practice, convergence of the RL-
models in simulation-based environments does not necessarily ensure generalizability in
real-life scenarios due to the domains mismatch. Real-world observations differ in terms
of the associated noise sequences and vehicle dynamics response. We therefore suggest
fundamental research directions, in this section, based on these observations in order to
advance research in this area.
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3.2.1 Low-level local planning and control integration

Numerous research papers have addressed the low-level motion planning problem and con-
trol at urban unsignalized intersections using Model Predictive Control (MPC) principles.
For instance, Hu et al. [63] proposed an event-triggered model predictive adaptive dy-
namic programming technique for motion planning at urban intersections. The method
takes urban speed, vehicle kinematics and road constraints into consideration while solving
multi-objective optimization problem. However, for high-fidelity decision-making applica-
tions in urban autonomous driving, incorporating the local motion planning and low-level
control layers taking into account vehicle dynamics is essential to ensure the feasibility of
the high-level RL commanded actions. Such integration has been done for intersection-
management applications, where centralized reference signals being distributed to the
intersections agents via V2V communication [64, 65]. In [65], an integration between
high-level decision-making layers and low-level MPC-based motion planing layer has been
proposed for learning supervisory intersection-management policy in connected driving
fashion. However, as per the authors’ knowledge, such integration has not been developed
for learning intersection-traversal policy of the learning agent. Hence, having the motion
planing layer integrated while approximating intersection-traversal policies would facili-
tate learning, with feasibility guarantees [67], tacking into account lateral and longitudinal
dynamics.

In connection with autonomous driving problem in adverse weather environments [140,
141], incorporating high-fidelity vehicle dynamic models is also critical for longitudinal and
lateral motion planning. For instance, learning safety-oriented policies for intersection-
approaching behavior at unsignalized intersection, where braking is applied to decelerate
smoothly for precise stopping, is a prerequisite condition for safe intersection navigation.
Hence, learning an optimal deceleration profile (curve) ax,optimal, which ensures a comfort-
able ride while remaining efficient, requires an inclusion of longitudinal vehicle dynamic
models and braking performance which is coupled with the road surface conditions repre-
sented by friction coefficients (see rough curves in Fig. 3.4).

3.2.2 Real experimental validation

As can be seen from Table, 3.3, most of the reviewed schemes have been tested in simulation-
based environments. This can be valid, as RL techniques require collecting a large amount
of real world based training data which would be costly in terms of effort and time. Prac-
tically speaking, simulated observations, which are streamed from modelled sensors, have
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Figure 3.4: An illustrative sketch of the intersection-approach phase scheme. As shown, the
vehicle enters Region A with the standard speed Vx,ego of (40–50 km/h). In Region B,
the vehicle is assumed to start decelerating with rate ax,ego to reach the stop-line. Region
C represents the safety buffer dbuffer.

different data distributions compared to real data which may lead to failure in general-
ization on (unseen) real data [142]. Sim-to-real transfer learning techniques have been
introduced to further promote training RL approaches in real environments [143].

Domain Adaptation (DA) and Domain Randomization (DR) techniques have also been
proposed to enhance the generalization capabilities of ML-based models on a target do-
main. Feature-level DA methods are designed to learn domain-invariant features which
cannot discriminate between the source and the target domains, whereas pixel-level DA
techniques focuses on shaping images from the source domain to be analogous to the tar-
get domain’s images using Generative Adversarial Networks (GANs) [144, 145]. Ganin
et al. [146] describe a domain-adversarial training of neural networks for Feature-level
domain adaptation. This model is based on features that are discriminative for the cen-
tral learning process, but indiscriminative with the translation between these domains. In
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[147], an end-to end (i.e., perception to control) transfer learning using image-to-image
translation for domain transfer was applied for autonomous driving. Although the lane
following driving policy was learnt from the simulation domain with control labels, the
model was able to provide control from real images due to the shared latent space between
the two domains. DR methods are based on the concept of exposing the learning agent
to the stochastic random environment where its properties can be randomized in order
to augment robustness in real-world deployment [148]. Recently, Amini et al. [149] in-
troduced a training engine for transfer learning of end-to-end autonomous driving policies
using sparsely-sampled trajectories from human drivers. Utilizing these trajectories has
yielded robustness in performing real driving tests in unseen complex and near-crash en-
vironments. Using CARLA, the performance of the proposed method has been evaluated
in comparison with the DA and DR approaches. The results exhibited superiority of the
proposed approach over the conventional transfer learning approaches in terms of recovery
from hazardous near-crash situation.

In short, validating the RL approaches in real-world driving settings is an active area of
research. Inspired by the presented DR and DA techniques which prove its robustness in
learning optimal policies for end-to-end autonomous driving, the real-world experimental
validation of the simulation-based decision-making approaches would be further facilitated
by creating real-life intersection driving scenarios.

3.3 Conclusion

Unsignalized intersections are safety-critical areas in urban environments due to the com-
plex driving behavior and the lack of traffic control signals. Consequently, developing
robust decision-making and motion-planning for these multi-agent environments is highly
intractable due to the complexities associated with the partially observable multi-agent
driving environment and the environmental uncertainties. With the resurgence of deep
learning, modern RL techniques have been utilized to handle such problems with a large
space of observations to learn safe driving policies.

This Chapter reviews various aspects related to challenges associated with decision-
making at unsignalized intersections with a focus on learning-based schemes. We discuss
these schemes in terms of the tackled driving scenario, the involved challenges, the pro-
posed learning-based designs and the validation in simulations and real-world environ-
ments. Based on our discussion and investigation, we found that research efforts are still
required to tackle the real-world challenges of unsignalized intersection-traversal problem.
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Ultimately, the decision making schemes that were reviewed have been proposed to
tackle uncertainties associated with traversing the unsignalized intersection problem. This
is commonly modeled as a POMDP due to the unknown intention and future trajectories
of intersection users. Environmental uncertainties due to limited sensor range and faulty
perception are taken into account while designing occlusion-aware decision making schemes.
Furthermore, uncertainties of different driving styles are also considered in developing
decision-making schemes for learning optimal crossing policy in multi-agent environments.
However, we noticed critical areas have received little attention and lack in-depth research.
These areas are related to the lack of utilization of high-fidelity vehicle dynamic models and
the experimental validation of the proposed decision making schemes. However, if robust
motion planning is designed and integrated to account for these critical environments, a
high-fidelity vehicle dynamic model must be used to reflect the vehicle response precisely.
On the other hand, we suggest methods and heuristics that can be used to facilitate
real-world driving for testing and validation purposes of the RL-based models. Taking our
recommendations into consideration, precise and non-overcautious motion planning models
can be trained and validated in real-world urban settings.

42



Table 3.1: Summary of the covered Deep-learning-based intention inference schemes in this
section

Ref. Objective Method Remarks

[106] Intention inference based on the
ego vehicle’s observations i.e.
GPS, IMU and Odometry).

RNN • 100 % classification accuracy
on the Naturalistic Intersection
Driving Dataset [111].

[107] Intention inference at multi-lane
intersection based on observa-
tions of speed, lanes and six ad-
jacent vehicles.

LSTM • 85% accuracy at intersections
with different types and shapes
(NGSIM) dataset.

[108] Intention inference for ego vehi-
cles without tracking data (GPS,
steering wheel encoding).

LSTM. • The results indicate that net-
works fed with more history up
to 0.6 seconds performs better.
• The provided model gives 1.3
sec prediction window prior to
any potential conflict.

[109] Intention inference based on
GPS, Lidars and different types
of cameras (front and round
views).

LSTM • Based on the prediction re-
sults, longitudinal motion plan-
ning with safety guarantees is
proposed using MPC .

[110] Intention Inference based on fo-
cusing on important time-series
vehicular data.

Bidirectional
LSTM with
attention
mechanism.

• Sequence to sequence model-
ing is performed to map the in-
put sequence of observation to a
sequence of predicted driver’s in-
tentions.
• Achieved high accuracy on the
NDS dataset. [112]

[113] Intention inference for maneuver
prediction at intersection based
real driving sequences including
vehicle dynamics, gaze data as
well as head movements.

LSTM • A prediction window of 3.6s
has been achieved on RoadLab
dataset [114].

[115] Intention inference for Path pre-
diction using dilated convolution
networks in conjunction with a
mixture density network (MDN)
considering the temporal aspects
of driving data.

