917 research outputs found

    Complex Brain-Heart Mapping in Mental and Physical Stress

    Get PDF
    Objective: The central and autonomic nervous systems are deemed complex dynamic systems, wherein each system as a whole shows features that the individual system sub-components do not. They also continuously interact to maintain body homeostasis and appropriate react to endogenous and exogenous stimuli. Such interactions are comprehensively referred to functional brain-heart interplay (BHI). Nevertheless, it remains uncertain whether this interaction also exhibits complex characteristics, that is, whether the dynamics of the entire nervous system inherently demonstrate complex behavior, or if such complexity is solely a trait of the central and autonomic systems. Here, we performed complexity mapping of the BHI dynamics under mental and physical stress conditions. Methods and procedures: Electroencephalographic and heart rate variability series were obtained from 56 healthy individuals performing mental arithmetic or cold-pressure tasks, and physiological series were properly combined to derive directional BHI series, whose complexity was quantified through fuzzy entropy. Results: The experimental results showed that BHI complexity is mainly modulated in the efferent functional direction from the brain to the heart, and mainly targets vagal oscillations during mental stress and sympathovagal oscillations during physical stress. Conclusion: We conclude that the complexity of BHI mapping may provide insightful information on the dynamics of both central and autonomic activity, as well as on their continuous interaction. Clinical impact: This research enhances our comprehension of the reciprocal interactions between central and autonomic systems, potentially paving the way for more accurate diagnoses and targeted treatments of cardiovascular, neurological, and psychiatric disorders

    Epileptic focus localization using functional brain connectivity

    Get PDF

    Patient-Specific Epileptic Seizure Onset Detection via Fused Eeg and Ecg Signals

    Get PDF
    Epilepsy is a neurological disorder that is associated with sudden and recurrent seizures. Epilepsy affects 65 million people world-wide and is the third most common neurological disorder, after stroke and Alzheimer disease. During an epileptic seizure, the brain endures a transient period of abnormally excessive synchronous activity, leading to a state of havoc for many epileptic patients. Seizures can range from being mild and unnoticeable to extremely violent and life threating. Many epileptic individuals are not able to control their seizures with any form of treatment or therapy. These individuals often experience serious risk of injury, limited independence and mobility, and social isolation. In an attempt to increase the quality of life of epileptic individuals, much research has been dedicated to developing seizure onset detection systems that are capable of accurately and rapidly detecting signs of seizures. This thesis presents a novel seizure onset detection system that is based on the fusion of independent electroencephalogram (EEG) and electrocardiogram (ECG) based decisions. The EEG-based detector relies on a on a common spatial pattern (CSP)-based feature enhancement stage that enables better discrimination between seizure and non-seizure features. The EEG-based detector also introduces a novel classification system that uses logical operators to pool support vector machine (SVM) seizure onset detections made independently across different relevant EEG spectral bands. In the ECG-based detector, heart rate variability (HRV) is extracted and analyzed using a Matching-Pursuit and Wigner-Ville Distribution algorithm in order to effectively extract meaningful HRV features representative of seizure and non-seizure states. Two fusion systems are adopted to fuse the EEG- and ECG-based decisions. In the first system, EEG- and ECG-based decisions are directly fused to obtain a final decision. The second fusion system adopts an over-ride option that allows for the EEG-based decision to over-ride the fusion-based decision in an event that the detector observes a string of EEG-based seizure decisions. The proposed detectors exhibit an improved performance, with respect to sensitivity and detection latency, compared with the state-of-the-art detectors. Experimental results demonstrate that the second detector achieves a sensitivity of 100%, detection latency of 2.6 seconds, and a specificity of 99.91% for the MAJORITY fusion case. In addition, a novel method to calculate the amount of neural synchrony that exists between the channels of an EEG matrix is carried out. This method is based on extracting the condition number from multi-channel EEG at a particular time instant to indicate the level of neural synchrony at that particular time instant. The proposed method of neural synchrony calculation is implemented in two detection systems. The first system uses only neural synchrony as the feature for seizure classification whereas the second system fuses energy and synchrony based decision to make a final classification decision. Both systems show promising results when tested on a set of clinical patients

    Autonomic impairment of patients in coma with different Glasgow coma score assessed with heart rate variability

