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Abstract. In the context of epilepsy monitoring, electroencephalography (EEG) remains the modality of choice.
Functional near-infrared spectroscopy (fNIRS) is a relatively innovative modality that cannot only characterize
hemodynamic profiles of seizures but also allow for long-term recordings. We employ deep learning methods to
investigate the benefits of integrating fNIRS measures for seizure detection. We designed a deep recurrent
neural network with long short-term memory units and subsequently validated it using the CHBMIT scalp
EEG database—a compendium of 896 h of surface EEG seizure recordings. After validating our network
using EEG, fNIRS, and multimodal data comprising a corpus of 89 seizures from 40 refractory epileptic patients
was used as model input to evaluate the integration of fNIRS measures. Following heuristic hyperparameter
optimization, multimodal EEG-fNIRS data provide superior performance metrics (sensitivity and specificity of
89.7% and 95.5%, respectively) in a seizure detection task, with low generalization errors and loss. False detec-
tion rates are generally low, with 11.8% and 5.6% for EEG and multimodal data, respectively. Employing multi-
modal neuroimaging, particularly EEG-fNIRS, in epileptic patients, can enhance seizure detection performance.
Furthermore, the neural network model proposed and characterized herein offers a promising framework for
future multimodal investigations in seizure detection and prediction. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication,
including its DOI. [DOI: 10.1117/1.JBO.24.5.051408]
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1 Introduction
Continuous video-electroencephalography (EEG) surveillance
is often used in hospitals to monitor patients at high-risk of epi-
leptic seizures,1 particularly patients with drug-resistant chronic
epilepsy admitted in epilepsy-monitoring units or critically
ill patients admitted to the intensive care unit after an acute
brain injury, such as stroke, head trauma, brain hemorrhage,
or brain infection. While some seizures are clinically evident,
such as generalized tonic–clonic seizures, others are subtle in
terms of clinical manifestations (e.g., subtle facial or limb
twitches), for which recognition by EEG is particularly well
suited. Moreover, some seizure events are purely electrical
being only detectable on EEG or even completely asymptomatic
(from isolated electrical seizures to nonconvulsive status).
Nonconvulsive status epilepticus (defined as a continuous
state of seizures without convulsions or multiple nonconvulsive
seizures for more than 30 min without interictal full recovery)
has been found to account for up to 20% of all cases of status
epilepticus in general hospitals and up to 47% in the intensive
care unit.2 Functional near-infrared spectroscopy (fNIRS) has
emerged as a safe and noninvasive optical technique that
exploits neurovascular coupling to indirectly measure brain
activity. Measured relative changes in both oxygenated and
deoxygenated hemoglobin can be used to assess cortical activa-
tion during overt and subtle seizures.3 Continual fNIRS cerebral

monitoring provides the ability to track regional oxygenation
changes before, during, and after these ictal events.4–7 In recent
years, multimodal approaches have emerged integrating EEG
with fNIRS to offer dual hemodynamic and electro-potential
characterization of a seizure event,8–10 whereas EEG data record
the macroscopic temporal change in brain electrical activity;
fNIRS approximates brain hemodynamic changes via spectro-
scopic measurements of oxyhemoglobin (HbO) and deoxyhe-
moglobin (HbR). fNIRS depends on the slow dynamics of
the hemodynamic response, thereby yielding lower temporal
resolution. According to literature and with the optode spacing
used in this work, NIRS yields a spatial resolution of ∼1 cm.11

Given the different characteristics and physiological information
provided by each modality, multimodal EEG-fNIRS data pro-
vide complementary electrical and hemodynamic information,
which may be exploited to implement appropriate diagnostic
and treatment strategies.