Temporal
CNN

• Outperforms ML-LSTM and
LSTM-FL in terms of accuracy
and computational complexity
on ACFR dataset.
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Table 3.2: Classes of decision-making schemes under under partial-observability at
unsignalized intersection

Class Contribution References

Occlusion-aware • Navigation through static and dy-
namic occlusions.

[128] [30] [117] [129]

• Navigating under perception er-
rors due to occlusions

[35] [32] [119]

• Navigating with Limited sensor
range

[130] [33] [126]

• A creeping behavior is learnt
to better comprehend the environ-
ment.

[37]

Intention-aware • SVM-based motion planning. [131]
• Target motion-based behavioral
planning.

[29]

• Navigation through unknown in-
tention and noisy perception.

[28]

• Inferring High-level motion in-
tentions including turning and going
straight.

[125, 57]
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Table 3.3: Overview of the reviewed Reinforcement learning-based decision-making
schemes at unisgnalized intersection

Ref. Intersection
Type

Method Data Col-
lected

Remarks Limitations

[30] 4-way
Unsignal-
ized (stop-
sign)

DRL using auto-
matic generation
of curriculum for
training enhance-
ment

Simulation-
based

• A more realistic 4-way intersection
driving scenario is proposed where ve-
hicles are programmed not to yield to
ego vehicle if it is in their FOV

• Environmental uncertainties,
which cause errors in perception
were not considered while collecting
Observations from simulated sensor
(LIDAR + Cameras)

[37] T-junction DQN SUMO simu-
lator [138]

• A creeping behavior upon reaching
the intersection is learnt where the
agent must perform an exploratory
action to better comprehend the en-
vironment

• A god-view state space is used to
describe the motion of vehicles at in-
tersection (Not true for real-life driv-
ing)

[34] Multi-lane
4-way
intersec-
tions and
round-
abouts.

Multi-objective
RL (Thresholded
lexicographic Q-
learning)

Collected
Via SUMO
simulator

• Learning safe crossing with the
presence of faulty perception and oc-
clusion
• The trained policy is scalable
across a range of urban roads with
different shapes
• Learning human behavior of look-
ing at vehicles at area of interest

• A full knowledge of other vehicles
based on a bird’s eye view represen-
tation of state space (not realistic for
real-world)
• Not tested in real-world environ-
ments

[33] 4-way
Unsignal-
ized (stop-
sign)

RL-based approach
using hierarchical
option

Collected
Via SUMO
simulator

• Learning an optimal policy for ro-
bust traversing under environmental
uncertainties
• Results shows superiority over the
rule-based techniques and classical
approaches

• No guarantees for possible scala-
bility at more complex intersections
with multi-lanes
• Not tested in real-world environ-
ments

[35] T-junction Integration of
model-checker and
RL

Simulation-
based

• Learning safe crossing with the
presence of faulty perception and oc-
clusion

• The proposed method was not
validated through real testing to
show the validity of the simulated
POMDP-based simulated values of
the perception errors

[136] Multi lane
4-way in-
tersection

Hierarchical rein-
forcement learning
with hybrid reward
mechanism

MSC’s
VIRES VTD
(Virtual Test
Drive) simu-
lator

• Better convergence capabilities
and sample-efficiency compared to
the classical RL Methods

• Focus on mimicking human driv-
ing in limited go-straight and left-
turn maneuvers
• Not tested in real-world environ-
ments

[129] Multi-lane
4-way in-
tersection.

DQN Collected
Via CARLA
Simulator
[139])

• DQN shows less overcautious be-
havior under limited sensor range and
faulty perception compared to the
rule-based algorithms

• DQN is utilized for learning the
driving policy. However, DQN is re-
stricted to the discrete action domain
• Not tested in real-life environments

[61] 4-way DQL and DDQL Simulation-
based

• The proposed results show safe
and repeatable Left-turn maneuver is
learnt where the collision rate is sig-
nificantly reduced

• Training based on simulated sensor
observations.
• The proposed scheme is restricted
to discrete action space.

[121] 4-way Bayesian RL-based
scheme using an en-
semble of NN with
Randomized Prior
Functions (RPF)

Simulation-
based

• The Uncertainty of the RL agent’s
actions is estimated.

• lacks real-world testing
• Assumptions related to the formu-
lated decision-making problem have
been made, i.e. the environment is as-
sumed to be fully observable (MDP)

[36] T-junction RL with stochastic
guarantees

Simulation-
based

• Traversing with safety guarantees • The proposed scheme deals with
discrete action space only
• Assumptions made for the vehicle
and the pedestrians motion

[62] 4-way DQL and DDQ Simulation-
based

• RL-enabled control framework is
built using transfer rules

• RL scheme deals with discrete ac-
tion space only. • The proposed ge-
ometric controller does not represent
actual vehicle constraints, e.g. max
steering rate.
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Chapter 4

Cyber-Physical System State
Estimation in Urban Driving

Improving the performance of the Safety-Critical Cyber-Physical (CPS) system in today’s
new electric vehicles is critical for the vehicle’s safe manoeuvrability. The braking system,
as a typical CPS system, is critical for vehicle design and safe control. As a typical CPS
system, the braking system is crucial for the vehicle design and safe control. However,
precise state estimation of the brake pressure is desired to perform safe driving with a
high degree of autonomy. In this Chapter, a novel sensor-independent state estimation
framework for a safety-critical state estimation technique of the vehicle’s brake pressure
is developed using a deep-learning approach. A (DNN) is structured and trained using
special deep-learning training techniques, such as, dropout and rectified units to obtain
more accurate neural inference model for brake pressure using indirect measurements of
vehicle dynamic states and powertrain states. The proposed model is trained using real
experimental training data which were collected via conducting real vehicle testing. The
vehicle was attached to a chassis dynamometer while the brake pressure data were collected
under random driving cycles. Based on these experimental data, the DNN is trained and
the performance of the proposed state estimation approach is validated accordingly. The
results demonstrate high-accuracy brake pressure state estimation with RMSE of 0.048
MPa.

This Chapter proposes a sensor-independent deep-learning-based approach for precise
state estimation of the electric vehicles brake pressure. The phrase “sensor-independent”
refers to that there is no sensor required to capture the changes in the braking pressure cycle
while driving. Because of the enormous noise associated with the onboard vehicle’s sensors,
implementing sensor-independent data-driven estimate algorithms is critical for designing
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robust control systems [51, 150]. After exploring the published schemes, utilizing modern
DL techniques for state estimation of brake pressure has not been addressed.

The remaining sections of this Chapter are organized as follows: Section 4.1 reviews the
state-of-the-art state estimation schemes of the vehicle’s cyber-physical systems. Section
4.2 demonstrates the dropout-based training and ADAM optimization techniques. Section
4.3 illustrates the experimental setup and data collection system. Section 4.4 presents the
proposed DL brake pressure estimation technique. In Section 4.5, the preliminary results
of the proposed brake pressure state estimation approach. In Section 4.6, the proposed
and the future works are presented.

4.1 Introduction

With the rise of autonomous vehicles, Cyber Physical Systems (CPSs) have become a
major research focus, with teams from academia, industry and government organizations
studying them [151, 152, 153, 154]. The various subsystems of the electric vehicle, like
communications, electric powertrain and energy management, sensors, the driver, and the
environment all come together to form a tightly coupled, dynamically interacting system
[155, 156, 157] . The resulting system has strong uncertainties, nonlinearities, and difficult
to model interactions between its parts, making estimation and control of CPSs in EVs a
difficult task.

For CPSs in EVs, we are concerned primarily with safety critical systems, such as
the braking system [46, 47, 48]. Braking systems have benefitted from numerous techno-
logical advances in the last several decades, such as new control schemes, higher safety
standards, and other electronic improvements [158, 159, 160]. With increased autonomy
and control authority, however, it becomes increasingly important that the braking system
be accurate and safe against faults. Braking control generally uses measurements of the
hydraulic pressure in brakes to decide actions to be taken, measured by pressure sensors
[49]. If a hardware or software fault occurs in these sensors, however, brake control can
be compromised, leading to potentially dangerous safety issues. This can be circumvented
by using high precision brake pressure state estimation, with the potential to evolve the
system into a sensor-independent system with sufficiently accurate estimation [50]. This
type of estimation has been a hot research topic in the past, generally through the use
of control theory-based approaches. A recursive least-squares approach was used in [161]
to estimate brake pressure by using characteristics of the pressure response of antilock
braking systems. An Extended Kalman Filter based approach, combining tire dynamics
and hydraulic models, was used in [162]. Other approaches have included the design of
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inverse models for brake pressure [163], modeling the decrease, increase, and hold of brake
pressure using experimental data [164], including measuring the amount of fluid passing
through the valve to determine brake pressure [165]. All of these, however, are controls
based approaches, with none being suitable for a fully sensor-less design. [51] uses a neural
net to perform estimation of brake pressure, using data obtained from an EV. However,
authors used conventional back propagation while training the FFNN, which suffers from
problems with overfitting, vanishing gradient, as well as higher computational complexity
in training. Nevertheless, these problems have been resolved by implementing the recent
advances of Deep Learning techniques to augment the training process of the DNN [52].

