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Abstract 

Distributed sensing in flexible robotic fins: propulsive force prediction and underwater 
contact sensing 
Jeff C Kahn, Jr. 

James L. Tangorra, Ph.D. 
 

There is recent biological evidence that the pectoral fins of bluegill sunfish are innervated 

with nerves that respond to bending, and these fish contact obstacles with their fins. 

However, it is not known how fin-intrinsic sensing could be used to mediate propulsion 

and touch in engineered fins. The objective of this thesis is to understand the use of 

distributed sensing in robotic fins, inspired by bony fish fins, for the prediction of 

propulsive forces and for the discrimination between fluidic loading and contact loading 

during underwater touch. The research integrates engineering and biology and builds an 

understanding of fin-intrinsic sensing through study of swimming fish and robotic models 

of fish fins and sensors. Multiple studies identify which sensor types, sensor placement 

locations, and model conditions are best for predicting fin propulsive forces and for 

predicting the state of contact. Comparisons are made between linear and nonlinear 

Volterra-series convolution models to represent the mapping from sensory data to forces. 

Best practices for instrumentation and model selection are extracted for a broad range of 

swimming conditions on a complex, multi-DOF, flexible fin. This knowledge will guide 

the development of multi-functional systems to navigate and propel through complex, 

occluded, underwater environments and for sensing and responding to environmental 

perturbations and obstacles. 

 

 



 

 

  



 

 

Ineluctable modality of the visible: at least that if no more, thought 

through my eyes. Signatures of all things I am here to read, seaspawn 

and seawrack, the nearing tide, that rusty boot. Snotgreen, bluesilver, 

rust: colored signs. Limits of the diaphane. But he adds: in bodies. 

Then he was aware of them bodies before of them colored. How? By 

knocking his sconce against them, sure…. Diaphane, adiaphane. If you 

can put your five fingers through it it is a gate, if not a door. Shut your 

eyes and see.  

- James Joyce, Ulysses 

 

What you think is the point is not the point at all but only the beginning 

of the sharpness. 

- Flann O’Brien, The Third Policeman 
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Chapter 1. Introduction 

1.1 Objective 

The objective of this work is to understand the use of distributed sensing in a flexible, 

robotic fish fin for the prediction of propulsive forces and the discrimination of fluidic 

loading from contact loading during underwater contact with a rigid object. The core 

research question is: How should fin-intrinsic sensing, inspired by bony-finned fish, be 

adapted for use in flexible, robotic fins to predict propulsive forces and discriminate 

contact loading? 

As our climates change, the oceans around us will become increasingly a part of 

our daily lives. Into the more distant future, we may need to live in environments that are 

threatened by flooding, water damage, waves, and significant water pressure. High sea 

levels will affect coastal environments and existing cities may need to engineer 

infrastructure in and around bodies of water. Travel in cities may involve personal and 

public transport that is both terrestrial and aquatic. Transport of physical goods and 

services may involve aquatic vehicles and robotic devices that must interact with water 

and underwater structures. The search for energy may turn to oceanic vents in dangerous, 

dark, and deep areas, and exploration will be carried out by specialized humans and 

machines working in partial or complete autonomy. 

 Terrestrial robots have been inspired by our own sensibilities as highly successful 

terrestrial animals, but we have yet to apply our knowledge of successful underwater 

animals to develop aquatic robots. Robotics arms and hands have been developed for 

handling, assembly, and manufacturing tasks based heavily on the human anatomy of the 

arm, wrist, and fingers. In recent years, the role and utility of sensory feedback in robotic 
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hands has been investigated, notably first with capacitive touch sensors, and then with 

biologically-inspired sensors in the skin surfaces and digits of robotic hands. The 

Syntouch BioTac, for example, uses multimodal sensing in a fingertip to capture a 

distribution of contact pressure, vibration, and force signals within a single robotic 

fingertip sensor. These advances in sensing, coupled with actuation, have enabled robots 

to execute highly dexterous manipulation of objects and tools. Underwater robots, 

however, have been inspired by the body morphology of animals, but the mechanisms of 

propulsion and sensing have yet to see significant development in commercial (non-

research) underwater robots. Bony-finned fish (teleostei), which include such diverse 

species as knifefish, catfish, cod, and sunfish, are fish with rich sensory systems in their 

bodies and fins. Their fins are capable of manipulating fluid and obstacles for propulsion 

and navigation.  

 Human fine motor control is enabled by a rich variety of distributed, 

heterogeneous sensors including the mechanoreceptors of the hands and arms, the visual 

system, the auditory system, and proprioception that provide the relative position of the 

body and its limbs as it manipulates. Sensory cell bodies are distributed in that they are 

spread through the skin and underlying tissue, muscles, and ligaments. For example, 

when a human runs, she initiates motor commands from the frontal cortex, which 

activates circuits in the cerebellum and then pathways in the spine where firing patterns 

enable locomotion in the muscles [1]. Even if she were running in the dark, 

proprioceptors in her legs and joints would give her a sense of the relative position of 

upper legs, lower legs, and ankles. With each stride, she can feel the muscles stiffen and 

relax from the information gathered by populations of muscle spindles, and can adjust the 



3 

 

degree of stiffness through co-contraction of opposing muscles depending on the force 

and stiffness required. With each ground contact, she can feel the spread of deformation 

through her footpads [2] as well as the vibrations of bone and tissue due to impact. All of 

these sensory systems participate in modification of her running gait through feedback 

control to change the kinematics and stiffness of her joints and muscles. Both the 

distribution and the modality of the sensory cells are important in achieving good 

functionality for motor control. 

 Fish achieve fine movement and positioning of their bodies using their fins. These 

species use complex 3d kinematics, flexible fins and bodies, and distributed sensors 

systems (both interoceptive and exteroceptive) to swim, but these key features have yet to 

see application in most underwater vehicles. Currently, most unmanned underwater 

vehicles (UUVs) use distributed propeller systems for control of propulsion and 

centralized inertial measurement units (IMUs) and GPS to track movement of the body 

and joints of the robot. Vehicles with fins may have some flexibility, but will typically 

swim with stereotyped 2d kinematics as opposed to the rich 3d kinematics seen in fishes.  

The bluegill sunfish (Lepomis macrochirus) relies heavily on its pectoral fins for 

many aspects of swimming and navigation, at a broad range of swimming speeds. When 

the fish is hovering in place, or station-keeping, the pectoral fins execute complex 3d 

kinematics to maintain its body position. At low swimming speeds, its pectoral fins are 

used to navigate by touch through occluded environments [3]. During steady forward 

swimming at moderate speeds, the pectoral fins execute a patterned gait to produce thrust 

through abduction and adduction phases [4]. At higher speeds during steady swimming, 

perturbations that would cause the fish body to roll are mitigated by torques created by 
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the pectoral and caudal fins. Fast yaw turn maneuvers to avoid incoming obstacles are 

enabled by turns initiated in the pectoral fins [5]. At low swimming speeds, or when 

station-keeping, the sunfish relies on a variety of hovering motions of its pectoral fins to 

create forces to remain stably positioned under perturbations. 

 Fish are capable of a wide variety of complex maneuvers underwater enabled by 

their fins, which too have distributed, heterogeneous sensory systems within them, 

though we do not know how the sensory information is used. Work in neurobiology aims 

to answer this question, where sensory afferents are instrumented to measure cellular 

firing patterns as fins swim or are held in place and perturbed. These studies show that 

cells respond to a range of sinusoidal stimuli, step stimuli, and ramp-and-hold stimuli. 

The population of cells includes both fast- and slow-adapting afferents of multiple types 

[6]. Additionally, knocking out fin sensation changes the amplitude and frequency of 

patterned gaits such as hovering [7]. These advances in knowledge are significant, but 

they do not fully map out the feedback path of the sensory signals to show how this 

information is used directly. It is unknown, for instance, if intrinsic sensors are used in 

the feedback control of stroke-to-stroke kinematics, or in feedback control of propulsive 

forces. Overall, the current knowledge suggests that fin-intrinsic sensation is used in the 

control of fin outputs, which could include both contact with objects and propulsive 

forces. 

Flexible fins engage in a complex interaction with surrounding fluid to create 

propulsive forces. These fins engage in a fluid-structure interaction (FSI) where fluidic 

loading causes deformation of the fin surface and the deformation in turn affects the fluid 

displacement. The FSI can be affected by the geometry of the fin, which can change 
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through time depending on the driven kinematics of the fin (c.f. Figure 1). Small changes 

to kinematics, such as phase delays between fin sections, can cause large changes to the 

forces produced by fins. Changes to the velocities of kinematic patterns can also have 

significant effects on the fluidic loading experienced by fins, and in turn the forces that 

those fins produce. Fins are flexible structures, and therefore changes to their stiffness 

can also impact the FSI: for example, changing the uniform stiffness of a fin that is 

flapping can change the magnitude and direction of the propulsive force vector. 

 One of the key mechanisms of force production in finned propulsion is the 

bending of fins as they are actuated through the water [8]. Bending, as a function of time, 

can be modulated through changes to the kinematics of the fins as well as changes to the 

stiffness of fins (Figure 1). Animals make significant changes to their kinematics through 

changes of gait, and fine adjustments to their kinematics while executing that gait. For 

finned fish, gait changes can result in large changes to kinematics, the FSI, the bending of 

fins, and the propulsive forces produced. Therefore a key link between the fin kinematics 

and the propulsive force is the mechanical deformation of the fins, or more simply, the 

bending of fins. 

 

Figure 1. Block diagram illustrating the relationship between fin ray stiffness k, driven kinematics g, and the outputs of 
sensors S and propulsive forces F. The i-th subscript represents the i-th degree of freedom of the robot, i.e. a fin ray in 
this example. Kinematics are strictly a function of time though stiffness can be either only a function of space or a 
function of time and space. The propulsive force is created through the fluid structure interaction (FSI) which involves 
both the force created by the fluid acting on the fin and vice-versa. Actual mechanical phenomena (subscript a), e.g. 
strain, are measured by the j fin intrinsic sensors (subscript m). 
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Bending afferents are distributed throughout the sunfish pectoral fins, and these 

cells respond to bending at multiple fin locations.  It has been verified that distributed 

bending sensation plays a role in fish swimming, but it is not known from a practical 

standpoint how this information could be used for underwater behaviors in robotic 

applications. The sunfish, for example, engages in multiple complex behaviors, including 

(but not limited to): steady forward swimming, nest guarding, hovering in place, 

maneuvering and turning, contacting obstacles, and building nests. Each of these 

behaviors may involve the use of several gaits depending on desired swimming speed, 

desired body configuration, and body constraints and obstacles. Bending sensation and 

feedback from fin afferents could mediate several of these behaviors but its utility and 

practical considerations are unknown.  

 From study of these animal behaviors, two tasks of high value are apparent: the 

control of propulsive forces and the prediction of contact states. The control of propulsive 

force first involves the prediction or estimation of propulsive force, which could be 

attempted using distributed bending sensors. The contact state is simply the classification 

of whether or not a fin is in contact with an extrinsic obstacle. Prediction of the contact 

state could involve interpretation of the signals from distributed bending sensors. Thus 

these two tasks can both be approached through the use of robotic models of fins with 

distributed bending sensors. The robotic models have distinct advantages from the 

biology in that they can be instrumented more easily and precisely, and can be controlled 

to execute larger numbers of repeated experiments for statistical power. 
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 A major challenge of controlling underwater robots to swim like fish is to 

understand the control of the fin’s propulsive forces, which, to achieve fish-like 

performance, hinges on understanding the use of fin-intrinsic sensors. Generally, fish-like 

swimming involves the deployment of 3d kinematics in gaits, the modulation of stiffness 

between strokes, the fine tuning of kinematics of individual gaits mid-stroke, and the use 

of fins to contact and interact with obstacles. This rich behavior may be achieved through 

the gathering and processing of intrinsic sensory data. To execute 3d kinematics in the 

presence of fluid disturbances or a modified plant (e.g. a damaged fin) requires some 

knowledge of the state of the fin’s 3d kinematics. Being able to fine tune kinematic 

patterns may be driven by proprioceptive cues from sensory inputs. Contact with objects 

may be incidental, but the reflexive responses require the knowledge of being in contact 

with an object, whether inferred from sensing of the body dynamics or discrimination of 

contact locally from sensory cells. The many sensory inputs in the fin that respond to step 

stimuli may mediate fin control when contacting obstacles.  

Knowledge of how to use sensors in robotic systems is of great importance for 

developing robots that are capable of adapting to real-world environments and 

responding appropriately to perturbations. Biological systems can serve as exemplars of 

how sensing can be useful to mediate locomotion and drive interaction with the outside 

world. Neurobiologists have successfully identified sensory cell bodies and afferent 

nerves in diverse animal systems and determined how they respond to different 

mechanical stimuli. Sensing in animal systems can often be distributed (spread 

throughout tissue and organs), heterogeneous (cells and nerves that transduce different 
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mechanical phenomena), and intrinsic (contained wholly within the organ which it 

senses).  

Engineers have only started to understand the implications of sensing that is 

inspired by biological systems, and how to use these types of sensing for the design of 

better robotic platforms. Most engineering approaches to adopting biological sensing 

strategies use low numbers of homogeneous sensors or one sensor per type, and these 

sensors are centrally located, which is entirely unlike the distributed, heterogeneous, and 

intrinsic sensors seen in animals. It is understandable that most engineering systems have 

not adopted biologically-inspired approaches to sensing, as the costs and benefits of 

distributed and heterogeneous sensing have not been deeply explored or characterized for 

robotic systems. It is not known during which tasks distributed, heterogeneous, intrinsic 

sensing would be useful, how many sensors are needed, and what sensor modalities are 

appropriate given the robot’s goals and environment. Intrinsic sensors and nerves are a 

part of the body they innervate and it is not always known how the kinematics and 

mechanical properties of these bodies affect sensory measures. These are core questions 

that must be addressed in order to develop robots with rich sensory capabilities akin to 

animals.  

1.2 Thesis Organization 

 Chapter 2 addresses the Background and the biological inspiration for the work, 

and specifically how bony-finned fish use their fins to create propulsive forces using 

kinematics, mechanics, and sensors. It also presents the state of the art in flexible, high 

degree-of-freedom (DOF), robotic fins for propulsion and sensing applications. Lastly, a 
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sensing and control framework is posed that forms the main motivation for the thesis in 

addressing challenges in closed-loop control of propulsive forces using sensing in fins. 

 Chapter 3 presents main results on the use of fin-intrinsic bending sensors for the 

discrimination of fluidic loading from contact loading. For both the prediction of 

propulsive forces and of contact state from bending sensors, it is first necessary to 

understand some of the effects of fluidic loading on bending sensation. These effects are 

made more complex by the presence of obstacles, which act on the fluid and the fin as the 

fin approaches a target obstacle. These effects are explored through the results of 

experiments with a robotic fin and underwater obstacles. Understanding these effects 

builds the foundation for experiments that involve the prediction of propulsive force and 

of contact state. The chapter concludes with a signals-based analysis that demonstrates 

the discrimination of contact loading from fluidic loading during underwater touch. 

 Chapter 4 describes the framework selected and developed to estimate sensory 

data from propulsive forces. This includes a description of linear and nonlinear multiple-

input-single-output (MISO) models from the field of System Identification. A primer on 

linear and nonlinear regression is given, along with detailed development of the Volterra 

series models used to analyze experimental data in later chapters. Techniques are 

introduced to reduce the dimensionality of the estimation problem for nonlinear models. 

Lastly, metrics of estimation performance are introduced and compared to form the basis 

for later analysis.  

 Chapter 5 presents the core results of the thesis, where the prediction of 

propulsive forces from sensory data is investigated. To address the practicality of using 

distributed bending and pressure sensors to predict the propulsive forces of fins, a large 
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series of experiments was executed that varied the fin gait, speed within the gait, and 

stiffness of the fin rays while forces and sensory data were measured. An analysis was 

constructed to identify best practices for hardware implementation (placement location, 

number of sensors, type of sensors) and algorithm implementation (time window of 

sensory data, linearity of model, degree of model order reduction) to predict the 

propulsive forces from sensory data. From this work, practical principles emerge for 

implementing sensors and software for force prediction from distributed sensors. These 

principles can be used for design of flexible underwater propulsors with integrated 

sensing systems, as well as for the design of experiments and sensory systems for 

predicting important locomotive outputs.  

 Chapter 6 addresses the extension of the work from prediction of propulsive 

forces to the control of propulsion using biologically-inspired and algorithmic techniques. 

Prediction of propulsive forces is useful for monitoring the force production of individual 

fins, but the natural extension of such work is to use prediction of forces to control 

propulsive forces. However, the parameter space for kinematics of flexible, multi-DOF 

fins is massive, so general principles and algorithmic techniques are needed to determine 

how to generate desired forces. Work is presented that examines sunfish hovering, where 

multiple kinematic patterns are used to create a variety of forces and control of body 

position is achieved through switching between gaits and fine tuning kinematics. An 

algorithmic approach is presented for exploring the massive parameter space of a 

biorobotic pectoral fin using genetic algorithms. These two studies form the foundation 

for a control framework that is biologically-inspired and sufficiently complex to handle 

the behavioral requirements of underwater vehicles with flexible propulsors. 
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 Chapter 7 presents the conclusions of the thesis and provides a higher level 

discussion of their implications for the design and instrumentation of flexible, high-DOF, 

robotic devices for sensing and propulsion tasks. 

 Chapter 8 presents directions for future work in order to achieve control of 

propulsion using distributed, fin-intrinsic sensors. 

1.3 Contribution and Novelty  

The main contribution of this work is that a method for force prediction on a flexible, 

high-DOF, robotic fin is demonstrated and guiding principles are developed for sensor 

and model choices. The secondary contribution of this work is the development of 

methods for discrimination between fluidic loading and contact loading for touch sensing 

in the underwater environment.  

 The novelty of this work is that it successfully demonstrates an approach for the 

estimation of propulsive forces on a high-DOF, flexible robotic fin without an explicit 

physics-based model. Other approaches have modeled the relationship between 

kinematics and forces for low-DOF robotic fins and flapping foils, but these models 

typically do not allow for 3d kinematics or 3d deformation of the flexible fins. The use of 

a general multi-input-single-output (MISO) model also allows for a refinement of 

understanding of the important parameters that relate sensory phenomena to force 

production. Forces have been estimated using inertial measurement units and extrinsic 

load cells, but estimation of forces using sensors within a fin allows for monitoring of the 

fin’s performance locally, and for extension of the algorithms into predicting local forces. 

Ultimately the prediction of local forces (i.e. forces from different regions of fins) can be 
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extended to execute control of local forces. This work also presents some of the first 

research that characterizes the sensory phenomena of underwater contact with objects. 
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Chapter 2. Background 

2.1 Chapter summary 

This research involves deriving knowledge from a biological system and applying that 

knowledge for the design of engineering systems with similar capabilities. The biological 

model of this work is the bluegill sunfish (Lepomis macrochirus), which uses its pectoral 

fins to navigate at low speeds and to contact obstacles in cluttered environments. In past 

work, a biorobotic pectoral fin was designed to match the mechanical, kinematic, and 

force production properties of the sunfish pectoral fin and this fin was used as the 

primary robotic device for work in this thesis.  

The objective of this chapter is to present the state of the art in both biological and 

engineering research on sensing and control of flexible fins and to provide the foundation 

for the work of the thesis that follows. This section first gives an overview of the pectoral 

fins of the bluegill sunfish and summarizes what is known about pectoral fin swimming, 

pectoral fin touch, sensors in the pectoral fins, and control of pectoral fins.  The same 

four areas are reviewed from the perspective of engineered robotic fins and their 

performance during swimming, touch, sensing, and control. Lastly, a biologically-

inspired control framework is presented and motivated in order to contextualize the main 

results of the thesis.  



14 

 

 

Figure 2. A bluegill sunfish hovering in a static water tank. The sunfish primarily uses its pectoral fins at low 
swimming speeds (e.g. hovering, maneuvering through obstacles, low speed steady swimming). Courtesy of George V. 
Lauder and Brooke Flammang. 

 

2.2 Pectoral Fins of the Bluegill Sunfish 

2.2.1 Swimming in the Bluegill Sunfish 

Fish have been researched as a model for maneuverable, underwater systems, and fish 

fins have been studied as a model for creating propulsors with the capability to produce 

complex, three-dimensional forces [4, 9-11]. The bluegill sunfish (Lepomis macrochirus) 

was selected as the biological inspiration for this research because it uses its pectoral fins 

to execute highly agile swimming behaviors and navigates in occluded environments 

using its fins. Further, the bluegill sunfish is a model organism for bony-finned fish and 

the propulsive performance of its fins has been extensively studied during multiple 

swimming gaits and behaviors. Bony-finned fish use their fins to maintain their body 

position while hovering and searching for prey [12], to rapidly change direction during 

yaw turns [5], and to execute steady forward swimming in flow [4, 13].  

Fish control their propulsive forces by controlling their fin’s mechanical 

properties and their 3D kinematics during swimming [9]. They can change the forces on 
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their bodies from stroke to stroke with kinematic changes to their fins [9, 11]. Changes to 

kinematics can change based on the driven base motion of the fins, the stiffness of the fin 

rays (which fish can modulate), and the speed of muscle actuation. Significant amounts 

of bending, twisting, cupping, and feathering can be seen in the pectoral fin kinematics of 

swimming bony finned fish [11, 14, 15] and these are coupled to the magnitude and 

direction fin’s propulsive force through time. Fish can also change the stiffness of their 

fins in order to alter the magnitude and direction of the propulsive force through time. 

Some bony-finned fish can change the stiffness of their fins by orders of magnitude [16], 

significantly altering the magnitude and direction of the propulsive force through time 

[17, 18]. 

 To understand the control of pectoral fins it is important to examine fish 

behaviors where the kinematics of pectoral fins are most diverse and highly responsive to 

perturbations. Large changes to pectoral fin kinematics are seen during hovering behavior 

and low speed maneuvers, and the control of pectoral fins may be more complex during 

these behaviors. During these swimming modes, sunfish use their pectoral fins to drive 

motion and orient the body [9, 10], though it is not known how the pectoral fins are used 

to control body position during hovering.   

2.2.2 Touch in the Bluegill Sunfish 

Sunfish use their fins to contact obstacles when placed in cluttered environments. 

It is not known how much of the contact is incidental, but when the fish is deprived of 

vision and its lateral line receptors it will make many more obstacle contacts than with 

intact sensory systems [3]. This suggests that fish may use their fins as touch sensors in 

cluttered environments. Unlike what is seen in patterned swimming gaits, we have not 
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identified a stereotypical set of kinematics that the sunfish uses to contact obstacles. 

While the sunfish will touch obstacles using its pectoral fins (Figure 3), it will also do so 

using its caudal fins, anal fins, and multiple sections of its body (Unpublished video data, 

Flammang and Lauder 2013). However, the role of fin-intrinsic sensory information 

during obstacle contact has not been investigated. 

 

 

Figure 3. Sunfish contact obstacles using their pectoral fins in cluttered environments. No stereotypical contact 
patterns have been identified. The mechanics and sensory phenomena of fin contact with obstacles are not well 
understood. Figures adapted from [3]. Courtesy of Brooke Flammang and George V. Lauder. 

 

Sunfish use their fins and bodies in a variety of circumstances that would likely 

benefit from a sense of touch underwater. Sunfish build nests using their fins by 

gathering plant material and moving sediment. They navigate through cluttered and dark 

lake environments, where contact with plants, rocks, and sediment is a necessity. They 

interact with directed flows from river sources as well as turbulent flows and eddies shed 

off of obstacles and other bluff bodies. Being able to sense and respond to the conditions 

of obstacles as well as the fluidic environment would be valuable for survival.  

2.2.3 Sensors in the Bluegill Sunfish 

The pectoral fins of sunfish are innervated with nerve fibers which spread through the 

bony segments of fin rays, and terminate in free nerve endings throughout the fins [19, 
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20] (Figure 4). Recent work has shown that these afferents respond to the amount and 

rate of bending in the fins [6, 21]. Studies with the fish have not yet isolated the exact 

mechanical stimulus that produces a response and so either bending of fin rays or stretch 

of membrane between fin rays could be reasonable sensory measures. The nerve fibers 

also play a role in modulating the amplitude and the phase relationships between fin rays 

during hovering [7]. When the afferent nerves to the pectoral fins are cut, the pectoral fin 

kinematics change: phase lags increase between leading edges of the fin, and fin ray 

amplitudes change [22]. However, the role of afferent nerves during swimming is not 

well understood and it is not known which locations or types of bending sensors aid in 

control of propulsion. 

 

 

Figure 4. Afferent nerve fibers in the bluegill sunfish pectoral fins. Fibers terminate in free nerve endings which 
respond to bending stimuli. Adapted from [20]. Courtesy of Melina Hale.  

 

2.2.4 Control in the Bluegill Sunfish 

There are different behavioral responses in the fins of sunfish depending on the speed that 

the sunfish is swimming, which suggests that control strategies change depending on 
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speed. For instance, during steady swimming at low speeds (<1 body length per second) 

where the pectoral fins execute a patterned gait, experiments with a vortex perturber have 

shown that the pectoral fin can be crushed against the body without any update to the 

kinematics within the stroke. During this swimming mode, the only observed type of 

perturbation that elicits a significant pectoral fin response is one that induces a roll in the 

fish body. This evidence suggests that the pectoral fin kinematics are not tightly 

controlled during patterned steady swimming. At lower speeds of steady swimming, the 

introduction of an obstacle can induce a yaw turn maneuver [5], and some vortex 

perturbations to one fin beat can elicit a change in kinematics in the next fin beat. It is not 

until lower swimming speeds that the kinematics of swimming sunfish seem to change 

during a fin beat. 

When the sunfish is hovering in place using most of its fins (pectoral, anal, 

dorsal), the pectoral fin kinematics vary significantly from stroke to stroke [23]. In 

addition, during hovering, the sunfish pectoral fins will change kinematic patterns within 

a fin beat, meaning that the pectoral fin will begin to execute a patterned gait and then 

will quickly change the kinematics mid-stroke. Sunfish are statically unstable [9], such 

that their center of mass is located above their center of buoyancy, and therefore active 

fin control is required even during hovering. While the exact role of afferent nerves is not 

known in this behavior, the diverse kinematic patterns and rapid changes to kinematics 

suggest that the pectoral fins are under more direct sensory-modulated control during 

hovering than in other swimming behaviors.  

 

2.3 Flexible, high-DOF, robotic fins 
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2.3.1 Propulsion in flexible, robotic fins 

Many engineering studies have used flexible foils as low order physical models to study 

the effects of kinematics and mechanical properties on fin propulsive forces [24], but 

much fewer have used fins with 3D kinematics and degrees of freedom that approximate 

those of swimming fish. Flapping foil experimental studies have investigated the effects 

of stiffness [25], flapping frequency [26, 27], heaving amplitude, propulsor shape[28], 

drag coefficients [29], and ground effect [30] on hydrodynamics and propulsive force 

outputs. A recent study demonstrates that flexible foils may serve as sufficient models of 

force production for caudal fin swimming as seen in two types of bony finned fish [26]. 

However, understanding force production in fish fins often requires complex 3D 

kinematics and specific mechanical properties [4, 9]. A few studies have used robotic 

models of bony-fish fins to study the effects of kinematics and mechanical properties on 

the propulsive forces. Robotic models of the knifefish have been used to investigate the 

kinematics, mechanical properties, and hydrodynamics of the dorsal ribbon fin during 

propulsion [31].  

Our lab’s robotic models of the bluegill sunfish (a bony-finned fish) have been 

used to understand the mechanisms of force production in fins during multiple swimming 

gaits [5, 23, 32, 33], as well as the relationship between mechanical property changes and 

force production [17]. In general, these studies validate that complex 3d kinematics and 

fin bending play a large role in determining the propulsive forces produced by fins. They 

also suggest that the creation of 3d propulsive force is a function of kinematics from 

multiple regions of the pectoral fin, and that there are complex nonlinear relationships 

between kinematics and fin forces. 
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2.3.2 Touch in flexible, robotic fins 

A sense of touch gives biological and robotic systems the ability to perceive physical 

properties of the environment and to execute agile maneuvers while responding to 

perturbations. Touch may be a very important sense underwater, where there are 

significant interactions between manipulators and their targets through the fluidic 

medium. Robotic touch and contact sensing has been extensively studied in the terrestrial 

domain, but has received much less attention underwater. Few researchers have utilized 

active touch sensing to explore underwater environments. Much prior work in robotic 

exploration has focused on vision and sonar-based sensing for simultaneous localization 

and mapping (SLAM) [34-39]. SLAM is effective for visualizing object shapes but does 

poorly in occluded environments and provides little information about flows or 

mechanical properties of objects. To characterize flows, researchers have constructed 

artificial lateral line arrays. These efforts have demonstrated that flow characterization is 

sensitive to sensor orientation, spatial distributions, and spectral sensitivities [40, 41]. 

The use of actuators to reorient a sensory system relative to flow has been shown to 

improve the estimates of the flow field [42, 43].  