Seizure detection has traditionally been approached using
EEG with quantitative feature signal processing techniques,
such as the application of Fourier transform analysis (FFT),
wavelet transforms, and spectral decompositions.12,13 Briefly,
EEG FFT analysis allows for the convenient processing of
lengthy and noisy recordings in the frequency domain, allowing
hidden features within the time series to become apparent.
Wavelet analysis can be thought as an extension of the Fourier
transform that works on a multiscale basis instead of on a single
scale either in time or frequency. This multiscale feature of
the wavelet transform allows coarse to fine time-frequency
signal resolution analysis of the signal. Using the above features
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as input, artificial neural networks (ANN) have been used and
emerged as better models than traditional techniques for seizure
detection if appropriate processing of data occurs a-priori.14

Traditionally, researchers have used ANNs as a final step to
classify hand-engineered features.15–17 In contrast to the process
of hand-engineering features, deep learning (DL) methodologies
learn intrinsic data features to obtain relevant data abstractions.18

DL models have been used for seizure detection using EEG
data streams,19–22 in which impressive metric scores were
achieved. This work aims to investigate for the first time the
additional benefit that hemodynamic information derived
from fNIRS recordings provides in a seizure detection task in
the context of multimodal EEG-fNIRS recordings. Our work
exploits artificial intelligence models, particularly the long
short-term memory (LSTM) unit, on human epilepsy data with-
out performing extensive feature extraction, selection, or signal
preprocessing.

2 Methods

2.1 Patient Recruitment, Characterization, and
Seizure Types

Forty patients between the ages of 11 and 62 years with refrac-
tory focal epilepsy admitted to the epilepsy-monitoring unit to
record their seizures (and determine if they could be good
candidates for epilepsy surgery) were recruited for this study.
The ethics committees of Sainte-Justine and CHUM Notre-
Dame Hospitals approved the study, and informed consent
was obtained from all subjects. Patient inclusion criteria pri-
marily consisted of the following: patient (or parental) consent
and focal epilepsy confirmed by clinical history, electroencepha-
lographic, and/or imaging findings. Exclusion criteria included
the following: subjects with significant progressive disorders
or unstable medical conditions. Patients underwent a full
physical exam, an anatomical magnetic resonance brain image
(MRI), positron emission tomography, ictal single-photon
computed tomography, and a magnetoencephalography study.
Subsequently, continuous EEG-fNIRS recordings were per-
formed at the Optical Imaging Laboratory of Sainte-Justine
Hospital, Montreal, Canada. An epileptologist was available
at all times to ensure patient safety and inspected data for con-
gruency with clinical semiology analysis, the location of scalp
EEG findings, and location of the epileptogenic lesion onMRI if
present. The data corpus collected included 266 epileptiform
abnormalities in total. Of these, 89 were seizures, the majority
of which were temporal lobe seizures followed by frontal lobe
seizures. The remainder of the dataset included interictal epilep-
tiform discharges and periodic epileptiform discharges. Seizure
duration ranged from 5.1 to 62 s with an average of 21.7 s. The
details concerning patients, seizure types, MRI findings, and
foci seen using EEG and fNIRS modalities used in this study
are detailed in Table 1.

2.2 EEG-fNIRS Instrumentation and Data
Acquisition

The EEG-fNIRS instrumentation included the use of custom
helmets designed to mount a total of 80 optical fibers (64
light sources in pairs for both wavelengths and 16 detectors)
and 19 carbon EEG electrodes. First, the EEG data recording
system was installed according to the traditional 10–20 system.
Following this, we installed custom-made helmet-holding

optical fibers. The installation time, including hair removal,
patient positioning, adjustment of signal intensity, and optode
repositioning, typically was between 1 and 2 h. A description
of our setup and its near full-head coverage is provided in
previous publications.8,9 Optode and electrode positions were
coregistered onto three-dimensional (3-D) high-resolution
anatomical MRI images using neuro-navigation (Brainsight,
Rogue-Research Inc.). The EEG data stream was recorded
at 500 Hz with a Neuroscan Synamps 2TM system
(Compumedics). To remove instrumental noise, bandpass
filtering between 0.1 and 100 Hz was applied. Simultaneously,
the fNIRS data stream was acquired using a multichannel fre-
quency-domain system at 19.5 Hz (Imagent Tissue Oximeter,
ISS Inc., Champaign, Illinois) with wavelengths of 690 and
830 nm for sensitivity to HbR and HbO, respectively. The chan-
nel positions were cross-referenced with the MRI and were
adapted to ensure coverage of the epileptic focus, the contralat-
eral homologous region, and as much area as possible of the
other lobes. Data were acquired for 2 to 12 consecutive sessions
of 15 min while the patient was in a resting state. Multiple
sessions of data acquisition were performed since during
a single acquisition; seizure events are not sure to occur.
Sensitivity of near-infrared light to cortical tissue was main-
tained by positioning the optical channels ∼3 to 4 cm apart.
During installation, we verified channel quality using signal
intensity.