Deep learning can be described as a learning approach that employs DNNs which com-
prise of two or more hidden layers [166]. Deep learning was introduced to resolve the
problems associated with the poor training techniques used with DNNs [167]. Among
these problems are the overfitting and vanishing gradient problem. The vanishing gradient
problem has been resolved using rectified unit functions as activation functions [168]. The
overfitting problem has also been tackled by implementing modern regularization tech-
niques, such as dropout [169]. Dropout randomly drops units and their connections during
the weight update cycle to reduce overfitting. Similar results were found by [170], which
used rectified linear units (ReLU) and dropout techniques to improve the accuracy of their
neural net. These advantages are exploited to improve the training accuracy of the DNN
and enhance the brake pressure state estimation.

Deep learning is also being used prominently in various forms in industrial applications
[171]. Fault detection and classification is an active research topic, with deep learning
being used both to identify faults and to classify them, as well as for learning features
to be used in fault classification [172, 173]. LiftingNet uses a multilayer neural network
to extract deep features from noisy data for use in fault classification in motor bearings
[174]. Other approaches have also been used, such as one that used unsupervised learn-
ing vibration images to perform intelligent feature extraction for fault diagnosis in rotor
systems [175]. Semi-supervised learning is a more common approach, with one approach
using semi-supervised learning based on hierarchical extreme learning machines for soft
sensor modelling [176]. Recently, Dendritic Neuron Model (DNM) with learning schemes
has shown significant ability in solving classification and estimation problems [176].

4.2 DL-based State Estimator Design

Neural networks have demonstrated good performance for state estimation of the brake
pressure [51]. However, obtaining highly expressive state estimator’s model is linked, in
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Figure 4.1: Proposed state estimation framework.

practice, to the accuracy of the utilized training method. Despite the effectiveness of
conventional training techniques, modern deep-learning-based structures have shown su-
periority in terms of minimizing the associated overfitting and achieving fast convergence.
In this section, a Deep Neural Network (DNN) is proposed using dropout regularization
to improve the quality of the brake pressure estimation. As described in Fig. 4.1, the
neural inference model uses indirect measurements including vehicle states and powertrain
states as inputs and the ground truth of the brake pressure values are the outputs while
conducting the training experiment of the neural network. In this section, the standard
structure of the DNN is illustrated. Dropout and the ADAM optimization technique are
also presented.

4.2.1 Dropout-based Training

The backpropagation algorithm is commonly used for updating the weights of the NN. The
operation of a neural network can be described using the equation:

am+1 = fm+1
(
Wm+1am + bm+1

)
(4.1)

where am and am+1 represent the outputs of the mth and m+1th layers of the FFNN, and
bm+1 is the bias weights for the m+1th layer. While training, the aim is to train the net-
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work with associations between the specific input-output mappings {(pl, tl) , . . . (pQ, tQ)},
where p is the input vector and t is the associated output. The Backpropagation algorithm
adopts the Mean Squared Error (MSE) as the performance index for optimization, which
can be approximated as:

F (x) = eT (k)e(k) (4.2)

The steepest descent algorithm, using F as above, is then

wmi,j(k + 1) = wmi,j(k)− α
∂F

∂wmi,j

bmi (k + 1) = bmi (k)− α
∂F

∂bmi

(4.3)

where a is the learning rate. Defining the sensitivity of F to changes in the ith element of
the net input at layer m as

smi =
∂F

∂nmi
(4.4)

the derivatives in (6) and (7) can then be simplified to

∂F

∂wmi,j
= smi a

m−1
j (4.5)

∂F

∂bmi
= smi (4.6)

which then allows for the approximate steepest descent to be described in matrix form as
a Jacobian with form

∂nm+1

∂nm
=


∂nm+1

1

∂nm
1

· · · ∂nm+1
1

∂nm
sm

...
. . .

...
∂nm+1

s . . . ∂nsm+1
∂nm

s m

 (4.7)

where each element can be expressed as

∂nm+1

∂nm
= Wm+1Ḟm (nm) (4.8)
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and

Ḟm (nm) =


ḟm (nm1 ) 0 · · · 0

0 ḟm (nm2 ) 0
...

...
...

0 0 · · · fm (nmsm)

 (4.9)

The recurrence relation for sm can then be expressed using the chain rule

sm =
∂F

∂nm
=

(
∂nm+1

∂nm

)T
∂F

∂nm+1

= Ḟm (nm)
(
Wm+1

)T
sm+1

(4.10)

This relation can then be initialized at the final layer as

sMi =
∂F

∂nMi
=
∂
(
(t− a)T (t− a)

)
∂nM

(4.11)

=
∂
∑SM

j=1 (tj − aj)
2

∂nMi

= −2 (ti − ai)
∂ai
∂nMi

=− 2 (ti − ai) ḟm (nmi )

(4.12)

The final recurrence relation can thus be summarized as

sM = −2ḞM
(
nM

)
(t− a) (4.13)

The training procedure of the neural network is deemed sensitive, and utilizing the
conventional backpropagation (BP) as a stand-alone training approach may result in inac-
curate performance of the obtained model [177]. BP experiences some problems pertaining
to overfitting and computational complexity, which was recently tackled using some inno-
vative DL training techniques, namely the use of dropout.

Dropout is a DL technique that was introduced as a simple way to resolve the problem
of overfitting [52]. As shown in Fig. 4.2, Dropout considers randomly selected units for
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Figure 4.2: Dropout Training Technique

training rather than all units [170]. In each layer m, pm denotes a vector of independent
Bernoulli random variables which represents the probability of the dropped-out nodes.
This vector is multiplied element-wise with the output of the associated layer, am, to form
the thinned outputs, âm, as pmj ∼ Bernoulli (p)

âm = pm ∗ am (4.14)

The feed-forward operation, with dropout, is formulated as

am+1 = fm+1
(
Wm+1âm + bm+1

)
(4.15)

4.2.2 Training Optimization

Dropout has shown its usefulness for Bayesian approximation and estimation purposes
[178]. Incorporating adaptive gradient-based optimization techniques, such as, Adaptive
Moment Estimation Technique (ADAM) with dropout has shown an excellent regression
performance with a minimum training cost [179]. Hence, in this study, ADAM is adopted
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for gradient-based training optimization due to its fast convergence in regression problems
compared to the conventional Stochastic Gradient Descent (SGD) [179].

Based on the estimation of the first and the second moment of the gradients, ADAM
calculates the adaptive learning rates for specific parameters. The optimization algorithm
has been considered suitable in applications where data contains a large number of pa-
rameters. ADAM optimization is also well-suited to state estimation problems where the
measurements are associated with immense noise sequences and sparse gradients [179].
Fig. 4.3 represents the flowchart of the ADAM optimization scheme. α and t define the
step size and time step; respectively. θ0, m0 and v0 represent the initial parameter vector,
first and second moment vectors.

The main aim of the ADAM optimization technique is to minimize the expected value
of the noisy objective f(θ) with regard to its parameters θ. f1(θ),...,fN (θ) represent the
outputs of the stochastic function of following timestamps 1, . . . . . . , N . The sources of
stochasticity might be associated with evaluation of the randomly selected batches of data
points and/or from the associated noise sequence of the objective function. The vector of
the partial derivatives of the objective function ft can be described as the gradient with
respect to θ.

gt = ∇θft(θ) (4.16)

The squared gradient (θt) and the mean and the moving averages of (mt) the mean
represent the estimates of the variance and the mean of the gradient, respectively. The
exponential decay of these averages are controlled by using hyper-parameters β1 and β2.

4.3 Experimental Setup and Data Collection

In this section, the experimental setup as well as the data collection procedure is pre-
sented. The proposed DNN is trained using real vehicle driving data. Several experiments
were performed to collect training data using an electric passenger vehicle with a chas-
sis dynamometer attached. The testing vehicle, data collection methods, selected feature
methods, testing scenarios, and data pre-processing are described in the following sections.