Whisker-based sensors have been shown useful in flow characterization and 

object exploration underwater, but fins have not received the same level of attention. In 

seals and walruses, facial whiskers provide distributed sensory information used to 

identify object shapes [44, 45], follow wake profiles from objects and prey [46, 47], and 

distinguish prey while foraging [48]. Engineering research with tapered cantilever 

whisker sensors has shown that the geometry and structural properties of target objects 
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can  be reconstructed from bending measurements [49, 50], but there has been little work 

that utilizes beam-like sensors for active sensing and flow characterization in the 

underwater environment [51, 52], and almost no studies of the role of membranes 

coupled to these systems [53]. The limited work on underwater tactile sensing has closely 

followed gripper design for terrestrial robots [54-56].  

The sensory phenomena associated with touch sensing underwater with fins is not 

well understood, including the phenomena that arise due to the fluidic environment, and 

the phenomena that arise due to the presence of compliant webbing between bony 

segments of fins. Understanding these phenomena associated with underwater touch 

would help create a fuller picture of the role and performance of fins as they aid in 

navigation and touch in the underwater environment, enabling underwater robotic 

technologies that exploit touch to perceive obstacles and flows. 

2.3.3 Sensors in flexible, robotic fins 

Engineers have successfully adapted many principles of force production from study of 

fish fins (see above). However, there have been few studies that investigate the use of 

sensing within fins. Several studies using ionic polymer metal composites (IPMCs) have 

suggested the use of embedded strain sensing within polymer fins to provide bending 

information for force control of fins [57, 58]. These sensors have been used to estimate 

the curvature of fins during flapping and heaving motions. Robotic models of a bluegill 

sunfish pectoral fin have been instrumented with bending and pressure sensors within the 

fin [23, 32, 33], and general trends have been identified that relate sensory measures to 

propulsive forces. Being able to predict the fin’s propulsive forces during swimming 

could contribute to closed-loop control of forces with robotic fins and foils. Further, 
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understanding which sensors are best for the task of force prediction can help in the 

design of more effective propulsors. It is not well understood which sensors are useful for 

force prediction or contact prediction underwater. 

2.3.4 Control in flexible, robotic fins 

New methods are required to control the propulsive forces of flexible robotic fins. One of 

the primary challenges of force control with flexible robotic fins is the large parameter 

space formed by the kinematics and stiffness of the fin’s actuated degrees of freedom. 

While the webbing between fin rays will dynamically constrain the space of possible 

trajectories, it is still too large a space for random exploration or even hill-climbing 

optimization algorithms. Search techniques have been applied to optimize kinematics for 

force production in robotic fins (by the author in [59], and others in [60]), but the 

algorithms employed are infeasible for finding an optimal kinematic pattern in real time.  

While the kinematics and mechanisms of force production are well understood, 

few studies have been done to execute force control using flexible fins with 3d 

kinematics. When the parameter space of kinematics is very large, computation of the 

inverse kinematics for an unseen force trajectory may not be feasible in real time. Several 

approaches use mathematical oscillators to control the kinematics of robots with large 

numbers of degrees of freedom (see [61] for extensive review). Nonlinear oscillator 

models have been used to control flexible foils close to their resonant frequency by using 

bending sensation as a feedback signal [62]. Hopf oscillators have been coupled together 

for control of fin kinematics in a 3d robotic manta ray system [63], and to generate stable 

trajectories for a robotic bat wing [64].  
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2.4 Sensing and control framework for the thesis 

Based on the state of the art in both the animal and robotic systems, a broader framework 

for sensory-based control of fins is proposed, and the thesis addresses key gaps in the 

state-of-the-art. The control framework is described herein and is simplified where 

possible (Figure 5). A more detailed treatment of the control is given in Chapter 6.  

Broadly, based on a physics model of the robot, a desired force, dF
v

, is computed. 

The desired force is used to select the proper stroke that will result in the desired force, 

based on a library or an algorithmic approach. Each stroke has associated reference 

signals of the forces of that stroke ( rF
v

), the kinematics of that stroke ( rx
v

), and the 

sensory signals associated with that stroke ( rS
v

). These reference signals are critical in 

two major inner loops of the control diagram: control of propulsive forces, and control 

when contact occurs. 
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Figure 5. Simplified control framework for sensory-based control of propulsive forces and of touch interactions. 

 

2.4.1 Prediction of propulsive forces  

Control of propulsive forces is crucially based on the prediction of propulsive forces 

using data from fin-intrinsic sensors (c.f. Figure 6). When the robotic fin is executing a 

given stroke, it generates the actual propulsive force aF
v

 through the interaction of the fin 

and the water (H2O). This interaction produces mechanical phenomena which are 

represented as a vector of sensory signals, aS
v

, which is measured by actual sensors to 

yield the measured sensory signals mS
v

. These sensory signals are then used to predict the 

propulsive forces of the fin. The reference force of the stroke, rF
v

, is compared to the 

prediction of force, F̂
v

, to compute an error.   
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Figure 6. Close up of block diagram for prediction of propulsive forces. 

 

 There are other reasonable approaches to obtaining the error between reference 

force and actual force, but most suffer limitations for application with flexible, multi-

DOF fins. The first obvious solution to obtaining an estimate of force is to measure or 

infer propulsive force directly. With mechanical design, it may be possible to instrument 

the fin with a multi-axis force sensor at its base connection to the robot body and obtain 

an estimate of force. This is a significant design challenge with tendon driven systems, 

but may be achieved with calibration techniques. If force cannot easily be measured, 

force may also be inferred from the dynamics of the robot body. This could be achieved 

with a well calibrated inertial measurement unit to capture the position, velocity, and 

acceleration of the robot and to estimate the forces from these measurements. The 

estimate could be improved with multiple IMUs and fusion of GPS information, or 

similar. However, these techniques fail to associate forces with kinematics on the fins.  
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While the force may be known perfectly in time and direction with a force sensor, 

there is no clear knowledge of where the force is arising from in the fin. More 

specifically, since the forces are created through the fluid structure interaction of the fin, 

and the fin is controlled along multiple degrees of freedom, the measurement/inference of 

forces is not necessarily sufficient to allow for control of multiple degrees of freedom in a 

fin. For example, if the upper part of the fin is creating more thrust than is desired by the 

reference signal, this information is unknown even to a perfect force sensor. Local 

estimates of force are required to know from where the forces arise, in order to control 

them properly.   

 

2.4.2 Discrimination of contact loading from fluidic loading 

Another critical perception task is the determination of if/when contact has occurred with 

an underwater obstacle. In open water applications, this case is normally ignored for the 

closed-loop control of underwater vehicles, but in cluttered environments such as lakes, 

streams, and near shore regions, the determination of contact with obstacles can be a 

mission-critical task.  

 In the proposed control framework (Figure 7), as before, the biorobotic fin is 

driven with a desired kinematic pattern ( dx
v

) and at a desired stiffness ( dk
v

) and produces 

actual sensory measures which are measured by a suite of distributed fin-intrinsic 

sensors. The sensory measures can be compared to the reference sensory data ( rS
v

) for the 

stroke, and this can be used to determine if damage or a contact is occurred.   
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Figure 7. Close up of block diagram of underwater contact discrimination using fin-intrinsic sensors. 

 

 The discrimination of contact can then be used to trigger a specific strategy to 

deal with contact, depending on the dynamics of the vehicle and the location of the 

underwater obstacle. For instance, upon detection of contact, the fin could be stiffened to 

push off of the object or relaxed to allow a controlled collision with it. Reflexive motions 

of the fins or body could be used to resolve a contact or to minimize damage due to a 

high speed collision.  

Even without a reference sensory signal, how to use distributed, intrinsic sensors 

to determine the location, onset, and duration of contact are critical to being able to 

control the fins and body to mediate contact with underwater obstacles. It is important to 

localize contact on a fin so that actuation of the fin ray(s) in contact can be controlled. 

The location of contact on a fin cannot be easily determined using a single force sensor, 

as the mapping between contact location and force/torque is likely many-to-one for a 

multiple DOF fin. Distributed strain sensors can likely be used to localize contact on 

individual fin rays, as well as the location of contact along a single fin ray. Determining 

the onset of contact, or the instant when contact occurs, is important for localizing 

Fin-intrinsic 
sensors

Biorobotic finH2O
Sensory

Contact?



28 

 

obstacles in space as well as understanding if contact has occurred at all. Lastly, knowing 

how long contact has occurred, or when contact has ceased, is important information for 

the perception of the environment.   
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Chapter 3. Fin-intrinsic sensation for understanding underwater touch 

3.1 Chapter summary 

Underwater robots operating in cluttered marine environments such as lakes, streams, and 

near shore environments will interact with fluid and will come into contact with 

compliant, dynamic objects. These environments can be riddled with obstacles, plant life, 

and sediment and can have complex flow patterns that will affect both the propulsive and 

sensory performance of underwater propulsors such as fins.  

The role of touch and bending sensing underwater has not been explored in detail 

in the literature, especially as probes interact with fluid and contact obstacles. This 

chapter presents some of the first detailed experiments and analysis using compliant fins 

and beams that are instrumented with strain sensors for the exploration of underwater 

contact with fluid and rigid obstacles.  

Due to the complex interaction between the fin, the fluid, and the target object, 

the sensation of contact is affected by the fluid during multiple stages of contact. This 

interaction, termed the structure-fluid-structure-interaction (SFSI), can make it 

challenging to classify the difference between contact and non-contact states for the 

probe.  

The objective of this chapter is to present an understanding of the use of 

distributed sensors in a flexible robotic fin to discriminate between fluidic loading and 

contact loading during contact with an underwater obstacle. First, the effects of fluidic 

loading and the effects of changing fin and obstacle properties on the sensing of fluid and 

contact loading are explored. Additionally, signals-based techniques are developed for 

the discrimination of contact from non-contact conditions. The efficacy of several 
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thresholding and differencing techniques are evaluated across changing fin conditions of 

speed, structure, and stiffness, both in air and underwater.   

This chapter is comprised of one published journal paper reprint and a journal 

paper in review: (1) a journal paper published in the IEEE Transactions on Haptics 

Journal, Volume 9, Issue 2, April, 2016 and (2) a journal paper in preparation for 

submission to the IEEE Robotics and Automation Letters (RA-L). Both studies were used 

to explore the role of fin-intrinsic sensing during movement through fluid and contact 

with obstacles underwater. 
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3.2 Paper 1: The effects of fluidic loading on underwater contact sensing with 

robotic fins and beams 

3.2.1 Abstract 

As robots and teleoperated systems become more involved in underwater operations, 

understanding underwater contact sensing with compliant systems is fundamental to 

engineering useful haptic interfaces and underwater vehicles. Despite knowledge of 

contact sensation in air, little is known about contact sensing underwater and the impact 

of fluid on both the robot probe and the target object. The objective of this work is to 

understand the effects of fluidic loading, fin webbing, and target object geometry on 

strain sensation with compliant robotic fins and beams during obstacle contact. General 

descriptions of underwater obstacle contact are sought for strain measurements in fins 

and beams. Multiple phases of contact are characterized where the robot, fluid, and object 

interact to affect sensory signals. Unlike in most air applications, the underwater 

structure-fluid-structure interaction (SFSI) caused changes to strain in each phase of 

contact. The addition of webbing to beams created a mechanical coupling between 

adjacent beams, which changed the strains of contact. Complex obstacle geometries 

tended to make contact strains less apparent and caused stretch in fins. This work 

demonstrates several of the effects of fluidic loading on strain sensing with compliant 

robotic beams and fins as they contact obstacles in air and underwater. 

3.2.2 Introduction 

As robots and teleoperated systems become more in-volved in underwater operations, 

understanding underwater contact sensing with compliant systems is fundamental to 
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engineering useful haptic interfaces and perceptive underwater vehicles. Knowledge of 

underwater contact sensing has the potential to change the way that robots and humans 

operate in the underwater environment by conveying relevant fluidic and contact 

information to a human operator. Underwater robots in operations such as coastal 

surveying, military demining, specimen collection, and pipeline repair are likely to come 

into contact with underwater obstacles as well as objects of interest, and these systems 

should be designed with proper mechanical properties and sensory instrumentation for 

these jobs. However, the effects of fluid loading on the phenomena of contact with 

obstacles are not well documented for robotic touch systems. 

Recent evidence has shown that fish fins may serve a dual role as both propulsors 

and sensors, and this new understanding has inspired research questions regarding the 

sensation of contact underwater using compliant robotic systems. Studies of the bluegill 

sunfish (Lepomis macrochirus) have identified afferent nerves in their pectoral fins that 

innervate multiple regions  and respond to bending with rapidly adapting and slowly 

adapting afferent populations [1, 2]. The function of bending sensors in fish fins has not 

been fully explored, but it may have roles in controlling propulsion and mediating touch, 

as the sunfish have been observed to use their pectoral fins to touch obstacles more 

frequently under sensory deprivation conditions [3]. In air, the whiskers of rodents have 

inspired studies of contact sensing [4-7], as these animals use their whiskers for active 

perception of new environments. One major difference between sensing in fins and 

sensing in whiskers is that the fin afferent nerves are distributed throughout the fin 

webbing and bony fin rays, but whisker sensory cells are located in the sinus complex of 

rats and mice [8]. This suggests that the spatial distribution of sensors in fish fins may be 
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relevant to its functional role.  Compliant robotic fins and beams are a natural starting 

point to investigate sensation during underwater contact. 

Despite knowledge of contact sensation in air, little is known about contact 

sensing underwater and the impact of fluid on both the robot probe and the target object. 

In work with whisker sensors in air, it has been shown that torque measurements from a 

cantilever beam that was pressed against an object can used to estimate the shape of that 

object [49, 65, 66]. Unlike whisker sensing in air, where contact loading exceeds the 

loading from the air, whisker sensing in water would likely be complicated by the loading 

from the fluid, which is dependent on the velocity, profile, and stiffness of the whisker. 

Adding webbing to whiskers to create fin-like surfaces is likely to further complicate the 

fluidic loading experienced by sensors within fins. 

A compliant fin and a target object may also interact with each other through the 

fluid medium, depending on the geometry of both systems and their motions. Models of 

the fluid-structure-interaction (FSI) have been developed to understand the effects of 

fluidic loading on compliant beams and flexible plates underwater. FSI models typically 

focus on characterizing deformations during flapping motions and the effect of 

deformation on propulsive forces [67-70]. Some studies examine the ground effect or 

wall effect, where a propulsor’s proximity to substrate or objects changes the 

hydrodynamics of swimming and flying [30, 71, 72]. However, most studies have not 

taken a sensory perspective, where the FSI between robot, water, and objects may have 

strong effects on proprioception and touch. Perhaps it may be more appropriate to call the 

interaction between a flexible fin, the water, and a target object a structure-fluid-structure 
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interaction (SFSI) because each system will physically interact with the other through the 

fluid coupling.  

Recent work has started to address some of the challenges associated with 

underwater contact sensing and to identify some of the haptic attributes of underwater 

environments as compared to air environments. A few recent studies with robotic whisker 

sensors have identified that fluidic loading can increase bending and potentially change 

the perception of object contact from air to underwater [52, 73]. Fluidic loading has been 

observed on pairs of oscillating beams as a function of movement speed, cross sectional 

area, and spacing between beams [74]. Vortex shedding, which causes vortex induced 

vibrations (VIV) has long been studied for cylinders and beams design study with 

underactuated robotic hands showed that creating suction forces at fingertips greatly 

improved the hand’s ability to stably grasp objects underwater, suggesting the prevalence 

of SFSI effects [75]. Early work with the underwater AMADEUS robotic hand indicated 

that in order to operate effectively at depth, contact sensing mechanisms had to be 

independent of ambient pressures [76]. Animals provide behavioral examples of how the 

properties of the fluid environment can be exploited for survival. It has been show that 

zebrafish evade predators reflexively by sensing the bow waves of approaching predators 

[77]. Multiple species of fish execute rheotaxis, or orientation of their bodies relative 

fluid flows, through use of directionally-tuned flow sensing in their lateral lines [78].  

The objective of the work presented herein is to understand the effects of fluidic 

loading, fin webbing, and target object geometry on strain sensation with robotic fins and 

beams as robotic fins and beams come into contact with obstacles underwater. Since few 

studies look at underwater contact sensing using robots, general descriptions of 
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underwater obstacle contact are sought for strain measurements in fins and beams. This is 

addressed through the development of an instrumented robotic fin platform and the 

execution of experiments where the fin contacts obstacles in air and underwater at 

different speeds. The stiffness and structure of the robot are varied in experiments to 

understand how strain is affected by these changes. Strain data are analyzed to determine 

signal features and physical phenomena that may be relevant during contact.   

This paper is structured as follows. The methods are presented in section 2, with 

emphasis on the robotic platform and its sensors, the experiments executed using the 

robot, and the analysis techniques used on experimental data. The results are presented in 

section 3, and are grouped by experimental type. First, typical results for fluidic loading 

are described for multiple phases of the contact experiment: acceleration, constant 

velocity, approach, contact, and relaxation phases. Second, the effects of fluidic loading 

are analyzed as a function of robot speed and beam stiffness. Third, the effects of fluidic 

loading are analyzed in the presence and absence of webbing between beams in air and 

underwater. Finally, the effects of fluidic loading are analyzed as a function of varied 

obstacle geometry. A discussion of the results is provided in section 4, highlighting 

implications of the results on active touch sensing in underwater environments with 

compliant beams and fins. The conclusion is given in section 5. 

3.2.3 Methods 

3.2.3.1 Equipment 

A robotic platform was designed to evaluate the effects of fluidic loading on the strain 

experienced by beams and fins and the effects of webbing in air and underwater on the 
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strains experienced by fins. Beams were manufactured with fused deposition modeling of 

extruded ABS plastic (Dimension Elite, Stratasys, Eden Prairie, MN, USA). Three beam 

geometries were selected to examine fluidic effects on stiff, moderate, and highly 

compliant sensors. Beams were designed with a linear taper of cross section, and were 

designed to test a range of flexural rigidities across three orders of magnitude (Figure 8). 

 

 

Figure 8. Cross-sectional second moment of inertia as a function of length for the three beams used in this study. The y 
axis is scaled logarithmically. 

 

Each compliant beam was instrumented with two strain sensors in half bridge 

configurations at 10mm (proximal) and 100mm (distal) along the beam’s length. (Figure 

9a). These locations were chosen such that the proximal sensors would capture the net 

loading of the beam and the distal sensors would capture primarily the tip loading. Since 

beam cross sections were tapered from base to tip, tip sensors had very little mass to 

support and it was expected that drag effects (c.f. Vogel [79]) would be negligible on 

distal sensors.   
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Figure 9. Robotic fins and beams used in contact experiments in air and underwater. Flexible, moderate, and stiff 
beams instrumented with strain gages at proximal and distal locations (a); instrumented beams in silicone webbing 
create a fin (b); the robotic platform used to drive the beams and fins into obstacles. 

 

Beams with webbing (i.e. fins) were manufactured using a sacrificial mold box 

(based on techniques in [80]) used to create a 0.5mm sheath around each beam element 

and a 1mm thick webbing between beams using two-part silicone (Ecoflex 0030, 

Smooth-On, Easton, PA). The fin was 150 mm in length and approximately 100 mm in 

height, similar to the aspect ratios of caudal fins in sunfish. Beams were spaced 50 mm 

apart in the webbing; this spacing was chosen to allow for some stretch in the webbing 

during fluidic loading, and to allow for independent contacts of each of the beams with 

objects of different geometries.  

Experiments were executed to investigate the effects of fluidic loading on beams 

and fins, and the effects of this loading on the strain distribution measured in the beams 

and fins. Beams of multiple stiffnesses (Figure 8, Figure 9a) and the fin were driven into 

contact with the flat plate obstacle in air and underwater (Figure 10a). Experiments were 
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executed to understand how adding webbing to beams affected the beam’s strain 

distribution during contact with obstacles in air and underwater. Experiments were 

executed to investigate how obstacle geometry affects strain A rectangular planform was 

chosen to simplify the fluidic loading due to symmetry about the rotational axis. All three 

beams used in the fin had identical geometry to isolate the effects of adding webbing. A 

single fin was prototyped using beams of moderate stiffness, equivalent to that of the bare 

sensory beams of moderate stiffness (Figure 8, Figure 9b). Beams and fins were driven 

by a velocity controlled servomotor (416134, Maxon Motor, Fall River, MA) on a robotic 

platform using a real time controller and custom DAQ and control software (Figure 9c). 

The shaft position at the base of the beams was measured using a motor encoder on the 

motor shaft, which was connected via a 1:1 gear belt drive. These are described in detail 

in [32, 62].  

 

 

Figure 10. Obstacles that the fins and beams contact in the study. An acrylic plate obstacle mounted on an aluminum 
rod (a). A modular obstacle box containing three drawers that can be repositioned to different depths and 
interchangeable faceplates for presentation of obstacles with different materials (b). Close-up of depth adjustment rail 
and wingnut to fix drawer depth (c). 
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Two obstacles were designed for experiments to determine the effects of obstacle 

geometry on strain sensation during contact in air and underwater. The first obstacle was 

a flat plate which was selected to present a simple contact geometry to the robotic 

platform. The flat obstacle was an acrylic plate (200 x 250mm x 6.35 mm) mounted on a 

machined aluminum rod (9mm diameter; Figure 10a). The plate was made slightly larger 

than the footprint of the fin in order to capture the added mass of fluid on the fin as it 

approached the obstacle, and so that the interaction forces between the robot and obstacle 

could be measured prior to contact.  

The second obstacle consisted of three flat, parallel surfaces, each with adjustable 

depth (Figure 10b,c). The position of each surface can be adjusted and can be bolted into 

place depths of up to 100 mm towards the fin (Figure 10c). This was designed for 

experimentation with obstacle geometry, allowing for the experimenter to change the 

timing of contact of beams and fins along their height, such that the upper, middle, and 

lower beams contact the obstacle at different times. Setting large differences in surface 

positions can also allow for investigation of the effects of stretch between beams in 

webbing. 

3.2.3.2 Experiments 

Experiments were executed to investigate the effects of fluidic loading on beams and fins, 

and the effects of this loading on the strain distribution measured in the beams and fins. 

Beams of multiple stiffnesses (Figure 8, Figure 9a) and the fin were driven into contact 

with the flat plate obstacle in air and underwater (Figure 10a). Experiments were 

executed to understand how adding webbing to beams affected the beam’s strain 

distribution during contact with obstacles in air and underwater. Experiments were 
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executed to investigate how obstacle geometry affects strain in beams and fins during 

obstacle contact in air and underwater. The profile of the second obstacle was adjusted by 

positioning the three contact surfaces of the second obstacle at different distances from 

the fin. Thus, the position of contact was varied along the height of the fin and the timing 

of contacts varied between beams. Contact geometry was varied in two ways, either a 

single surface was offset by a fixed distance from the other two, or the drawers were 

arranged in a stair step pattern at equal relative distances (Figure 11). Six trials were 

executed per set of experimental conditions to evaluate repeatability of results (see Table 

1), resulting in over 8000 individual trials. 

 

 

Figure 11. Conceptual drawing of the experimental configurations of the obstacle. The beam tips (a) either approached 
a configuration with a single surface offset by a distance d (b), or a configuration with a stair step pattern of equal 
relative depths (c). The arrow indicates the direction of motion for the beams (a). 

 

Table 1. Experimental parameters for robotic platform, environment, and obstacles. 
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During all experiments, the beams were accelerated from rest and driven with 

constant velocity into the obstacle while sensory data were measured from strain sensors 

within the fins and beams (Figure 12). Object distance was held constant across trials at 

140mm away from the fin base so that only the tip of the 150mm beams came into 

contact with the obstacle surface. The robot’s initial angular position was at least 270 

degrees away from the obstacle in order to enable adequate time for the bending of the fin 

to reach a steady state. This angular position offset was determined experimentally. For 

experiments with beams, the robot’s shaft was driven at speeds of [0.1,1.5] rot/s in 

increments of 0.05 rot/s. For experiments with fins, the shaft was driven at speeds of 

[0.05,0.4] rot/s in increments of 0.05 rot/s. The maximum fin speed tested was 

significantly lower than the maximum beam speed tested because the fluidic loading on 

the fins was significantly greater than that of the beams, and speeds higher than 0.4 rot/s 

resulted in damage to the fin and its strain sensors. 
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Figure 12. Phases of contact for an fin driven into contact with a rigid obstacle underwater. Phases are shown relative to 
measured strains (top) and beam position (bottom) in an overhead view. The initiation phase lasts from the initiation of 
movement to the first peak in the distal strain data [A,B], then the movement phase begins and continues until the distal 
strains increase at obstacle approach [B,C] at the start of the approach phase. The approach phase [C,D] lasts until 
contact starts, and contact continues until a peak in the distal strain data [D,E]. Relaxation follows until both proximal 
and distal beams reach a steady state [F]. 

 

3.2.3.3 Analysis 

3.2.3.3.1 Beams and fins in air and underwater 

The time courses of the strain data were analyzed to determine and compare features of 

strains that were typical of contacts of beams in air, beams underwater, fins in air, and 

fins underwater. Qualitative differences in the strain data were noted for the time course 
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of each strain signal. Basic statistical features of the strain data were studied, including 

the average strains, peak strains, and standard deviations of strain during each phase of 

contact. These features were compared between testing conditions to understand the basic 

effects of the fluid environment on fluidic loading and strain sensing of contact. Welch’s 

two sided t-test was used to determine significant differences between trial conditions, 

with significance set at P=0.0005. For clear presentation of some strain data, a low pass 

filter with a Kaiser window at 10Hz was used [81], though all statistical calculations on 

data were made prior to filtering. 

Analysis was conducted during five phases of contact, defined here. These 

include acceleration, constant velocity, approach, contact, and relaxation (Figure 12). 

The acceleration phase began when movement is initiated and lasts until transient strains 

die down (Figure 12: [A,B]). The constant velocity phase began after the strain transients 

died down and continued until the beam tips neared the object [B,C], ending the constant 

velocity phase and starting the approach phase [C,D]. In trials where force data were 

measured, the approach phase began as soon as the forces on the obstacle increased 

along with bending on the beams. The approach phase lasted until the first beam contact 

occurs, as marked by inspection from high speed video of the trial. The contact phase 

[D,E] continued until a peak strain was reached, and then the relaxation phase [E.F] 

began and continued until a steady state was reached on both proximal and distal beam 

strains. All peak strains were identified by inspection of the distal strain data, which 

typically had clearer maxima than proximal strain data. 
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3.2.3.3.2 The effect of speed on beams and fins 

The effects of the speed of the beams and fins on fluidic loading were analyzed for both 

fins and bare beams underwater. Fluidic loading was quantified using the strain measured 

across the fins, as measured by strains taken at proximal and distal locations of the bare 

beams and beams in webbing (fins). Strain data were first compared qualitatively as 

speed was increased on both the beams and the fins. As noted above, statistical features 

of the strain data were used to draw comparisons between strains measured at proximal 

and distal locations at varied speeds.  

3.2.3.3.3 The effect of adding webbing to beams 

The effect of adding webbing to beams on fluidic loading was analyzed by comparing the 

strain signals measured in bare beams to those measured in fins. Strains from dorsal 

(upper), medial (middle), and ventral (lower) beams on the fin were compared to strains 

from bare beams. Time series data were compared for beams and fins in air, noting 

qualitative differences in the signals as well as magnitude and variance differences at 

multiple phases of contact. 

3.2.3.3.4 The effect of changing obstacle geometry 

The effect of changing obstacle geometry was analyzed by comparing the strains 

experienced during contact with the flat plate obstacle and those experienced during 

contact with the configurable obstacle in different geometric configurations. Time series 

data were compared for beams and fins using similar techniques to previous analysis 

subsections. 

3.2.4 Results 
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3.2.4.1 Beams in air and underwater 

The strains experienced by beams in air were very similar to the strains measured in 

experiments using cantilevered beams and whisker sensors in air. Beams in air (Figure 

13a) had small oscillations during the acceleration phase of the contact experiment, 

which quickly settled out to a steady state during the constant velocity phase. For most of 

the constant velocity phase, distal and proximal strains were approximately equal to one 

another and nearly zero. Strains remained near zero during the approach phase and there 

was no measured change in forces on the object to suggest structure-fluid-structure 

interaction (SFSI) prior to contact. Contact was apparent in the strain measures of both 

distal and proximal sensors, and during relaxation both strains quickly reached steady 

state values, often with distal strains slightly exceeding proximal strains. 

 

 

Figure 13. Photographs and strain data of typical contacts for moderate beams in air (a), moderate beams in water (b), 
and a fin in air (c). Relative contact times and angular offsets are indicated with beams in air as a zero-reference. Data 
were low pass filtered at 10 Hz for clarity. 
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Beams in water experienced greater strains than beams in air and the time of 

contact was delayed due to fluidic loading. Beams in water experienced an increase in 

strain during acceleration (Figure 13a), and at low speeds the strains reached a steady 

state value during the constant velocity phase. The magnitude of strain during constant 

velocity was significantly greater for beams in water than for beams in air and this effect 

was amplified by increasing stiffness and increasing speed. Proximal strains (at the base 

of the beam) were always greater than distal strains (at beam ends). At higher beam 

speeds (>0.2 rot/s), distal and proximal strains did not reach a steady state value prior to 

contact. A steady state value was never reached when very flexible beams were used, and 

this effect was consistent at a large range of speeds (>0.1 rot/s). Vortex induced 

vibrations were observed during the constant velocity phase when the beams were driven 

at high speeds (>0.3 rot/s). Strains during the approach phase were not significantly 

greater than strains during the constant velocity phase. At low speeds, contact was 

apparent on both proximal and distal sensors. Contact occurred later for beams in water 

than for beams in air, as a function of beam speed. Small oscillations were observed 

during relaxation, which typically lasted longer for beams in water than beams in air. 