2.3 Seizure Identification

The EEG tracing was analyzed using Analyzer 2.0 (Brain
Products GmbH, Germany) by a certified clinical neurophysi-
ologist and reviewed by an epileptologist to identify interictal
epileptiform discharges and seizures. Seizures were marked
in the presence of a transient electrographic rhythmic discharge
evolving in amplitude, frequency, and spatial distribution changes
associated with stereotypical seizure semiology on video.

2.4 Data Processing and Analysis

As mentioned in Sec. 2.1, recordings obtained from known epi-
leptic patients were evaluated for seizure occurrence, leading to
a compendium of 200 recordings totaling 50 h of recording time
and 89 seizure events lasting in duration from a few seconds to
∼1 min. An average time offset of 4.5 s was used between
modalities to feed the neural network corresponding to the aver-
age time delay between neural activity and the hemodynamic
response.23 Prior to analysis, each channel was further verified
for signal quality (intensity and presence of physiology, e.g.,
heart beat). Channels that did not have good signal were elim-
inated from the analysis. For each recording, distinct seizure and
nonseizure classes were partitioned from the data. Entire seizure
segments were extracted and nonseizure segments were sub-
sequently defined as those data points that do not overlap
with seizure segments. Postacquisition, raw data were processed
using the HomER package24 (Photon Migration Imaging Lab;
Massachusetts General Hospital, Boston, Massachusetts) to
convert raw fNIRS data into hemodynamic parameters, namely
oxygenated and deoxygenated hemoglobin.25 In our analyses,
the modified Beer–Lambert law was used to relate light attenu-
ation to changes in absorption and enable the estimation of
changes in oxygenated and deoxygenated hemoglobin as they
vary in space and time.
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Table 1 Clinical profiles of refractory epilepsy patients.

Patient Age, sex Total recordings Epilepsy classification MRI findings EEG focus fNIRS focus

1 11, M 9 R FLE N RF RF

2 21, M 11 L FLE N LF Bi-F (L > R)

3 13, F 2 R FPLE N LP LP

4 35, F 4 R FLE N RF RF

5 25, F 5 R FLE N LF LF

6 16, M 7 L FLE RF encephalomalacia LF PF

7 63, M 5 L TLE N LT LT

8 47, F 3 R LNTLE N Bi-T LT

9 23, M 5 R FLE N RF RF

10 43, M 8 R FLE RF encephalomalacia RF RF

11 19, F 4 L MBTLE N RT RT

12 45, M 7 R FLE N Bi-F (R > L) Bi-F

13 38, F 1 L LNTLE N LF LFT

14 53, F 11 L LFPLE N LFP Bi-F (L > R)