4.3.1 Testing vehicle and the electric powertrain

The data were collected via conducting real driving experiment using an electric car with
chassis dynamometer, as exhibited in 4.4. The chosen vehicle is driven by a permanent-
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Figure 4.3: Adam optimization scheme

magnet synchronous motor, which can operate either in driving or generating modes. The
electric motor is powered via battery via a DC bus, which releases or absorbs the electric
power during driving or braking cycles, respectively. Relevant specifications of the test
vehicle and power train are shown in Table 4.1.

Several driving cycles standards can be used to set up the testing scenarios. The New
European Drive Cycle (NEDC) which comprises of four repeated urban driving cycles was
used for brake pressure estimation using NN [51]. However, arbitrary driving style imposes
more challenges for NN to predict the brake pressure. In this paper, random driving cycles
were adopted to better represent the urban driving environment with a range of speed up
to 45 km/h. The proposed DL based brake pressure estimation is designed to capture the
relevant trends of the urban driving behavior.

The electric powertrain comprises the fundamental components that generate electrical
power. This comprehends a gearbox, an electric motor, a differential and a couple of two
half shafts. At the center of the front axle, the electric motor is placed. In acceleration
scenarios, accelerating the vehicle, the electric motor produces a propulsion torque that is
transmitted to the axle to propel the vehicle through the drivetrain. While the electric
motor switches to the regenerative brake mode to apply a braking toque in the vehicle
deceleration scenarios [180, 181].
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Figure 4.4: EV testing using a chassis dynamometer.

Table 4.1: EV and Powertrain list of specifications.

Specification Value Unit
Vehicle Overall Mass 1360 kg.

Gear ratio 7.881 -.
Transmission efficiency 96% -.
Nominal radius of tire 0.295 m.
Coefficient of air Resistance 0.32 -.
Wheelbase 2.50 m.

Battery Voltage 326 V
Capacity 66 Ah

Electric motor Maximum torque 144 Nm
Peak power 45 kW

The hydraulic brake system installed in the testing vehicle includes wheel cylinders, a
master brake cylinder, and inlet/outlet valves. As illustrated in Fig. 6 which represents
the hydraulic brake structure, a spring and a piston are used to model the wheel cylinder
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Figure 4.5: The vehicle speed and corresponding brake pressure

movements. Based on the hydraulic valve dynamics and fluid flow, the pressure of the
wheel cylinder can be expressed by equation 20. Detailed models can be found in :

ṗFW =
kFW
π2r4FW

CdAv

√
2 ·∆p
ρfluid

(4.17)

where rFW and kFW denote the radius of the piston and stiffness of the spring, respec-
tively. Av is the cross section area of the valve opening and Cd is the flow coefficient. ∆p
and ρfluid are the pressure difference across the valve and the density of the hydraulic fluid.

4.3.2 Data collection and preprocessing

The vehicle was run through several random driving cycles, giving a total of 10000 sec-
onds of data. Vehicle states and powertrain data were collected using the CAN bus, at a
frequency of 100 Hz. In order to enhance the training performance, the raw unbalanced
features data were smoothed and subsequently scaled from 0 to 1 to reduce the effect of
the dissimilar units of the used signals. Fig. 4.5 shows an example of the collected raw
data of the vehicle speed and corresponding brake pressure.
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4.3.3 Process of feature selection

Selecting unique, and redundancy-free features contribute to a successful training of the
state estimator model. The main states of the vehicle and powertrain were selected to
train the model of brake pressure state estimator, while the measured brake pressure value
is used as a ground truth. In addition to the vehicle and powertrain parameters, the motor
speed and torque, the battery voltage and current, and the state of charge (SoC) of the
battery are used as unique features. This is because when the EV is in the deceleration
mode, the electric motor works as a generator, recapturing the kinetic energy. This causes
the motor and battery current to change from positive to negative, which indicates that the
battery is being recharged by regenerated energy from braking. The mean and standard
deviations of some vehicle states are also added as features.

4.4 Deep-Learning Based State Estimator Model

In this section, the proposed deep-structured neural network is evaluated for the purpose
of brake pressure state estimation. The scaled EV features along with the ground truth
brake pressure are considered for the training process of the DNN. The proposed DNN
uses the vehicle states and powertrain states and the ground truth brake pressure values
as target outputs while training the DL state estimator model. Fig. 4.5 illustrates some
key features from the training data for one natural driving cycle.

Designing an accurate DL-Based state estimator model to estimate the brake pressure is
not straightforward. Obtaining an accurate model is linked to the accuracy of the utilized
training datasets, the structure of the network, training and optimization techniques. In
this study, innovative deep learning techniques are exploited to enhance the training process
of the DNN. Dropout regularization and Rectified Linear Units (ReLUs) are implemented
to improve the prediction of the Brake pressure state estimator’s model. As shown in Fig.
4.7, the proposed DNN consists of visible input and output layers and 3 hidden layers,
along with the visible inputs and outputs layers.

The ReLU activation function is used to generate the output signal of the hidden values,
it can be expressed as follows:

f(n) = max(0, n) (4.18)

The ReLU activation function is used to ensure accurate training for all hidden lay-
ers’ nodes. Dropout regularization method is implemented to reduce the training cycle’s
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Figure 4.6: Sample of pre-scaled key features training data.

computations by considering arbitrarily selected nodes for the training rather than the
entire net. This means that the dropped-out units have temporally no contribution on the
forward path and any weight updates are not applied to the neuron on the backward path.
The implementation of dropout is not cumbersome; it is based on picking random units
with a predefined probability P to be excluded from the training process. A low proba-
bility value has small impact and high values may cause under-learning by the network.
However, with respect to the size of the DNN and number of units, a probability value of
10%-50% can provide good performance.

4.5 Experimental Results and Discussions

This section presents the training and testing results of the implemented DL-based ap-
proach for the brake pressure state estimation. Discussions of dropout probability tuning
are also included.
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Figure 4.7: DNN Training Scheme

4.5.1 State estimator model training results

The proposed brake pressure state estimation method is implemented in Python with
Keras. Several DL models were developed and trained by importing the experimental data
to the Keras environment. A DL structure of 3 hidden layers with 60, 40 and 20 neurons
respectively, was chosen based on its smallest MSE of 0.087. All the experiments shown
were run on an AMD Radeon™ HD 6800 Series GPU. The ADAM optimization algorithm
is used to update the weights and biases based on the Mean Squared Errors (MSE) loss
function:

MSE =
1

2N

n∑
k=1

(
Yk − Ŷk

)2

(4.19)

where Yk and Ŷk are the target and evaluated network outputs; respectively, N repre-
sents the number of training data points.
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Dropout technique can be implemented for the hidden layers as well as for the visible
layers. In order to investigate the best implementation with appropriate probability p,
several batch training tests are performed with probabilities ranging from 0.1 to 0.5. The
tests are performed with dropout being applied to both the visible input layer alone, and
to the visible input and the hidden layers. Fig. 4.8 exhibits the average RMSE values
over 200 epochs for both cases. As can be seen, the RMSE values increases as the dropout
probability increases. It can be noticed that dropout is more feasible to be incorporated for
hidden and visible input layers, based on the lower RMSE values. The dropout probability
can be optimized through cross validation.

Figure 4.8: RMSE in validation with different dropout probabilities

The proposed model is trained using 8500 experimental data points over 200 epochs.
Fig. 4.9 illustrates the accuracy of the training performance of the DNN. As shown, the
losses represented by MSE values decrease as the DNN’s weights and biases updated. This
proves the accurate update of the weight and biases while training the DNN. Based on the
small MSE values, it can be concluded that the training process has obtained an expressive
neural network model based on the training set used.

4.5.2 State estimator model testing

In this section, the proposed DL-Based state estimation algorithm is tested and evaluated.
A testing environment is developed for the trained model. A 20 % of the collected data
points was selected for testing the proposed state estimator model. The testing data
includes the vehicle states and the power train states. The output of the proposed DL-based
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Figure 4.9: MSE in training over 200 epochs

state estimator has been compared to the ground truth values of the brake pressure. Fig.
4.10 shows the scaled brake pressure state estimation. The x-axis represents the number
of samples while the y-axis represents the scaled brake pressure. As can be observed, the
results of the proposed DL-based state estimation approach show a significant coincidence
with the ground truth values of the brake pressure.