    Get PDF
    Primary objective: The objective of this study is to assess the functional state of the autonomic nervous system in healthy individuals and in individuals in coma using measures of heart rate variability (HRV) and to evaluate its efficiency in predicting mortality. Design and Methods: Retrospective group comparison study of patients in coma classified into two subgroups, according to their Glasgow coma score, with a healthy control group. HRV indices were calculated from 7 min of artefact-free electrocardiograms using the Hilbert–Huang method in the spectral range 0.02–0.6 Hz. A special procedure was applied to avoid confounding factors. Stepwise multiple regression logistic analysis (SMLRA) and ROC analysis evaluated predictions. Results: Progressive reduction of HRV was confirmed and was associated with deepening of coma and a mortality score model that included three spectral HRV indices of absolute power values of very low, low and very high frequency bands (0.4-0.6 Hz). The SMLRA model showed sensitivity of 95.65%, specificity of 95.83%, positive predictive value of 95.65%, and overall efficiency of 95.74%. Conclusions: HRV is a reliable method to assess the integrity of the neural control of the caudal brainstem centres on the hearts of patients in coma and to predict patient mortality

    C-Trend parameters and possibilities of federated learning

    Get PDF
    Abstract. In this observational study, federated learning, a cutting-edge approach to machine learning, was applied to one of the parameters provided by C-Trend Technology developed by Cerenion Oy. The aim was to compare the performance of federated learning to that of conventional machine learning. Additionally, the potential of federated learning for resolving the privacy concerns that prevent machine learning from realizing its full potential in the medical field was explored. Federated learning was applied to burst-suppression ratio’s machine learning and it was compared to the conventional machine learning of burst-suppression ratio calculated on the same dataset. A suitable aggregation method was developed and used in the updating of the global model. The performance metrics were compared and a descriptive analysis including box plots and histograms was conducted. As anticipated, towards the end of the training, federated learning’s performance was able to approach that of conventional machine learning. The strategy can be regarded to be valid because the performance metric values remained below the set test criterion levels. With this strategy, we will potentially be able to make use of data that would normally be kept confidential and, as we gain access to more data, eventually develop machine learning models that perform better. Federated learning has some great advantages and utilizing it in the context of qEEGs’ machine learning could potentially lead to models, which reach better performance by receiving data from multiple institutions without the difficulties of privacy restrictions. Some possible future directions include an implementation on heterogeneous data and on larger data volume.C-Trend-teknologian parametrit ja federoidun oppimisen mahdollisuudet. Tiivistelmä. Tässä havainnointitutkimuksessa federoitua oppimista, koneoppimisen huippuluokan lähestymistapaa, sovellettiin yhteen Cerenion Oy:n kehittämään C-Trend-teknologian tarjoamaan parametriin. Tavoitteena oli verrata federoidun oppimisen suorituskykyä perinteisen koneoppimisen suorituskykyyn. Lisäksi tutkittiin federoidun oppimisen mahdollisuuksia ratkaista yksityisyyden suojaan liittyviä rajoitteita, jotka estävät koneoppimista hyödyntämästä täyttä potentiaaliaan lääketieteen alalla. Federoitua oppimista sovellettiin purskevaimentumasuhteen koneoppimiseen ja sitä verrattiin purskevaimentumasuhteen laskemiseen, johon käytettiin perinteistä koneoppimista. Kummankin laskentaan käytettiin samaa dataa. Sopiva aggregointimenetelmä kehitettiin, jota käytettiin globaalin mallin päivittämisessä. Suorituskykymittareiden tuloksia verrattiin keskenään ja tehtiin kuvaileva analyysi, johon sisältyi laatikkokuvioita ja histogrammeja. Odotetusti opetuksen loppupuolella federoidun oppimisen suorituskyky pystyi lähestymään perinteisen koneoppimisen suorituskykyä. Menetelmää voidaan pitää pätevänä, koska suorituskykymittarin arvot pysyivät alle asetettujen testikriteerien tasojen. Tämän menetelmän avulla voimme ehkä hyödyntää dataa, joka normaalisti pidettäisiin salassa, ja kun saamme lisää dataa käyttöömme, voimme lopulta kehittää koneoppimismalleja, jotka saavuttavat paremman suorituskyvyn. Federoidulla oppimisella on joitakin suuria etuja, ja sen hyödyntäminen qEEG:n koneoppimisen yhteydessä voisi mahdollisesti johtaa malleihin, jotka saavuttavat paremman suorituskyvyn saamalla tietoja useista eri lähteistä ilman yksityisyyden suojaan liittyviä rajoituksia. Joitakin mahdollisia tulevia suuntauksia ovat muun muassa heterogeenisen datan ja suurempien tietomäärien käyttö