15 24, M 6 L LNTLE N RT RT

16 31, M 3 Bi-MBTLE R HA Bi-T (R > L) RT

17 31, M 11 R LNTLE N RT RT

18 23, M 6 R FPLE RF CD RF RF

19 27, M 3 R FLE N RF RF

20 21, M 11 R FLE RHA RT RF

21 50, M 6 L MBTLE LHA Bi-F RF

22 38, F 5 R LNTLE N RT RT

23 34, M 10 L LNTLE N LT LT

24 56, M 7 R FLE N RF RF

25 11, M 4 R LNTLE N RT RT

26 43, M 5 L LPTLE N LT LP

27 24, M 3 R FLE N RF RF

28 46, M 7 L FLE N LF LF

29 30, F 5 L LNTLE N LT LT

30 62, F 6 L FLE N LF LF

31 43, M 8 L FLE N LF LF

32 13, M 6 Bi-LNTLE N Bi-T Bi-T

33 22, M 5 R FLE N RF RF

34 25, M 7 R FLE N RF RF

35 28, M 9 L FLE N LF LF

36 44, F 7 R FLE N RF RF

37 49, M 3 R FLE N RF RF

38 32, M 2 R FLE N RF RF

39 19, F 4 R FLE N RF RF

40 19, F 3 R FLE N RF Bi-F (R > L)

Note: F, female; M, male; FLE, frontal lobe epilepsy; FPLE, fronto-parietal lobe epilepsy; OLE, occipital lobe epilepsy; NTLE, neocortical temporal
lobe epilepsy; MTLE, mesial temporal lobe epilepsy; RF, right frontal, LF, left frontal, Bi, bilateral, P, parietal. F, frontal, P, parietal, N, normal, L, left,
R, right; HA, hippocampal atrophy, CD, cortical dysplasia, RHA, right hippocampal atrophy, and LHA, left hippocampal atrophy.
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2.5 Deep Neural Networks

To a large extent, human seizure activity is highly unpredictable.
Longitudinal analyses suggest temporal and spatial irregularities
to be intrinsic to seizure activity. Recurrent neural networks
(RNNs) have become state of the art for sequence modeling
and generation.26 The “LSTM unit” is a popular variant of
RNNs with proven ability to generate sequences in various
applications, particularly text and sequence processing.27,28

LSTM models learn important past behaviors due to their innate
ability to learn from and remember previous time steps and
their important features. LSTM units hold an advantage
over other methods in modeling long-term dependencies due
to automatically learned “input,” “output,” and “forget” gates.
The success of RNNs in these domains motivated our work
of applying LSTM-RNNs for human seizure activity detection
in multimodal EEG-fNIRS recordings.

2.6 Model Architecture

In this section, we describe the vanilla LSTMmodel architecture
that was used to perform the seizure detection task. The archi-
tecture consists of: (1) input layer, (2) LSTM units, and (3) a
dense layer. Figure 1 shows the LSTM unit structure, featuring
input, forget, and output gates. We designed our architecture to
use the following activation functions: (1) hyperbolic tangent
for the LSTM units and (2) logistic sigmoid for the gates.
Softmax, categorical cross-entropy was used as the loss func-
tion, with alpha = 0.95, since it is well suited for categorization
problems.18 The hyperparameters, shown in Table 2, used to
train our model were heuristically tuned to achieve sufficient
performance and we validated our results by comparing perfor-
mance with other techniques developed in the literature
(Table 3). The hidden state, ht, is an element-wise application
of the sigmoid function.27,28 The output of each block is recur-
rently connected back to the input and the gates. Our model

generates subsequent data sequences according to the following
two steps:

1. At every time step, the LSTM layer receives input, xt.
Inputs to the LSTM cell include the previous hidden
state and the previous memory state.

2. The LSTM layers then produce output, which is used
to sample a new set of input variables xtþ1. The out-
puts from the LSTM cell are the current hidden state
and the current memory state.

Input data are transformed into a 3-D tensor with standard
dimensions of an LSTM-RNN.18 The final gradients are back
propagated at each time step with adaptive moment estimation
as an optimizer for stochastic gradient descent. The prediction is
a binary output derived from the softmax function.18

Adaptive moment estimation and dropout on nonrecurrent
connections35–37 were utilized to regularize our model to
avoid overfitting.

2.7 Network Training and Model Validation

A feed dictionary was generated, and for each step, mini-batches
of training examples were presented to the network. Input data

Input

Input gate

Sigmoid

Forget gate

LSTM
unit

Tanh

Output gate

Fig. 1 LSTM unit structure. The input is fed into LSTM units with 64 hidden units followed by a final dense
layer. The input gate decides which values will be updated and creates a vector of new values to be
added and updated to the state. After data input, the LSTM’s forget gate decides which information
to discard. This gate examines the prior hidden state (h) and current input, yielding a binary output.
Subsequently, the LSTM decides what new information to store in the cell state. Finally, the LSTM
unit decides sequential output, which is based on the current cell state. The sigmoid and hyperbolic
activation functions determine which parts of the cell state to output.

