386 research outputs found

    3rd Many-core Applications Research Community (MARC) Symposium. (KIT Scientific Reports ; 7598)

    Get PDF
    This manuscript includes recent scientific work regarding the Intel Single Chip Cloud computer and describes approaches for novel approaches for programming and run-time organization

    WaterMet2 model functional requirements

    Get PDF
    © TRUST 2012This report specifies the functional requirements of the WaterMet2 Model that will be developed to quantify the generic Urban Water System (UWS) metabolism based performance model in the TRUST project (TRansitions to the Urban water Services of Tomorrow). The report is not a project deliverable but rather a work-in-progress to describe different aspects of the model and its functionality. This report addresses two main parts of the WaterMet2 Model functionality. The first part illustrates principal concepts of WaterMet2 modelling as a mass balance base model. Two main aspects of water modelling (i.e. quantity and quality modelling approaches) are described and analysed first. Modelling of the intended risk analysis as one of the purpose of TRUST project is demonstrated. Then, the spatial and temporal scales of the model are better described as well as a brief description of intervention modelling. Second part of the report presents the specific indicators of the WaterMet2 model in three parts: (1) performance indicators linked to all water related flows in the UWS; (2) risk indicators based on the current data received from WA32; and (3) cost indicators including capital and operational ones. For all introduced indicators, the relevant input data requirements are presented. Finally, the model calibration approach is briefly described. This document is based on the authors' current best understanding of the UWS metabolism concept and the associated performance related issues. Therefore, as WaterMet2 model progresses in more details, information presented in this report is likely to evolve and improv

    A decentralized convergence detection algorithm for asynchronous parallel iterative algorithms

    No full text
    We introduce a theoretical algorithm and its practical version to perform decentralized detection of the global convergence of parallel asynchronous iterative algorithms. We prove that even if the algorithm is completely decentralized, the detection of global convergence is achieved on one processor under the classical conditions. The proposed algorithm is very useful in the context of grid computing in which the processors are distributed and in which detecting the convergence on a master processor may be penalizing or even impossible as in Peer to Peer computations framework. Finally, the efficiency of the practical algorithm is illustrated in a typical experiment

    Doctor of Philosophy

    Get PDF
    dissertationRecent trends in high performance computing present larger and more diverse computers using multicore nodes possibly with accelerators and/or coprocessors and reduced memory. These changes pose formidable challenges for applications code to attain scalability. Software frameworks that execute machine-independent applications code using a runtime system that shields users from architectural complexities oer a portable solution for easy programming. The Uintah framework, for example, solves a broad class of large-scale problems on structured adaptive grids using fluid-flow solvers coupled with particle-based solids methods. However, the original Uintah code had limited scalability as tasks were run in a predefined order based solely on static analysis of the task graph and used only message passing interface (MPI) for parallelism. By using a new hybrid multithread and MPI runtime system, this research has made it possible for Uintah to scale to 700K central processing unit (CPU) cores when solving challenging fluid-structure interaction problems. Those problems often involve moving objects with adaptive mesh refinement and thus with highly variable and unpredictable work patterns. This research has also demonstrated an ability to run capability jobs on the heterogeneous systems with Nvidia graphics processing unit (GPU) accelerators or Intel Xeon Phi coprocessors. The new runtime system for Uintah executes directed acyclic graphs of computational tasks with a scalable asynchronous and dynamic runtime system for multicore CPUs and/or accelerators/coprocessors on a node. Uintah's clear separation between application and runtime code has led to scalability increases without significant changes to application code. This research concludes that the adaptive directed acyclic graph (DAG)-based approach provides a very powerful abstraction for solving challenging multiscale multiphysics engineering problems. Excellent scalability with regard to the different processors and communications performance are achieved on some of the largest and most powerful computers available today

    Accelerated Gossip in Networks of Given Dimension using Jacobi Polynomial Iterations

    Get PDF
    Consider a network of agents connected by communication links, where each agent holds a real value. The gossip problem consists in estimating the average of the values diffused in the network in a distributed manner. We develop a method solving the gossip problem that depends only on the spectral dimension of the network, that is, in the communication network set-up, the dimension of the space in which the agents live. This contrasts with previous work that required the spectral gap of the network as a parameter, or suffered from slow mixing. Our method shows an important improvement over existing algorithms in the non-asymptotic regime, i.e., when the values are far from being fully mixed in the network. Our approach stems from a polynomial-based point of view on gossip algorithms, as well as an approximation of the spectral measure of the graphs with a Jacobi measure. We show the power of the approach with simulations on various graphs, and with performance guarantees on graphs of known spectral dimension, such as grids and random percolation bonds. An extension of this work to distributed Laplacian solvers is discussed. As a side result, we also use the polynomial-based point of view to show the convergence of the message passing algorithm for gossip of Moallemi \& Van Roy on regular graphs. The explicit computation of the rate of the convergence shows that message passing has a slow rate of convergence on graphs with small spectral gap