    Epilepsy

    Get PDF
    With the vision of including authors from different parts of the world, different educational backgrounds, and offering open-access to their published work, InTech proudly presents the latest edited book in epilepsy research, Epilepsy: Histological, electroencephalographic, and psychological aspects. Here are twelve interesting and inspiring chapters dealing with basic molecular and cellular mechanisms underlying epileptic seizures, electroencephalographic findings, and neuropsychological, psychological, and psychiatric aspects of epileptic seizures, but non-epileptic as well

    Magnetoencephalography

    Get PDF
    This is a practical book on MEG that covers a wide range of topics. The book begins with a series of reviews on the use of MEG for clinical applications, the study of cognitive functions in various diseases, and one chapter focusing specifically on studies of memory with MEG. There are sections with chapters that describe source localization issues, the use of beamformers and dipole source methods, as well as phase-based analyses, and a step-by-step guide to using dipoles for epilepsy spike analyses. The book ends with a section describing new innovations in MEG systems, namely an on-line real-time MEG data acquisition system, novel applications for MEG research, and a proposal for a helium re-circulation system. With such breadth of topics, there will be a chapter that is of interest to every MEG researcher or clinician

    fNIRS improves seizure detection in multimodal EEG-fNIRS recordings

    Get PDF
    In the context of epilepsy monitoring, electroencephalography (EEG) remains the modality of choice. Functional near-infrared spectroscopy (fNIRS) is a relatively innovative modality that cannot only characterize hemodynamic profiles of seizures but also allow for long-term recordings. We employ deep learning methods to investigate the benefits of integrating fNIRS measures for seizure detection. We designed a deep recurrent neural network with long short-term memory units and subsequently validated it using the CHBMIT scalp EEG database-a compendium of 896 h of surface EEG seizure recordings. After validating our network using EEG, fNIRS, and multimodal data comprising a corpus of 89 seizures from 40 refractory epileptic patients was used as model input to evaluate the integration of fNIRS measures. Following heuristic hyperparameter optimization, multimodal EEG-fNIRS data provide superior performance metrics (sensitivity and specificity of 89.7% and 95.5%, respectively) in a seizure detection task, with low generalization errors and loss. False detection rates are generally low, with 11.8% and 5.6% for EEG and multimodal data, respectively. Employing multimodal neuroimaging, particularly EEG-fNIRS, in epileptic patients, can enhance seizure detection performance. Furthermore, the neural network model proposed and characterized herein offers a promising framework for future multimodal investigations in seizure detection and prediction