Table 2 LSTM-RNN heuristic hyperparameters.

Hyperparameters Value Method

Learning rate 1 × 10−3 Adam

Epochs 100 Experimental

Batch size 784 Experimental

LSTM units 10 Experimental
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were binary partitioned into appropriate seizures and nonsei-
zures segments. Using these newly segmented classes as
input, our network was trained to compute scores for seizure
and nonseizure segments. Truncated back propagation through
time, a modified form of the conventional back propagation
through time (BPTT) training algorithm for RNNs,38 was
used for training. Briefly, BPTT works to unroll the RNN
and backward propagate the error between the expected output
and the obtained output for a given input. The weights are then
updated with the accumulated gradients. We first validated our
model using k-fold cross validation (k ¼ 10), on the standard
CHBMIT scalp EEG dataset16,39 as this dataset is vast, and
the seizures contained within are of long duration. Following
this, we aimed to test our hypothesis regarding the relevance
of adding fNIRS data for improving the task of seizure detection
using our database. Stand-alone in-house EEG data, followed by
stand-alone fNIRS data, and finally multimodal data were used
as input for the network. Our models were implemented on two
NVIDIA TITAN X GPUs with 12 GB memory using the Keras
platform with Tensorflow backend for a total training time
of 10 h.

3 Experimental Results
This section describes the model validation results using the
standard CHBMIT database, and finally, statistical analyses of
the model using our in-house datasets are described.

3.1 Model Validation on the CHBMIT Database

The CHBMIT dataset includes 198 seizures from 22 patients.
To evaluate performance, we defined the following metrics:

EQ-TARGET;temp:intralink-;e001;326;407Accuracy ¼ True positives þ True negatives

Total number of examples
: (1)

Sensitivity, also known as recall, measures the proportion of
actual positives that are correctly identified. Specificity, also
called the true negative rate, measures the model’s performance
at classifying negative observations. False positive rate is
defined as

EQ-TARGET;temp:intralink-;e002;326;318False positive rate ¼ False positives

Total number of negative examples
:

(2)

Precision is also known as the positive predictive value and is
defined as

EQ-TARGET;temp:intralink-;e003;326;239Precision ¼ True positives

Total number of positive examples
: (3)

Using this dataset, our model derived performance metrics
of accuracy, sensitivity, specificity, and false positive rate of
98.2%, 95.9%, 92.1%, and 2.9%, respectively. The validation
results of our network using the CHBMIT corpus are shown
in Tables 3 and 4. Table 4 details our model’s performance
on both the CHBMIT standard dataset and our in-house EEG
data. It should be noted that accuracy is the most intuitive per-
formance measure and works best when there is symmetry in the
available data. In our experiments, we assumed the seizure state
to be a rare state40 and used more representative parameters to
evaluate performance.

Table 3 A comparison of selected studies in the automated detection of seizure using EEG signals from the Bonn and CHBMIT databases.

Author Year Database Research innovation Neural network architecture Performance (%)

Ghosh-Dastidar et al.29 2007 Bonn Wavelet-chaos ANN Accuracy = 96.7

Shoeb et al.15 2004 CHBMIT SVM ANN Accuracy = 96

Chua et al.30 2009 Bonn Entropy feature determination Gaussian mixture models Accuracy = 93.1
Sensitivity = 89.7
Specificity = 94.8

Acharya et al.31 2017 Bonn Ten-fold cross validation CNN Accuracy = 88.7
Sensitivity = 95.0
Specificity = 90

Shoeb et al.16 2009 CHBMIT Patient-specific detection ANN, SVM Accuracy = 96

Martis et al.32 2012 Bonn Empirical mode decomposition
(Hilbert–Huang transformation)