The strains on beams in water were more sensitive to changes in beam stiffness 

when the beams were underwater than when the beams were in air. The effect of beam 

stiffness on strain underwater was notable in multiple phases of the contact experiment. 

Decreasing the stiffness of beams underwater increased the magnitude of strain during 

the constant velocity phase and resulted in increased differences between the proximal 

and distal strains (Figure 14). For the flexible beams tested, the magnitude of strain 
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during the constant velocity phase could easily exceed the peak strains during contact and 

the steady state strains during the relaxation phase (Figure 20c). This effect was amplified 

at higher speeds (above 0.25 rot/s) and especially on the strains of the proximal sensor. 

As stiffness decreased, so did the magnitude of strain oscillations after contact, during the 

relaxation phase (Figure 14). 

 

 

Figure 14. The effect of changing beam stiffness on the proximal and distal strains underwater during contact. 
Representative data are shown for stiff, moderate, and flexible fins and data were low pass filtered at 10 Hz for clarity.   

 

3.2.4.2 Fins and beams in air 

Fins in air experienced similar strains to beams in air, with slight differences between 

proximal and distal strains during acceleration and relaxation phases. Fins in air also 

exhibited small transient strains during acceleration, and proximal strains were 

noticeably greater than distal strains for acceleration and during the constant velocity 

phase. Both proximal and distal strains on fins took longer to reach a steady state than 

bare beams (e.g. Figure 15b). Contact was apparent for fins and beams in air at all 

stiffnesses, and often occurred slightly later for fins in air than for beams in air (Figure 

13c). During the relaxation phase for fins in air, distal strains exceeded proximal strains, 
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whereas the difference was much smaller for beams in air (Figure 13a,c). Small transient 

oscillations were observed in the strains during relaxation for fins in air which were 

comparable to those of beams in air. 

 

 

Figure 15. Photographs and strain data of typical contacts for a fin in air (a) and a fin in water (b). Relative contact 
times and angular offsets are indicated with the fin in air as a zero-reference. Data were low pass filtered at 10 Hz for 
clarity. 
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Figure 16. The effect of changing speed of the fins on the strain data of proximal (top) and distal (bottom) sensors 
underwater during contact.  Representative data are shown for trial conditions of 0.1, 0.2, and 0.3 rotations per second. 
Data were low pass filtered at 10 Hz for clarity. 

 

3.2.4.3 Fins in air and underwater 

In contrast to fins in air (3.2), when in water, fins in water had large transient oscillations 

in the strain during acceleration, and proximal strains were significantly greater than 

distal strains in all phases prior to contact. At low speeds (<0.1 rot/s) steady state strains 

were reached, but at higher speeds settling times could not be established during constant 

velocity, especially for proximal strain data (c.f. Figure 15b). At high speeds (>0.1 rot/s), 

a clear approach phase was observed, where proximal and distal strains increased along 

with forces measured at the obstacle prior to contact (Figure 15, Figure 17). Contact was 

not always easily distinguished, as the strain on the fins during the constant velocity 

phase was often greater than the strain at the end of the relaxation phase (Figure 20a), 
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which occurred at high speeds due to the high fluidic loading on the fins. During contact 

the proximal strain frequently decreased, while the distal strain always increased, which 

was consistent with beams in water. As relaxation began the distal strains reached a 

larger steady state value than the proximal strains, and settling times for fins in water 

were typically very long (e.g. 0.5s) relative to other experimental conditions tested. 

 

 

Figure 17. A representative approach phase of obstacle contact for a fin driven underwater. Small increases in strain on 
fin beams and reaction force on the obstacle were observed during this period. Data were low pass filtered at 5Hz for 
clarity.   

 

3.2.4.4 The effect of speed on beams and fins 

Increasing the speed of beams and fins caused strain to increase during acceleration and 

constant velocity phases, and this increase had significant impacts on strain during 

successive phases (approach, contact, and relaxation) of the contact experiment. At low 

speeds (less than 0.3 rot/s), beams had similar bending responses in air and underwater. 

At high speeds, beams underwater had much greater strain during constant velocity than 
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beams in air, and this effect was increased as beams were made more flexible. During the 

constant velocity phase underwater, average strains increased with increasing rotation 

speeds and these speed effects differed between proximal and distal sensors. As speed 

was increased, strain increases were well modeled by a quadratic fit  on the proximal and 

distal sensors (e.g. R2=0.994 and 0.991 for regressions, Figure 18a). Proximal strains 

measured on the fin were greater than distal strains during the constant velocity phase at 

all speeds tested, and proximal strains increased at a higher rate than distal strains as 

speed was increased (Figure 18a). 
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Figure 18. Comparison of average strains during movement phase for groups of sensors: dorsal proximal and dorsal 
distal (a), dorsal proximal and medial proximal (b). Second-order polynomial regression fits were applied to the data. 
Standard error bars correspond to one standard deviation in each direction. 

 

At high speeds, small vibrations were commonly measured for beams in water 

during the constant velocity phase due to vortex induced vibrations, which were not 

observed in air. Analysis of high speed video revealed vibrations of the beams in the 

plane of rotation as well as perpendicular to the plane of rotation, which was consistent 

with vortex induced vibrations observed in experiments where circular or prismatic 
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beams are towed through fluid [82]. The strains induced by these vibrations (measured in 

the constant velocity plane) were small relative to the strains induced by contact (e.g. 

0.05 mm/m versus 1 mm/m) but could be observed at high speeds (>0.25 rot/s; Figure 

13b). 

Increasing the speeds of beams and fins tended to create large differences in the 

relaxation strains of proximal and distal sensors underwater, but not in air. As speed was 

increased for fins underwater, distal strains in the relaxation phase were significantly 

greater than proximal strains (Figure 19). Increasing speed typically increased the 

average distal strains during relaxation and decreased the average proximal strains during 

relaxation. These relationships were somewhat linear for proximal and distal sensors (R2 

= 0.834 and 0.792; Figure 19). 

 

 

Figure 19. Comparison of average strains during the relaxation phase of contact on the dorsal proximal and dorsal 
distal sensors. Linear fits were applied to the data. Standard error bars correspond to one standard deviation in each 
direction. 
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3.2.4.5 The effect of adding webbing to beams 

Adding webbing to beams caused significant increases in strain during acceleration and 

constant velocity phases underwater, which were much more significant than the 

differences in strain between beams in air and beams underwater. The subsequent phases 

of approach, contact, and relaxation were affected in that strain differed significantly 

between proximal and distal sensors as compared to beams underwater. During 

acceleration and constant velocity phases, oscillations in the strain were observed on both 

proximal and distal sensors (Figure 15b). These oscillations typically settled to a steady 

state prior to the contact phase, but were greater in magnitude than the oscillations 

observed in beams underwater.  
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Figure 20. Peak strains reached during movement and contact phases for beams and fins underwater measured at dorsal 
proximal and dorsal distal sensors. Peak strains for proximal sensors on fins (a), peak strains for distal sensors on fins 
(b), peak strains for proximal sensors on beams (c), and peak strains for distal sensors on beams (d). Representative 
data are shown from randomly selected trials of listed conditions. 

 

When driven underwater at high speeds, fins experienced strains during the 

constant velocity phase that were nearly as large in magnitude as the strains experienced 

during the contact. On proximal sensors, peak strains were achieved during constant 

velocity that exceeded the peak strains of contact (Figure 20). This effect was most 

pronounced on proximal sensors, whereas distal sensors typically had significantly 

smaller peak strains during constant velocity than during contact. Adding webbing to the 



56 

 

beams changed the strain distribution during the relaxation phase, where distal strains 

would settle to a higher steady state value than proximal strains after contact (Figure 18). 

Adding webbing to beams significantly changed the strain distribution. Typically, 

strains along the edge beams were comparable to each other during all phases of constant 

velocity and contact, strains along the middle beam were greater than strains along edge 

beams in all phases prior to contact (Figure 21, Figure 18b). The difference between 

strains along edge beams and strains along the middle beam increased as speed was 

increased. For example, at moderate speeds (0.1,0.15,0.25 rot/s) there was a significant 

difference between proximal edge strains and proximal middle strains during the constant 

velocity phase, but no significant difference between the two at low (<0.1 rot/s) and high 

(>0.25 rot/s) speeds. 
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Figure 21. The effects of adding webbing to beams in air (a) and underwater (b) on distributed strain measures during a 
typical high speed contact (0.3 rot/s). Data were low pass filtered at 10 Hz for clarity. 

 

Adding webbing to beams caused an increase in strain during the approach phase 

of the contact experiment, such that as the fin approached the obstacle, forces on the 

obstacle and strains on the fin increased due to the SFSI prior to contact. This effect was 

not observed for the bare beams. At high speeds (>0.2 rot/s), a small increase in strain on 

the fin and force on the obstacle was observed. Thus, as the fin approached the obstacle, 

the fin deformed away from the obstacle and loading on the obstacle increased prior to 

contact (e.g. forces of 0.1N were typical, c.f. Figure 17). 

3.2.4.6 The effect of changing obstacle geometry 

Compared to contact with a flat plate obstacle, the offset obstacle (Figure 11b) caused 

stretch in the webbing between beams in fins, which changed strain distributions during 
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approach, contact, and relaxation phases. Stretch was a result of offset surfaces in the 

complex obstacle. Changes to the obstacle geometry had no notable effects on strains 

during the acceleration and constant velocity phases of the contact experiment. In a 

typical example, after the first beam contact, the first beam was constrained against the 

obstacle (Figure 22c). As the latter two beams approached the obstacle, the webbing 

stretched and caused strain to increase prior to contact during the approach phase. For the 

first beam to approach the offset obstacle (c.f. Figure 23), strains were very similar 

during approach and contact phases compared to beam contact with a flat plate obstacle. 

During the approach phase, small increases in the first beam’s strain were observed as the 

fin approached the first surface of the obstacle. However, the strain on the latter beams 

did not increase significantly during the approach phase. 

 

 

Figure 22. Comparison of distributed strain measures during typical contacts with an offset obstacle: (a) in air with 
beams, (b) underwater with beams, (c) in air with beams in webbing, and (d) underwater with beams in webbing. First 
and second contacts are indicated with dashed red lines and their angular distance is shown. Contact differences 
between air and water are shown based on initial air contact angles compared to initial water contact angles for beams 
(b) and beams in webbing (d). Representative data were smoothed with a 3 point averaging filter for clarity and are 
from a trial at 0.2 rot/s speed with an obstacle offset of d = 10mm. Strains are shown at 0.67 mm/m per division and 
time is shown at 0.5s per division. 
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When the fin system was brought underwater and driven into contact with an 

offset obstacle, fluidic loading increased strain during the constant velocity phase, caused 

strain to increase during approach, changed the time of contact, and changed the final 

strains of the beams during relaxation (Figure 22b,d). Just as fluidic loading delayed the 

time of contact for fins with flat plate obstacles (Figure 21b), time of contact was 

significantly delayed for fins with offset obstacles (Figure 22d). In air, offsetting the 

obstacle by a small distance was sufficient to create large timing differences in contact 

(e.g. Figure 22a). Underwater, despite the offset contact surfaces, successive beam 

contacts had smaller timing differences than in air (Figure 22b,d). At high speeds (≥0.2 

rot/s) there was no difference in the time of contact between beams underwater (Figure 

22d). 

 

 

Figure 23. Distal strain signals for a typical contact between a fin and a stair-step obstacle underwater. Signals shown 
are representative of a contact with a [0 10 20]mm rigid obstacle. Contacts are indicated with dashed vertical lines 
corresponding to each beam within the fin. Data were low pass filtered at 10 Hz for clarity and are from a trial at 0.2 
rot/s speed. 
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Fluidic loading delayed contact and changed the relative timing between contacts 

when stair step obstacles were used. These effects were observed most strongly in the 

contact and relaxation phases. Due to the large fluidic loading experienced during 

constant velocity with fins, the steady state values of fin strains during relaxation settled 

into much lower values than in air (Figure 22d). In air, the beams that contacted the 

obstacle first reached a higher magnitude of strain than those tested underwater in all 

cases.  

3.2.5 Discussion 

Beams and fins experienced similar strains during contact experiments in the air, but 

there were significant differences in strains during contact when these systems were 

tested underwater. The large increases and oscillations in strain during acceleration 

suggest that initiating movement underwater from rest can cause significant loading and 

measurable strain on sensing platforms. When moving at high speeds during constant 

velocity, vortex induced vibrations (VIV) may occur depending on the speed and 

geometry of the beams, whereas VIV are comparably negligible in air. Increasing speeds 

during constant velocity increased fluidic loading during this phase. With the large 

amount of fluidic loading on a flexible fin, fin strains during constant velocity could 

easily exceed the strains during contact. Though the impact of fluidic loading can affect 

underwater contact sensing, in some circumstances fluidic loading may affect sensing in 

air. Research by Quist et al. also distinguishes between the dynamics of rat whisking 

behaviors during movement without contact and when the whiskers come into contact 

with objects [83], finding that at high speeds, the dynamics of whisker movement can 

generate mechanical effects as large as the effects of contact. If robots are to be used for 
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underwater sensing and manipulation, the effects of fluidic loading must be further 

modeled in detail. 

Unlike in most air applications, the underwater structure-fluid-structure 

interaction (SFSI) caused changes to strain in each phase of the contact experiment. 

Fluidic loading affects strains during multiple phases of contact underwater, and 

dynamics from early phases can affect subsequent phases. The increased strains on beams 

and fins during the constant velocity phase can have implications for later phases of the 

contact experiment, as the beams and fins can reach the obstacle in different deformed 

configurations. For instance, when the fins were moved at high speeds (>0.3 rot/s), 

strains were very high during constant velocity and increased even more due to the SFSI 

during the approach phase. These high strains meant that the fin was highly deformed 

when it reached the obstacle, such that when it stopped after contact, it settled into a 

configuration of very high strain on the distal ends, with much less strain proximally. 

This differed from fins or beams in air, which had very similar proximal and distal strains 

during relaxation. This suggests that the time history of fluidic loading may be important 

in contact perception underwater, because the dynamics of early movement can impact 

later phases of contact.   

The addition of webbing to beams created a mechanical coupling between 

adjacent beams, which changed the strains that arose in complex contacts. When working 

with underwater robots with control surfaces, the sensors on a compliant control surface 

are coupled to one another. More specifically, the robotic degrees of freedom share 

sensory information and mechanical loading. On the downside, this may make modeling 

and signal analysis more complex, involving vibration effects and nonlinear coupling 
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between beams. If the bending of one beam causes strong bending of another beam 

through stretch, false contacts could be perceived without sophisticated models. On the 

upside, engineering design of the coupling may be useful to distinguish the sequence of 

contacts, which could be used for feedback control of a manipulation task, for example. 

Redundant sensory information could be exploited for more precise shape recognition, 

using principles of hyperacuity, for example [84, 85]. 

Complex obstacle geometries tended to make contact strains less apparent and 

caused stretch between the beams of fins.  For obstacles with a single offset (Figure 11b), 

strain from the first beam to contact the obstacle could be used to detect subsequent beam 

contacts from small peaks in the strain measures (Figure 22c and Figure 24c).  Though 

changes to strain magnitudes were typically small during subsequent contacts, changes in 

strain rate were more notable and could serve as a metric for detecting subsequent 

contacts. The propagation of mechanical stimuli through tissue has been observed in 

other haptics studies, where vibrations from textural exploration in fingertips are above 

sensory thresholds for human wrist receptors, and may be used for perception of object 

properties [86, 87]. However, strains during contact experiments with varied obstacle 

geometries may be difficult to interpret, as SFSI effects were observed during constant 

velocity, approach, and contact phases. At low speeds with fins, it may be possible to 

discern between stretch and contact, but at high speeds the significant fluidic loading 

during constant velocity will tend to increase fluidic loading during approach and make 

distinguishing contact more difficult. 
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Figure 24. The effects of webbing on strain sensing with complex obstacle geometries. Photo of a typical contact for a 
fin underwater with legend overlaid for sensor locations (a); distributed strain signals for beams (b) and fins coming 
into contact with a stair step obstacle in water. Signals shown are representative of a contact with a [0 10 20]mm rigid 
obstacle. Data were low pass filtered at 10 Hz for clarity. Strains are shown at 0.67 mm/m per division and time is 
shown at 0.5s per division. 

 

Active sensing and perception of underwater contact will present new challenges 

that have not been observed in air environments. Perceptual models of object contact 

should account for fluidic loading in order to understand the phenomenology of contact. 

Using fins to sense object contact may mean that flat objects appear curved, and the 
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degree of apparent curvature will be dependent on the stiffness distributions and velocity 

of the fins. Beams with webbing will amplify the velocity effects of fluidic loading, 

which can delay time of contact. To design an underwater active touch sensing platform, 

engineers must evaluate these tradeoffs between compliance and movement speed in 

order to effectively sense movement through fluid and contact with obstacles. This will 

often mean that in many cases, unless the robot is very stiff or contacts an object 

immediately upon excursion, beams with webbing will be in a deformed state when they 

come into contact with obstacles. Without accounting for this effect of fluidic loading, 

false percepts could easily arise. For example, the middle beams of fins experience more 

strain than the edges during the constant velocity phase, and therefore the edges of fins 

will tend to contact obstacles prior to the middle sections. In this case, flat objects could 

be falsely judged as sloped based on strain increases during contact.  

The SFSI for fins and objects is complex, and multiple sensors may be required 

for understanding fluidic effects during multiple phases of contact. Unlike most whisker 

sensors in the literature which have multi-DOF sensors at the beam base, multiple regions 

of a fin may contact an object at the same time and so data from a distribution of sensors 

along a single beam could help resolve the shape of an object, whereas data from a single 

sensor may be insufficient. In addition, results indicated large differences between 

proximal and distal strains during the phases of contact, and careful spatial sampling 

might be exploited to improve contact perception. Work by the authors has shown that 

during propulsion the relationship between sensory measures and forces of a fin is 

nonlinear, and in order to estimate the propulsive forces of complex fins, distributed and 

heterogeneous sensors are needed [88]. In order to create underwater robotic limbs that 
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can drive locomotion and mediate contact with obstacles amidst fluidic loading, 

distributed and heterogeneous intrinsic sensors may be needed. Flexible webbings on 

sensory beams are already in use for underwater propulsion [23, 62, 88], and adapting 

them for use in active touch sensing may significantly expand their functionality. 

3.2.6 Conclusion 

This study demonstrated several of the effects of fluidic loading on strain sensing with 

compliant robotic beams and fins as they contacted obstacles in air and underwater. 

Multiple phases of contact were identified and described in order to better understand the 

phenomena introduced by the structure-fluid-structure interactions (SFSI) during 

acceleration, constant velocity, approach, contact, and relaxation phases. Large 

differences in measured strains were observed during the constant velocity phase 

depending on the robot’s structure, stiffness, and speed. Large changes in sensory signals 

were observed through the introduction of small changes to obstacle geometry, and these 

effects were amplified through the addition of webbing to bare sensory beams.  

Flexible membranes, webbings, and surfaces are important for compliant 

propulsion and manipulation, and these systems are affected by fluidic loading differently 

underwater than in air. Loading distributions on fins were different than those of bare 

beams, as strain signals varied from base to tip and from edge to middle. Changes to the 

geometry of obstacles also have the potential to perturb the loading distribution locally as 

beams and fins approach obstacles, affecting contact timing and deformation prior to 

contact. 

As compliant robots are increasingly used in underwater applications, fluidic 

loading will play a significant role in the sensing of movement and contact. 
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Heterogeneous sensors may also be necessary in order to distinguish between fluidic 

loading, contact loading, and stretch, which arise from different physical phenomena. 

Future work will investigate the use of stretch sensors (c.f. [89]) in webbing to measure 

strain related to the deformation of the fin webbing and potentially to other aspects of 

fluidic loading. In the underwater environment, fish and robots are likely to come into 

contact with compliant obstacles (e.g. eel grass) and thus it is relevant to understand the 

effects of increased compliance on sensation with fins and beams underwater. In future 

work, the effect of obstacle compliance on strain in fins will be evaluated with different 

surfaces in the configurable obstacle. 

  



67 

 

3.3 Paper 2: An evaluation of contact classification techniques during underwater 

contact with compliant beams and fins 

3.3.1 Abstract 

In water, it is challenging to classify object contact using sensory data due to the 

interaction of the fluid with the sensing robot and the target object. Many techniques exist 

for contact classification in air, but these have not been evaluated on underwater contacts 

and may fail due to the changes introduced by the fluid interaction. Inspired by fish fins, 

beams and fins were instrumented with strain sensors and driven into contact with 

obstacles in air and in water. Three contact classification techniques were explored for 

the classification of contact underwater using beams and a fin instrumented with 

distributed strain sensors. Results suggest that fluidic loading can cause common 

thresholding techniques to fail, especially at high speeds and with stiff beams. Careful 

design of the flexural rigidity, the platform speed, and the sensor placement can lead to 

better performance at contact classification underwater. 

3.3.2 Introduction 

Underwater, the characterization of object contact using sensory data presents significant 

challenges due to the interaction of the fluid with the sensing robot with the target object. 

Early work with beams and compliant fins has shown that the interaction of the fluid with 

both the robot manipulator and the object is complex [73, 90], and that discrimination of 

contact from intrinsic sensory signals is still an open problem. The interaction, termed the 

structure-fluid-structure-interaction (SFSI) [90], causes loading and deformation to 

beams and fins during multiple stages of the contact: (a) when motion is initiated, 
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transient accelerations deform beams, (b) during movement through fluid, the beam 

deformation is affected by the beam flexural rigidity and driving velocity, (c) as the 

beams approach the object, they can be repelled from or attracted to the object depending 

on the SFSI, and (d) the beams will often contact the object in a deformed state, leading 

to a relaxation period after contact where the beams settle into a final configuration. Due 

to the compliance of sensory beams and fins, it is necessary to distinguish between the 

deformation caused by fluidic loading and that caused by contact loading. For these 

reasons, detecting the instant of contact and classifying contact loading versus fluidic 

loading are major challenges. 

There are many effective approaches used to discriminate contact in air using end-

effectors with sensors. Early researchers in contact sensing, inspired by whiskers and 

insect antennae, have shown that contact is easily detected using either strain or torque 

information within sensory beams [65, 66, 91-94]. Rapid changes in strain [90], contact 

pressure, reaction forces, or moments [50] can be used to precisely identify a contact 

event, by estimating both the time instant of contact and the duration of contact. 

Information from the contact event can be used to accurately characterize the geometry of 

objects using active sensing techniques and repeated contacts across 3d surfaces [49]. 

Sensory beams can be arranged in array formations [95], inspired by the facial vibrissae 

of rats and mice, in order to rapidly gather geometric information over a surface rather 

than a single contact point. 

Distributed sensors within fins and beams may provide a way in which 

underwater contact can be more accurately discerned than with individual sensors. Recent 

studies of the sensory systems of bony fish have shown that the pectoral fins of the 
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bluegill sunfish aid in low speed navigation [3] and are richly innervated with multiple 

types of afferent nerve endings that respond to bending deformation [6, 21], distributed 

through their bony rays and membrane webbing [19, 20]. These biological studies have 

inspired the use of distributed sensors in robotic fins for both the estimation of propulsive 

forces and the characterization of contact with obstacles. Distributed pressure and 

bending sensors were necessary to predict the propulsive forces created by a multi-DOF, 

flexible fin [88], especially to predict complex propulsive forces where the direction and 

magnitudes of force were changing. It follows that since movement through fluid and 

contact with obstacles will create complex interaction forces [90], distributed sensors 

may aid in discerning aspects of the fluidic loading and contact loading. 

The objective of the work presented herein is to evaluate the use of three contact 

classification techniques for the discrimination of contact underwater using beams and a 

fin with strain sensors distributed along the beams. Based on the extensive experiments of 

a prior study of underwater obstacle contact [90], data were analyzed using multiple 

contact classification techniques and the performance of these techniques was analyzed 

across changing experimental conditions to beams and beams in webbing (fins). For each 

contact discrimination technique, the best performing sensors and subsets of sensors were 

determined. Additionally, performance across changing trial parameters was analyzed to 

determine best practices for robot speed, beam stiffness, and sensor placement to 

discriminate contact loading from fluidic loading. 

The paper is structured as follows. The Methods are presented in section 2, 

including a description of the robotic platform and experiments and the analysis 

techniques used to characterize contact from experimental data. The Results are presented 
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in section 3 and are grouped by specific contact discrimination technique. The Discussion 

and Conclusion are presented in section 4, highlighting the use of the results for the 

classification of contact in underwater environments using sensory data from compliant 

devices. 

3.3.3 Methods 

3.3.3.1 Robotic platform and prior experiments 

Experiments were conducted to understand the effect of fluidic loading on underwater 

contact with beams and a fin [90] (Figure 25), and data from these experiments was 

selected and processed for analyzing multiple contact classification techniques herein. 

The robotic platform was designed to drive flexible beams and fins through fluid and into 

contact with obstacles in air and underwater (Figure 26). Beams of three flexural rigidity 

distributions were used – denoted flexible, moderate, and stiff – and were designed with a 

linear taper from base to tip, as in [17]. Beams were instrumented with strain gages in 

half-bridge configurations (KFG-5-120, Omega, Stamford, CT) at proximal (x=10mm 

from base) and distal (x=100mm) locations. The fin consisted of three moderate beams 

cast into a 1mm thick silicone webbing, and it was instrumented with proximal and distal 

sensors along each beam (Figure 25). One fin was tested due to the complexity of 

manufacture and instrumentation. The robotic platform drove the beams and fins at a 

range of speeds ([0.05,0.4] rotations/s (rot/s) for fins; [0.05,1.5] rot/s for beams) into 

contact with a flat acrylic plate obstacle (200 x 250 x 6.25 mm). The beams and fin were 

programmed to accelerate from rest to a constant velocity trajectory and then to come 

into contact with the obstacle, and to decelerate to rest shortly after contact. 
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Figure 25. Instrumented beams and fin used in contact experiments. Beams of three stiffnesses instrumented with 
proximal and distal strain gage sensors (a). A fin, with three embedded beams instrumented with sensors along each 
beam (b), comes into contact with a complex, stair-step obstacle. 

 

 

Figure 26. Test environments for beams and fins: beams driven in air (a), fin in air (b), beams in water (c), and fin in 
water (d). 
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3.3.3.2 Classification techniques 

Multiple contact classification techniques were designed and their performance was 

compared across experimental conditions (Table 2). Simple contact classification 

techniques were chosen that have been successful in air, in order to explore the 

complexity introduced by the structure-fluid-structure-interaction between beams and 

objects during underwater contact. Contact and No Contact conditions are abbreviated as 

C and NC, respectively. 

 

Table 2. Summary of contact classification techniques 

Contact Classification Technique Contact Conditions 
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Strain threshold. The maximum strain prior to the time of contact was stored as 

the strain threshold, εt. C was classified by this technique when the measured strain εm 

exceeded the strain threshold, otherwise NC was classified (Figure 27a). Setting a 

threshold for sensory data (e.g. motor torque) is commonly used to detect the incidence of 

contact. This technique was based on work by Solomon and Hartmann [50], who set a 
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measured torque threshold to determine when a robotic whisker came in contact with a 

rigid object. 

 

 

Figure 27. Illustration of three contact classification techniques tested: (a) strain threshold, (b) strain rate threshold, and 
(c) strain difference threshold. For (c), distal strains are subtracted from proximal strains and the difference is used to 
compute contact. Colored classification bars are shown beneath each time series example. 

 

Strain rate threshold. The slope of the strain at the time of contact was stored as 

a rate threshold, δεt. C was classified by this technique when the measured strain rate δεm 

exceeded the strain rate threshold, otherwise NC was classified. Since the strain rate was 

typically close to zero after contact, after 5 successive C classifications the robot was 

classified in C (Figure 27b). Rate thresholds have also been used to detect contact using 
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robotic whiskers in air, where a large rate of change of curvature of the whisker was used 

to determine the incidence of contact [96]. 

Strain difference threshold. For each ordered pair of sensors (εi, εj) along a 

single beam, the difference of those sensors’ data was computed, forming εij. εij was 

computed after the instant of contact and the sign of the result was used to determine the 

conditions for contact. If εij was negative after contact for the given pair, then a positive 

difference was classified as C and a negative difference was classified as NC (Figure 

27c). This technique was selected based on the observation that the difference between 

proximal and distal strains often changed sign after contact [90], especially underwater. 

3.3.3.3 Performance metrics 

Contact discrimination was quantified in order to measure and compare the performance 

of each technique. Contact discrimination was defined as: (1) estimating the instant of 

contact, and (2) correctly classifying whether the robot is in contact or not in contact.  