    Leveraging Artificial Intelligence to Improve EEG-fNIRS Data Analysis

    Get PDF
    La spectroscopie proche infrarouge fonctionnelle (fNIRS) est apparue comme une technique de neuroimagerie qui permet une surveillance non invasive et à long terme de l'hémodynamique corticale. Les technologies de neuroimagerie multimodale en milieu clinique permettent d'étudier les maladies neurologiques aiguës et chroniques. Dans ce travail, nous nous concentrons sur l'épilepsie - un trouble chronique du système nerveux central affectant près de 50 millions de personnes dans le monde entier prédisposant les individus affectés à des crises récurrentes. Les crises sont des aberrations transitoires de l'activité électrique du cerveau qui conduisent à des symptômes physiques perturbateurs tels que des changements aigus ou chroniques des compétences cognitives, des hallucinations sensorielles ou des convulsions de tout le corps. Environ un tiers des patients épileptiques sont récalcitrants au traitement pharmacologique et ces crises intraitables présentent un risque grave de blessure et diminuent la qualité de vie globale. Dans ce travail, nous étudions 1. l'utilité des informations hémodynamiques dérivées des signaux fNIRS dans une tâche de détection des crises et les avantages qu'elles procurent dans un environnement multimodal par rapport aux signaux électroencéphalographiques (EEG) seuls, et 2. la capacité des signaux neuronaux, dérivé de l'EEG, pour prédire l'hémodynamique dans le cerveau afin de mieux comprendre le cerveau épileptique. Sur la base de données rétrospectives EEG-fNIRS recueillies auprès de 40 patients épileptiques et utilisant de nouveaux modèles d'apprentissage en profondeur, la première étude de cette thèse suggère que les signaux fNIRS offrent une sensibilité et une spécificité accrues pour la détection des crises par rapport à l'EEG seul. La validation du modèle a été effectuée à l'aide de l'ensemble de données CHBMIT open source documenté et bien référencé avant d'utiliser notre ensemble de données EEG-fNIRS multimodal interne. Les résultats de cette étude ont démontré que fNIRS améliore la détection des crises par rapport à l'EEG seul et ont motivé les expériences ultérieures qui ont déterminé la capacité prédictive d'un modèle d'apprentissage approfondi développé en interne pour décoder les signaux d'état de repos hémodynamique à partir du spectre complet et d'une bande de fréquences neuronale codée spécifique signaux d'état de repos (signaux sans crise). Ces résultats suggèrent qu'un autoencodeur multimodal peut apprendre des relations multimodales pour prédire les signaux d'état de repos. Les résultats suggèrent en outre que des gammes de fréquences EEG plus élevées prédisent l'hémodynamique avec une erreur de reconstruction plus faible par rapport aux gammes de fréquences EEG plus basses. De plus, les connexions fonctionnelles montrent des modèles spatiaux similaires entre l'état de repos expérimental et les prédictions fNIRS du modèle. Cela démontre pour la première fois que l'auto-encodage intermodal à partir de signaux neuronaux peut prédire l'hémodynamique cérébrale dans une certaine mesure. Les résultats de cette thèse avancent le potentiel de l'utilisation d'EEG-fNIRS pour des tâches cliniques pratiques (détection des crises, prédiction hémodynamique) ainsi que l'examen des relations fondamentales présentes dans le cerveau à l'aide de modèles d'apprentissage profond. S'il y a une augmentation du nombre d'ensembles de données disponibles à l'avenir, ces modèles pourraient être en mesure de généraliser les prédictions qui pourraient éventuellement conduire à la technologie EEG-fNIRS à être utilisée régulièrement comme un outil clinique viable dans une grande variété de troubles neuropathologiques.----------ABSTRACT Functional near-infrared spectroscopy (fNIRS) has emerged as a neuroimaging technique that allows for non-invasive and long-term monitoring of cortical hemodynamics. Multimodal neuroimaging technologies in clinical settings allow for the investigation of acute and chronic neurological diseases. In this work, we focus on epilepsy—a chronic disorder of the central nervous system affecting almost 50 million people world-wide predisposing affected individuals to recurrent seizures. Seizures are transient aberrations in the brain's electrical activity that lead to disruptive physical symptoms such as acute or chronic changes in cognitive skills, sensory hallucinations, or whole-body convulsions. Approximately a third of epileptic patients are recalcitrant to pharmacological treatment and these intractable seizures pose a serious risk for injury and decrease overall quality of life. In this work, we study 1) the utility of hemodynamic information derived from fNIRS signals in a seizure detection task and the benefit they provide in a multimodal setting as compared to electroencephalographic (EEG) signals alone, and 2) the ability of neural signals, derived from EEG, to predict hemodynamics in the brain in an effort to better understand the epileptic brain. Based on retrospective EEG-fNIRS data collected from 40 epileptic patients and utilizing novel deep learning models, the first study in this thesis suggests that fNIRS signals offer increased sensitivity and specificity metrics for seizure detection when compared to EEG alone. Model validation was performed using the documented open source and well referenced CHBMIT dataset before using our in-house multimodal EEG-fNIRS dataset. The results from this study demonstrated that fNIRS improves seizure detection as compared to EEG alone and motivated the subsequent experiments which determined the predictive capacity of an in-house developed deep learning model to decode hemodynamic resting state signals from full spectrum and specific frequency band encoded neural resting state signals (seizure free signals). These results suggest that a multimodal autoencoder can learn multimodal relations to predict resting state signals. Findings further suggested that higher EEG frequency ranges predict hemodynamics with lower reconstruction error in comparison to lower EEG frequency ranges. Furthermore, functional connections show similar spatial patterns between experimental resting state and model fNIRS predictions. This demonstrates for the first time that intermodal autoencoding from neural signals can predict cerebral hemodynamics to a certain extent. The results of this thesis advance the potential of using EEG-fNIRS for practical clinical tasks (seizure detection, hemodynamic prediction) as well as examining fundamental relationships present in the brain using deep learning models. If there is an increase in the number of datasets available in the future, these models may be able to generalize predictions which would possibly lead to EEG-fNIRS technology to be routinely used as a viable clinical tool in a wide variety of neuropathological disorders
    corecore