Decision trees Accuracy = 95.3
Sensitivity = 98.0
Specificity = 97.0

Guo et al.33 2011 Bonn Genetic programming ANN with k -nearest neighbors Accuracy = 93.5

Bhattacharyaa et al.34 2017 Bonn Tunable Q-factor wavelet transform ANN, SVM Accuracy = 99.4
Sensitivity = 97.9
Specificity = 99.5

This work 2018 CHBMIT Validation of LSTM-RNN model LSTM-RNN Accuracy = 98.2
Sensitivity = 95.9
Specificity = 92.1

Note: AAN, artificial neural network; CNN, convolutional neural network; SVM, support vector machine; and LSTM-RNN, long short-term memory
RNNs.
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The algorithms were further validated with in-house data.
Focusing first on stand-alone EEG data we observed no signifi-
cant difference in learning rate when comparing to the CHBMIT
dataset. Studying the integration of measurement type, perfor-
mance scores steadily increased for each data type: EEG, fNIRS,
and EEG-fNIRS. The performance of the proposed model with
respect to each data type is summarized in Table 4. Monitoring
cross-entropy loss ensured network generalization.

3.2 Model Evaluation

This section presents the classification results for seizure and
nonseizure classes using our in-house datasets. Our evaluation
uses all of the seizure and nonseizure blocks from all subjects
and all recordings. To estimate performance of our model
on unseen data, we utilized statistical methods derived from
k-fold cross validation. The dataset was randomly shuffled and
subsequently split it into “k” groups. The model was fit on the
training set and evaluated on the test set, yielding an evaluation
score. Each fold has data points from a subset of patients, chosen
randomly from “k ¼ 10” folds. The data were preshuffled
to allow for randomization and we sequentially instantiated
k identical models and trained each one on “k − 1” partitions
while evaluating on the remaining data.

Performance metrics on all measures improved in EEG-
fNIRS data as compared to either EEG or fNIRS alone.
From our cross-validation results, we notice that multimodal
data consistently perform better as compared to either stand-
alone EEG or fNIRS data. Mean squared error between EEG
and fNIRS recordings was determined to be 0.61 and between
EEG and multimodal recordings to be 0.79. Likewise, the mean
absolute error between EEG and fNIRS recordings was reported
as 0.58 and between EEG and multimodal recordings as 0.76.
Between EEG and multimodal data types, one-way ANOVA
testing yielded p ¼ 3.2 × 10−3. Tukey posthoc comparisons
indicated that EEG and multimodal data had significant
differences, p < 0.05. Multimodal recordings achieved sensitiv-
ity and specificity of 89.7% and 95.5%, respectively. The pre-
cision–recall curve confirmed this finding with multimodal
EEG-fNIRS recordings having the highest values for both pre-
cision and recall.

3.3 Seizure Detection and Spatial Foci Localization

We further investigated our algorithm’s ability to classify signals
correctly into seizure and nonseizure segments and localize clas-
sifications corresponding to the epileptogenic zone and relevant
ictal processes. To this end, we performed analyses to determine
if our algorithm’s outputs yielded similar cerebral localization
results as traditional methods, primarily the general linear
model (GLM).9 We first analyze the data on marked events
and then performed GLM analysis on positive outputs from
the network. In Fig. 2, green and orange bars denote true
positive and false negative segments, respectively. The red

and blue curves correspond to oxygenated and deoxygenated
hemoglobin, respectively, and the hemodynamic curves from
the right (solid lines) and left sides (dashed lines) of the epileptic
foci are shown.

4 Discussion
The recent rapid technical advances in machine learning, par-
ticularly DL algorithms, have allowed for automated detection
and prediction of anomalies in time series data. Similarly, these
approaches hold promise for automated seizure detection with
minimal processing of input data. In particular, input streams,
such as EEG, fNIRS, and multimodal EEG-fNIRS, are well
suited to be used in these algorithms. The LSTM model devel-
oped in this work was proven to be efficient in the task of seizure
detection. Our architecture bypasses laborious hand feature
selection and delivers good performance based on multimodal
data input. LSTM-RNN architectures, like neural networks

Table 4 Performance results for EEG data derived from the CHBMIT
dataset and our in-house EEG data.