The estimated instant of contact (1) was evaluated using the error in time between the 

first predicted instant of contact and the actual instant of contact. Since most techniques 

had false positives, a standardized method was selected to calculate the estimated instant 

of contact. The instant of contact tc was estimated by the first classified instance of C 

with at least 10 following C classifications. The choice of 10 classifications was selected 

based on preliminary analysis that suggested that 8-12 classifications resulted in best 

performance from all techniques. 

Classification accuracy (2) was evaluated using a modified confusion matrix 

(from [97]) that classified the state of the system at each sampling time. For each entry of 
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the confusion matrix, the accuracy was evaluated at each time step and the average 

accuracy was reported (c.f. Table 3).  

 

Table 3. Confusion matrix of contact classification accuracy 
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The performance of each technique was analyzed using data from distributed 

strain sensors (2 for beams, 6 for fins; c.f. Figure 25). The best sensors and subsets of 

sensors were selected for each of the classification techniques. Since it was expected that 

each contact discrimination technique would have differing results depending on the 

speed, stiffness, and robot structure (i.e. beams, fin), each technique was analyzed 

individually for each subset of robot parameters. In order to assess the effects of fluid on 

contact classification, performance data were compared between contact made in air and 

contact made underwater. Technique-specific thresholds were calculated on data from 

one set of trials and techniques were tested on data from randomly selected trials with the 

same conditions. Beams in air using the strain threshold technique (Table 2A) are 

generally used as the gold standard for comparisons between techniques. 

 

3.3.4 Results 
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3.3.4.1 Strain threshold 

Using strain rate thresholding was generally effective at classifying beam contact in air, 

but the technique performance degraded for beams and fins underwater. In air with beams 

(Figure 28(a)), a strain threshold could be used to distinguish between “contact” (C) and 

“no contact” (NC) conditions with high true positive (C/C: 99%) and true negative rates 

(NC/NC: 98%). Couplings between beams in fins tended to cause significant oscillations 

in the strain data (Figure 28(b)), which delayed the estimation of the instant of contact 

(Table 4). The classifier performed very well at classifying underwater contact with fins 

(C/C>90%), except at high speeds (>0.2 rot/s), where classification failed. The strain 

threshold classifier had universally high true positive classification rates (C/C typically 

>95%). 

At very high speeds (≥1.0 rot/s), contact was never detected, because the strains 

due to fluidic loading were often significantly greater than the strains due to contact 

loading and so the contact strain never exceeded the initial strain threshold (Figure 29). 

This occurred at even lower speeds (>0.5 rot/s) when stiff beams were used. When fins 

were driven underwater, the strain threshold technique typically failed at speeds greater 

than 0.2 rot/s. 
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Figure 28. Performance of strain threshold technique. Time series graphs (top; a-d) are representative of typical strains 
for each structure and environment, and were driven at 0.1 rot/s in pictured examples. Classification rates are shown for 
each condition. 

 

 

Figure 29. Breakdown of performance in strain threshold technique when the strain due to fluidic loading exceeds the 
strain due to contact loading. Time series data from stiff beam driven at 1 rot/s and sampled from the proximal sensor. 
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Despite performance degradation of the strain threshold technique at high speeds 

for the proximal sensory data, when the distal sensory data was used the technique 

performed very well across testing conditions (Table 4). The instant of contact was 

accurately estimated and the performance of the classifier was typically above 95%. 

3.3.4.2 Strain rate threshold 

The strain rate threshold technique performed well at classifying NC and C for beams in 

air and underwater, but performed poorly at both for fins (Figure 30). For example, with 

beams driven at 0.2 rot/s, the technique had high classification rates in air (NC/NC = 

100%, C/C = 98%). With fins in air at 0.2 rot/s, true positives were well classified (C/C = 

99%), and true negatives slightly less well classified (NC/NC = 91%). Fins underwater 

had acceptable true negative classification rates (NC/NC = 74%), but poor true positive 

classification rates (C/C = 38%).  
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Figure 30. Performance of the strain rate threshold technique. Representative time series data and classification 
performance are shown for beams in air and underwater (a,b) and fins in air and underwater (c,d). Platform was driven 
at 0.2 rot/s. 

 

As the platform speed increased underwater, the strain rate threshold technique 

performance worsened. At high speeds, vortex induced vibrations caused oscillations in 

beams at all stiffnesses that triggered classification of false positives (i.e. C/NC). As fin 

speed increased in air, the strain threshold technique performance worsened in a like 

manner, such that oscillations in the strain resulted in false positive classifications. 

3.3.4.3 Strain difference threshold 

The strain difference threshold technique was generally very effective at classifying 

underwater contact.  During fluidic loading, NC was generally accurately classified 
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across conditions (NC/NC > 75%). During contact, C was generally very accurately 

classified (C/C > 80%). 

Strain differencing had significantly different performance in classifying contact 

in air than contact underwater. When the beams were not in contact, the technique 

performed poorly in air but well underwater. Since fluidic loading was relatively 

insignificant in air in tested conditions, differences between proximal and distal sensors 

were generally small, and so many false contacts were detected (Figure 31(a,c); 18-25% 

error). However, underwater, fluidic loading generally caused greater proximal strain 

than distal strain (c.f. [90]), and so NC was classified with very low error (Figure 31(b,d); 

~ 0% error). 
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Figure 31. Performance of strain differencing technique for beams in air and underwater (a,b) and fins in air and 
underwater (c,d). Time series data shown are representative of general trends for beams and fins at moderate speed (0.2 
rot/s for fins, 0.5 rot/s for beams). Confusion matrices are shown for each condition’s data. 

 

3.3.4.4 Speed and stiffness effects 

Changing the speed of the robot affected the performance of the strain difference 

classifier. At low speeds (0.1 rot/s) underwater, NC was accurately classified (90.8%) and 

C was perfectly classified (100%). At moderate speeds (0.5 rot/s), NC was very 

accurately classified (99.6%) and C was accurately classified (94.7%). At high speeds 

(>1.0 rot/s), NC was still very accurately classified during movement through fluid 

(>90%), but C was generally poorly classified (<1%). Since high speeds tended to 

significantly deform the beams underwater, the beams reached the obstacle in a highly 
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deformed state, and after settling into contact, were strained such that there were very 

small differences between proximal and distal strains.  

 

 

Figure 32. The effect of beam stiffness on strain differencing classification performance during underwater contact. 
Representative time series data are shown at 0.5 rot/s are shown for beams underwater to illustrate the effects of 
significant fluidic loading on flexible (a), moderate (b), and stiff (c) beams. 

 

Using beams of moderate stiffness resulted in the best performance of the 

classifiers in air and underwater, and use of the flexible beams resulted in very poor 

classification performance. The use of stiff beams resulted in good classification 

performance that was slightly less than the performance achieved with beams of 

moderate stiffness. 

3.3.4.5 Sensor location effects 

The use of distal tip sensory data generally resulted in better performance than proximal 

sensors regardless of the technique used to discriminate contact (Figure 33). In air, the 

use of distal sensor data resulted in better classification performance for beams and fins. 

Underwater, the use of distal sensor data resulted in substantially better classification 
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performance than proximal sensors (c.f. Table 4). These differences were even greater at 

high speeds (>0.1 rot/s for fins, >0.4 for beams).  

 

 

Figure 33. The effect of sensor placement (proximal/distal) on performance of the strain threshold classifier for fins in 
air and fins underwater. 

 

When classifying contact underwater with fins, the use of medial sensor data 

resulted in better performance than the use of sensory data from the leading edges. There 

was little difference in performance between classification executed using data from the 

upper leading edge versus classification executed using data from the lower leading edge. 
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Table 4. Error in classification of the instant of contact for beams and fins of moderate stiffness. 

 

* Values represent the error (number of samples) for each technique (A,B,C; Table 2), where negative numbers correspond to a 
prediction of contact after the actual contact has occurred and positive numbers correspond to a prediction of contact before the instant 
of contact. “X” corresponds to cases where contact was not classified. 

 

3.3.4.6 Instant of contact 

For beams in air, both the strain threshold (Figure 27a) and strain rate threshold (Figure 

27b) techniques accurately predicted the instant of contact (Table 4(i)). Using these 

techniques, contact was always predicted slightly after the true instant of contact, with 

errors of 1-100 samples (0.025-0.25 s). There were negligible differences between the 

performance when proximal versus distal sensory data were used.   

Sensor Location Both

Technique (A) (B) (A) (B) (C)

0.1 rot/s -1 -1 -1 -98 1361

0.2 rot/s -2 -1 -1 -2 679

0.3 rot/s -2 -4 -1 -2 -19

0.5 rot/s -2 -1 -1 -1 200

1.0 rot/s -4 -1 -1 -2 102

1.5 rot/s -3 -3 -1 -1 71

Sensor Location Both

Technique (A) (B) (A) (B) (C)

0.1 rot/s -7 -1 -1 -1 1271

0.2 rot/s -4 -1 -1 -1 -3

0.3 rot/s -5 465 -1 -1 -1

0.5 rot/s 8 282 -1 -1 -15

1.0 rot/s X 159 2 155 4

1.5 rot/s X 134 -1 -1 -5

Sensor Location Both

Technique (A) (B) (A) (B) (C)

0.1 rot/s -12 1385 -8 1384 1361

0.2 rot/s -11 694 -5 656 670

0.3 rot/s -11 462 -3 -18 440

Sensor Location Both

Technique (A) (B) (A) (B) (C)

0.1 rot/s -57 1445 -5 -1 -3

0.2 rot/s -34 766 -1 -1 -9

0.3 rot/s X 539 -1 1433 -13

Proximal Distal

Proximal Distal

(iii) Fin in Air

(iv) Fin Underwater

Proximal Distal

Proximal Distal

(i) Beam in Air

(ii) Beam Underwater
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For beams underwater (Table 4(ii)), there were large differences in classification 

performance of the instant of contact when proximal versus distal sensors were used. As 

speed increased, the performance of the strain thresholding and strain rate thresholding 

techniques degraded for proximal sensory data. However, the performance of the distal 

sensor was very good regardless of speed. 

The instant of contact was generally poorly classified for fins in air for every 

technique but the strain threshold technique (Table 4(iii)). Large oscillations in strain 

caused many false positives (C|NC) for both the strain rate threshold and the strain 

difference threshold techniques, which meant that contact was often estimated prior to the 

true contact (e.g. x<0).  

For fins underwater, the best performing techniques for classifying the instant of 

contact were strain thresholding using distal sensors, or strain difference thresholding 

(which involved both sensors). Both techniques estimated contact after the true instant of 

contact (x<0) due to the fluidic loading on beams, but were generally quite accurate 

across the speeds tested (x = [-15,-1]; (Table 4(iv))). Strain thresholding typically failed 

when proximal sensor data was used because the strain due to fluidic loading could 

exceed the strain due to contact loading. Strain rate thresholding performed poorly with 

proximal sensor data due to the large fluctuations in strain rate experienced as the fin was 

accelerated from rest into fluid, such that contact was estimated long before the true 

instant of contact (x>500 samples). 

3.3.5 Discussion and conclusion 

Simple strain thresholding was very effective in limited conditions, where platform speed 

and stiffness were moderate. This technique was typically robust in air and in water, but 
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failed as soon as fluidic loading exceeded contact loading, which occurred at high speeds 

and high beam stiffnesses. This technique resulted in large errors in the estimated instant 

of contact when used for contact detection in water.  

Strain rate thresholding yielded many misclassifications of C and NC at all speeds 

and in both environments. Since fluidic loading rates could easily exceed contact loading 

rates at any speed or stiffness, this technique may perform poorly underwater, despite 

being utilized often in air. Oscillations introduced by structural vibrations or fluidic 

effects could create false positives in complex robotic systems, such as compliant 

manipulators or soft robots. 

Strain differencing between proximal and distal sensors was generally an effective 

way to detect contact in the underwater environment. This technique was not always 

effective at classifying contacts in air, but generally performed better than the other two 

methods at classifying underwater contact across broad conditions. It performed best 

when the fins and beams were moving, because at rest, proximal and distal strains were 

approximately equal. This technique does require an additional sensor compared to the 

other two techniques, but may allow for more robust detection of contact. Strain 

differencing performed poorly in some cases where beams were very flexible, so it may 

require careful design of beams to match contact conditions. 

The stiffness of the beams significantly affected the classifier performance, and so 

the distribution of flexural rigidity should be co-designed based on platform speed and 

sensor placements to ensure robust detection of contact.  

The choice of sensor location also impacted the performance of the classifiers; in 

order to classify complex contacts, careful design of the sensor distribution is necessary. 
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While using data from the distal tips of beams was effective for classifying tip contact, if 

contact occurs closer to the base of the beam the distal strain will not change 

significantly. As contact can occur at any point along the length of the beam, this 

suggests that it may be important to have distributed sensing along the beams’ length. 

Future work will explore the use of distributed sensors to classify contact along the length 

of the beam. 

Based on this initial evaluation, underwater contact classification can be made 

more robust by: (i) use of distal sensors when tip contacts occur, (ii) use of strain 

differencing to determine the duration of contact, (iii) and design of stiffness and speed 

based on contact conditions. Contact detection techniques will be used in future work to 

develop an active sensing paradigm for underwater touch with compliant manipulators. 
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Chapter 4. System identification methods for force prediction 

4.1 Chapter summary 

Models of flexible fins being driven for propulsion are not easily derived from first 

principles because the nonlinear fluid structure interaction between fin and fluid is still 

poorly understood [69]. When physical systems elude physics-based descriptions it is 

valuable to learn more about these systems through model development based on inputs 

and outputs of the system [98-100]. For instance, the relationship between propulsive 

forces and intrinsic sensory measures is not known, but studying input-output models 

between the two can be used to determine the sensory systems and model parameters 

required to build a good model to predict propulsive forces. 

The objective of the work in this chapter is to develop the mathematical framework 

necessary for models used to map sensory data to propulsive forces. Some mathematics 

of linear and nonlinear system identification are developed in order to illustrate the 

progression from basic input-output models to more complex nonlinear models of 

propulsive forces. Several metrics for cost and performance are motivated and developed 

in detail. 

4.2 Input-output models 

System identification techniques allow for the development and refinement of 

mathematical models of physical systems through careful design and analysis of 

experiments. There are numerous representations of this process but a popular one is 

given by Ljung in his seminal text (redrawn in Figure 34; [99]), wherein prior knowledge 

of the system is used to select appropriate components of the process, including: 

experimental design, model type, and fit criterion. Planned experiments are executed, 
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data is gathered, and then a model for the system is calculated. The model is then 

validated on unseen data (i.e. data that was not used to develop the model). If the model 

meets the given criterion, it can be used. If the model does not meet the fit criterion, 

revisions can be made by designing new experiments, selecting a different model type, or 

modifying the fit criterion.  

 

 

Figure 34. The system identification loop. Redrawn from [99]. 

 

 In the first stages of identification, a common initial model choice is a linear 

parametric input-output model. Depending on the number and type of inputs and outputs, 

the summation structure of parametric models can vary slightly. At its most basic level, 

an input-output model is single-input-single-output (SISO), where the model acts entirely 

on a single signal input to produce the signal output. This framework can be scaled in 
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order to create models that are multiple-input-single-output (MISO), where the model 

acts on multiple input signals to produce an output signal; or even multiple-input-

multiple-output (MIMO), where multiple signals are acted upon to produce multiple 

outputs. For example, many biological systems are MIMO systems, such that multiple 

sensory inputs can influence the outputs of multiple physical processes, and as such it can 

be very challenging to capture the complexity of the model for a biological system. 

Typically research efforts are done to isolate SISO pathways of the biological system 

where only a single sensory input is stimulated and a single motor or neuronal output is 

measured. These simpler models can be built upon and refined using techniques in 

system identification by utilizing prior knowledge from SISO models to inform the 

development of MISO, and eventually MIMO, models.   

 Model complexity should only be increased if aspects of the target output are not 

well captured by the current model. Quantitative metrics of success relate to both the cost 

of implementing the model as well as the model’s performance. Common performance 

metrics typically include basic error statistics such as mean squared error (MSE) and sum 

of squared error (SSE). A higher order statistic that is common is the percent of variance 

accounted for (%VAF) metric. Choice of error metrics depends on the design criteria of 

the model. Cost functionals can have further design choices associated with them, as 

specific parameters can be used to reward or penalize the functional based on 

performance and cost, respectively. Commonly used metrics include the Akaike 

information criterion (AIC) and many of its variants, as well as the minimum description 

length (MDL). Low performance, as measured by high error means or low variance 
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accounted for, as well as high implementation cost should call into question the choice of 

model as well as the model parameters chosen.  

 Parametric models can be tuned by adjusting the range of parameters, number of 

inputs, and type of the models. Typical range adjustments are made to the “memory” 

length of the system, which for a convolution model is simply the number of time delays 

of the input used in the convolution’s input matrix. For superlinear models, the number of 

basis series terms can be increased or decreased depending on model performance 

(though this can be a very expensive parameter to increase, see Section 4.4). Increasing 

the number of model inputs can be done computationally, or by physically adding sensors 

to the instrumentation. Computationally, this involves including additional sensors’ data 

in the input matrix, for example. Lastly, the type of underlying models can be changed by 

adding series terms to the representation, or adding linear and nonlinear block functions 

to the model structure. For instance, a linear convolution component can be chained to a 

static nonlinearity to model certain types of nonlinear systems. 

  

4.3 MISO regression and estimation 

One of the most basic input-output models is given by the weighting sequence 

description 

 ( ) ( )
0

k

i

i

y k Y u k i
=

= ⋅ −∑  (1) 

in which the parameters Yi are used to map the input u to the output y at discrete time k 

[100]. This model assumes that the output is a weighted sum of prior input to the system. 

Along this line of models is also the linear difference equation: 
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 ( ) ( ) ( ) ( ) ( )1 11 1n ny t a y t a y t n bu t b u t n+ − + + − = − + + −L L   (2) 

When previous outputs are not known, this simplifies to the finite impulse response (FIR) 

model where: 

 ( ) ( ) ( )1 1 my t b u t b u t m= − + + −L  (3) 

and we define model parameters θ and inputs φ such that 
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Thus the problem of estimation is simply obtaining an estimate such that ( ) ( )ˆ
T

y t tϕ θ= .  

The estimation problem can have different optimization objectives, but a common 

one is the minimization of mean squared error V: 
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which is expressed as the optimization objective 

 ( )ˆ arg m in NVθθ θ=  (7) 

and is solved by the following: 
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where -.* are the model parameters that minimize the output mean squared error. This 

type of parameter estimation can be referred to as least squares estimation or linear 

regression when the parameterization is linear as above. 

 It can be convenient for computation to form the least squares estimation problem 

using matrices (see Appendix II of [99]), defining:  

 

( )

( )

1

N

y

Y

y N

 
 
 
  

 M  (9) 

where YN is an Nx1 column vector and 

 

( )

( )

1T

N

T N

ϕ

ϕ

 
 Φ  
 
 

 M  (10) 

where Φ  is an Nxd matrix and rewriting the minimization objective: 

 ( ) 21
N N NV Y

N
θ θ= − Φ  (11) 

and the resulting optimal estimate becomes: 

 ( ) 1ˆ T T

N N N N NYθ
−

= Φ Φ Φ  (12) 

This matrix formulation relies on the Moore-Penrose pseudoinverse to compute the 

optimal parameter estimates, which can be convenient when time series data from 

multiple sensors are augmented to form the input matrix ( NΦ ).  

 For robotic systems, it can be especially important to use input data to estimate 

multiple outputs (e.g. distributed sensors to estimate multiple orthogonal components of 

the propulsive force). In this case, the variable y(t) becomes a higher-dimensional column 
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vector and the parameters are a matrix with the i-th column containing the coefficients 

associated with the i-th component of y. 

 ( ) ( )Ty t tϕ= Θ  (13) 

 ( ) ( ) ( ) 2

1

1 N
T

N

t

V y t t
N

ϕ
=

Θ = −Θ∑  (14) 

yielding the parameter estimate 
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∑ ∑  (15) 

 The LU decomposition technique is a common way to compute the inverse of a 

matrix by decomposing the target matrix into a L(ower triangular) and an U(pper 

triangular) component such that (as in [101]): 

 T

N NL U⋅ = Φ Φ  (16) 

and the linear set can be represented by 

 ( )N L U L U yΦ ⋅Θ = ⋅ ⋅Θ = ⋅ ⋅Θ =  (17) 

and the following two equations can be solved to identify the parameters Θ : 

 L z y⋅ =  (18) 

 U z⋅Θ =  (19) 

  

4.4 Nonlinear estimation: Volterra series 

Linear estimation techniques may fail to capture the complexities of the dynamics 

between sensory signals and propulsive forces on flexible fins, so nonlinear modeling 

may be necessary. It is known that the mechanisms of force production in flexible fins are 

quite complex, involving the shedding of leading edge vortices and the directing of 
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turbulent jets into the fin’s wake. Even for rigid bodies moving through flow, the drag 

based propulsive force (/0) is approximated nonlinearly in the velocity term (V), such 

that (as in [102]): 

 
21

2
D D w pF C V Aρ=  

(20) 

 

where '0 is the coefficient of drag based on the flow Reynolds number,  12 is the density 

of the fluid, 34 is the projected area of the cross section of the rigid body moving in flow. 

The addition of flexibility and multiple interacting panels is highly likely to also have a 

nonlinear relationship between the kinematics of the fins and the forces produced. 

Therefore, fin-intrinsic sensory measurements (such as bending of the fin rays or pressure 

along the fin surface) may not linearly relate to the propulsive forces. Nonlinear 

techniques are employed by this research to further understand the relationships between 

intrinsic sensors and the propulsive force. 

Nonlinear estimates are more complex to obtain because the model representation 

changes form and it can be harder to guarantee optimality of the parameter estimates. 

Some representations and relevant techniques are summarized below. The general 

problem is to obtain a set of parameter estimates ˆ
Nθ  that minimize an objective function  

( )NV θ  based on input ( ( )tϕ ) and output data ( ( )y t ): 

 ( ) ( )( ),y t g tϕ θ=  (21) 

 ( ) ( ) ( )( ) 2

1

1
,

N

N t

t

V y t g t
N

θ α ϕ θ
=

 = − ∑  (22) 

 ( )ˆ arg min
N

Vθθ θ=  (23) 
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The general form of a nonlinear estimator is useful for description, but for 

implementation, a proper functional of the input data and parameters must be chosen to 

represent the system output. A common way to describe a polynomial nonlinear system 

with memory is through use of the Volterra series expansion. The output y(n) depends on 

coefficients of zeroth-order, linear, and higher order input terms, and is typically 

represented by (from [103]): 
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 (24) 

where h0 is a constant term and hj is the j-th order Volterra coefficient. 

 In the nonlinear systems framework, the order of the representation can be 

changed to suit different modeling needs. Thus, from (24), the zeroth order Volterra 

model is given by 

 ( ) 0y t h=  (25) 

The first order Volterra model is given by 

 ( ) ( ) ( )
1

0 1 1 1

0k
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∞

=

= + −∑  
(26) 

 

And the second order Volterra model is given by 
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(27) 
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and further until higher order terms are introduced. For implementation with real time-

series data, the Volterra series is represented with M samples of “memory”:  
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(28) 

 

This flexibility of model order and memory length makes it possible to represent the 

global behavior of many types of nonlinear systems using a Volterra model. 

 Volterra models are not orthogonal, which can introduce difficulty in identifying 

unique coefficients for the series. Fortunately, multiple methods for obtaining the 

Volterra kernels (i.e. coefficients of the series) exist and are summarized in the literature 

[104-106]. By use of these orthogonalization schemes and traditional least-squares 

estimation approaches, approximations of the true kernel can be obtained for nonlinear 

input-output data. 

 The Laguerre expansion technique (LET) orthogonalizes the kernel while 

preserving the intuitive structure of Volterra models. The LET uses the orthonormal basis 

of Laguerre functions to expand the system kernels, and then estimates the basis 

coefficients through regression. 
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(29) 

where {bj(k)} are the Laguerre basis functions, the c values are coefficients to be 

determined through regression, and L is the number of basis functions used to 
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approximate the kernel. This modification to the kernel results in the following 

representation of the Volterra series from (28): 
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(30) 

 

4.5 Dimensionality reduction of the input matrix by SVD 

As model complexity increases due to nonlinearity, high numbers of sensors, and large 

windows of sensory data, the input block-structured matrix can become too large and ill-

conditioned to invert easily.  

Singular value decomposition (SVD) is a common technique for computing the 

basis vectors of a matrix and reducing its dimensionality to the projection of only the 

largest singular values. The technique is applied as follows. The block structured data 

matrix X is factored into the product of three structured matrices: 

 TX U SV=   (31) 

where TU U I= , TV V I= , and ( )1, , NS diag σ σ= K , where 1 2 0Nσ σ σ≥ ≥ ≥ ≥K . The 

reduction of the dimensionality of the input matrix X can be achieved by setting 0iσ =

for a range of i’s where i is set as a cutoff.  
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4.6 Application of MISO model to force prediction 

The MISO model was used to map multiple inputs of sensory data to a single output of 

force data (Figure 35). Inputs to the MISO model were varied to determine best practices 

for model implementation. The kernel type was varied to study the differences in 

performance between linear and nonlinear models. A first order Volterra series was used 

for linear models, as in (26). Nonlinear models could either be a combination of first and 

second order Volterra series (28), or only the second-order terms of the series. The 

memory of the system was also varied as an input to the MISO model. Memory consisted 

of the M-samples of the data that were used to form the input data set. Memory could 

either consist of a window of data of fixed time length, or of multiple samples at different 

times. Best practices for memory length were determined. The lag relationships between 

sensory data and forces were also explored with this framework. 

Experimental conditions were varied in both the training and the testing data in 

order to characterize the model performance and to determine best modeling practices for 

different swimming conditions. Experimental data were selected from the data library 

based on the gait, stiffness, stroke phase, and flapping frequency desired for both training 

and testing the MISO models. Additionally, the component of force (i.e. thrust, lateral, 

magnitude) was selected as the output of the MISO model for comparison. In this way, a 

model could be trained on data from one set of conditions and tested on data from either 

the same set of conditions, or a different set entirely. In all cases it was desirable not to 

train and test MISO models on data from the same trials. 
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Figure 35. The process of developing a multi-input-single-output (MISO) Sensory-Force prediction model. The user 
assembles training and testing data from the Data Library by selecting experimental parameters of interest. The force 
component to be predicted is also selected (e.g. thrust force). Properties of the MISO model are chosen based on the 
desired complexity of the underlying model. A Trained Kernel is computed from the Training Data, and this kernel is 
used to predict forces from the Testing Data. Predicted forces are compared to measured forces to determine the error 
of the model.  

 

4.7 Metrics of estimation performance  

It is necessary to quantify and compare the performance of propulsive force models, so 

specific metrics of mean squared error (MSE), variance accounted for (VAF), Akaike 

information criterion (AIC), and model description length (MDL) are developed in detail 

below.  

4.7.1 Sum of squared error (SSE) and mean squared error (MSE) 

Mean squared error (MSE) is a metric that can be used to compare the 

performance of prediction models based on their error statistics. It is expressed as 

follows: 
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 ( ) ( )[ ]2
ˆˆ, kkkk yyEyyMSE −=   

 ( )∑ =
−= N

k kk yy
N 1

2
ˆ

1
 (32) 

where ky  is the data being estimated, kŷ  is the estimate of the data, N is the number of 

data points in the series, and E is the expectation operator as expanded in (32). 

 If a direct comparison is possible between datasets of similar size, sum of squared 

error (SSE) is another useful metric to compare estimation models: 

 ( ) ( )∑ =
−= N

k kkkk yyyySSE
1

2
ˆˆ,  (33) 

Thus, MSE is simply a scaled version of SSE based on the number of data points in the 

series. It follows from the definition of SSE in (33) that it is unreasonable to compare the 

SSE of datasets of unequal size, as the sum of error for most models will accumulate over 

time.  

 Squaring the error has several implications, to name a few: 1) the operator is only 

concerned with the magnitude of the error, 2) errors less than magnitude 1 are de-

emphasized, and errors larger than 1 are amplified, 3) the operator is oblivious to the sign 

of the error. While this assumption is unlikely for most model estimation schemes in this 

thesis, the use of mean squared error as model metric is well suited to cases of least 

squares estimation, because this estimation algorithm is designed with the squared error 

as a cost function for optimization. Thus, in cases where the data to be estimated is well 

modeled by a linear system with Gaussian noise statistics, a zero MSE corresponds to a 

model that is optimal in squared error as a cost function. 

4.7.2 Variance accounted for (VAF) 
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One measure for the goodness of a model fit that is commonly used is variance-

accounted-for (VAF), which is a function of both the variance of the data and the variance 

of the model. It is given by: 
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where ky  is the data, kŷ  is the estimate, and var is short for the variance function of the 

time series data. The fractional expression in (34) represents the variance of the 

estimation error over the variance of the source data. When the variance of the estimation 

error is very small relative to the variance of the data, or identically zero, the VAF is very 

high or close to 100%. However, when the variance of the estimation error is nearly as 

large or equal to the variance of the data, the VAF is very low or identically 0%.  

