15 research outputs found

    Advancing whisker based navigation through the implementation of Bio-Inspired whisking strategies

    Get PDF

    Active Touch with a Biomimetic 3D-printed Whiskered Robot

    Get PDF

    Tapered whisker reservoir computing for real-time terrain identification-based navigation

    Get PDF
    This paper proposes a new method for real-time terrain recognition-based navigation for mobile robots. Mobile robots performing tasks in unstructured environments need to adapt their trajectories in real-time to achieve safe and efficient navigation in complex terrains. However, current methods largely depend on visual and IMU (inertial measurement units) that demand high computational resources for real-time applications. In this paper, a real-time terrain identification-based navigation method is proposed using an on-board tapered whisker-based reservoir computing system. The nonlinear dynamic response of the tapered whisker was investigated in various analytical and Finite Element Analysis frameworks to demonstrate its reservoir computing capabilities. Numerical simulations and experiments were cross-checked with each other to verify that whisker sensors can separate different frequency signals directly in the time domain and demonstrate the computational superiority of the proposed system, and that different whisker axis locations and motion velocities provide variable dynamical response information. Terrain surface-following experiments demonstrated that our system could accurately identify changes in the terrain in real-time and adjust its trajectory to stay on specific terrain

    Distributed sensing in flexible robotic fins: propulsive force prediction and underwater contact sensing

    Get PDF
    There is recent biological evidence that the pectoral fins of bluegill sunfish are innervated with nerves that respond to bending, and these fish contact obstacles with their fins. However, it is not known how fin-intrinsic sensing could be used to mediate propulsion and touch in engineered fins. The objective of this thesis is to understand the use of distributed sensing in robotic fins, inspired by bony fish fins, for the prediction of propulsive forces and for the discrimination between fluidic loading and contact loading during underwater touch. The research integrates engineering and biology and builds an understanding of fin-intrinsic sensing through study of swimming fish and robotic models of fish fins and sensors. Multiple studies identify which sensor types, sensor placement locations, and model conditions are best for predicting fin propulsive forces and for predicting the state of contact. Comparisons are made between linear and nonlinear Volterra-series convolution models to represent the mapping from sensory data to forces. Best practices for instrumentation and model selection are extracted for a broad range of swimming conditions on a complex, multi-DOF, flexible fin. This knowledge will guide the development of multi-functional systems to navigate and propel through complex, occluded, underwater environments and for sensing and responding to environmental perturbations and obstacles.Ph.D., Mechanical Engineering and Mechanics -- Drexel University, 201

    Advancing whisker based navigation through the implementation of Bio-Inspired whisking strategies

    No full text

    29th Annual Computational Neuroscience Meeting: CNS*2020

    Get PDF
    Meeting abstracts This publication was funded by OCNS. The Supplement Editors declare that they have no competing interests. Virtual | 18-22 July 202

    Activation of the pro-resolving receptor Fpr2 attenuates inflammatory microglial activation

    Get PDF
    Poster number: P-T099 Theme: Neurodegenerative disorders & ageing Activation of the pro-resolving receptor Fpr2 reverses inflammatory microglial activation Authors: Edward S Wickstead - Life Science & Technology University of Westminster/Queen Mary University of London Inflammation is a major contributor to many neurodegenerative disease (Heneka et al. 2015). Microglia, as the resident immune cells of the brain and spinal cord, provide the first line of immunological defence, but can become deleterious when chronically activated, triggering extensive neuronal damage (Cunningham, 2013). Dampening or even reversing this activation may provide neuronal protection against chronic inflammatory damage. The aim of this study was to determine whether lipopolysaccharide (LPS)-induced inflammation could be abrogated through activation of the receptor Fpr2, known to play an important role in peripheral inflammatory resolution. Immortalised murine microglia (BV2 cell line) were stimulated with LPS (50ng/ml) for 1 hour prior to the treatment with one of two Fpr2 ligands, either Cpd43 or Quin-C1 (both 100nM), and production of nitric oxide (NO), tumour necrosis factor alpha (TNFα) and interleukin-10 (IL-10) were monitored after 24h and 48h. Treatment with either Fpr2 ligand significantly suppressed LPS-induced production of NO or TNFα after both 24h and 48h exposure, moreover Fpr2 ligand treatment significantly enhanced production of IL-10 48h post-LPS treatment. As we have previously shown Fpr2 to be coupled to a number of intracellular signaling pathways (Cooray et al. 2013), we investigated potential signaling responses. Western blot analysis revealed no activation of ERK1/2, but identified a rapid and potent activation of p38 MAP kinase in BV2 microglia following stimulation with Fpr2 ligands. Together, these data indicate the possibility of exploiting immunomodulatory strategies for the treatment of neurological diseases, and highlight in particular the important potential of resolution mechanisms as novel therapeutic targets in neuroinflammation. References Cooray SN et al. (2013). Proc Natl Acad Sci U S A 110: 18232-7. Cunningham C (2013). Glia 61: 71-90. Heneka MT et al. (2015). Lancet Neurol 14: 388-40
    corecore