Data Epochs Mean accuracy (%) ROC

CHBMIT EEG 100 98.20 0.94

In-house EEG 100 97.60 0.90

Fig. 2 Multimodal recordings from patient 10, a 43-year-old male.
On the day of the recording, the patient experienced multiple seizure
events ranging from duration of 3 to 10 s, with an average duration of 7
s. The analyzed EEG recording is shown in (a), with the colored green
bars representing seizure events and false positives denoted by
orange horizontal lines. The hemodynamic response to marked
events and network events (with false detections) and the corre-
sponding cerebral topographic analysis are shown in (b) and (c).
Red and blue curves represent oxygenated (HbO) and deoxygenated
(HbR) hemoglobin, respectively. Solid red and blue and dashed red
and blue lines correspond to the right (R- ) and left (L- ) side of the
brain, respectively.
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generally, can be a powerful tool, but they require long periods
for training time, often require more data to train than other
models, and can contain a large number of parameters to
tune. The gradient vanishing problem and subsequent gradient
exploration make training LSTMs difficult. Adaptive learning
methods, particularly adaptive moment estimation (Adam),
root mean square propagation (RMSProp), and adaptive gra-
dient algorithms (AdaGrad), offer solutions to these gradient
problems. Adam, which was used in this work, is an extension
of and an optimization algorithm for stochastic gradient descent.
Adam provides an optimization algorithm that can handle sparse
gradients on noisy datasets, which is well suited for our purpose.
Another technique used to handle noisy gradient estimates is to
utilize mini-batches, as was done in our model. Smaller batches
provide reduce computation time per update and offer faster
model convergence.

Validation of our architecture on the standardized CHBMIT
dataset yielded superior accuracy metrics (98.2%) compared to
other studies using convolutional neural networks, support vec-
tor machines, and ANNs on the same dataset.15,16 Compared to
other model architectures and related work in the literature,
LSTMs offer a powerful framework for seizure detection.
Particularly, the LSTM is well suited for time series data because
it is well designed to extract patterns where the input data span
over long sequences, a characteristic unique to seizure data.
Once our model was validated on the CHBMIT standard dataset,
we extended our model to multimodal data. Our implementation
of a multilayered LSTM-RNN model for automated classifica-
tion of multimodal EEG-fNIRS signals displays convergence
and good performance metrics. Heuristic parameter tuning
and the requirement of large datasets remain as limitations of
our model. We in part solved this problem by collecting data
points from multiple recordings allowing for a relatively large
data corpus. This provides enough data variability to increase
the power of the detection algorithm. Our experiments demon-
strate that the hemodynamic profiles derived from fNIRS
recordings provide discriminatory power in differentiating
between seizure and nonseizure states. Furthermore, multimodal
EEG-fNIRS data produced globally superior performance
metrics when compared to stand-alone EEG or fNIRS data
(Table 5). We obtained an improvement in performance when
fNIRS recordings were stacked with the EEG data stream as
compared to EEG data only. Our statistical analyses note signifi-
cant differences in precision and recall metrics between EEG
and multimodal data. The mean precision of EEG compared to
multimodal data was 82.8 and 87.3, respectively. Likewise,
the recall values between these data types were 85.2 and
89.7, respectively. Figure 2 suggests that our observations are
consistent with our algorithm’s detections and those from analy-
sis using the GLM. These findings suggest that deep neural
models may eventually be a useful clinical tool in the demarca-
tion of seizure zones for tailored medical therapy. Our analyses
may also be useful in identifying the side of greater seizure sus-
ceptibility, and the localization derived from the network may
potentially help guide epilepsy surgery and predict outcome
postsurgery. Further, prospective studies with longer follow-
up periods are needed to properly assess the utility of the
model in this capacity. These changes might be indicative of
preictal changes in the states of activity in localized neuronal
networks and possibly beyond the ictal onset zone. Most
patients suffering from epilepsy experience spikes, pre- and
postseizure. This phenomenon was present in our dataset as