Expanding the expression in (34) is useful to illustrate the utility of VAF as a 

metric: 
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The denominator of all three expressions, [ ] [ ]2

kk

T

k yEyyE − , is the variance of the data, 

which is an expression of the distance from the mean squared data points from the 
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squared mean. The first expression, α, is the ratio of the mean squared values of the data 

to the variance of the data. This expression will always be greater than or equal to one, 

unless the data is zero mean (unbiased), then it is identical to one. The second expression, 

β, is the ratio of the mean squared values of the estimate to the variance of the data. If the 

data mean is zero, it simplifies to the ratio of mean squared values for both data sets. The 

last expression, χ, is the ratio of the expected value of the product of the data and the 

estimate to the variance of the data. Again, if the mean of the data is zero, then the last 

expression simplifies further. To summarize, if [ ] 0=kyE , (35) will simplify: 
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And we can see in the zero-mean data case, given by (36), there are several ways that this 

expression can reduce to zero, making the VAF will equal 100%. This will occur 

specifically when  

 [ ] [ ] [ ]k

T

kk

T

kk

T

k yyEyyEyyE ˆ2ˆˆ =+  (37) 

From this expression in (37), specific to the zero-mean data case, that the sum of 

expectations of squared data and squared estimates should equal twice the expectation of 

the product of the data and its estimate. When this occurs, the variance accounted for will 

be maximized. 

In some cases where the modeling scheme is particularly ill-suited to the 

estimation task, the estimation scheme can introduce more variance into the estimation 

error than the original, and the fractional expression in (34) is greater than unity. In these 

cases, the VAF is a negative percentage and should alert the user that another metric (such 
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as mean squared error or sum of squared error) may be necessary to describe the 

goodness of fit.  

4.7.3 Akaike information criterion (AIC) 

The Akaike information criterion (AIC) is a relative metric to compare representations of 

data in terms of their amount of information measured against the cost of representing the 

information. It has been used historically for statistical model selection, where one of the 

goals of a statistical model is to accurately represent a process with a minimal number of 

terms (e.g. degrees of freedom) of the model. While many measures of success of a 

model are measured on an absolute scale, AIC was designed to be a relative metric 

between sets of models, the value it computes has no absolute meaning outside of the 

context of the source data that the models are based upon.  

The canonical AIC was first written as 

 ( ) ( )ˆ
ˆ 2 log 2AIC ML kθθ = − +  (38) 

where θ̂  is a parameterized model of a time series process, ˆMLθ  is the maximum 

likelihood (or in some cases, an estimate of the maximum likelihood value), k is the 

number of independently adjusted parameters to obtain θ̂  [107].  

Since AIC is a relative metric, it can also be customized to a designer’s goals of 

optimality; for instance, if there are discontinuities in the cost function for parameters it 

may be reasonable to have a piecewise AIC that is used to compare the same datasets. 

This flexibility makes it an excellent relative metric for local optimization of models. In 

Akaike’s words, “when the maximum likelihood is identical for two models the [AIC] is 

the one defined with the smaller number of parameters.” [107] 
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 For models of time-series data, such as regression models, the canonical AIC can 

be modified to account for the required parameters. For a robot, which can be 

instrumented with multiple types and numbers of sensors, part of the $ independently-

varying parameters could be number of sensors. In addition, the number of sensor 

samples used to construct an estimate (i.e. model memory) is another component of $. 

Akaike’s work anticipated and suggested this type of modification as a way to adapt the 

metric to specific model identification applications. 

AIC can be modified for applications in regression and least squares estimation, 

such that low model error is rewarded and high numbers of parameters is penalized. 

These modifications are summarized in work by Hu [108]: 

 log 2LSE

RSS
AIC n k

n

 = + 
 

 
(39) 

 

where RSS is the error residual between the model fit and the measured data, n is the 

number of data points for regression, and k is the number of model parameters. A major 

limiting assumption of this case is that the errors are independent and independently 

distributed (i.i.d.) on normal distributions.  

4.7.4 Minimum description length (MDL) 

One type of cost function that was used to determine the appropriate number of model 

parameters was the minimum description length (MDL) 

 ( ) ( ) ( ) ( )( )2

1

log
ˆ1 ,

N

t

M N
MDL M y t y t M

N =

 
= + − 
 

∑   (40) 

where M is the number of model parameters, N is the length of the data in samples, 

( )ˆ ,y t M  is the estimate of the output when only the M model parameters is used, and 
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( )y t  is the true value of the output. The series summation is equivalent to the sum of 

squared error (introduced earlier in 4.7.1; SSE), and therefore the MDL increases as either 

SSE increases or as the number of model parameters M increases. Thus, a low MDL is 

desirable such that a low number of parameters are used to achieve a low error.  
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Chapter 5. Estimation of propulsive forces from intrinsic sensory data 

5.1 Chapter summary 

The objective of the work presented in this chapter is to understand the estimation and 

prediction of propulsive forces from distributed, heterogeneous sensors in the robotic 

pectoral fin as the fin executes multiple swimming gaits. 

Chapter 5 is comprised of two published reprints: (1) a journal paper published in 

Bioinspiration & Biomimetics, Volume 10, Number 3, June 2015 and (2) a conference 

paper published in the IEEE International Conference on Robotics and Automation 

(ICRA) 2016. Both studies were conducted to understand the use of distributed, 

heterogeneous sensors in a robotic fin for prediction of propulsion forces.   

The first study found that linear MISO models of fin-intrinsic sensory data could be 

used to predict propulsive force magnitudes at multiple speeds and when fin stiffness was 

changed. Propulsive force magnitudes could be predicted with approximately 100ms of 

sensory data. MISO model performance was gait- and stroke-dependent in that 

performance varied significantly between steady swimming, maneuver, and ventral 

steady swimming gaits and performance varied significantly between the gait’s outstroke 

and instroke phases. Models formed with bending sensor data typically outperformed 

models formed with pressure sensor data, and the optimal subsets of sensors for 

prediction always included at least one bending sensor. Despite high model performance 

on individual gaits and stroke phases, a single model could not predict the forces of 

multiple gaits and stroke phases. 

The second study built upon the first by analyzing the structure and performance of 

nonlinear MISO models to predict propulsive force components (thrust and lateral) as 
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well as to validate important results of the linear study. Nonlinear Volterra-series MISO 

models could be used to predict propulsive forces very well across changes to gait, stroke 

phase, and fin parameters. Nonlinear models tended to have a both a lower 

implementation cost and higher performance than linear models in the same fin 

conditions. This study validated that, for both linear and nonlinear models, models 

formed from bending data outperformed those formed from pressure data. This study 

compared performance differences between cases where thrust and lateral components of 

the force were predicted. Thrust forces were generally best predicted using a nonlinear 

model of the fin bending data, whereas lateral forces were best predicted using a linear 

model of fin pressure data.   
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5.2 Paper 3: Predicting propulsive forces using distributed sensors in a compliant, 

high DOF, robotic fin 

5.2.1 Abstract 

Engineered robotic fins have adapted principles of propulsion from bony-finned fish, 

using distributed compliance and complex kinematics to produce and control the fin’s 

propulsive force through time. While methods of force production are well understood, 

few models exist to predict the propulsive forces of a compliant, high DOF, robotic fin as 

it moves through fluid. Inspired by evidence that the bluegill sunfish (Lepomis 

Macrochirus) has bending sensation in its pectoral fins, the objective of this study is to 

understand how sensors distributed within a compliant robotic fin can be used to estimate 

and predict the fin’s propulsive force. A biorobotic model of a bluegill sunfish pectoral 

fin was instrumented with pressure and bending sensors at multiple locations. 

Experiments with the robotic fin were executed that varied the swimming gait, flapping 

frequency, stroke phase, and fin stiffness to understand the forces and sensory measures 

that occur during swimming. A convolution-based, multi-input-single-output (MISO) 

model was selected to model and study the relationships between sensory data and 

propulsive force. Subsets of sensory data were studied to determine which sensor 

modalities and sensor placement locations resulted in the best force predictions. The 

propulsive forces of the fin were accurately predicted using the linear MISO model on 

intrinsic sensory data. Bending sensation was more effective than pressure sensation for 

predicting propulsive forces, and the importance of bending sensation was consistent with 

several results in biology and engineering studies. It was important to have a spatial 

distribution of sensors and multiple sensory modalities in order to predict forces across 
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large changes to dynamics. The relationship between propulsive forces and intrinsic 

sensory measures is complex, and good models should allow for temporal lags between 

forces and sensory data, changes to the model within a fin stroke, and changes to the 

model through gait transitions. 

Inspired by the swimming capabilities of fish, robotic fins have evolved from 

rigid flapping foils to compliant, multiple degree of freedom (DOF) fins with advanced 

propulsive capabilities. Studies over decades have investigated the roles of compliance 

and kinematics in producing propulsive force in fins. Many studies have used flexible 

foils as simplified, physical models to study the effects of kinematics and mechanical 

properties on fin propulsive forces [54]. Flapping foil experimental studies have 

investigated the effects of stiffness [38], flapping frequency [42; 44], heaving amplitude, 

propulsor shape[20], drag coefficients [30], and ground effect [39] on hydrodynamics and 

propulsive force outputs. A recent study demonstrates that flexible foils may serve as 

sufficient models of force production for caudal fin swimming as seen in two types of 

bony finned fish [44]. Further studies of fish have shown that complex kinematics and 

bending play a significant role in producing useful propulsive forces [26; 27], so 

biologically-inspired robotic fins have become more complex to achieve the performance 

of biological systems. Biologically-inspired robotic fins have been engineered to match 

the kinematics, mechanical properties, and hydrodynamics of their biological 

counterparts and can achieve advanced capabilities [24; 40]. A compliant robotic pectoral 

fin with multiple degrees of freedom, derived from knowledge of the bluegill sunfish 

(Lepomis macrochirus), can create thrust through an entire fin beat [25; 37; 51], even as 

the fin is driven into flow. The same fin can be used to create the time-varying thrust and 
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lift forces of a steady forward swimming gait [25; 37], the strong lateral and drag forces 

of a yaw turn maneuver [14], and the forces that balance a fish body during hovering 

[22]. Study of the ghost knifefish’s (Apteronotus albifrons) propulsive strategies has 

enabled researchers to design a robot with an undulatory propulsor that uses counter-

propagating waves to hover in place or jet upward rapidly [5]. In general, these studies 

validate that complex 3d kinematics and bending enable the creation of diverse and 

useful propulsive forces.  

However, as robotic fins become more complex, the dynamics of force production 

are difficult to model and closed-loop control of force is challenging. Most biologically-

inspired robotic fins execute kinematics in open-loop, and closed-loop control of 

individual kinematics has not been addressed, because modeling of an underactuated, 

multi-DOF, compliant, underwater robot is a major challenge. Few mathematical models 

exist that capture the nonlinear dynamics of the fluid structure interaction of a compliant 

fin in water, and those that model fin forces well are confined to single swimming gaits at 

fixed speeds [9; 35; 48], let alone the kinematics of each DOF. These numerical modeling 

methods have high computational and time costs, making them infeasible for real-time 

deployment on robotic platforms. Without a model of the propulsive forces, the available 

techniques for controlling the propulsive force are limited. 

Prediction of the propulsive force is an essential challenge if we are to ultimately 

control the propulsive forces of compliant, high DOF, robotic fins; and sensors within the 

fins are likely to provide useful information for control of forces. To execute good 

prediction in the absence of force models, sensory measurements must capture the 

underlying force dynamics. Existing approaches to sensing and control of underwater 
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vehicles have focused on extrinsic sensing, such as inertial measurement units and 

magnetometers, which only measure the effects of propulsive force on the dynamics of 

the robot body. These methods are appropriate when the dynamics are well modeled, 

such that propulsive force is easily controlled and updated based on a desired body 

trajectory. However, when good models of propulsor dynamics do not exist (which is the 

case for compliant, multi-DOF fins), extrinsic measures cannot be used to determine how 

propulsive force is being created. With only extrinsic sensors of body forces, there are 

few direct ways to update local kinematics of a fin. Distributed sensors that are intrinsic 

to fins have the potential to capture distributed measures of the propulsive force that are 

created locally. Using local information about force production, the propulsive force can 

be controlled more precisely through updates to local kinematics. Thus, intrinsic sensors 

can be used to monitor force production, and to provide more direct sensory feedback for 

control of kinematics. 

The approach of sensing in fins has direct connections to new discoveries in the 

biology and neuroanatomy of fishes. Recent work has shown that the fins of bony-finned 

fish may act as sensory systems, though the use of sensation during swimming is not well 

understood. Bluegill sunfish (Lepomis macrochirus, a model bony finned fish) pectoral 

fins are densely innervated with afferent nerve endings that respond to bending stimuli 

[15; 58]. Bending and force are directly related in flexible propulsors [33], and changes to 

the amount of stiffness of fins affect the force trajectory, magnitude, and direction [2; 12; 

26; 51]. The sunfish uses its compliant pectoral fins to create complex propulsive forces 

during hovering [22], low speed maneuvers [14], and steady forward swimming [37]. The 

fish is able to vary the speed and flexural rigidity of its fins in order to change the 
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propulsive force [51]. Since changes to fin bending significantly affect the fin’s 

propulsive force, it is likely that sensory measures of bending and other mechanical 

phenomena could be useful for predicting the propulsive force of the fin through time. 

Biologists have suggested that these afferent nerves may very likely be used to tune 

motor output of fins [37; 58], which could include the production of propulsive force. 

If intrinsic sensing is used for prediction of fin propulsive forces, many practical 

considerations arise relating to the placement, modality, and number of sensors. In other 

words: 1) where should sensors be placed?, 2) what sensory modalities should be used?, 

3) how many sensors are needed?, and 4) how do best modalities, locations, and numbers 

of sensors change as the fin dynamics change?. These questions must be addressed so 

that engineers know how to use intrinsic sensors to estimate outputs (such as propulsive 

force). While mechanisms of propulsion have been studied in detail, there have been few 

studies that investigate the use of sensing within fins. Several studies using IPMCs have 

suggested the use of embedded strain sensing within polymer fins to provide bending 

information for force control of fins [28; 50]. These sensors have been used to estimate 

the curvature of fins during flapping and heaving motions. Robotic models of a bluegill 

sunfish pectoral fin have been instrumented with bending and pressure sensors within the 

fin in preliminary work [22; 37; 52], and general trends have been identified that relate 

sensory measures to propulsive forces. However, these sensory measures have not been 

used to directly predict propulsive forces and it is not known what type of sensor (e.g. 

bending, pressure) is most useful for the task. Also, sensor placement optimization is a 

common problem in underwater sensing, but most techniques require system, sensor, and 

noise models [46]. Methods exist for experimentally selecting an optimal sensor 
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distribution to maximize observability of a state variable [7; 47; 55], though all require a 

numerical simulation and a sensor model for optimization. However, many compliant 

robots that interact with a complex environment do not have readily available state-space 

formulations or a priori equations of motion. 

The objective of the work presented in this study is to understand how 

heterogeneous sensors, distributed within a compliant fin, can be used to estimate and 

predict the fin’s propulsive force. This objective is based on the goal of using robotic fins 

to create and control propulsive forces, and the idea that intrinsic sensors could be 

valuable for controlling force. This study provides an assessment of the feasibility of 

propulsive force prediction from distributed sensors on a compliant robotic pectoral fin 

with complex kinematics and no a priori dynamical model. A robotic model of a bluegill 

sunfish pectoral fin [37] is instrumented with distributed pressure and bending sensors 

and programmed to execute multiple swimming gaits while sensory data and propulsive 

forces are measured. Force prediction is evaluated during gaits using complex 3D 

kinematics on a robotic fin with multiple underactuated degrees of freedom and the 

ability to change flexural rigidity and flapping frequency. Analyses are conducted to 

determine the best combinations of sensors, the best placement locations for sensors, and 

the best model parameters for the goal of predicting the propulsive force. A multi-input-

single-output (MISO) convolution model is used to predict fin output forces because it 

allows for direct assessment of each sensor’s contribution to a prediction, and subsets of 

sensory data can easily be substituted in this framework.   

The remainder of this paper is structured as follows. Section 2 describes the 

methods, including the instrumented robotic fin (2.1.1), the experimental testing 
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environment (2.1.2) and the experiments executed with the fin (2.2). Section 2.3 

describes the multi-input-single-output (MISO) convolution model and its use for 

mapping sensory data to propulsive forces. Sections 2.4-2.6 describe the use of the model 

for estimation and prediction, the performance metrics for the model, and the evaluation 

of prediction results to determine best sensor instrumentation practices. Section 3 

presents the results, where the MISO model’s performance is evaluated for force 

estimation and prediction as model parameters and robotic system parameters are varied 

(3.1). Lastly, measures of the model variance accounted for (VAF), model mean squared 

error (MSE), and an Akaike information criterion [1] are used to determine best sensors 

and model parameters  under changing conditions on the fins (3.2-3.5). 

5.2.2 Methods 

5.2.2.1 Experimental equipment 

The fins of the bluegill sunfish (Lepomis macrochirus; a bony-finned fish) have been 

studied over multiple years using robotic models of the caudal [18] and pectoral fins [5, 

17, 32, 109] as they execute complex propulsive behaviors. A robotic pectoral fin, 

modified from [32], was instrumented with sensors and programmed to execute 

swimming gaits as sensory data and forces were measured in a quiescent water tank. The 

robotic platform and testing environment are described below. 

 



116 

 

 

Figure 36. Sensory instrumentation and experiments with robotic pectoral fin. Catheter style pressure sensors (a) 
measured local pressures on both sides of fin webbing and half-bridge strain gages (b) measured local strains (bending). 
Propulsive forces were measured in the thrust and lateral directions while the fin executed complex kinematic 
trajectories in experiments (c). 

 

A robotic fin was modeled on the pectoral fin of a bluegill sunfish and was 

designed to approximate the kinematics, mechanical properties, and hydrodynamics of 

the pectoral fin during steady swimming motions [37]. The robotic fin has five fin rays 

that are actuated in the sweep direction, and three of the fin rays can be actuated laterally, 

for a total of eight actuated degrees of freedom. The flexural rigidity of the robotic fin 

can be changed by replacing the fin rays between trials. The fin rays are sewn into 
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stretchable and compliant webbing (80% polyester, 20% elastane). More details of the 

robotic platform can be found in [37].  

For descriptive purposes, three regions of the fin are referred to in this work. The 

dorsal region of the fin refers to the upper region of the fin formed by the first two fin 

rays and the webbing between them (Figure 1(d)). The medial region of the fin refers to 

the middle region of the fin formed by the second through fourth fin rays and the 

webbing between them. The ventral region of the fin refers to the bottom region of the fin 

formed by the fourth and fifth fin rays and the webbing between them. The fin’s dorsal 

leading edge refers to the upper edge of the fin, and the ventral leading edge refers to the 

lower edge of the fin. For convenience, the long dorsal region is divided into dorsal 

proximal and dorsal distal regions.   

The robotic fin was instrumented with distributed, heterogeneous sensors for use in 

propulsive force prediction. Eight pressure sensors (SPR-524, Millar Instruments, 

Houston, TX) and six bending sensors (KFG-5-120, Omega, Stamford, CT) were 

distributed over the robotic pectoral fin in dorsal and ventral regions. Pressure sensors 

were bonded to the fin webbing above the fin rays (Figure 1(d)), and bending sensors 

were affixed directly to the fin rays (Figure 36(e)). Sensors were placed along the dorsal 

leading edge at proximal and distal  locations and the ventral leading edge (Figure 36(a,b) 

inset), as these areas corresponded to regions of strong vortex development [27], high 

density of sensory afferents [53; 56; 58], and which robotic and numerical studies have 

identified as important areas of force production during steady swimming [9; 35; 51]. 

Preliminary experiments using pressure sensors on the robotic fin showed dorsal sensors 

trending with thrust force and ventral sensors trending with lateral forces [22]. Pressure 
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sensors were bonded to the fin webbing at dorsal proximal, dorsal distal, medial, and 

ventral locations (OmniBond, Glu-Stix, Oldsmar, FL). Pre-wired strain gages were 

bonded to printed plastic fin rays (Accura 25, Quickparts, Atlanta, GA) in half bridge 

configurations using instant adhesive (Loctite 401, McMaster-Carr, 74765A63) at dorsal 

proximal, dorsal distal, and ventral locations. Strain gages were coated in silicone 

adhesive (McMaster-Carr, 73325A21) for flexible waterproofing. 

Motor control and sensor measurement were conducted using a dedicated real time 

controller (PXI8106, National Instruments, Austin, TX) and acquisition cards (NI6229) 

with custom software in LabVIEW. Strain signals were amplified, measured, and 

conditioned on a slave chassis (NI9227 module, NI9144 EtherCAT Chassis, National 

Instruments, Austin, TX) and transferred to the real time controller. Digital servomotors 

(HSR-5990TG, HITEC RCD USA, Poway, CA) were driven using open loop trajectories 

at a 50Hz update rate. Sensory data were collected at 100Hz.  

Experiments with the biorobotic fin were executed in a static water tank 

(1.8x0.9x0.9m). Oscillations created by the fin wake reflected off of tank walls were 

damped using a mesh (Vinyl Coated Polyester Scrim, 85695K2, McMaster-Carr, 

Robbinsville, NJ) aft of the fin over the tank cross section, which showed a 20% average 

magnitude reduction of the low frequency noise in the force sensors.  

The fin’s propulsive forces were measured using S-beam load cells (Futek LSB200, 

Futek Advanced Sensor Technology, Inc., Irvine, CA) oriented in thrust and lateral 

directions. The biorobotic fin was affixed to a low-friction air bearing carriage (New Way 

S301301, New Way Air Bearings, Aston, PA) to enable force measurement.  
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5.2.2.2 Experiments 

Experiments were conducted to understand the relationship between propulsive forces 

and sensory data as kinematics and mechanical properties of the fin were varied. 

Experiments were executed that varied the fin gait (Figure 37), flexural rigidity, stroke 

phase, and flapping frequency over values consistent with the bluegill sunfish pectoral fin 

during swimming. To ensure statistical significance of results, over 40 trials were 

executed for each combination of the 81 fin conditions (Table 5), resulting in over 3200 

trials. A description of the experimental parameters is provided below. 

 

Table 5. Experimental conditions tested using the biorobotic pectoral fin. 

Fin Parameter Experimental Conditions

Gait

{Steady Swimming (SS), 

Maneuver (M), Ventral Steady 

Swimming (VSS)}

Stroke Phase
{Outstroke (OUT), Instroke 

(IN), Full Stroke (FULL)}

Flapping 

Frequency (Hz)
{0.65, 1.00, 1.30}

Flexural Rigidity {400x,600x,800x}
 

 

5.2.2.2.1 Gaits  

The robotic fin was programmed to execute three swimming gaits, using kinematics 

based on the kinematics of sunfish steady swimming [32], a sunfish yaw turn maneuver 

[5], and a modified ventral steady swimming (Figure 37). Ventral steady swimming was 

developed specifically for this study to investigate the effect of introducing a region-

specific component of steady swimming. During the ventral steady swimming gait, the 
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ventral region of the fin executed the same kinematics used in steady swimming. The 

dorsal region of the fin was not actuated during the stroke, and only moved passively due 

to fluidic events. Steady swimming, yaw turn maneuver, and ventral steady swimming 

gaits are abbreviated in later sections (SS,M,VSS). 

 

 

Figure 37. Picture summary of all gaits and stroke phases executed by the biorobotic pectoral fin in experiments. Gaits 
of steady swimming (SS; a), ventral steady swimming (VSS; b), and maneuver (M; c) were divided into outstroke 
(OUT, abduction) and instroke (IN, adduction) phases. Subsequent pictures were captured at time intervals of T/8, 
where T was the sum of the outstroke and instroke execution times. 
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5.2.2.2.2 Stroke Phase 

The fin beat for each gait was divided into outstroke (abduction) and instroke (adduction) 

in order to study forces during each part of the fin stroke. The mechanisms of force 

production are significantly different between the outstroke and the instroke (c.f. [70]) so 

it was expected that a different model would be needed for each stroke phase. In 

experiments, the fin executed the outstroke trajectory of the gait, paused for >5s to allow 

for transient effects (e.g. reflected waves observed in forces and sensory data) to 

dissipate, and then executed the instroke trajectory of the gait. Trials were executed that 

tested the full fin beat. Outstroke, instroke, and full strokes are abbreviated in later 

sections (OUT,IN,FULL). 

5.2.2.2.3 Effective Flapping Frequency 

The execution speed of the fin beat was varied in experiments. Gaits were tested at 

flapping frequencies of 0.65, 1.00, and 1.30 Hz in accordance with values used from 

previous studies of the robotic fin and fish [32]. Since gaits were split into outstroke and 

instroke kinematics with a time delay in between, effective flapping frequency fe was 

computed as 

 
1

e

out in

f
t t

=
+

 (41) 

where tout and tin are the time duration of the outstroke and instroke, respectively. 

5.2.2.2.4 Stiffness 

The stiffness of the fins was varied by changing the flexural rigidity of fin rays. Flexural 

rigidities were selected to achieve similar bending to biological pectoral fins, 
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correspondingly, flexural rigidities of 400, 600, and 800 times the flexural rigidity of the 

biological fin rays were tested [17].  

5.2.2.3 MISO Convolution Model 

A convolution-based multi-input-single-output (MISO) model was selected to map the 

relationship between sensory measures and fin forces, as in (42), because it provides a 

clear way to link features of force production identified in previous preliminary studies 

[23, 32]. The MISO model allows for time delays between sensory measures on the fin 

and propulsive forces (seen in [23]). It allows for evaluation of single sensors and groups 

of sensors in their prediction performance, and the MISO model clearly indicates the 

weights 56,7 of individual sensors and their time lags. The model has the benefit of a 

simple linear mapping between time-shifted sensory data Si and force data Fk, so that an 

operator can study the effects of choosing a subset of sensors (e.g. S1:4), the effects of 

changing the memory of the system (e.g. [a,b]=[-4,0]ms), and even the effects of using 

weights trained on one data set to predict the forces of another data set (e.g. 

( ) ( ) ( )2 2 1

,k i i ji j
F S w=∑ ∑ ). Other methods, such as artificial neural networks [110] and 

supervised machine learning approaches [111] were considered for this application, but 

the transparency of the model relationships between sensory data and force data was 

preferred for this application. Further, the lack of an a priori system model or sensor 

model, due to complexities in the fluid structure interaction, prevented the use of model-

based estimation schemes [112]. 

The relationship between estimated force F and sensory data S in this framework is: 
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F a b S k j t w
= =

= − ∆∑∑  (42) 

Where kF  is the 2D force magnitude at discrete time k, N is the number of sensors used 

in the model, j is the discrete time window [a,b] prior to discrete time k. ( )iS k j t− ∆  is 

the i-th sensor’s value at a delay of j t∆, and 
,i jw  is the weighting sequence description 

for sensor i [100]. t∆  is the sampling time, which was fixed at 1/100 s, for the 100Hz 

sampling rate used in this study. 

Based on previous studies, only the magnitude components of the forces and sensory data 

were used in the MISO convolution model (42). This choice was made based on several 

studies with the robotic fin that have examined force magnitudes as kinematics and 

mechanical properties were changed [5, 23, 32]. This choice also enabled the use of 

single output regression to compute the weights, which was simpler for a first analysis of 

the relationships between forces and sensory measures. Force magnitudes were computed 

element-wise from the thrust and lateral components, such that at discrete time k: 

 2 2

k kthrust lateralk
F F F= +  (43) 

5.2.2.4 Force estimates and predictions 

Data from multiple experimental conditions were joined to form an input-output set with 

dynamics from a rich set of fin inputs and outputs, and these data were used to develop a 

force prediction model. A typical input-output set on which the model was developed 

included data from fins using flapping frequencies of 0.65Hz, 1.00Hz and 1.30Hz at 

400x, 600x, and 800x fin stiffness. The fin gait was fixed for each input-output set. There 

were at least three trials used for each experimental condition, and all trials were 
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randomly selected. Model parameters (N,a,b) were selected and the weighting sequence 

description wi,j was computed using the Moore-Penrose pseudoinverse [113], which 

minimized squared error between the estimate of force and the measured force. Model-

based estimates of the output data, that had been used to determine the model, were made 

by convolving the measured inputs with the model. The performance of the model was 

assessed by MSE and VAF performance metrics on the model estimates. The model was 

then used to predict output data from data sets that had not been used to form the model. 

These are referred to as model predictions, and these were also evaluated using MSE and 

VAF metrics.  

The performance of each model was assessed by predicting data from experiments 

that: a) had the same experimental conditions as the experiments from which the model 

was made (prediction), b) had a different gait than the experiments from which the model 

was made (prediction across gait), or c) had a different stroke phase than the experiments 

from which the model was made (prediction across stroke). 

5.2.2.5 Model performance and optimization 

Performance of the model was assessed using calculations of mean squared error (MSE) 

and percent of variance accounted for (VAF) between estimated/predicted forces ( F̂ ) and 

measured forces (F).  

 ( ) ( )
( )

ˆ,
ˆ, 1 100

SSE F F
VAF F F

SST F

 
 = − ×
 
 

 (44) 

 ( ) ( )ˆ,
ˆ,

SSE F F
MSE F F

N
=  (45) 
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 ( ) ( )2
ˆ ˆ, kk

SSE F F F F= −∑  (46) 

 ( ) ( )2

kk
SST F F F= −∑  (47) 

In this framework, VAF was negative if the sum of squared error (SSE) was greater than 

the total sum of squares (SST). In this case, the prediction was considered failed for 

analysis purposes and MSE was used as a performance metric. 