Figure 4.11 shows the state estimation error magnitudes. To evaluate the accuracy
of the proposed approach, regression performance errors are quantified using two main
indices, namely, the RMSE and the coefficient of determination R2. R2 is a measure of
the model’s predication accuracy. It falls between 0 and 1, and the higher the value of the
coefficient R2, the better the model at predicting the observations. R2 is described as

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳi)
2 (4.20)

where ŷ represents the predicated values of the state y and ȳ represent the mean value of
the state.

The proposed model has achieved a regression accuracy with R2 of 0.994, indicating
that the proposed model of the brake pressure state estimator can achieve high predication-
accuracy of the brake pressure. Compared with the conventional training technique [51],
the proposed has achieved more accurate state estimation with RMSE of 0.048 MPa.
Based on the presented results, the proposed method demonstrates an accurate sensor-
independent brake pressure state estimation.
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Figure 4.10: DL-Based Brake Pressure state estimation

Figure 4.11: Error values of the proposed state estimation method
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4.6 Conclusion

This Chapter proposes a novel DL-based state estimation algorithm for a safety-critical
cyber-physical system. Using dropout and other DL modern elements such as ReLU acti-
vation functions, a novel DL-based model is introduced for brake pressure state estimation
purposes. Real experiments for data collection are conducted via testing the EV on a
chassis dynamometer under random driving cycles. The obtained data of the powertrain
systems and vehicle states, as well as the ground truth values of the brake pressure are
used for the training process. The DL-based state estimator model is trained using dropout
with different probabilities. The training results show a high fitting accuracy as well as
the testing results demonstrate the applicability and effectiveness of the proposed brake
pressure state estimation approach.

As a future work of this research, the proposed state estimation can be further imple-
mented and integrated with the onboard brake control system. The proposed DL-based
model can also be flexibly expanded to estimate other states of the vehicle under several
road conditions in urban and high-way scenarios. Furthermore, the estimated brake pres-
sure information can be utilized in designing decision-making schemes for optimal braking
in complex urban multiagent driving environment.
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Chapter 5

Hierarchical Reinforced-learning for
Feasible Decision-Making

Reinforcement learning-based techniques, powered by deep-structured neural nets, have
demonstrated superiority over rule-based methods in terms of making high-level behav-
ioral decisions due to qualities related to handling large state spaces. Nonetheless, their
training time, sample efficiency and the feasibility of the learnt behaviors remain key
concerns. In this Chapter, we propose a novel hierarchical reinforcement learning-based
decision-making architecture for learning left-turn policies at unsignalized intersections
with feasibility guarantees. The proposed technique is comprised of two layers; a high-
level learning-based behavioral planning layer which adopts soft actor-critic principles to
learn high-level, non-conservative yet safe, driving behaviors, and a low-level Model Pre-
dictive Control (MPC) framework to ensure feasibility of the two-dimensional left-turn
maneuver. The high-level layer generates reference signals of velocity and yaw angles for
the ego vehicle taking into account safety and collision avoidance with the intersection ve-
hicles, whereas the low-level planning layer solves an optimization problem to track these
reference commands taking into account several vehicle dynamic constraints and ride com-
fort. We validate the proposed decision-making scheme in simulated environments and
compare with other model free Reinforcement Learning (RL) baselines. The validation
results demonstrate that the proposed integrated framework possesses better training and
navigation capabilities compared to the RL decision-making without integration.

The rest of the Chapter is structured as follows. Section 5.1 presents the proposed
integrated decision-making scheme. Section 5.2 illustrates the experimental setup design
and implementation details. Section 5.3 presents the results of the proposed integration
followed by a discussion. Finally, section 5.4 concludes the proposed and future works.
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5.1 A Hierarchical Reinforced-Learning Approach

The proposed approach has two primary planning layers: a high-level behavioral layer and
a low-level motion control layer. The high-level behavioral planning is considered as a
reinforcement learning problem, whereas the low-level motion is planned using a nonlinear
model predictive control technique. The behavioural layer maps the observations collected
from the driving environment into reference control signals, which are subsequently passed
to MPC, which solves the tracking optimization problem and provides low-level commands
to the ego vehicle. In this section, we show our multi-layered decision-making method
for left-turn maneuvers at four-way unsignalized intersections. We focus on problem for-
mulation, reward function design, and observation and action spaces. We next describe
the implemented soft actor-critic principles, as well as the low-level motion planning and
control, which is also presented in greater detail.

5.1.1 Overview of the Integrated Framework

We tackle a targeted driving scenario at an unsignalized intersection for the proposed
decision-making challenge. The decision-making of the ego vehicle is coupled to the motion
trajectory of the target vehicles while traversing the unsignalized intersection. This scenario
simulates an ego vehicle navigating in a complex world where the simulated target vehicles
do not decelerate or yield to the ego vehicle. We further assume that the target vehicle
motion is observed by the ego vehicle [30].

Fig. 5.1 depicts the integrated decision-making framework. The decision-maker (agent),
the ego vehicle, receives the perceptual observations and chooses actions accordingly. These
actions are applied to the driving environment, and the environment returns rewards and
new set of observations. As a standard RL setting, through these interactions with the
driving environment, the ego-vehicle trains a policy that provides actions to maximize the
future rewards. In our example, this policy is trained with the SAC algorithm to output
reference velocity vref and heading signals θref . The motion planning layer takes these
reference signals as inputs to the two-dimensional tracking control problem, solving the
formulated optimization problem while accounting for real-world constraints related to
vehicle dynamics, urban traffic rules, and ride comfort. The optimized, feasible, control
inputs are then produced to drive the vehicle’s physical model in the simulated driving
environment. The design process of these planning layers are explained in greater details
in sections 5.1.2 and 5.1.3.
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Figure 5.1: An illustrative sketch of the proposed hierarchical decision-making algorithm.
The agent (decision maker) is denoted by the two integrated planning layers, whereas the
CARLA simulated driving scenario is the environment.

5.1.2 High-level Behavioral Layer

A Markov Decision Process is used to formulate the left-turn behavioral planning problem.
An MDP is described as a tuple {S,A,R, T, γ}. The observed state S includes the ego
vehicle state as well as the state of the target vehicle. Specifically, ego and target velocities,
positions, and information related to lane geometry are included. The transition function
T maps state-action pairs to a new state. The immediate reward is defined by the reward
function R, whereas γ represents the discount factor for long-term rewards. While abiding
by the speed limit, we design our learning scheme based on minimizing the left-turn time
and avoiding possible collision with other intersection vehicles. Hence, the optimality of the
approach can be determined by identifying the best trade-off between these two conflicting
interests.

Reward Function

The reward function requires a significant amount of shaping to show effective learning ca-
pabilities. Given that safety is the most important factor in autonomous driving, we formed
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a reward function that prioritizes safety while maintaining a balance between transporta-
tion efficiency and safety during the left-turn maneuver. For the high-level two-dimensional
left turn behavioral planning, the desired driving behavior of the learning agent is to pro-
ceed to the end of the route (completing the left turn) as efficiently as possible while
remaining safe (in lane and no collisions). We performed extensive experimentation with
several reward designs and found that a progress-along-route reward did not lead to ef-
ficient route completion because the agent was encouraged to take many steps to gather
more reward. Instead, a negative reward for distance-to-goal did encourage efficient route
completion. Furthermore, a positive reward is given for high speeds that remain under the
speed limit of 12m/s, while negative rewards are given for exceeding the speed limit. A
negative reward is given with magnitude proportional to lateral deviation from the lane
center. The developed reward function is described as follows:

rego = reff + c1rdtg + c2 ∗ rlat + rterminal (5.1)

where rdtg and rlat represent the distance-to-goal and lateral deviation penalties, respec-
tively. These terms are tuned by the constants c1 and c2. rterminal is the route completion/non-
completion reward/penalty, which was tuned to reward the agent if the route was success-
fully completed or penalise the agent if there was a collision or exceeded the maximum
number of steps. The remaining term reff is designed to ensure efficient left-turn crossing
where the agent is encouraged to drive as quickly as possible while remaining under the
speed limit vlim. This term can be described as follows:

reff =

{
c3 ∗ (vego − vlim) if vego > vlim

c4 ∗ vego otherwise
(5.2)

where vlim and vego represent the urban speed limit and the current ego vehicle speed,
respectively. 0 ≥ c3 is a hyperparameter for adjusting the progression penalty when
(vego ≥ vlim), whereas 1 ≥ c4 ≥ 0 is the positive progression reward.

Observation and Action Spaces

As we assume that the target vehicle’s crossing behavior is observed by the ego vehicle,
the learning agent has some information about other involved agents moving within its
visibility range. Hence, the observation space includes information about the dynamic
states of the ego vehicle itself and the target vehicle velocity, assuming that it is traversing
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Table 5.1: Description of the observation and action states.