well. Our algorithm has the potential to be extended to utilize
interictal spikes as an additional feature, thereby, producing
more comprehensive detection capabilities and providing a
more complete clinical picture. This model can be particularly
useful in situations in which a trained epileptologist is not
readily available, in which paroxysmal cerebral electrical and
hemodynamic changes may signal epileptic events. Our exper-
imental findings have shown that combining fNIRS with EEG
allows for improved seizure detection ability as compared to
EEG alone, which could provide additional information on criti-
cally ill patients admitted in the ICU, thus improving detection
of seizure (in addition to the other advantages of fNIRS in the
ICU, such as monitoring of brain hypoxia).

5 Conclusion
This study focused on determining the potential of fNIRS, a cost
effective, portable neuroimaging technique in the detection of
seizure events in multimodal EEG-fNIRS recordings. Our pri-
mary objective was to examine the enhanced capabilities that
fNIRS signals provide for a seizure detection task, in particular
when combined with EEG data in a multimodal framework, and
our secondary objective was to utilize the power of neural net-
works for this task. For this study, we aimed to obtain strong
and robust hemodynamic response signals. Toward this aim,
we collected long-term continuous multimodal EEG-fNIRS data
from 40 known epileptic patients comprising a total of 50 h
of recordings. We proposed an LSTM-RNN model that is
capable of learning explicit classes from human seizure data.
Hyperparameter optimization and monitoring model validation
loss (cross-entropy) to ensure network learning and reduce over-
fitting was a priority. Eventually, a multilayered RNN-LSTM
neural network was designed to encode the sequential order
of features using the rectified linear unit objective function.

Table 5 The overall classification result across all 10-folds for each
data type. Multimodal data consistently provided superior results com-
pared to stand-alone EEG or fNIRS data alone.

Mean value post cross validation, k ¼ 10

Accuracy

EEG 97.6� 0.4 SD

fNIRS 97.0� 0.7 SD

EEG-fNIRS 98.3� 0.8 SD

Precision

EEG 82.8� 0.5 SD

fNIRS 80.7� 0.6 SD

EEG-fNIRS 87.3� 0.8 SD

Recall

EEG 85.2� 0.8 SD

fNIRS 81.3� 0.6 SD

EEG-fNIRS 89.7� 0.5 SD

Note: SD, standard deviation.
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To examine the generative power of the LSTM-RNN model, we
validated our model on a standard dataset followed by in-house
data. Postvalidation, our recordings were scored and subsequent
classes were formed from which a multilayered RNN-LSTM
neural network was fed stand-alone EEG, stand-alone fNIRS
data, and finally multimodal data. Our methodological approach
proves its ability to automatically learn robust features from
information contained in multimodal signals while conserving
intrinsic waveform properties of seizure and nonseizure activity.
Utilizing appropriate model hyperparameters, we performed
model training, testing, and validation on a benchmarked scalp
EEG dataset, which was followed by in-house EEG, fNIRS, and
multimodal data from 40 epileptic patients. We explored the
benefit that cerebral hemodynamic data provide for a seizure
detection task in EEG-fNIRS neuroimaging data and we show
that the addition of cerebral hemodynamics improves model
performance when compared to EEG alone. Our model’s ability
to learn the general representation of a seizure is showcased
by cross-patient performance indicators as multimodal data
reach performance metrics detailed in Table 5. Increased data
collection, including different seizure types, can enhance our
model’s performance and lend itself to increase generalizability.
Furthermore, the neural network models proposed and
characterized herein offer a promising framework for future
investigations in early seizure detection. Since our proposed
model correctly classifies sequences, this suggests automation
of this process can enhance the diagnostic decision-making
and treatment planning for epileptic patients. Our model has
the potential to be extended to a real-time clinical monitoring
system, in which trained clinical personnel are not readily
accessible.
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