The parameters of the convolution model were optimized using an Akaike 

information criterion (AIC) for least squares estimation [108]. AIC is a metric that 

increases linearly as the number of parameters increases and logarithmically as the model 

error (SSE) increases. By comparing the AIC of different models and sensor subsets, an 

optimized choice of sensors and model parameters can be made. The AIC is given by:  

 10log 2
SSE

AIC N k
N

 = + 
 

 (48) 

where N is the number of data points used in the regression, and k is the number of model 

parameters, such that: 

 ( )Sk N b a= −  (49) 

where NS is the number of sensors and [a,b] is the window of sensory data delays used in 

the convolution. For comparison among samples, AIC was normalized within the sample. 

Prediction performance was evaluated statistically using a variant on the Welch’s t-test 

for unequal variances [114].  

To determine principles for selecting good model parameters, the effect of varying 

MISO model parameters on the prediction performance was studied. To determine the 

optimized time window for prediction, the time window size (b – a) and the time window 
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values (a,b) were varied as performance was evaluated. Single time delays (a = b) were 

evaluated from 0-200ms prior to force data to determine if the MISO model could be 

used to predict forces in advance. Performance was evaluated for each discrete, 1ms time 

window between 0 and 200ms inclusive.  

5.2.2.6 Sensor selection 

The data of specific sensors was used to form prediction models to determine which 

sensor modalities (e.g. bending vs. pressure) and placement locations (e.g. dorsal vs. 

ventral) resulted in the best force predictions. The performance of models developed 

using only pressure data and models using only bending data were compared as gait and 

stroke phase were varied. The performance of models developed using sensor data at one 

location were compared with models developed at other sensor locations to identify 

useful sensor placement locations as gait and stroke were varied.  

To determine the best subsets of sensors for force prediction, model performance 

was computed as the number of available sensors (N) was varied. Prediction models were 

developed and tested for every subset of sensors (
92 1 511sensors − = total subsets) for each 

of the fin conditions tested. With a fixed number of sensors available, the best subset of 

that size was chosen based on MSE. This process was repeated for all gait/stroke 

combinations with the number of available sensors allowed to vary between 1 and 9 

sensors, and best subsets of sensors were identified as fin conditions changed. These best 

subsets of sensors were studied to identify performance trends in pressure sensors versus 

bending sensors. 

5.2.3 Results 
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5.2.3.1 Evaluation of MISO model 

Evaluation of the MISO convolution model involved testing of the model performance 

for the tasks of estimation and prediction of force data using sensory data (as described in 

section 2). Metrics of variance accounted for (VAF) and mean squared error (MSE) 

between estimated/predicted force and measured force were computed as the fin gait, 

flapping frequency, stiffness, and stroke phase were varied. 

The MISO convolution model estimated the 2D propulsive forces produced by the 

robotic pectoral fin very well, such that the estimate accounted for as much as 94% of the 

variance (figure 3). Individual models for steady swimming gait were able to estimate 

outstroke forces very well (91% VAF, 2.2mN2 MSE), instroke forces nearly as well (85% 

VAF, 4.0mN2 MSE), and forces of the full fin beat with some accuracy (42% VAF, 

11mN2 MSE). Models for the yaw turn maneuver gait could be used to estimate its 

outstroke (70% VAF, 3.8mN2 MSE), instroke (74% VAF, 2.8mN2 MSE), and full fin 

beat forces (26% VAF, 5.7 mN2
 MSE). Models for the ventral steady swimming gait 

could be used to estimate forces during its outstroke (69% VAF, 1.5mN2 MSE) and 

instroke (62% VAF, 2.1mN2 MSE), but not effectively during the full fin beat (negative 

VAF, 5.2mN2 MSE). The model was able to estimate the forces of the outstroke with 

greater VAF than the forces of the instroke in both ventral steady swimming and steady 

swimming gaits (figure 3(b)). In all cases, the model estimated the forces of the outstroke 

better than the forces of the instroke (lower MSE; figure 3(c)). The performance of the 

model was always worst (highest MSE, lowest VAF) when the model was used to 

estimate the forces of a full fin beat (both outstroke and instroke combined; figure 3(b-

c)). 
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Figure 38. Force estimation performance of the MISO convolution model. Full stroke (FULL), outstroke (OUT), and 
instroke (IN) forces estimated for ventral steady swimming (VSS), maneuver (M), and steady swimming (SS) gaits (a). 
Performance metrics of variance accounted for (b) and mean squared error (c) were computed across conditions. “X” 
markers on the bar graph indicate that variance accounted for was negative in that case. Representative force 
magnitudes are shown with f=1.0Hz at 600x stiffness. Force data were low pass filtered at 7 Hz for clarity and 
displayed with 0.2N/division in force and 0.2s/division in time. 
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The MISO convolution model predicted the 2D propulsive forces produced by the 

robotic pectoral fin well, with performance of the model typically ranging from 65 to 

85% VAF (Figure 39). A model that was trained on data from a range of flapping 

frequencies and stiffnesses (e.g. Steady Swimming Outstroke at f={0.65,1,1.3}Hz with 

EI={400,600,800}x) could be used to predict forces with the same range of parameters 

(Figure 42). The propulsive forces of multiple gaits and stroke phases were successfully 

predicted with this model. Predictions of force during steady swimming gaits typically 

accounted for more than 80% of the variance of the measured force, yaw turn maneuver 

predictions accounted for more than 75% of the variance, and ventral steady swimming 

predictions accounted for more than 60% of the variance. The propulsive forces of 

different phases of the fin stroke were successfully predicted, such that prediction 

performance of the outstroke phase ranged from having 65 to 90% VAF and instroke-

phase performance from having 70 to 90% VAF (Figure 41). 

 

 

Figure 39. Force prediction across fin parameter changes. Experimental 2D propulsive force magnitudes can be 
predicted across changing conditions to flapping frequency (0.65Hz, 1.00Hz, 1.30Hz; left to right) and mechanical 
properties (400x, 600x, 800x flexural rigidity; top to bottom) without changing sensory model weights. Forces and 
predictions are shown for steady swimming outstrokes (SS OUT) and are representative of trends in the fin system 
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when gait and stroke phase are held constant. Sensory model weights were trained with delays from [-200,0]ms. Data 
were low pass filtered at 7 Hz for clarity. 

 

Performance of the MISO model improved as the length of the time window was 

increased, though optimal quality could be achieved using a short time window of 

sensory data. For optimal performance in VAF, time windows of [-200,0]ms performed 

best, but optimal model performance in AIC was always obtained using a window of 

sensory data from 0 to 110ms prior (Figure 44(a)). The selection of the optimal time 

window (by AIC) was dependent on the fin’s swimming gait and the stroke phase. The 

optimal time window parameters (AIC) during steady swimming outstrokes and instrokes 

were both equal to [-30,0]ms, maneuver outstrokes and instrokes were [-70,-60]ms and [-

40,0]ms, and ventral steady swimming outstrokes and instrokes were [-20,0]ms and [-

100,0]ms. In most cases, the optimal time window for a full stroke model was longer in 

duration than the optimal windows for the outstroke or instroke models. The optimal time 

window for outstroke models had a short duration (10-20ms), and the optimal time 

window for instroke models was typically longer (20-100ms). Model performance was 

not strongly affected by the optimization method; optimization using VAF, AIC, or a full 

window ([-200,0]ms) all produced similar model performance (Figure 44(b-c)), and using 

AIC as an optimization criterion always reduced the length of the time window required 

for optimality. 

 



131 

 

 

Figure 40. Effects of MISO model time window parameters on force prediction performance. Representative 
experimental 2D propulsive force and the predicted force from combined (pressure and bending-based models), 
pressure-based, and bending-based models are shown as the number and value of delay elements are varied in the 
MISO convolution model (a-c, top) and MSE is computed for these cases (a-c, bottom). Time series predictions are 
shown for steady swimming outstrokes at 0.65Hz. Mean squared error is shown as the delay (ms) of a single time lag is 
increased (d). Time series data were low pass filtered at 7 Hz for clarity. 

 

Predictions of force could be made using sensory data at a single time lag (8 =
:). A 0ms time lag (i.e. 8, : = 0) of sensory data relative to force data yielded the best 

performance out of all single time lags (where 8 − : = 1). As the time between force 

data and sensory data was increased, MSE increased monotonically (Figure 40(d)). 

Predicted forces could approximate measured forces for small time lags (<200ms), but at 

high time lags (>200ms) predictions were poor approximations for measured forces and 

had high MSE and low VAF.  

Performance of the MISO model was highly sensitive to the sensors used to form 

the input dataset, and increasing the number of available sensors did not always increase 

performance (Figure 43). Although all sensors were used to acquire data during 

experiments, the performance of force predictions was studied with sensory data from 
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subsets of sensors. Steady swimming forces could be predicted using a single bending 

sensor (approximately 80% VAF), while at least two sensors were required for the model 

to predict maneuver and ventral steady swimming forces. Acceptable performance (more 

than 50%VAF) for maneuver and steady swimming force prediction was achieved using 

4 and 5 sensors, respectively (Figure 43). Predictions of force were best during steady 

swimming was achieved using data from four sensors during the outstroke and seven 

sensors during the instroke. Predictions of force were best during maneuver using data 

from eight sensors in the outstroke and data from six sensors during the instroke. 

Predictions were best during ventral steady swimming using data from eight sensors 

during the outstroke and data from all nine sensors during the instroke. Thus, in almost 

all cases, the optimal number of sensors for prediction was less than the full set of nine 

sensors. 

5.2.3.2 Force prediction 

Forces were predicted best when the model used for prediction was developed using data 

from the same gait (Figure 42; P<0.001, N=217), though in some cases a model trained 

on data from one gait could be used to predict the forces of another gait. Prediction 

performance was highest for steady swimming models (more than 75% VAF), slightly 

less for maneuver models (more than 65% VAF), and least for ventral steady swimming 

models (more than 50% VAF). Significant differences in the model’s performance (as 

measured by MSE) were found between force prediction of steady swimming and ventral 

steady swimming models (Table 7; P<0.001, N=138), maneuver and ventral steady 

swimming models (P<0.001, N=109), but not between steady swimming and maneuver 

models (P<0.3, N=106). In some cases, a MISO model trained on one gait could be used 
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to predict the propulsive force of another gait. Models that had been trained on steady 

swimming forces were unable to predict the forces of other gaits (Figure 42(b), negative 

VAF). However, when maneuver-trained models were used to predict the forces of other 

gaits, predictions of steady swimming outstroke forces had 69.5% VAF and ventral 

steady swimming forces had 45.5% VAF (Figure 42). Instroke-trained models had 78.0 

and 32.4% VAF on similar conditions. When models trained on ventral steady swimming 

data were used to predict the forces of other gaits, predictions ranged from 0 to 49% 

VAF.  The predictions of models trained on maneuver data had significantly lower MSE 

when predicting the forces of other gaits than models trained on steady swimming data 

(P<0.005, N=76). Further, predictions from models trained on steady swimming data had 

significantly lower MSE when predicting the forces of other gaits than models trained on 

ventral steady swimming data (P<0.001, N=76).    
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Figure 41. Force prediction across changes to stroke phase. Full stroke (FULL), outstroke (OUT), and 
instroke (IN) forces predicted for ventral steady swimming (VSS), maneuver (M), and steady swimming 
(SS) gaits (a). Performance metrics of variance accounted for (b) and mean squared error (c) were 
computed across conditions. “X” markers on the bar graph indicate that variance accounted for was 
negative in that case. Representative force magnitudes are shown with f=1.0Hz at 600x stiffness. Data were 

low pass filtered at 7 Hz for clarity and displayed with 0.2N/division in force and 0.2s/division in time. 

 

Forces were predicted best when the model used for prediction was developed 

using data from the same stroke phase (Figure 41; Table 6; P<0.001, N=97). For 

prediction of forces created during the outstroke, prediction performance was highest 

when models trained on outstroke data were used, having 67 to 89% VAF. For instroke 

force magnitudes, prediction performance was highest when models trained on instroke 

data were used with 72 to 87% VAF. Models that had been trained on instroke forces 

were unable to predict outstroke forces, and vice-versa (less than 0% VAF). Predictions 

were best when separate models were developed for each of the instroke and outstroke 

phases (P<0.001, N=32). 
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Table 6. Prediction performance for different sensory systems on the robotic fin.a 

 
a Comparing the performance of user-defined sensor selection strategies (rows 2-10) to the baseline 

performance of all sensors (row 1). Each row shows the average force magnitude prediction performance 

obtained with a group of sensors for each fin gait/stroke combination. Cells are crossed out (X) where force 

magnitudes could not be predicted (VAF<0%). Performance was assessed on data from flapping 

frequencies of 0.65,1,1.3Hz and fin stiffnesses of 400, 600, and 800x. Force predictions were made using 

sensory data weighted at delays ranging from 0 to 200ms (inclusive) to account for timing differences. 

 

5.2.3.3 Sensor selection 

The best subsets of sensors used to form the model were highly sensitive to which fin gait 

was being executed (Figure 43), and operator-defined sensor choices often resulted in 

poor predictions of force. The prediction of ventral steady swimming forces required the 

largest subsets of sensors for good performance. No single sensor was suitable to predict 

the forces of ventral steady swimming (negative VAF using 1 sensor), and performance 

above 50% VAF could not be obtained until multiple sensors were used (5 sensors for 

outstroke forces, 3 for instroke forces). Predictions of ventral steady swimming forces 

had 27 to 72% VAF, and predictions frequently failed across changes to gait and stroke 
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phase. Operator-defined sensor placements (Table 6) were often insufficient to predict 

outstroke and instroke forces of ventral steady swimming. For example, using specific 

strategies of “bending only”, “pressure only”, “ventral only”, ventral steady swimming 

forces could not usually be predicted (less than 0% VAF for these cases). The prediction 

of steady swimming forces had the lowest complexity cost of any gait tested. Using only 

the dorsal proximal bending sensor to predict forces in steady swimming, performances 

of greater than 78% VAF were typical. Optimal prediction performance was obtained 

using less than the maximal number of sensors for both outstroke and instroke (4 and 7 

sensors, respectively).  

The best subsets of sensors were also highly sensitive to which stroke phase the fin 

was executing (outstroke versus instroke; Figure 43). The prediction of instroke forces 

required smaller subsets of sensors for good predictions than the prediction of outstroke 

forces did. Instroke forces were better predicted than outstroke forces, and full fin beat 

forces were predicted worse than either instroke or outstroke forces (Table 6). Predictions 

of the instroke forces had significantly lower MSE than predictions of the full fin beat 

(P<0.001, N=64), and had margins of more than 20% VAF between them. Outstroke 

predictions had significantly lower MSE than predictions of the full fin beat (P<0.001, 

N=32), and margins of VAF were greater than 10%. Predictions of the full fin stroke 

typically had 26 to 61% VAF. Steady swimming full stroke forces were the easiest to 

predict (61.3±8.8% VAF) and ventral steady swimming full stroke forces the hardest to 

predict (26.7±2.6% VAF) among conditions tested. Predictions of steady swimming 

outstroke and instroke forces had comparable MSE and VAF, predictions of maneuver 

outstroke forces had significantly worse MSE than predictions of instroke forces, and 
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predictions of ventral steady swimming outstroke forces had significantly lower MSE 

than predictions of instroke forces. Differences in prediction MSE were largest in the 

stroke phases of the maneuver gait, which suggests a large complexity difference 

between outstroke and instroke dynamics. 

 

 

Figure 42. Force prediction across changes to fin gait. Ventral steady swimming (VSS), steady swimming (SS), and 
maneuver (M) gait forces are predicted for fin full strokes, outstrokes, and instrokes individually (a). Performance 
metrics of variance accounted for (b) and mean squared error were computed across conditions (c). “X” markers on the 
bar graph indicate that variance accounted for was negative in that case. Representative peaks are shown with f=1.0Hz 
at 600x stiffness. Data were low pass filtered at 7 Hz for clarity and displayed with 0.2N/division in force and 
0.2s/division in time. 

 

Best subsets of sensors varied significantly depending on which gait the fin 

executed, and the best subsets often changed from outstroke to instroke (Figure 43). In a 
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steady swimming gait (Figure 37(a)), models that used dorsal region sensors had the 

highest prediction performance and sensors from the dorsal region were used most 

frequently in best subsets. During the outstroke of the gait, models that used the dorsal 

proximal bending sensor alone had 79.51% VAF and the dorsal distal outer pressure 

sensor was used more often than any other sensor in best fits (8/9 cases). Adding this 

sensor to the single dorsal proximal bending sensor resulted in an increase of 4.87%, 

yielding 84.38% VAF. During the instroke, models that used the dorsal proximal bending 

sensor alone had 78.46% VAF and this sensor was used more often in best fits than any 

other sensor (9/9 cases = 100%). In a maneuver gait (Figure 37(b)), data from both dorsal 

and ventral region sensors were needed for best predictions. During the outstroke, models 

that used dorsal distal bending and ventral outer pressure sensors had 23.65% VAF. 

These two sensors were also used in all eight cases in best fits. The addition of a dorsal 

proximal bending sensor to the model improved VAF by 20.75%, yielding 44.40% VAF. 

During the instroke, models that used the dorsal distal outer pressure sensor alone had 

best fits (14.58% VAF). The dorsal distal outer pressure sensor was also used most often 

in best fits (8/8 cases). Performance increased by 47.02% when the dorsal distal and 

ventral bending sensors were used instead. In a ventral steady swimming gait (Figure 

37(c)), models that used the ventral region sensors had best predictions on the outstroke, 

and models that used the dorsal bending sensors had best predictions on the instroke. 

During the outstroke, models that used ventral sensors alone were the optimal selection 

when only two sensors were used. Ventral bending and ventral outer pressure sensors 

were used more often than any other sensors in best fits (8/8 cases for each sensor, tied 

for best performance). The addition of the dorsal distal outer pressure sensor to the model 
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increased VAF by 23.26%. During the gait instroke, models that used the dorsal proximal 

and dorsal distal bending sensors provided the best fit (2 sensors permitted, 36.58% 

VAF) and these two sensors were the most frequently used in best fits (8/8 cases, tied). 

Adding the ventral bending sensor’s data to the model caused an increase in instroke 

prediction performance by more than 20%, yielding 56.99% VAF. 

5.2.3.4 Sensor modality 

The use of both pressure and bending sensory data to form the model typically resulted in 

better force predictions than using either sensor’s data alone (Figure 40(a-c)). Models 

that used bending sensor data to predict forces performed better than models that used 

pressure sensor data, and models that used both pressure and bending data performed 

comparably or better than models that used bending data. The performance of these 

models was affected by the time lags used. Regardless of the number of time lags used, 

using both pressure and bending sensory data in a model led to better performance than 

using pressure or bending data alone. Adding time lags typically increased the model 

performance for pressure-based, bending-based, and pressure and bending-based models. 

In estimation and prediction, models that used both pressure and bending data typically 

outperformed pressure-based or bending-based models by margins greater than 5% VAF 

(Table 6).  

Bending-based models performed better than pressure-based models, but data from 

both sensors were required to form models that could predict the forces of multiple gaits 

and stroke phases. Bending-based models outperformed pressured-based models across 

changes to fin gait and stroke phase (Table 6). Bending sensors were used more 

prevalently than pressure sensors in best predictions when the number of available 
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sensors was fixed (Figure 43). A bending sensor was always one of the sensors used in 

the best predictions (Figure 43; 268/268 cases). Further, bending sensors were among the 

most frequently used sensors in a best fit with (1) Ventral Bending at 14.9% usage 

(40/268 cases), (2) Dorsal Distal Bending at 13.8% usage (37/268 cases), and (3) Dorsal 

Proximal Bending at 13.4% usage (36/268 cases). The best performing single sensor for 

any given gait/stroke pair was most frequently a bending sensor (in 7/8 cases), and when 

the number of sensors was allowed to vary (from 1 to 9 sensors), the top used sensor for a 

gait/stroke pair was typically a bending sensor (7/8 cases). For successful force prediction 

across fin conditions, using “pressure only” or “bending only” were not suitable 

strategies (Table 6). Using only pressure sensors, ventral steady swimming outstrokes 

could not be predicted and maneuver outstroke predictions decreased in performance by 

more than 50% VAF. Using only bending sensors, ventral steady swimming instrokes 

could not be predicted and prediction performance typically decreased by more than 5% 

across gait/stroke conditions. 
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Figure 43. Optimal sensor combinations for a fixed number of sensors as fin gait and stroke phase are varied. Shaded 
cells indicate the sensors used in the force magnitude predictions (see Figure 1 for sensor locations). Variance 
accounted for was computed as a performance metric for each subset of sensors tested on data from fins at 400, 600, 
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and 800x stiffness and 0.65, 1, and 1.3Hz flapping frequency. VAF was averaged for each subset across ten or more 
trials. Representative fits are shown across changes to flapping frequency (force magnitude peaks at 0.65, 1.00, 1.30 Hz 
shown; right column). Model time windows of 0 to 20ms (inclusive) were used in fits. Force data were low pass filtered 
at 5 Hz for clarity. 

 

5.2.3.5 Sensor location 

Best predictions of propulsive force occurred when sensory data was sampled from 

multiple fin regions and used to form the prediction model, rather than data sampled from 

a single region. There was no single sensor location of those tested (i.e. “dorsal 

proximal”, “dorsal distal”, or “ventral”) whose data could be used in a model to predict 

forces across fin conditions (Table 6, rows 5-7). Use of “dorsal distal only” data had 79% 

VAF for outstroke/instroke of steady swimming, but these models failed to predict 

maneuver and ventral steady swimming outstroke forces (less than 0% VAF). “Dorsal 

proximal only” models predicted steady swimming forces with 72.14/74.88% VAF, 

maneuver forces with 7.96/45.83% VAF, but failed to predict ventral steady swimming 

forces. “Ventral only” models predicted steady swimming forces with 83.59/61.21% 

VAF, maneuver forces with 29.70/17.32% VAF, and failed to predict ventral steady 

swimming forces. “Dorsal only” models had a large range of 25 to 85% VAF. Using 

“dorsal only” models, prediction of maneuver outstroke forces and ventral steady 

swimming instroke forces decreased significantly from the baseline of using models 

developed on data from all locations. When “ventral only” models were used, ventral 

steady swimming instroke forces could not be predicted and performances decreased 

from baseline by as much as 58% VAF. Not all of the data that was gathered was 

particularly useful in creating good prediction models. For instance, using data from 

pressure sensors on the inner face (body facing side) of the fin did not significantly 
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improve prediction performance when added to the model (Table 6, row 9). Removing 

the data from these inner face sensors by using a “bending and outer pressure” model 

(Table 6, row 10) did not significantly impact performance (less than 5% decrease in 

VAF from baseline), except in the prediction of maneuver outstrokes (9% decrease in 

VAF). Using “inner pressure only” models resulted in failed predictions for almost all fin 

conditions (Table 6, row 9). 
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Figure 44. Optimization of model time windows for a fixed gait/stroke combination (a). 1D plots show the optimal time 
window of sensory weights when variance accounted for (left) and Akaike information criterion are used as 
optimization criteria. Model performance is compared when VAF and AIC are used as metrics against a baseline of a 
full 200ms window (b). Force magnitude predictions are compared using these three approaches (c). 
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Table 7. Hypothesis testing to evaluate model prediction performance across fin gait and fin stroke timing. 

Significance Trials (#)

P(SS) > P(MAN) >0.1 106

P(SS) > P(VSS) <0.001 138

P(M) > P(VSS) <0.001 109

P(Same Gait) > P(Different Gaits) <0.001 217

P(Same Stroke Phase) > P(Different Stroke Phases) <0.001 97

P(IN) > P(OUT) <0.001 64

P(OUT) > P(FULL) <0.001 32

P(Mwt) > P(SSwt) <0.005 76

P(SSwt) > P(VSSwt) <0.001 76

P(INwt) > P(OUTwt) <0.001 32

P(Bending) > P(Pressure) <0.001 138

Hypothesis

 
a “P(SS)>P(M)” means that the prediction performance on steady swimming (SS) forces was greater than 
prediction performance on maneuver (M) forces.  
b “P(Mwt)>P(SSwt)” means that weights trained on maneuver forces had better prediction performance 
than weights trained on steady swimming forces.  
c MSE statistics of predictions in each category were used to determine significance levels with a two-sided 
T-test. 

 

5.2.4 Discussion 

The MISO convolution model was effective for understanding how to predict of 

propulsive force from a compliant, multiple degree of freedom robotic fin with complex 

dynamics. It was effective for prediction of forces from sensory data and provided insight 

into the underlying relationships between sensor parameters and forces. The MISO model 

structure allowed for an in depth analysis of the roles of individual sensors, the memory 

of the system, and the performance effects of changing multiple parameters. The 

underlying model could be further improved using basic knowledge of robot behavior 

(e.g. which gait and stroke phase are being executed). The evaluation methods used, 

including MISO for prediction and AIC for sensor and parameter selection, suggest a 

framework with which to optimize sensor selection and placement for intrinsic robotic 

sensory systems without a priori models. This could be more broadly applicable to other 
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research areas, including: multi-modal tactile sensing in perception research [84, 115], 

grasping studies of in-hand manipulation [116, 117], and proprioceptive robotic systems 

for measurement of human body forces and kinematics [118]. The empirical techniques 

presented here could be used to validate optimal sensor modalities and optimal sensor 

placements for many other sensing challenges in robotics, especially where the dynamics 

of the system are challenging to model mathematically but feasible to model with bio-

inspired robotic platforms [119]. These techniques could be valuable to the study of 

animal systems, where compliance, complex dynamics, and environmental effects all 

contribute significantly to the performance of particular behaviors.  

 Complex changes to the fin kinematics required more complex sensing and 

modeling strategies. When small changes were made to the fin dynamics, by changing 

flapping frequency or fin stiffness, the same model could be used to predict forces across 

these conditions (Figure 39). But when the entire swimming gait changed, the model 

trained on one gait could not be used to predict the forces of another gait. For instance, 

models trained on steady swimming forces were unsuccessful at predicting the forces of 

ventral steady swimming (Figure 42), even though ventral steady swimming has the same 

ventral edge kinematics as steady swimming (Figure 37). Sensing strategies also had to 

change as gaits changed. The best sensors subsets for each gait differed, as best 

predictions of ventral steady swimming forces were achieved with S={C,CO,A,B} and 

best predictions of steady swimming forces were achieved with S={BO,A}. The fluid 

structure interaction that produces propulsive forces involves multiple fin regions and the 

energetic exchange of their interactions [70, 120], and so large changes to kinematics can 

change the fundamental mechanisms of force production. Thus, in order to have a 
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sensory system that can reliably predict forces when swimming gaits change, multiple 

sensors and models are needed. This may have implications for robots that execute 

complex gaits and gait changes with compliant control surfaces, such as elastomer-based 

soft robots that crawl and undulate [121], fish-inspired robots that use compliant fins to 

execute multiple swimming gaits [33, 109, 122], and bipedal robots with compliant joints 

that shift from walking to jogging [123]. Robots that engage in multi-modal locomotion 

(e.g. aquatic to terrestrial [124, 125], terrestrial to aerial [126], aerial to scansorial [127]) 

may also benefit from multi-modal, distributed sensory systems; because as the physics 

of the environment change, the underlying sensor modes and distributions may have to 

change accordingly. 

The best sensory modalities were related to known dynamics of compliant fins. 

Bending sensation was more useful for force prediction than pressure sensation in the 

compliant, multi degree of freedom, robotic fin (Table 7). Bending and compliance have 

been shown to play a major role in force production in fins, and good estimation of the 

forces occurred using distributed strain measurements. Past study of bending and 

curvature in sunfish pectoral fins show that the fish can modulate fin stiffness [16, 17]. 

Since stiffness control is a major mechanism of force production in fins [17], it is 

reasonable that bending would be highly useful for force prediction, as demonstrated 

above empirically. The importance of bending measures in fins is consistent with 

behavioral biology studies [3] and neurobiological evidence [6]. Theories of haptic 

function have argued that local strain measures may be more informative for contact 

sensing than pressure measures and may be what is more commonly found in biological 

systems [128]. Thus, an understanding of the important sensors and underlying physics 
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from computational biology, neurobiology, and haptics disciplines can provide insight 

into sensory instrumentation in robotic systems. However, in this study, bending data 

alone was not sufficient to predict propulsive forces in all robotic swimming modes 

(Table 6), so propulsive force prediction may perform best using multiple sensory 

modalities, such as: fin ray bending, fin pressure, membrane stretch, and further 

components of the strain. 

 The placement of sensors is important for force prediction. Good placement may 

agree with the areas responsible for force production in animal and robotic models. 

Sensors along the dorsal leading edge, both bending and pressure sensors, were essential 

for good prediction of propulsive forces. The importance of the dorsal leading edge in 

thrust force production has been well documented in study of bony-finned fishes [11, 32]. 