Observation space (R15)
ve magnitude of linear velocity of the ego vehicle R
v̇e magnitude of linear acceleration of the ego vehicle R
dθe delta yaw angle of ego vehicle R
θ̇e yaw rate ego vehicle R
dcl lateral deviation from lane center of the ego vehicle R
at−1 previous action R2

vtar linear velocity of the target vehicle R
ptar longitudinal and lateral distance to the target vehicle R2

ψl yaw angle of the lane at 1, 5, 10 meters ahead R3

Action space (R2)
vref reference velocity signal R
θref reference heading signal R

the intersection maximum urban speed allowed, and other input features related to the
intersection geometry and collision flags. The state provided to the agent contains the ego
velocity, acceleration, yaw angle delta with respect to the lane center, yaw rate, and the
lateral deviation from lane center of the ego vehicle. The state also contains the yaw angle
of the lane at intervals of 1, 5, and 10 meters in front of the ego, which is necessary to
track the lane center. The state also contains the relative lateral and longitudinal distance
between the target and ego vehicles, as well as the velocity of the target vehicle. Finally,
the previous action taken is also recorded in the next state. All dynamic features in the
observation vector have been normalized to ensure that they vary in identical ranges for
improved convergence capabilities. Table 5.1 shows the definitions of the observation and
action spaces.

Left-turn behavioral planning using SAC

To train the policy network, we implement SAC algorithm with adaptive exploration ca-
pability. Combining the actor-critic principle and adaptive entropy regularization, SAC
trains its stochastic policy in an off-policy fashion to identify an optimal trade-off for the
explore-exploit problem avoiding possible premature convergence. In addition to learning a
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policy πψ, the algorithm learns two Q-function approximators (networks) Qϕ1 , Qϕ2 , which
are updated by the following loss function:

L (ϕi) = E
(st,at,rt,st+1)∼D

[
(Qϕi (st, at)− y (rt, st+1))

2] , (5.3)

where i =1, 2 and D represents the experiences obtained by the agent’s while exploring
the environment. The target y (rt, st+1)) is given by:

y (rt, st+1) = r(st, at) + γTtar(st+1), (5.4)

where Ttar function is optimized by the following equation:

Ttar(st+1) =

(
min
j=1,2

Qϕtar,j (st+1, ãt+1)− α log πψ (ãt+1 | st+1)

)
, (5.5)

where ãt+1 represent the next actions which are sampled from the policy πψ (· | st+1). α is
used the tune exploitation-exploration trade-off which is governed by the policy’s entropy.
For instance, decreasing α values results in less exploration [56].

One implementation detail that we found effective was to schedule the entropy bonus
α used in SAC based on the success rate of the task. Specifically, we use the following
equation to adjust the exploration-exploitation term based on the performance of the agent:

α = clip(1− λ, v1, v2), (5.6)

where λ is the success rate over the past 10 evaluation episodes, and the hyperparameters
v1 and v2 are tuned to be 0.1 and 0.3, respectively. We start with α = 0.3 and to ensure
that the agent sufficiently explores the environment avoiding any local optimum. As shown
in Fig. 5.2, adaptive entropy regularization has resulted in faster convergence, higher mean
rewards and less collision rates.

The policy is learnt by maximizing the expected future return and expected future
entropy as denoted in V π(st) function:

V π(st) = E
at∼π

[Qπ(st, at)] + αH(π(· | st))

= E
at∼π

[Qπ(st, at)− α log π(at | st)] .
(5.7)
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(a) Average rewards

(b) Collision rates

Figure 5.2: Comparison of training curves of driving polices (with and without adaptive entropy
regularization).
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Following the current policy, the actions can be derived from the current policy ã′ ∼
πψ (· | s), whereas the states are drawn from the replay buffer s ∼ D. We use the reparam-
eterization trick to optimise the policy πψ (· | s), in which a sample from actions is drawn
by computing a deterministic function of state, policy parameters, and independent noise
ξ as follows:

ãψ (s) = tanh (µψ (s) + σψ (s)⊙ ξ) , ξ ∼ N (0, I) (5.8)

where tanh is used to bound the obtained actions to a finite range of [−1, 1].
The loss function for SAC learning, can be formulated as to maximize the expected

future rewards plus the expected future entropy as can be described below:

L(ψ)SAC =Est∼D [α log πψ (ãψ (st) | st)
−min

i=1,2
Qϕi (st, ãψ (st))]

(5.9)

5.1.3 Low-level Motion Planning and Control layer

The low-level layer is based on Model Predictive Control (MPC), that is responsible for
vehicle motion control. The MPC controller respects the vehicle non-holonomic constraints
by utilizing vehicle kinematic model for prediction [67]. The model is shown in Fig. 5.3
and stated below.

X

Y

δf

CG

ICR

θv
R

βs

x

y

Figure 5.3: Kinematic bicycle model schematic.

ẋ(t) =

ẋẏ
θ̇

 = f
(
x(t),u(t)

)
=

v cos(θ + βs)
v sin(θ + βs)
v cos(βs) tan(δf )

L

 , (5.10)
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where

βs = arctan

(
lr tan δf

L

)
(5.11)

where the vehicle state is x =
[
x y θ

]⊤
, x and y are the position of the vehicle in

X-Y global frame, and θ is the vehicle orientation in the global frame. Furthermore,

u =
[
v δf

]⊤
is the vector of control actions, v is the velocity of the ego vehicle at its C.G.,

and δf is the steering angle. In Fig. 5.3, βs is the side-slip angle of the vehicle, lr is the
distance between the rear axle and the C.G., and L is the wheelbase length of the vehicle.

The intuition behind using a vehicle kinematic model for optimization is that the dy-
namic effects are negligible due to low speed driving in urban environments. In addition,
to ensure ride comfort and safety, several hard constraints are set on the optimization
variables as given in table 5.2.

Table 5.2: Constraints set on the optimization variables.

Parameter Lower Bound Upper Bound

u̇(t) u̇(t)min =

[
−3 m/s2

−π
3
rad/s

]
u̇(t)max =

[
5 m/s2

π
3
rad/s

]
u(t) u(t)min =

[
−2.25 m/s
−π

3
rad

]
u(t)max =

[
12 m/s
π
3
rad

]

To let the high-level control layer drive the ego vehicle while abiding tovehicle con-
straints and respecting the static map, e.g. road network, the MPC objective function is
formulated to minimize the following running costs:

1. Velocity error between reference and actual speed of the vehicle.

2. Heading error between reference and actual heading of the vehicle.

3. Change in control actions.

Velocity and heading errors are based on the reference generated by the high-level control
layer. Therefore, the high-level agent learns to generate the appropriate heading refer-
ence and velocity reference, and the low-level MPC achieves them while satisfying vehicle
constraints. Therefore, the objective function J is given by:

J
(
z,u

)
=

∫ t0+TH

t0

∣∣∣∣zref − z
∣∣∣∣2
Q
+
∣∣∣∣u̇∣∣∣∣2

R
(5.12)
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where z =
[
θ v

]⊤
and, Q ∈ R2×2, R ∈ R2×2, t0 is the initial time, and TH is the prediction

horizon. Accordingly, the Optimal Control Problem (OCP) can be formulated as follows:

min
u(t)

J(z(t),u(t)) (5.13a)

s.t. ẋ(t) = f
(
x(t),u(t)

)
, ∀t ∈ [t0, t0 + TH ] (5.13b)

u̇min(t) ≤ u̇(t) ≤ u̇max(t),∀t ∈ [t0, t0 + TH ] (5.13c)

umin(t) ≤ u(t) ≤ umax(t),∀t ∈ [t0, t0 + TH ] (5.13d)

In order to transform the OCP into a NLP, temporal discretization was applied to the
system dynamics over a finite prediction horizon (N = 15). Specifically, the Runge–Kutta
method (RK4) was used with a time step of T = 0.25s. As proposed by Bock and Plitt in
[182], multiple shooting was used to enforce the dynamics of the system using constraints,
reducing the nonlinearity of the objective function especially in the latter steps of the
prediction horizon. To solve the NLP, the interior point optimizer (IPOPT) [183] from the
CasADi [184] software package was used.

For more details, the implementation of the proposed integration between the behav-
ioral and motion planning layers is described with greater details in algorithm 1.