    Methods for planning and operating decentralized combined heat and power plants

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationSolutions to Partial Di erential Equations (PDEs) are often computed by discretizing the domain into a collection of computational elements referred to as a mesh. This solution is an approximation with an error that decreases as the mesh spacing decreases. However, decreasing the mesh spacing also increases the computational requirements. Adaptive mesh re nement (AMR) attempts to reduce the error while limiting the increase in computational requirements by re ning the mesh locally in regions of the domain that have large error while maintaining a coarse mesh in other portions of the domain. This approach often provides a solution that is as accurate as that obtained from a much larger xed mesh simulation, thus saving on both computational time and memory. However, historically, these AMR operations often limit the overall scalability of the application. Adapting the mesh at runtime necessitates scalable regridding and load balancing algorithms. This dissertation analyzes the performance bottlenecks for a widely used regridding algorithm and presents two new algorithms which exhibit ideal scalability. In addition, a scalable space- lling curve generation algorithm for dynamic load balancing is also presented. The performance of these algorithms is analyzed by determining their theoretical complexity, deriving performance models, and comparing the observed performance to those performance models. The models are then used to predict performance on larger numbers of processors. This analysis demonstrates the necessity of these algorithms at larger numbers of processors. This dissertation also investigates methods to more accurately predict workloads based on measurements taken at runtime. While the methods used are not new, the application of these methods to the load balancing process is. These methods are shown to be highly accurate and able to predict the workload within 3% error. By improving the accuracy of these estimations, the load imbalance of the simulation can be reduced, thereby increasing the overall performance

    Geometric partitioning algorithms for fair division of geographic resources

    Get PDF
    University of Minnesota Ph.D. dissertation. July 2014. Major: Industrial and Systems Engineering. Advisor: John Gunnar Carlsson. 1 computer file (PDF): vi, 140 pages, appendices p. 129-140.This dissertation focuses on a fundamental but under-researched problem: how does one divide a piece of territory into smaller pieces in an efficient way? In particular, we are interested in \emph{map segmentation problem} of partitioning a geographic region into smaller subregions for allocating resources or distributing a workload among multiple agents. This work would result in useful solutions for a variety of fundamental problems, ranging from congressional districting, facility location, and supply chain management to air traffic control and vehicle routing. In a typical map segmentation problem, we are given a geographic region RR, a probability density function defined on RR (representing, say population density, distribution of a natural resource, or locations of clients) and a set of points in RR (representing, say service facilities or vehicle depots). We seek a \emph{partition} of RR that is a collection of disjoint sub-regions {R1,...,Rn}\{R_1, . . . , R_n\} such that iRi=R\bigcup_i R_i = R, that optimizes some objective function while satisfying a shape condition. As examples of shape conditions, we may require that all sub-regions be compact, convex, star convex, simply connected (not having holes), connected, or merely measurable.Such problems are difficult because the search space is infinite-dimensional (since we are designing boundaries between sub-regions) and because the shape conditions are generally difficult to enforce using standard optimization methods. There are also many interesting variants and extensions to this problem. It is often the case that the optimal partition for a problem changes over time as new information about the region is collected. In that case, we have an \emph{online} problem and we must re-draw the sub-region boundaries as time progresses. In addition, we often prefer to construct these sub-regions in a \emph{decentralized} fashion: that is, the sub-region assigned to agent ii should be computable using only local information to agent ii (such as nearby neighbors or information about its surroundings), and the optimal boundary between two sub-regions should be computable using only knowledge available to those two agents.This dissertation is an attempt to design geometric algorithms aiming to solve the above mentioned problems keeping in view the various design constraints. We describe the drawbacks of the current approach to solving map segmentation problems, its ineffectiveness to impose geometric shape conditions and its limited utility in solving the online version of the problem. Using an intrinsically interdisciplinary approach, combining elements from variational calculus, computational geometry, geometric probability theory, and vector space optimization, we present an approach where we formulate the problems geometrically and then use a fast geometric algorithm to solve them. We demonstrate our success by solving problems having a particular choice of objective function and enforcing certain shape conditions. In fact, it turns out that such methods actually give useful insights and algorithms into classical location problems such as the continuous kk-medians problem, where the aim is to find optimal locations for facilities. We use a map segmentation technique to present a constant factor approximation algorithm to solve the continuous kk-medians problem in a convex polygon. We conclude this thesis by describing how we intend to build on this success and develop algorithms to solve larger classes of these problems

    Efficient consensus algorithm for the accurate faulty node tracking with faster convergence rate in a distributed sensor network

    Get PDF
    This article was published in the Eurasip Journal on Wireless Communications and Networking [©2016 Published by Springer International Publishing.] and the definite version is available at: http://dx.doi.org/10.1186/s13638-016-0698-x . The article website is at:http://jwcn.eurasipjournals.springeropen.com/articles/10.1186/s13638-016-0698-xOne of the challenging issues in a distributed computing system is to reach on a decision with the presence of so many faulty nodes. These faulty nodes may update the wrong information, provide misleading results and may be nodes with the depleted battery power. Consensus algorithms help to reach on a decision even with the faulty nodes. Every correct node decides some values by a consensus algorithm. If all correct nodes propose the same value, then all the nodes decide on that. Every correct node must agree on the same value. Faulty nodes do not reach on the decision that correct nodes agreed on. Binary consensus algorithm and average consensus algorithm are the most widely used consensus algorithm in a distributed system. We apply binary consensus and average consensus algorithm in a distributed sensor network with the presence of some faulty nodes. We evaluate these algorithms for better convergence rate and error rate. © 2016, The Author(s).Publishe
    corecore