Since sensor placement was determined primarily by study of steady swimming modes 

[70], it was consistent that model performance was highest for predicting force 

magnitudes during steady swimming. Further, biological evidence suggests that free 

nerve afferents in sunfish pectoral fins innervate multiple regions of the fin and have 

relatively high density in the dorsal and ventral leading edges [6, 19, 20]. In this way, 

engineers may be able to look at simulation data and biological studies of relevant animal 

gaits in order to determine initial locations for sensors on their biologically-derived 

robots.   

Distributed, heterogeneous sensors in fins can serve multiple roles in the control of 

propulsive force: they can be used for forming accurate predictions of the force (Figure 

39), can serve as direct inputs to kinematic controls, and can be exploited for more robust 

control with redundancies. In some cases, the sensory data could be used to predict the 
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propulsive force in advance (60-70ms; Figure 44), which could be useful in a 

feedforward control framework. While sensory data can be fused to predict forces, the 

individual sensor components are still available to the operator and can be used in a 

control framework for fast updates to kinematics. Intrinsic sensors provide information 

about the strain and pressure distributions across the fin’s control surface, which can aid 

in understanding the components of the propulsive force; whereas this local information 

about force is largely unavailable to a single extrinsic sensor (such as a force sensor at the 

fin-body interface). Having access to local components of the propulsive force (local 

strains, pressures) can be exploited by a controller that updates local kinematics 

according to these measures. Using both the force predictions and the sensory data 

directly provides more feedback pathways in a control framework. Intrinsic sensors 

provide redundant information due to the mechanical coupling created by the fin 

webbing. Redundant sensors can be used to help localize contact with an obstacle (as in 

terrestrial examples of whisking [65, 66]), to compensate for a sensor failure by sampling 

from surrounding sensors, or to provide weighted estimates of the force that improve on 

estimates from single sensors or single modalities (c.f. robotics research in hyperacuity 

[84]). The redundancy gained by through intrinsic, distributed, heterogeneous sensors can 

be exploited for more robust estimates and more robust control. These advantages are 

ripe for exploration in future work with biologically-inspired robots. 

5.2.5 Conclusion 

This study demonstrates successful prediction of propulsive forces on a robotic fin using 

sensors distributed within the fin and practices for sensor and model parameter selection 

depending on robot behavior. The effectiveness of a MISO convolution framework is 
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demonstrated in a complex force prediction scenario: prediction of propulsive forces 

using a distributed, multimodal sensory system on a compliant robot underwater. 

Weighted sensory data were utilized to successfully predict propulsive forces across 

changes to fin flapping frequency and stiffness. Sensory contributions to the force 

estimate were easily assessed and temporal relationships between the sensory data and 

forces were discovered. The linear, time-varying assumption of the framework was 

sufficient for this application and low numbers of model parameters were usable to 

achieve high prediction performance. 

It is important to have a broad spatial distribution of sensors and multiple sensory 

modalities for propulsive force prediction. No single modality or sensor sampling region 

was appropriate for predicting forces across conditions. An analysis of best fits for fixed 

cost revealed that force prediction quality improved when an appropriate subset of 

sensors was used, and this subset varied significantly depending on swimming 

conditions. Thus, choosing a fixed subset of sensors had significant costs to performance, 

as many operator-selected sensory subsets performed significantly worse than baseline 

measures. Having a broad spatial distribution of sensors was important even within a 

single fin beat, as some subsets were preferable to predict outstroke forces and other 

subsets for instroke forces of the same gait. While the study reveals which subsets were 

best for force prediction, future work will identify best sensor arrangements for other 

biologically-relevant behavioral tasks such as characterizing contact with obstacles [3]. 

The relationship between sensory measures and propulsive forces on a high-DOF 

robotic pectoral fin is complex. A good model relating the two would likely allow for: a) 

temporal lags between forces and sensory data, b) changes to the model within a fin 
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stroke, and c) changes to the model through gait transitions. The degree of required 

model complexity varied from gait to gait, though the problem of mapping between 

sensors and forces was tractable using the MISO model. Fin-intrinsic sensory information 

may have different utility depending on robot behavior and swimming modes, as 

outstroke forces were more easily predicted than instroke forces and steady swimming 

forces were more easily predicted than maneuver forces.  
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5.3 Paper 4: Distributed sensing and nonlinear MISO models for predicting the 

propulsive forces of flexible, multi-DOF robotic fins 

5.3.1 Abstract 

Fish are capable of producing a wide repertoire of 3D propulsive forces using their fins, 

and have inspired the development of compliant, multiple-DOF, robotic fins with similar 

capabilities. Most of these robotic fins are under open-loop control on propulsive force 

because the forces are challenging to model. Understanding how to predict propulsive 

forces for these types of fins would significantly advance the state of the art towards 

closed-loop control of forces. Distributed sensors within robotic fins have been used to 

predict propulsive forces using linear models, but these models fail to predict forces when 

fin kinematics become more complex. The objective of the work presented herein is to 

understand the use of nonlinear, multiple-input-single-output (MISO) Volterra series 

models between intrinsic sensory measurements and propulsive forces of a flexible 

robotic fin. Techniques in nonlinear system identification are used to address model 

conditioning. Nonlinear models predict the propulsive forces well, capturing features of 

both thrust and lateral forces. Nonlinear models significantly outperformed linear models 

both in cost of implementation and performance. The best sensor sampling practice was 

to sample from multiple locations with both pressure and bending modalities. Distributed 

sensing paired with nonlinear Volterra series models was successful for predicting the 

forces created by flexible robotic fins with complex kinematics and multiple degrees of 

freedom. 

5.3.2 Introduction 
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The fins of bony fish are capable of producing a wide repertoire of 3D propulsive forces, 

and have inspired the development of compliant, multiple degree of freedom (DOF), 

robotic fins with similar capabilities of force production [1]. These robotic fins typically 

have multiple underactuated degrees of freedom and their fins are flexible so as to 

improve the production of desired forces. The hydrodynamics of these fins are complex, 

as multiple regions of the fin interact with the fluid to form vortices and jets that are shed 

to produce forces [2]. Relationships between kinematics and propulsive forces are 

complex, and do not account for known mechanisms of force production, which are 

related to the fluid-structure interaction of the fin with the surrounding fluid [3, 4]. This is 

in contrast to the large number of force models of low-DOF flapping foils and ribbon 

fins. Most current control schemes are closed-loop control on the kinematics, but open-

loop control on the forces such that forces are not predicted or controlled. Understanding 

how to predict propulsive forces for these types of fins would significantly advance the 

state of the art towards closed-loop control of propulsive forces.    

The fusion of data from sensors distributed within fins is a natural way to estimate 

the fin’s propulsive force. Studies of bony-finned fish and robotic models have identified 

the importance of bending within fins, both as a sensory measure and as a physical 

phenomenon related to the production of propulsive forces. Bluegill sunfish (Lepomis 

macrochirus) have distributed, heterogeneous sensory afferents in their pectoral fins that 

respond to bending on a broad frequency band [5], and sunfish use their pectoral fins to 

contact obstacles underwater in sensory-deprived conditions [6]. During propulsion, 

bony-finned fish can actively modulate the stiffness of their fins [7], which changes the 

amount of bending in their fins and results in varied propulsive forces during swimming 
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[8]. Robotic models of the sunfish’s pectoral fin have been instrumented with distributed 

bending and pressure sensors and were used to predict the magnitude of propulsive forces 

[9]. 

But distributed sensory measurements from within robotic fins are correlated with 

one another due to the mechanical interactions of the fin and the fluid. Thus, the 

identification of an input-output model that relates sensory measurements to propulsive 

forces is a significant challenge. Correlations between inputs typically result in a 

numerically ill-conditioned modeling problem [10]. While linear multi-input-single-

output (MISO) convolution models between sensory measurements and forces are 

excellent during simple gaits (e.g. steady forward swimming [11]), linear models predict 

forces poorly when gait kinematics become more complex (e.g. turns and maneuvers 

[12]) or as the fin changes direction from outstroke to instroke. The forces created by 

changing gaits or transitioning from outstroke to instroke may be better captured by 

nonlinear models of sensory data, but this hypothesis had not been evaluated previously. 

Techniques from physiological system identification [13, 14] may be useful for 

characterizing the complex relationship between sensory measurements and propulsive 

forces, while also addressing the numerical issues of correlated inputs.  

The objective of the work presented herein is to understand the use and 

optimization of nonlinear, multiple-input-single-output (MISO) Volterra series models 

between the intrinsic sensory measurements (inputs) and propulsive force (output) of a 

compliant, robotic pectoral fin during multiple swimming gaits. This work builds upon 

linear analyses of the sensory-force relationships [9, 15], and evaluates the performance 

of nonlinear Volterra series models for prediction of forces from sensory data. The 
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appropriate model order is identified by evaluating model performance across changing 

kinematics and mechanical properties of a biologically-derived robotic (biorobotic) fin. 

Best practices are assessed for selecting sensor placement locations and sensor modalities 

for force prediction during different gaits and stroke phases, and best practices are also 

validated against results of linear models. By understanding the best sensor locations and 

modalities (i.e. pressure versus strain) and the nonlinear relationships between sensory 

measurements and forces, principles are extracted for modeling the complex propulsive 

forces of a robotic fin.  

5.3.3 Methods 

5.3.3.1 Biorobotic pectoral fin experiments 

A biologically-derived robotic (biorobotic) fin was programmed to execute multiple 3d 

kinematic patterns (called gaits) in order to create a rich set of sensory inputs and 

propulsive force outputs for the model identification study. The fin is comprised of 

flexible plastic beams called fin rays that are sheathed in elastic webbing (84/16% 

polyester/elastane), and is driven by servomotors on eight underactuated degrees of 

freedom with programmed nonlinear trajectories. The span of the longest fin ray is 150 

mm. The fin rays are driven by motors in a tendon-pulley configuration about a small 

hinge joint (detailed in [32]). Steady swimming, yaw turn maneuver, and ventral steady 

swimming gaits (SS, M, VSS) were executed underwater by the robot as propulsive 

forces and sensor data were measured. The robot was fixed to a low friction air bearing 

carriage attached to S-beam load cells (LSB200, Futek Advanced Sensor Technology, 

LLC., Irvine, CA, USA) in the lateral and thrust directions in order to measure propulsive 
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forces (Figure 45a). Thousands of trials were executed as multiple gaits were executed 

using fin rays of three stiffnesses (400x, 600x, 800x) at three fin flapping frequencies 

(0.65Hz, 1Hz, 1.3Hz). 

 

 

Figure 45. A biorobotic pectoral fin was submerged underwater (a) and instrumented with distributed strain sensors (b; 
A, B, C) and pressure sensors (c; outer sensors Ao, Bo, Co shown, inner sensors omitted). Intrinsic sensory 
measurements were used to predict the measured propulsive forces of the fin during multiple swimming gaits. 

 

As described in prior work [23, 88], the robotic fin was instrumented with 

distributed pressure and bending sensors that took sensory measurements as the fin 

executed multiple swimming gaits. Catheter pressure sensors (SPR-524, A/D 

Instruments, Colorado Springs, CO, USA) were affixed to the fin webbing at dorsal-base 

(A), dorsal-tip (B), and ventral locations (C) and were affixed to inner (body-facing) and 

outer fin faces (Figure 45c). Strain gages (KFH-3-120, Omega Engineering, Swedesboro, 

NJ, USA) in half-bridge configurations were used as bending sensors and were placed at 

dorsal-base, dorsal-tip, and ventral locations and were affixed to the plastic fin rays inside 

the webbing (Figure 45b). 
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5.3.3.2 Volterra series MISO models 

Multiple-input-single-output (MISO) convolution-based models were selected to map the 

sensory data inputs to the propulsive force outputs, with a weighted Volterra series as the 

underlying model. These models were selected because they allow for time delays 

between sensory measurements and forces, their model weights allow for assessment of 

the contribution of individual sensors and their delays, and linear MISO models have 

been successful in past studies at predicting propulsive forces under limited conditions.  

The Volterra series for MISO models is a weighted series of time-shifted inputs 

whose weights are the model coefficients that are obtained through regression or 

learning. Volterra series with solely 1st, solely 2nd, and both 1st & 2nd order kernels were 

used in this study and are described herein. The 1st order Volterra series terms are given 

by 
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such that there are m sensory signal inputs and T lag values in the discrete time 

convolution. Each sensory input ui has its own kernel hi such that each lagged value of 

the input is weighted. The 2nd-order Volterra series terms are given by 
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where there are self-terms which involve the same sensory input ui, and cross-terms that 

involve different sensory inputs ui and uj. 

Let y(t) be the measured output (here the propulsive force) at time t such that: 
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where c is a constant, and w(t) accounts for the noise of the system and any additional 

input effects, the horizontal bars signify column vectors, and h is a weighting vector 

applied to X. X is the following block-structured matrix (53): 
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X is composed of three major component matrices: Xα, Xβ, and Xγ. Xα represents the 

first-order Volterra series terms. Xβ represents the same terms of the second-order 

Volterra series where sensor values are squared, and Xγ represents the cross terms of the 

second-order Volterra series where measurements from different sensors are multiplied 

(see [129]). 
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Using these block structured matrices, models are formed by calculating the proper 

weights h that produce the desired force output y in (52). A pseudo-inverse method was 

used: 
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5.3.3.3 Assessing output contribution by SVD 

Because of the significant correlations of the input sensory data, the block structured 

matrices X of the inputs can result in ill-conditioned inversions and lead to poor 

performance in estimation and prediction. A method of assessing the contribution of 

individual inputs to the output signal was used to reduce the dimensionality of the input 

matrix prior to calculating the regression weights. The method is described in [130] and 

was applied to a case study of neural inputs and a motor output, improving the 

conditioning of the regression matrix X in order to better estimate desired outputs. This 

method was originally applied with first-order Volterra series terms but has been 

extended in this work to a second-order Volterra series for nonlinear models with the 

above block-structured matrix X.   

5.3.3.4 Performance metrics 

Two performance metrics were used to compare linear and nonlinear models in this 

study. Percent of variance accounted for (%VAF) is an absolute performance metric that 

approaches 100% as the variance of the estimate approaches the variance of the measured 

output, and decreases as the variance of the estimate decreases relative to the variance of 

the measured output. Negative %VAF can occur if X is ill-conditioned and the variance 

of the estimate is greater than the variance of the measured output [88]. %VAF is 

calculated by the following formula: 
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where µy is the mean value of the true output y, and ˆ
ky  is the estimate of the output at 

discrete time k.   

Minimum description length (MDL) is a cost functional that increases as: mean 

squared error increases, sum of squared error increases, and as the number of model 

parameters increases (c.f. 4.7.4). Thus models can have a high MDL cost if they perform 

with significant error or require significant numbers of parameters, but models will have 

a low MDL cost if they have low numbers of parameters and low error. MDL cost is 

calculated by the following: 

 ( ) ( ) ( ) ( ) 2

1

log
ˆ ˆ, , , 1 ,

N

t

M N
MDL M N y y y t y t M

N =

 
 = + −   

 
∑  (58) 

where M is the number of model parameters (i.e. the length of h
v

), N is the sample 

length, y is the true output value, and ŷ  is the estimate or prediction of the output value 

[129].  

5.3.3.5 Analysis 

Optimal model parameters were identified by developing models with a fixed set of 

parameters and validating them against unseen datasets. To predict propulsive forces 

from sensory data, sensory data were first sorted into the appropriate block structured 

matrix X. The output contribution ( kγ ) of individual matrix columns was computed by 

the methods in [16] and the model was expanded based on the D most significant 

columns according to output contribution. D was increased for each case until subsequent 
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increases resulted in a performance change of less than 1% VAF. After the most 

significant sensory data columns were selected, linear regression was performed using the 

pseudoinverse of the matrix formed by the most significant columns (56) [9]. The linear 

regression generated scalar weights for each matrix column. These weights were stored 

and could be used to predict propulsive forces using sensory data from unseen trial 

conditions. Individual models were developed for thrust force prediction, lateral force 

prediction, and force magnitude prediction for comparison of performance trends across 

different components of force.   

Nonlinear models were evaluated for force prediction with all three fin gaits and 

both outstroke (OUT) and instroke (IN) stroke phases. Multiple trials’ sensory and force 

data were concatenated to form training sets that were representative of the gamut of 

input-output conditions for the robotic fin. The performance of linear and nonlinear 

models were compared across changes in gait, stroke phase, flapping frequency, and 

flexural rigidity. 

Analyses were executed to determine consistently good sensor placements 

regardless of the model structure, so best placement locations were analyzed as forces 

were predicted with both linear and nonlinear models. Optimal sensor placement was 

studied as the fin gaits and stroke phase were changed. These analyses were conducted to 

address the following questions: Where should sensors be placed for optimal 

performance? Are there consistently optimal locations regardless of the model structure?  

Analyses were conducted to determine consistently good sensor modalities (i.e. 

pressure vs bending) for force prediction, regardless of model structure. Prior work 

identified that linear models using bending sensors performed better than those using 
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pressure sensors, but these results had not been validated for nonlinear models or 

evaluated using components of the propulsive force (i.e. thrust and lateral forces). The 

performance of models formed from individual modalities was studied across gaits, force 

components, and stroke phases. 

There are situations where sensory resources may be limited (e.g. due to 

implementation cost) and so the optimal subsets of sensors were determined as the 

number of available sensors was varied. As in prior work [88], optimal subsets were 

determined by forming and evaluating models with data from every possible subset of 

sensors (9 sensors = 511 combinations). The results were sorted by performance and best 

subsets were selected for each sensor count (e.g. the best subset of 3 sensors based on 

%VAF). This process was repeated for models of thrust force, lateral force, and force 

magnitudes. Large datasets were formed using data from every fin stiffness, fin speed, 

stroke phase, and gait into to ensure generality of results. 

5.3.4 Results 

The results are divided into three major sections. First, results are given comparing the 

performance and implementation costs of linear and nonlinear models (A, Figure 46-

Figure 48). Second, given a chosen model, the best sensor placement locations are 

presented for both linear and nonlinear models (B, Figure 49). Performance and cost are 

discussed for models formed with a single sensor (Figure 50) and for optimal subsets of 

sensors (Figure 51). Finally, the performance of models formed with bending sensors is 

compared to that of models formed with pressure sensors for both linear and nonlinear 

models (C, Figure 49). 
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5.3.4.1 Optimal nonlinear prediction 

A single nonlinear model (1st & 2nd order kernel) could be used to predict forces well 

across all gait changes without changing parameters, whereas linear (1st order kernel) 

models performed poorly in this case (Figure 46). Nonlinear (1st & 2nd order kernel) 

models performed well at predicting both thrust and lateral components of the propulsive 

force as well as force magnitudes, even with a single model for all gaits and stroke phases 

(thrust: 61.2±1.5%VAF, lateral: 79.7±1.7%VAF, magnitude: 68.2±3.2%VAF). Linear 

models performed poorly at predicting thrust force and force magnitudes. The largest 

errors in force occurred during large peaks of thrust during steady swimming and 

maneuver gaits. Thrust forces were poorly predicted (21.6±2.4%VAF) and force 

magnitudes were also poorly predicted (23.0±5.9%VAF) by models with 1st order 

kernels. However, lateral forces were typically well predicted by linear models 

(73.9±1.5%VAF), with only slightly lower performance than nonlinear models. 
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Figure 46. Comparison of model performance with linear (K1) and nonlinear (K1&K2) kernels for prediction of full 
stroke forces across multiple swimming gaits. Representative time series force data and model predictions are shown 
for thrust forces, lateral forces, and force magnitudes. Percent of variance accounted for (%VAF) is shown with 
statistics for each case. Error bars show one standard deviation from the sample mean (N=5 trials) and asterisks 
indicate significant differences in %VAF (P<0.005). 

 

Models with kernels of both 1st & 2nd order generally outperformed models that 

used only 1st or 2nd order kernels. When a 1st & 2nd order kernel was used, thrust force 

and force magnitude were well predicted (60-70%VAF), and lateral force was very well 

predicted (75-80%VAF). Using only a 1st order kernel, thrust force and force magnitude 

were poorly predicted (25-40%VAF typical). When only a 2nd order kernel was used, 

thrust force was poorly predicted (10-40%VAF range), but both lateral force and force 

magnitude were well predicted. Significant differences in performance (measured by 

%VAF differences, with P<0.005) were found between linear and nonlinear models. The 
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largest difference in performance was for the prediction of force magnitudes (Figure 46), 

where models with 1st order kernels performed poorly and models with 1st & 2nd order 

kernels performed very well, and the differences were highly significant (P<10-6). 

Similarly large differences were found for predictions of thrust forces (P<10-5), and less 

significant differences were found for predictions of lateral forces (P<0.005).  

Nonlinear models were more (MDL) cost-effective than linear models, despite 

having significantly more model parameters. MDL cost was lower for models with 

kernels of both 1st & 2nd order than those with kernels of only 1st or only 2nd order 

(Figure 49, Figure 51). When prediction was done across changes to stroke phase (i.e. the 

fin moves from outstroke to instroke while gait is fixed), a model with a 1st & 2nd order 

kernel always had the lowest MDL cost regardless of the force component being 

predicted (Figure 47). When prediction was done across gait changes (e.g. switching 

from steady swimming to ventral steady swimming without changing the model), the best 

choice of kernel varied. The 1st & 2nd order kernel had the lowest MDL cost for thrust 

force prediction, but cost was comparable to each of the 1st and 2nd order kernels for 

lateral and force magnitude prediction. 
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Figure 47. Prediction of propulsive forces across outstroke and instroke. Performance is shown for time-series data, 
percent of variance accounted for (%VAF), and MDL cost. Data shown are representative of general trends. Data were 
filtered at 10Hz. 

 

 

Figure 48. Prediction of propulsive forces across multiple swimming gaits with linear (K1) and nonlinear (K1&K2, K2) 
models. The performance of a model trained on multiple gaits, tested on unseen trial data from similar swimming gaits. 
Performance is shown for time-series data (top), percent of variance accounted for (%VAF, bottom left), and MDL cost 
(bottom right). Data shown are representative of general trends. Data were filtered at 10Hz for clarity. 
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Using nonlinear models (both 1st & 2nd order kernels), good predictions were 

achieved with significantly lower numbers of sensors than with models with only 1st or 

2nd order kernels. For thrust force prediction, forces were somewhat well predicted with 

only two sensors and a nonlinear model (B,C; 51.4%VAF; Figure 51), but were poorly 

predicted with a linear model (B,C; 13.1%VAF) using the same number of sensors. MDL 

cost was significantly lower for models with 1st & 2nd order kernels than for models 

with 1st order kernels in this case, which meant that the cost of adding sensors did not 

significantly improve performance of the models (Figure 51). Even with all nine sensors 

for thrust force prediction, linear models were unable to achieve the performance of a 

nonlinear model with just one sensor (linear, 9 sensors: 20.9%VAF; nonlinear, 1 sensor: 

29.9%VAF; Figure 49, Figure 51). For lateral force prediction, forces were well predicted 

with only two sensors’ data in a nonlinear model (B,C; 70.8%VAF), and less well 

predicted when a linear model was used (B,Bo; 60.5%VAF). Using data from all nine 

sensors for lateral force prediction, linear models were unable to achieve the performance 

of a nonlinear model with just four sensors by comparison (linear: 75.7%VAF; nonlinear, 

4 sensors: 77.3%VAF). 
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Figure 49. Comparison of prediction performance between models formed with pressure versus bending sensory data. 
Best performance (%VAF, MDL) was observed with a K1&K2 model using bending sensors, regardless of forces and 
fin conditions. Performance was compared between models formed from outer pressure data, inner pressure data, 
bending data, and all pressure data. Performance metrics were computed for all three model structures 
(K1,K1&K2,K2). Thrust force prediction and lateral force prediction are shown. Trial datasets were randomly selected 
for training and prediction. 

 

5.3.4.2 Optimal sensor placement locations 
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performance, and this effect was stronger for bending sensors than pressure sensors 

(Figure 50). Among models formed with bending sensors (A,B,C), best performance was 

achieved using models formed from dorsal-tip bending data (B; 26-56%VAF). Among 

models formed with outer pressure sensors (Ao,Bo,Co), ventral (Co) data yielded the best 

performance (10-22%VAF), with comparable performance from models with dorsal-tip 

sensors (Bo; 12-19%VAF), and low performance from models with dorsal-base sensors 

(Ao; 6-13%VAF). Among models formed with inner pressure sensor data (Ai,Bi,Ci), 

performance was poor (0.3-10%VAF), with best performance from models formed with 

ventral pressures (Ci; 5-10%VAF). However, a single sensor was usually inadequate to 

predict forces well regardless of model structure (0-56%VAF range).  

 



170 

 

 

Figure 50. Force prediction performance compared with data from individual sensors. Performance was compared 
between models formed from each of the individual sensors (Ao,…,C). Performance metrics were computed for all 
three model structures (K1,K1&K2,K2). Lateral force prediction is shown as representative of general trends. 

 

The sensor that contributed most to MISO model performance was the dorsal-tip 
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40%VAF for force magnitude prediction with nonlinear kernels). The optimal subset of 

sensors always included the dorsal-tip bending sensor (B) when a nonlinear model was 

used (Figure 51), and it was often selected as the best sensor for linear models. The 

sensors that contributed least to model performance were the inner pressure sensors 

(Ai,Bi,Ci) which had a poor range of performance individually (failure-28%VAF) and as 
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uncommon in optimal subsets of sensors (Figure 7) and did not typically increase 

performance when added to the sensor pool. 

 

 

Figure 51. Optimal subsets of sensors as the number of sensors (Ns) is varied. For example, if thrust forces are 
predicted, only 2 sensors are used, and a K1&K2 kernel is used, then the optimal sensor choice is (B,C), resulting in 
51.39%VAF and an MDL cost of 31.71. Optimal subsets were chosen based on %VAF and were computed for all three 
model types (K1, K1&K2, K2). Thrust force and lateral force prediction results are shown for predictions across both 
gait and stroke phase. 
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(Ao,Bo,Co) and models formed with only inner pressure sensors (Ai,Bi,Ci) performed 

poorly at prediction of forces (5-40%VAF typical). In some cases, models that used only 

pressure sensors failed to predict the propulsive force (%VAF<0). Even when all six 

pressure sensors’ data were used to form the model, failures occurred and performance 

was less than the performance of models formed with only bending sensory data. In some 

cases, the use of three bending sensors’ data to form the model resulted in lower MDL 

cost than using all nine sensors’ data to form the model (e.g. thrust force).  

Models that used bending sensors generally outperformed those that used pressure 

sensors, but pressure sensors were specifically useful for predicting lateral forces. In 

optimal subsets of sensors for force prediction, high performing subsets often included 

outer pressure sensors for linear and nonlinear models. For instance, the best subsets of 

sensors for predicting lateral forces often included the Bo and Co sensors with significant 

improvements to performance (increases of 3-7%VAF) and lower MDL cost. Including 

the inner pressure sensors’ data (i.e. Ai, Bi, Ci) in a model did not significantly improve 

performance of force prediction for any of the components. 

Prediction of thrust forces and lateral forces required different sensor pools for 

good performance. Thrust forces could be well predicted using only bending sensors in 

many cases and were poorly predicted using only pressure sensors. Thrust forces were 

very poorly predicted using outer pressure sensors’ data (8-15%VAF) and inner pressure 

sensors (8-20%VAF), but were somewhat well predicted using bending sensors’ data (16-

55%VAF). Even using all six pressure sensors’ data resulted in performance worse than 

using only three bending sensors (38.5% versus 54.8%VAF, respectively). Lateral forces 

were well predicted with bending sensors (53-72%VAF) but performance was best with 
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either all six pressure sensors (57-76%VAF) or a combination of pressure and bending 

sensors (63-80%VAF). 

5.3.5 Discussion and Conclusion 

Nonlinear Volterra series MISO models predicted the propulsive forces of a biorobotic 

pectoral fin very well, capturing features of both thrust and lateral force components and 

significantly outperforming linear models. Nonlinear models could be used to predict 

forces across changes to gait and stroke phase, whereas linear models were gait- and 

stroke-specific. Regardless of the force components being predicted, nonlinear models 

typically had a lower MDL cost and higher %VAF performance than linear models. 

Nonlinear models achieved the same performance of linear models while using data from 

fewer sensors, which could be exploited to reduce the manufacturing, financial, and 

monitoring costs of sensory instrumentation. Additionally, the use of the output 

contribution method [130] to reduce the dimensionality of the input matrix was 

successful in keeping the MDL cost low for both linear and nonlinear models.  

Some sensor sampling locations were better than others, though the best practice 

was to sample optimally from several locations. Models formed using sensory data from 

the dorsal-tip performed best (B,Bo,Bi locations), which was consistent with previous 

findings  and knowledge of pectoral fins. The best sensor to sample from was usually on 

the dorsal tip, regardless of model structure. If only a few sensors are available, placing 

them in this region will improve performance. The dorsal tip is responsible for the 

majority of thrust force production in sunfish pectoral fins [4], and the thrust component 

of force is typically large during steady swimming motions [3]. However, sampling from 
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a single sensor location was rarely a good strategy for force prediction, as it was 

necessary to sample from at least two locations for adequate prediction performance.  