5.2 Experiments

5.2.1 Environment Setup and Implementation details

We designed our reinforcement learning environment using the CARLA simulator [185]
as it provides realistic simulated driving scenarios within urban environments, in addition
to its flexible Python API. Fig. 5.4a, shows the task setup. We spawn the autonomous
vehicle at a fixed predefined starting point aiming at learning how to follow the planned
left-turn route efficiently and safely (no collision with target vehicle, no lane invasions),
and reaching the predefined destination point. The target vehicle is spawned randomly
covering all possible locations along the route as shown in Fig. 5.4b. We initiate up to
40 CARLA instances, simulating the same left-turn driving environment, which results in
faster experience sampling compared to a single CARLA instance.

All the experiments in this study are conducted using NVIDIA GeForce RTX 3090. The
GPU is well-equipped with 120 cores which enhance the performance of the neural networks
used for policy optimization. The use of graphics processing unit is supported but not nec-
essary for the training. We make use of Baidus deep learning framework-PaddlePaddle
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Algorithm 1 SAC with MPC Integration

1: Initialize policy parameters θ, Q-function networks (Qϕ1 , Qϕ2), empty replay buffer D
2: for step in warm-up steps do
3: Run network with randomized weights
4: end for
5: repeat
6: Observe state st and sample action ãψ
7: Pass action ãψ to MPC as zref
8: MPC OCP is solved for optimal control actions while respecting vehicle dynamics

and ride comfort using Eq.5.13
9: Execute action u in the environment
10: Observe next state st+1 and obtain reward rt using Eq.5.1 and Eq.5.2
11: Increment total steps taken
12: if Memory buffer D is full then
13: Delete oldest transition in buffer
14: end if
15: Store transition (st, at, st+1, rt) in memory buffer D
16: if time to update then
17: Randomly sample mini-batch from replay buffer D
18: Update Q network policy parameters Qϕ1 , Qϕ2 using Eq.5.3 and Eq.5.4
19: Update entropy bonus parameter α using Eq.5.6
20: end if
21: if st+1 is terminal state then
22: Reset environment
23: end if
24: until Convergence or current step is equal to max steps
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(a)

(b)

Figure 5.4: Driving experiment setup. Fig 5.4a illustrates the CARLA unsignalized intersection
environment setup. Fig. 5.4b shows the the same setup with the possible starting points of the
target vehicle.

which is available for both CPUs and GPUs. This forms the base of a high-efficient re-
inforcement learning framework, PARL [186]. This framework provides several research
capabilities including reusability, reproducibility and extensibility. Building and integra-
tion of custom algorithms for policy training becomes feasible via use of this framework. It
is composed of three major components - Agent, Algorithm and Model. The algorithm rep-
resents the update mechanism for parameters in model and therefore necessarily contains
one model which abstracts the forward network. The model via abstraction delineates the
forwards network defining critic or policy network which accepts states as input. The agent
forms the data bridge for data I/O between the environment and algorithms. These three
components serve as a compact API for distributed training by addition of a decorator.
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Table 5.3: Experiment Parameters

Hyperparameter Value
NN size 6X [256, ReLu]

Mini batch size 512
Replay buffer size 5e+05

Actor Learning Rate 3e-04
Critic Learning Rate 3e-04

Exponential Discount Factor 0.99
Max Episode Steps 500

Our customized decision-making reinforcement learning agent is implemented using
PARL. We have chosen PARL due to its capability in supporting high-performance training
parallelization with large number of CPUs and multi-GPUs, which is necessary to collect
a large volume of experiences on the relatively slow Carla simulator. Additionally, PARL
offers existing implementations of popular model free algorithms (TD3, PPO, SAC) on
the Mujoco task set, which we were able to adapt to the CARLA-based environment we
propose. The hyper-parameters used for the parallel version of SAC have been listed in
Table 5.3 and the simulation timestep is 0.1 sec.

5.2.2 Policy training and evaluation

The SAC neural network is randomly initialized and trained via maximizing the left-turn
reward function explained in (Eq. 5.1). We defined the stopping criteria for any training
episode to be in cases where the agent exceeds the predefined maximum number of steps,
reaches the destination, collides with the target vehicle, or lateral deviates from lane center
more than 7.5 meters. The target vehicle is programmed to not yield to the ego vehicle as
well as to abide by the urban speed limit.

To provide a holistic evaluation of the proposed design performance, we compare it to
other model-free DRL techniques that can handle the continuous action space of the prob-
lem. As part of this experimental validation, we test the Twin Delayed Deep Deterministic
Policy Gradient (TD3) and proximal policy optimization (PPO) approaches, which are
common baselines for RL policy learning comparison in autonomous vehicles [56]. TD3
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[187] is a modified, state of the art actor-critic, Deep Deterministic Policy Gradient al-
gorithm for problems with continuous control domains. On the other hand, PPO is an
improved on-policy of Trust Region Policy Optimization (TRPO) for robotics and games
playing applications [188, 189].

5.3 Results and Discussion

In this section, we present the results of the proposed decision-making approach for left-turn
traversing behaviour at four-way unsignalized Intersection. In section 5.3.1, we demon-
strate the high-level behavioral planning layer performance using several model-free DRL
algorithms, whereas the results of the integrated scheme are highlighted in section 5.3.2.
We also conclude this section with remarks highlighted in section 5.3.3.

5.3.1 Model-free behavioral planning comparison

We compare the learning performance of SAC with other model-free RL algorithms, namely
TD3 and PPO, in this section. For this comparison, the low-level motion planning is not
integrated, the decision-maker (agent) receives observations from the intersection driving
environment and maps them directly into throttle and steering commands executed by
the environment. As seen in Fig. 5.5a, SAC outperforms both TD3 and PPO in terms
of maximizing cumulative reward with fewer samples. SAC and TD3 do achieve a higher
reward compared to PPO. This can be attributed to the entropy bonus in SAC allowing
it to discover a better policy via exploration and double-critic architecture in SAC which
improves the learning performance by reducing the overestimation bias. Furthermore, PPO
requires the largest number of policy updates to converge but less consistently, as shown
in Fig. 5.5b, where collisions occur with higher rate compared to SAC and TD3.

5.3.2 Integrated scheme Results

In this section, we illustrate the results of the proposed hierarchical decision-making scheme
at unsignalized intersections. These results demonstrate the effectiveness of learning effi-
cient, yet safe, left-turn behaviors with feasibility guarantees. The training performance
of the network policy is evaluated using predefined Key Performance Indicators (KPIs).
Among these, the average episodic reward, the average success rate, the average collision
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rate and the max episodic speed. Fig. 5.6 shows the training evaluation for the first 500k
training steps.

As shown in Fig. 5.6, at the very beginning of the training process, the average reward
is noticeably low, which means that the agent is being heavily penalized as the collision
rate is very high which hinders the agent from completing the task. As the training passes
30k steps, the agent significantly learns how to avoid colliding with the target vehicle as
Fig. 5.6 shows a significant quick drop in the collision rate which align with the significant
ascension of the average reward. However, the success rate still ranges between 30% to
40% agent which shows that the policy is not trained sufficiently. The policy starts its
convergence after approximately 200k steps where the average reward converges to a high
value and the average success rate fluctuates with values above 90%. Fig. 5.d illustrates
the max episodic speed values during the training process. It can be discerned that the
proposed decision-making approach provides feasible actions that abide by the constraints
and ride comfort with a success rate above 90%.

The same training scenario, where the ego vehicle embarks on its two dimensional mo-
tion at the stop line and the target vehicle is spawned randomly in the scene, is adopted for
testing the trained decision-making model. After conducting several training experiments
for the developed integrated policy, a consistent performance is observed (see Fig. 5.8 ).
We then save the superior trained policy to test the performance of the left-turn behavior
over 1000 episodes [65]. The results show that the agent can maneuver left-turns with a
success rate of 97.8%, colliding only once with the target vehicle, and failing to complete
the task successfully in 21 coincidences (due to exceeding the maximum number of steps or
lane departure). The effectiveness of the learnt traversal policy is visually demonstrated in
Fig. 5.7, where we show a left-turn maneuver for one of the challenging traversal scenarios
where the target vehicle shares conflict points with the ego vehicle. As seen in Fig. 5.7a,
the ego is at the stop line waiting for the target vehicle to traverse the intersection envi-
ronment. The non-cautious, yet safe, behavior of the trained policy can be shown in Fig.
5.7b, which is snipped after 1 sec, where the ego vehicle starts it is two-dimensional motion
as quickly as safely possible. Fig. 5.7c and Fig. 5.7d represent the left-turn progress when
nearly and fully completed, respectively.

5.3.3 Discussion on the Framework’s Verification and Validation

In a recent review article on the verification and validation (V&V) techniques of decision-
making and planning approaches in autonomous driving, the authors categorise the (V&V)
approaches into three primary classes: fault injection testing, formal verification, and
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scenario-based testing [190]. While fault injection approaches focus on examining the
robustness of the decision-making schemes under software or hardware faults, formal ver-
ification methods examine the correctness of the developed decision making scheme from
a logical and mathematical standpoint. Scenario-based testing approaches, On the other
hand, are focused on safety, and are classified into fundamental and advanced approaches
based on the interaction between road users in generated scenarios. As they address safety-
critical scenarios and edge cases, standard RL and advanced RL-based decision-making
techniques, such as DRL and adversarial approaches, fall under the category of advanced
scenario-based testing methodologies.

Looking at the aforementioned results from a safety standpoint which is represented by
the discussed KPIs, such as collision rate and success rate, it can be noticed that learning
driving policies with low-level motion planning integrated, is necessary for learning safety-
critical driving behaviors with feasibility guarantees. With the MPC enabled, the policy
start converging after converges after 200k training steps with success rate 100% as depicted
in Fig. 5.6a and Fig. 5.6b, whereas the standalone SAC converges after 500k steps. This
could be attributed to the fact that the control inputs produced by the MPC, to the
environment, have been already optimized taking real-life driving constraints into account.

Comparing our results with the state-of-the-art published works, including random
curriculum learning-based results provided in [30], we can discern that our work results in
faster convergence and higher success rate.
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(a) (b)

(c)

Figure 5.5: Model-free comparisons. Fig. 5.5a and and Fig. 5.5b show the average episodic
reward and collision rate, respectively. Fig. 5.5c represent the average success rate (over 10
evaluation episodes). The models are trained until their performance converged.
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(a) (b)

(c) (d)

Figure 5.6: Training curves of the proposed reinforced learning hierarchical decision-making
scheme. Fig. 5.6a illustrates the average episodic reward. Fig. 5.6b and 5.6c exhibit the success
rate and the collision rate, respectively. The maximum episodic speed is plotted in Fig. 5.6d
where the agent converges to the max urban speed allowed (12 m/s). The Policy is trained until
convergence.
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(a) T = 0 Sec (b) T = 1 Sec

(c) T = 4 Sec (d) T = 6 Sec

Figure 5.7: Testing snippets of left-turn maneuvers at unsignalized Intersection.
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Figure 5.8: Mean of the average rewards (denoted by x) and standard deviations of three
training experiments of the developed integrated model
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5.4 Conclusion

In this Chapter, a novel hierarchical reinforcement learning-based decision-making scheme
is proposed for automated unprotected left-turn maneuvers at unsignalized intersections.
The proposed novel integrated scheme combines soft-actor-critic and model predictive con-
trol principles for high-level behavioral planning and low-level motion planning layers, re-
spectively. The goal of this integration is to learn high-fidelity left-turn behaviours while
accounting for real-world constraints related to vehicle dynamics, urban traffic rules, and
ride comfort. For adaptive exploration-exploitation capabilities, we modify the SAC im-
plementation by linking the entropy bonus updates to the agent’s episodic success rate.
A customized CARLA urban driving environment is designed to validate the proposed
decision-making scheme. The high-level training comparison shows a superiority of SAC
over other model-free learning schemes including TD3 and PPO. Moreover, the training
results of the integrated framework illustrates the effectiveness of the proposed method
in terms of performance and sample efficiency. Finally, the testing visual demonstration
demonstrates the efficiency and safety of the learn left-turn behaviors yielding a success
rate of 97.8% over 1000 testing episodes.

We should acknowledge, however, that there are few limitations of the proposed work.
Among these, first, the generalization capability to handle environments with more agents
coming from different directions and lanes, as well as the ability of handling noisy per-
ceptual observations. Second, we need to improve the model’s accuracy and navigation
capabilities under occlusions where the intersection environment is partially observable.
Therefore, we have future research directions towards improving the model in these as-
pects.
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Chapter 6

Conclusions and Future Works

In this thesis, we develop high-fidelity learning-based frameworks for feasible automated
decision-making in urban environments. Throughout this dissertation, we emphasize on
practical and technical design considerations to train safety-critical, efficient with feasi-
bility guarantees, decision-making policies in safety-critical urban environments. Based
on our in-depth survey conducted in Chapter 3, we found that research efforts are still
required to tackle the real-world challenges of unsignalized intersection-traversal problem.
We suggest methods and heuristics that can be used to facilitate real-world driving for
testing and validation purposes of the RL-based models. Taking one of the concluded
recommendations into consideration, in Chapter 4, we design a learning-based sensor-
independent state-estimation technique for cyber-physical system in urban environments.
Furthermore, in Chapter 5, we propose a novel hierarchical reinforcement learning-based
decision-making architecture for learning left-turn policies at unsignalized intersections
with feasibility guarantees.

In further depth, inChapter 3, we study the decision-making problem at urban critical
environments, namely unsignalized intersections. We review the published works on various
aspects related to decision-making challenges associated with decision-making at unsignal-
ized intersections with a focus on learning-based schemes. We discuss these schemes in
terms of the tackled driving scenario, the involved challenges, the proposed learning-based
designs and the validation in simulations and real-world environments. We identify key re-
marks for better handling the large partially-observable state space of the problem. More-
over, based on our discussion and investigation, we found that research efforts are still
required to tackle the real-world challenges of unsignalized intersection-traversal problem.
More specifically, we found that the state-of-the-art decision-making approaches focus on
advancing the high-level behavioral reasoning neglecting the importance of feasibility guar-
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antees and provided by motion planning and low-level high-fidelity feedback controller and
state estimator layer. Hence, we recommend two main research avenues that can be pur-
sued to facilitate learning feasible behaviors and validating the learnt behaviors in real-life
urban driving settings.

In Chapter 4, we developed a dropout-based training scheme for a safety-critical
system state estimator in urban driving environment. For the proposed supervised learning
scheme, real-life experiments were conducted to collect the ground truth values of the
cyber-physical system and other measurements of the features vector including of the
powertrain systems and vehicle states. The training and the testing results demonstrate the
applicability and the superiority of the proposed estimation technique over the conventional
training schemes. The proposed state estimation scheme is agnostic to decision-making in
urban settings, but can be integrated with the onboard brake control system for high-
fidelity motion planing purposes.

In Chapter 5, based on the recommendations concluded from the research study
presented in Chapter 3, we develop a novel hierarchical reinforcement learning-based
decision-making scheme for left-turn maneuvers at unsignalized intersections with feasibil-
ity guarantees. The proposed scheme incorporates soft-actor-critic and model predictive
control principles for high-level behavioral planning and low-level motion planning layers,
respectively. The goal of this integration is to learn high-fidelity left-turn behaviours while
accounting for real-world constraints related to vehicle dynamics, urban traffic rules, and
ride comfort. A customized CARLA urban driving environment is designed to validate the
proposed decision-making scheme. The high-level training comparison shows a superiority
of SAC over other model-free learning schemes including TD3 and PPO. Moreover, the
training results of the integrated framework illustrates the effectiveness of the proposed
method in terms of performance and sample efficiency. Finally, the testing results demon-
strate the efficiency and safety of the learn left-turn behaviors yielding a success rate of
97.8% over 1000 testing episodes.

We then highlight the future research avenues of the proposed work. First, As men-
tioned in Chapter 5, the proposed decision-scheme is developed in simulated unsignalized
environment. However, we highlighted in our survey presented in Chapter 3 that val-
idating the trained policies in real-world driving settings is an active area of research.
We highlight that transfer learning approaches including Domain adaptation and Domain
Randomization can be employed to facilitate testing in real-world driving settings. Second,
given the limitations of the proposed decision-making approach highlighted in Chapter
5, we need to improve the model accuracy to ensure collision-free maneuvers. In addition,
improving the model’s generalization capabilities to handle environments with more partic-
ipants traversing from different directions and lanes, as well as the ability of handling noisy
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perceptual observations is a possible research direction. Third, with regard to the state
estimation technique proposed in Chapter 5, the learning-based estimation scheme can
be flexibly extended to estimate other safty-critical states under several road conditions
in urban driving settings. Furthermore, the estimated states can be integrated with the
developed decision-making scheme for high-fidelity motion planning and control in real-life
driving settings.
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