Selecting the best sensory modality was dependent on both: (a) the force component 

being predicted and (b) whether the model used was linear or nonlinear. Distributed 

bending data was more useful than distributed pressure data for obtaining accurate 

predictions of propulsive force, though pressure data was useful for modeling lateral 

forces. Prior to the introduction of nonlinear models, thrust forces were very poorly 

predicted [15], and including the nonlinear components of bending data improved these 

predictions significantly. However, linear models that used only pressure data predicted 

lateral forces well, often better than nonlinear models. Thus, careful consideration of the 

sensor modality, force component, and model structure was important for achieving 

accurate force prediction. For example, to predict both thrust and lateral forces well it 

would be prudent to use a distribution of outer pressure sensors (Bo,Co) and the leading 

edge bending sensor (B). Simpler models, such as the 1st or 2nd order Volterra kernels, 

may require more sensors and multiple modalities for good prediction. However, the use 

of more complex models (e.g. 1st & 2nd order Volterra series) allowed for the use of only 

bending sensory data for predictions. 

 Distributed sensing paired with nonlinear Volterra series MISO models provides a 

method for predicting the forces created by flexible robotic fins with complex kinematics 

and multiple degrees of freedom. This could ultimately be used to predict forces 

produced by specific regions of a fin, which could provide local feedback on force 

production. Force control could be achieved by updating the kinematics of portions of the 

fin within the fin beat, as sunfish do during hovering [23]. Closed loop control of force 
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can be done to correct for changes to the fin (damage) or changes in the environment. 

Using distributed, heterogeneous sensing and nonlinear MISO models brings engineers 

closer to predicting and controlling the propulsive forces of complex, flexible fins during 

unsteady maneuvers. 
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Chapter 6. Biologically-inspired control framework for fin-intrinsic sensing 

6.1 Chapter summary 

Prior chapters examined the use of fin intrinsic sensation for prediction of propulsive 

forces and for understanding underwater touch using robotic fins.  

The objective of the work presented in this chapter is to propose a biologically-

inspired control framework in which to utilize the results of force prediction and of 

classifying contact with obstacles. 

The bluegill sunfish (Lepomis macrochirus) serves as the biological inspiration 

for much of this work, and the control strategies it uses during hovering to produce forces 

serve directly to inform the proposed control framework. The kinematics of hovering 

animals have been studied from a steady swimming perspective, where stereotypical 

motions are analyzed and dominant forces are identified, but hovering in sunfish is a 

highly dynamic behavior where kinematics change from stroke to stroke and often 

change within a stroke. The rapid changes to hovering kinematics within a stroke suggest 

that the fin kinematics are under sensory-mediated control, and therefore hovering is an 

important fish behavior to study in the context of fin-intrinsic sensation and its uses. A 

conference paper reprint, from IEEE International Conference on Intelligent Robots and 

Systems (IROS) 2012, is included in the chapter to detail several qualitative aspects of 

sunfish hovering that contribute to the proposed control framework. 

Since the parameter space of a multiple degree-of-freedom (DOF), flexible fin is 

very large and has many possible kinematic patterns, work has been done to evolve 

kinematics to optimize a given force performance criterion. In this way, new gaits can be 

learned online to better control propulsive forces by switching. This chapter includes a 
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reprint of that work, published in the IEEE International Conference on Intelligent 

Robots and Systems (IROS) 2013.  

Drawing from the elements of force prediction, underwater touch, sunfish 

hovering, and evolving gaits, a detailed control framework is proposed for controlling the 

propulsive forces of an underwater vehicle driven by multi-DOF, flexible, robotic fins. 

This work is in revision for submission to a special issue of the Bioinspiration and 

Biomimetics Journal. 
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6.2 Paper 5: Hover kinematics and distributed pressure sensing for force control 

of biorobotic fins 

6.2.1 Abstract 

A comprehensive understanding of the ways in which fish create and control forces is 

fundamental to engineering underwater vehicles that maneuver with the agility of fish. In 

this study the sunfish is selected as a biological model from which to understand pectoral 

fin motions and forces during hover. The kinematic patterns of the biological fin were 

identified and implemented on a biorobotic model of the fin. The effects of fin patterns 

and mechanical properties on force were evaluated. Pressure was measured at multiple 

points on the fin’s surface and assessed for use in the closed loop control of fin force. The 

study revealed that a wide range of motions are used during hover, and that forces are 

significantly different from those found previously for steady swimming. However as fin 

speeds increase, the fin’s dynamic motions, and the magnitude and direction of the forces 

become more similar to those of steady swimming. Collective measures of pressure over 

the fin’s surface exhibited trends that correlated well with fin force, while measures of 

pressure at individual points reflect force for particular sections of the fin. This suggests 

strongly that distributed measures of pressure are useful for force prediction and control. 

6.2.2 Introduction 

Bony fish are extraordinary agile swimmers and can serve as biological models for 

understanding how hydrodynamic forces are created and controlled with fins. Their 

agility comes from an ability to control their movements with multiple fins, and this 
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agility often far exceeds that of engineered underwater vehicles [131]. These fins create 

forces on the body through repeated kinematic patterns, or gaits. These gaits are used to 

produce characteristic forces that drive the locomotive behavior of fish (e.g. a steady 

swimming gait is primarily thrust producing for swimming forward in flow). The bluegill 

sunfish (Lepomis macrochirus) uses its pectoral fins to produce a variety of gaits, such as 

steady forward swimming, yaw turn maneuvers, and hovering in place. Hover is an 

interesting gait from a force production standpoint because the sunfish is dynamically 

unstable; constant force production is necessary to keep the fish center of mass balanced 

atop the center of buoyancy. Whereas motions such as steady swimming and turning 

maneuvers rely on a dominant pattern to produce characteristic forces, hover has a wide 

repertoire of fin motions used to maintain posture dynamically that vary significantly in 

trajectory, velocity, and direction.  

Greater levels of fish agility emerge through the control of properties within a 

particular gait. Within a particular gait, the fish can modulate forces by actively changing 

the kinematics and mechanical properties of its fins. By varying mechanical stiffness 

through co-contraction of muscles, the fin changes the magnitude of the time varying 

forces. Increasing the velocity of the fin will change the magnitude and direction of 

forces. Slight changes in trajectory are also observed and likely allow the fish to "fine-

tune" the forces produced through a particular cycle. These beat-to-beat differences in fin 

motions suggest that sensory feedback is used in controlling forces [132]. The wide 

repertoire of hover motions observed further supports this hypothesis (Figure 52). 

Neurobiological studies are just beginning to address how this sensory feedback works in 

aquatic vertebrates. The nature of the feedback (i.e. cell body types, physical phenomena 



180 

 

transduced) is largely unknown, though sensory nerve fibers densely innervate the 

pectoral fins in regions crucial to the development of forces [20].  

To the authors' knowledge, there have been no biological studies that address the 

kinematics or forces of hovering fish. Pectoral fin use in steady forward swimming [4], 

varied fin maneuver motions, and escape reflexes [133] have all received kinematic and 

force analysis through modeling and physical testing. Behavioral biology work has long 

documented the value of hovering as a means for foraging, hunting, socialization, and 

nest guarding behaviors [134], but the role of specific pectoral fin motions to produce 

hover forces is a novel consideration. 

Robotics studies have developed hovering vehicles, and have significantly 

analyzed forces on engineered hover motions ([135, 136]), but have not implemented a 

biologically-derived hover motion on a robotic platform with flexible fins. And further, 

despite neurobiological evidence in aquatic and terrestrial vertebrates, few robotics 

studies have considered distributed measurements along the limbs and surfaces 

responsible for propulsion. Biologically derived distributed sensory systems have been 

considered, notably including an artificial lateral line for measurements of body pressure 

[137] and electroreceptive sensors to model ghost knifefish sensation [138], but few 

studies have examined fin-intrinsic sensation on robotic fin models [32]. 

Previous experiments with a flexible biorobotic model of the sunfish fin have 

evaluated a steady swimming gait [32] and a yaw turn maneuver [5] and how kinematic 

and mechanical properties affect force production through these modes [139]. Studies 

using computational fluid dynamics have also verified the fin mechanisms of force 

production [4]. Prior work with the biorobotic fin has addressed fin bending as a sensory 
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measure for estimation of forces, but found that bending alone could not be used to 

estimate the magnitude of force produced [32]. 

In this paper, we first present an analysis of the pectoral fin motions used by 

sunfish during hover. Secondly, we evaluate the forces produced during hover using a 

biorobotic model of a sunfish pectoral fin. Third, the influence of the fin’s kinematics and 

mechanical properties on these forces is determined. Lastly, distributed measures of 

pressure over the robotic fin’s surface are assessed as a means to predict the time-varying 

force for closed loop fin control. 

 

6.2.3 Methods 

6.2.3.1 Biological hover motions 

Studies of bluegill sunfish hovering were conducted in a 600 L flow tank with a 

26cm by 26cm by 80cm working volume, as in previous research [140, 141]. Three 

synchronized high-speed video cameras (Photron USA, San Diego, CA, USA) were 

positioned to record simultaneously the fish swimming in the lateral (XY plane), 

posterior (YZ plane) and ventral (XZ plane) views. Videos of the fish hovering were 

filmed at 250 frames s–1 with 1024 by 1024 pixel resolution.  

Ethogram techniques developed from [142] were employed to classify and organize 

the fin patterns observed through hover videos. Following the identification of a 

frequently occurring cycle of hover, video of this fin beat were calibrated in three 

dimensions using direct linear transformation of a custom 20-point calibration frame and 

digitized using a program written for MATLAB 7 (MathWorks, Natick, MA, USA) by 
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Ty Hedrick [143]. Points along the biological fin were fit to the robotic fin base using a 

least squares regression to fit the three base points of each digitized fin ray to a line 

segment. These line segments were extended through a center of rotation on the robot. 

Angles of rotation were calculated for the available robot degrees of freedom and these 

angles through time formed the trajectories of the programmed hover motion. Individual 

fin-ray trajectories were fit to eighth-order sinusoidal basis functions that were tuned to 

capture relevant visual features of the hover motion as determined by ethogram. 

 

6.2.3.2 Biorobotic hover and fin pressure studies 

The biorobotic pectoral fin was supported by an air bearing carriage (New Way 

S301301, New Way Air Bearings, Aston, PA) and fixed against two s-beam load cells 

(LSB200, FUTEK, Irvine, CA) to measure force in thrust and lateral directions. More 

details of the setup are described in [32, 144]. The pectoral fin membrane (80% polyester, 

20% elastane) was sewn from a 4x scaled pattern of a sunfish pectoral fin. Previous work 

used this material untreated but this porous material confounds pressure measurements 

between outer and inner fin faces [33]; therefore the fin was coated with two thin coats of 

latex paint (Liquid Latex Body Cosmetic, Maximum Impact, Langhorne, PA) and cured 

for waterproofing between fin faces. 

High precision catheter-style pressure sensors (SPR-524, Millar Instruments, 

Houston, TX) were placed on the fin at areas with high sensory innervation in the sunfish 

(as in [20]). These sensors were used to measure pressure on the inner and outer faces of 

the fin along the dorsal and ventral leading edges. The sensors were oriented orthogonally 

to the fin face, and affixed to the webbing using the aforementioned latex paint. 
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To evaluate the force production of hover and to determine if on-fin pressure 

measurements are predictive of the magnitude of forces through varied swimming 

conditions, the pectoral fin was programmed to execute hover trajectories with full 

factorial experiments varying fin ray stiffness (200,400,600,800,1000x) and fin beat 

period (T = 4.00, 2.00, 1.54, 0.77, 0.62 s) as on-fin pressure data were taken with 8 

pressure sensors at the dorsal and ventral leading edges of the fin. Sensors were oriented 

on inner (facing body) and outer (facing water) faces, and at locations proximal and distal 

to the fin base. Force, sensor, and position data were taken at 100Hz using real-time data 

acquisition software programmed in LabVIEW and compiled on a dedicated hardware 

controller (LabVIEW 2010 and PXI-8106, National Instruments, Austin, TX). 

 

6.2.4 Results 

6.2.4.1 Biological hover motions 

The analysis of fin motions revealed that sunfish use a range of kinematic patterns during 

hover. Certain motion patterns occur much more frequently than others, but unlike the 

repeated gait used during steady swimming [17], the hover gait cannot be characterized 

as a single motion program. Instead, the ethogram analysis characterized pectoral fin 

motions during hover into twelve motion patterns: six for the fin’s outstroke from the 

body, two for the fin’s instroke to the body, and four for the transition from outstroke to 

instroke (Figure 52). 
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Figure 52. Some of the diverse fin motions associated with hover, classified as outstroke (TOP), transitional 
(MIDDLE), and instroke (BOTTOM) features. Each column represents an observed  fin motion from top to bottom. 
E.g. Column one shows a “flat plate” outstroke with little temporal lag between fin segments, a “upward push” as the 
transition feature, and a “lift and drop” instroke where the fin rotates downward to meet the body. 

 

Six characteristic motion patterns were identified for the outstroke of the fin from 

the body, three of which accounted for 71% of the outstroke motions analyzed. The most 

common motion pattern (P = 25%) was an asymmetric cupping of the fin about its 

centerline (from proximal root to distal end) with the cupping led by the fin’s ventral 

edge (ventral led cupping, Figure 53). The second characteristic pattern (P = 23%) was a 

symmetric cupping motion (cupping), which was led approximately equally by the 

dorsal-and ventral-most fin rays.  In both the “cupping” and the “ventral led cupping” 

patterns, the cupped shape of the fin extended from the fin’s proximal root to the fin’s 

distal edge. These two cupping patterns are similar to the cupping and sweep motion that 

dominates the pectoral fin’s motion during steady swimming [17].  The third most 

common outstroke pattern (P=21%, cupping with flat plate) was defined by a more 
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moderate cupping of the fin at its base with a flattening of the fin towards its distal edge. 

There was almost no phase difference between the fin rays at their distal ends and this 

resulted in the fin appearing flat as it moved through the water. Three additional motion 

patterns were observed less frequently. These were descriptively named “dorsal lead” (P 

= 10%), “flat plate” (P = 10%), and “half stroke” (P = 9%). 

Instroke motions were characterized by two patterns. The most frequent (P = 83%) 

was a motion where the fin moved as a flat plate, but did not follow a straight trajectory 

back to the body. The fin moved toward the body and dorsally during the first half of the 

instroke, and toward the body and ventrally during the second half of the instroke (flat 

plate lift and drop, Figure 53). Much less frequent (P = 17%) was an instroke pattern that 

was led by the dorsal-most fin ray and that had linearly increasing phase lag between 

subsequent fin rays. 

Transition motions were short duration movements that allowed the fin to transition 

from the outstroke to the instroke pattern. These motions usually included either a sudden 

deceleration or change in direction of groups of fin ray.  Most common (P = 55%) was an 

“s-undulation” (Fig. 1)) of the rays where the ventral half of the fin changed direction 

rapidly and the dorsal segment moved toward the midline and before changing direction, 

inward, producing an “S” shape. Three more observed transition patterns occurred much 

less frequently than the “s-undulation” These were descriptively named “inversion” (P = 

15%), “spread” (P = 15%), and “upward flap” (P = 15%, Figure 52). 

6.2.4.2 Biorobotic hover fin motions 

The biorobotic fin was programmed to execute the “ventral led cupping” pattern for its 

outstroke, the “flat plate lift and drop” for its instroke, and no transition between the 
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outstroke and instroke (Figure 53). This motion program represented the most frequent 

pattern exhibited by the sunfish during hover. The robotic pectoral fin captures major 

components of the biological fin's motion when the robot's fin rays were scaled between 

200 and 1000 times the flexural rigidity of the biological fin rays. In general, as the fin 

moved away from the body in the outstroke (Fig. 2; t = 0.0, 0.4 s), the ventral region of 

the fin remained stiff as it led the motion, followed by the dorsal leading edge. The 

robotic fin motion experienced significant bending at the distal tips of the dorsal leading 

edge and the overall curvatures were consistent with the sunfish's fin curvatures. As the 

"ventral led cupping" pattern continued, the ventral edge lifted up toward the dorsal 

leading edge to bring the distal fin tips closer together. Through this time period, the 

robotic fin did not have as much dorsal movement as the biological fin in the medial rays. 

This was due to having only a single degree of freedom in medial fin rays as compared to 

two degrees of freedom in ventral and dorsal rays. 

 

 

Figure 53. Sunfish (TOP) and biorobotic fin (BOTTOM) executing the dominant hover motion of “Ventral led 
cupping” outstroke to “Flat Plate Lift and Drop” instroke. Robotic fin trajectories were derived by point and velocity 
tracking of the fin segments through 3D high speed video and mapping of trajectories to the degrees of freedom on the 
robot. Robotic trajectories were consistent with sunfish fins through time varying curvature and velocities of fin 
regions. 
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Beginning the outstroke "flat plate lift and drop motion", the ventral edge started to 

drop downward (Fig. 2; t=0.65, 0.8 s), leading the motion and creating a flattened 

appearance along the edge of the fin with some bending at dorsal and medial fin tips. At 

low flexural rigidities (200x, 400x, 600x), the curvature of the robot visually matched the 

fish fin curvature but at higher rigidities (800x,1000x), pockets tended to form in the fin 

webbing that caused the fin edge to appear wavy rather than flat. As the instroke 

completed, the ventral edge met the body (Fig. 2; t=1.3 s) before the dorsal edge (Figure 

53; t=1.5 s) in both robot and fish. The motion completed with a very slight rotation of 

both the dorsal and ventral segments downward. This last part of the motion was more 

irregular in the robot than the fish, as medial fin rays could not rotate about the 

appropriate axis to move downward. The final "drop" of the motion was approximated by 

the downward rotation of the dorsal and ventral fin rays in the robot. 

Though some limitations were encountered with the robot's degrees of freedom in 

the medial fin rays, the motions matched biological motions consistently through 

biologically relevant rigidities and fin beat periods and thus the programmed hover 

motion was validated visually as a model of sunfish hovering. 

6.2.4.3 Biorobotic hover forces 

A dominant hover force profile was identified over the conditions tested. During the 

"cupping with ventral lead" outstroke, the fin produced drag and a strong contra-lateral 

force (Figure 54A). As the fin transitioned from outstroke to instroke, the magnitude of 

the force decreased. Through the "flat plate lift and drop" instroke, the fin produced 

strong thrust and ipsi-lateral force. The average lateral forces were typically balanced 
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through the fin beat such that the mean lateral force was close to zero. Mean thrust forces 

through the beat were typically close to zero or slightly positive depending on test 

conditions. The magnitude, direction, and time varying courses of the force varied as fin 

beat frequency and mechanical stiffness were modulated. Application of characteristic 

forces to the fish body would result in a backward and contra-lateral movement through 

the outstroke, forward and ipsi-lateral movement through the instroke, and a slight net 

forward movement of the body from the starting position (Figure 54B). When coupled 

with the wide repertoire of other motions associated with sunfish hovering, this net result 

of slight forward movement and balanced lateral movement is relevant to hover 

behaviorally. Further, since hover motions are executed on two pectoral fins and multiple 

body fins, it's reasonable to assume that the contra-lateral pectoral fin and could employ a 

fin beat to correct for the thrust force generated. 

 

 

Figure 54. Characteristic forces of hover in the thrust-lateral directions. 2D magnitude of force (A.TOP), thrust force 
(A.MIDDLE), and lateral force (A.BOTTOM)  are graphed as fin beat period is varied from 1-4 s in duration. Forces 
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representative of hover in the biology would typically be executed over 1 s (highlighted) and slower. Forces shown in 
the thrust-lateral plane (B) through varied stiffness show the characteristic representative forces through one fin beat 
(outstroke to instroke) and allow envisioning of body movement in the thrust-lateral plane. Through the outstroke a 
strong force is mostly directed laterally, whereas the instroke motion creates strong forces in the thrust and lateral 
directions.  Data are representative of a six-cycle average of the forces and were low-pass filtered at 5Hz for clarity. 

 

When fin stiffness was held constant, varying the fin beat period affected the 

magnitude, direction, and time course of fin forces. For slow and moderate fin speeds 

(T=4, 2, 1.54, and 1 s), the mean magnitude of the 2d forces increased as the duration of 

the fin beat was reduced and the fin’s velocity increased (Figure 55). Effects on forces 

were also largely dependent on whether the fin was in the outstroke or instroke of the fin 

beat. At the fastest fin speeds (T=1.54, 1.00 s) thrust, not drag, was produced during the 

outstroke (Fig. 3A). The shift from drag to thrust is not, however, surprising. At faster fin 

speeds, the fin bends back and directs flow backwards. This behavior is consistent with 

steady swimming fin beat patterns, which take advantage of the bending to produce thrust 

during the outstroke. During the instroke, decreasing the period increased the average 

lateral forces significantly, leading to larger and longer duration ipsi-lateral forces (Figure 

54A). Thrust means in the instroke also increased with decreasing beat period. The 

increase of thrust and contra-lateral components drove up the magnitude forces during the 

instroke. Changes in the fin beat period also change fish body movements. Increasing the 

fin beat period leads to more balanced thrust-drag components of the force and would 

lead to a motion in which the fish starts and ends the beat in the same global position. At 

shorter beat durations, the motion would tend to move the fish forward and ipsi-laterally 

as a net result. 
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Figure 55. Hover mean 2d forces (thrust-lateral plane) over one fin beat. Mean force magnitudes increase 
monotonically as fin beat periods are decreased. Increasing stiffness increases mean magnitudes monotonically. For 
varied frequencies, data are shown from an 800x fin; for varied stiffness, 0.65Hz flapping frequency data were used. 
These data are representative of general trends through varied frequencies and stiffness. 

 

When fin beat period was held constant, increasing the stiffness tended to increase 

mean 2d forces, change the direction of thrust forces in the outstroke, and increase mean 

lateral force magnitudes. As stiffness increased, the strong drag  and contra-lateral forces 

of the outstroke became slight thrust and contra-lateral forces (Figure 54B; 200x, 400x 

traces). Through the instroke, increasing stiffness tended to increase the mean thrust and 

contra-lateral forces, without impacting direction. At very high stiffness (Figure 54B; 

800x trace) the outstroke contra-lateral and thrust forces were significantly greater than 

other stiffnesses. Increasing stiffness tended to cause instroke thrust and magnitudes to 

develop earlier in the period (Figure 54A), but did not affect the rate of development of 

lateral forces. Applying forces to the fish body as fin stiffness increased would tend to 

move the fish more laterally during the instroke and outstroke and more forward during 

the instroke due to increased thrust. 
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6.2.4.4 Distributed fin pressure sensing 

The magnitudes of the pressures measured on the fin webbing tracked well with the rise 

and fall of the 2d fin force.  Differences in the magnitude and timing of the pressure 

signals at distinct points on the fin reflected the development of forces at specific fin 

regions. Relationships between pressure measures and forces were dependent on the 

phase of the fin beat period (instroke vs. outstroke) and the side of the fin webbing the 

pressure sensor was affixed to (outer vs. inner face). During the outstroke, pressure 

sensors on the outer surface of the fin tracked well with forces, while inner sensors 

reported predominantly noise. During the instroke, pressure sensors on the inner surface 

of the fin tracked well with forces, while outer sensors reported predominantly noise. 

Sensors more proximal to the fin base tended to have lower mean pressure magnitudes 

than their more distal counterparts. Sensors on the ventral edge of the fin webbing tended 

to trend consistently with the 2d fin force regardless of instroke or outstroke. 

During an outstroke, the fin's ventral edge leads the fin's movement into the water 

(Figure 53; 0.4s), and correspondingly, pressure is sensed there first (Figure 56F). As the 

outstroke continues and strong contra-lateral force is created, the pressure measured by 

the sensors on the ventral edge outer face (Figure 56F) increases with the force. As the 

outstroke progressed, the dorsal leading edge left the body after the ventral leading edge, 

causing further increase in contra-lateral forces. Pressures on the outer dorsal leading 

edge rose significantly (Figure 56D) following the movement of the dorsal leading edge 

of the fin. Pressure development in this region also lagged ventral edge pressure 

development just as the dorsal edge lags the ventral edge in the outstroke. The inner 

dorsal leading edge (Figure 56E) shows an oscillation in the pressure from negative to 
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positive that corresponds temporally with the thrust force oscillations (Figure 56B). 

Trends between the thrust force and the inner dorsal leading edge were more visible 

through slower speeds (T = 4, 2, 1.54 s) where more drag was created during the 

outstroke. As pressure magnitudes on the outer face increased with force production, 

mean pressure magnitudes for outer face proximal sensors were always less than those of 

distal sensors (Figure 56D,F). 

 

 

Figure 56. Distributed pressure measurements on the biorobotic fin during hover motion are good estimates of the 
magnitude and direction of forces during swimming. Trends are representative across testing conditions. Data are 
grouped in proximal (black) and distal (grey) measures along the dorsal and ventral leading edges on both inner (black 
circle, grey outline) and outer (white circle, black outline) fin faces. Data shown at fin beat period of T = 1.54 s with an 
800x fin. 
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Individual pressure measurements on the inner face of the fin webbing also 

followed trends in magnitude and direction through the instroke. As the fin was flapped 

toward the body through the "flat plate lift and drop" instroke, strong ipsi-lateral and 

thrust forces developed just as the inner ventral leading edge (Figure 56G) pressures 

increased. As fin completes its instroke, the dorsal edge slightly lags the ventral leading 

edge (Figure 53; 1.3 s) before coming to rest on the body, and correspondingly, pressures 

along the inner dorsal leading edge develop as the fin reaches the body. During the 

instroke, along the inner ventral leading edge pressure sensors, proximal pressure 

magnitudes consistently increased before distal pressure magnitudes. This trend did not 

hold for the inner dorsal leading edge pressure measures, as they measured more noise 

and oscillations. The outer dorsal leading edge pressures (Figure 56E) oscillated at low 

magnitudes and did not provide clear information about forces. Outer ventral pressures 

increased as force magnitudes increased (Figure 56F) despite being on the outer face of 

the fin. 
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Figure 57. Distributed pressure means through hover with varied fin beat periods and stiffness are useful predictors of 
two-dimensional force magnitudes. Time varying pressure magnitudes from indicated points were added over the 
course of one fin beat of hover and then averaged (e.g. (A) shows the mean pressures that result from the sum of all 
dorsal leading edge pressure signals on the inner and outer faces). Distributed pressures on the ventral leading edge (B) 
increased monotonically as fin beat period decreased.  Pressures on the outer and inner faces of the fin (C), (D) 
generally increased and pressures on the inner face (D) showed monotonic decrease as fin stiffness increased. 

 

In order to compare larger scale trends in the pressure measurements taken on the 

fin, time varying pressure signals were added together over the course of a fin beat to see 

the mean pressure magnitudes over a region of the fin. For instance, to evaluate the 

pressure along the dorsal leading edge, four time varying pressure signal magnitudes 

(outer proximal dorsal, outer distal dorsal, inner proximal dorsal, inner distal dorsal) were 

added together over a cycle and the mean was computed. This mean was used to 

represent the mean pressure sensed along a region of the fin through a fin beat cycle for 
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comparison with average force magnitudes. This process was repeated as fin stiffness and 

fin beat period were varied for full comparison to the mean 2d magnitudes of hover 

(Figure 57).  

Summing and averaging pressure magnitudes over fin regions provided information 

about the mean 2d forces through the fin beat. In general, decreasing fin beat period and 

increasing flapping velocity caused consistent decreases in summed and averaged 

pressure measures as well as mean 2d forces. Additionally, increasing the fin stiffness 

caused increase mean 2d force magnitudes but decreased summed and averaged pressure 

magnitudes. However, decreasing fin beat period tends to increase mean 2d forces until 

T=1 s, at which point decreasing the period reduces mean 2d forces. As fin beat period 

was decreased and the fin velocities increased, mean pressure magnitudes over the 

ventral leading edge (Figure 57B) increased monotonically with the force magnitudes 

until T=1s. Mean pressure magnitudes also generally increased as fin beat period 

increased over the summed outer (Figure 57C) and inner faces (Figure 57D), and at short 

fin beat periods decreased as forces decreased (T=0.77,0.62 s). Increasing mean 2d forces 

monotonically by increasing stiffness (Figure 55) caused corresponding monotonic 

decreases in the summed and mean pressure measures over the dorsal leading edge 

(Figure 57A), the inner face means (Figure 57D), and overall decrease in ventral leading 

edge means (Figure 57B) and outer face means (Figure 57C). This was consistent across 

summed and averaged pressure sensor data over other regions (all sensors, proximal 

sensors, distal sensors). 

6.2.5 Conclusion 
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Sunfish pectoral fin hovering was analyzed and a repertoire of hover motions were 

extracted using ethogram techniques. A significant result was the evidence that hover is 

executed with much more stroke-to-stroke variation than other gaits, and this has 

significant bearing for engineers of finned robotic systems and aquatic bio-inspired 

designs that have often relied on consistent, dominant motions to produce forces. Even 

though the forces of "hover" were considered through varying kinematic and mechanical 

properties and clear trends were identified, hovering is a much more complex behavior 

with multiple patterns of outstroke, transition, and instroke that serve to maintain fish 

body balance and position. These beat-to-beat variations are also highly indicative of a 

sensory based control that regulates motion patterns within hover. Future work will 

address the specific roles of these patterns and how they contribute to the fine tuning of 

forces and closed-loop control of the fish body. 

A frequently occurring pattern of sunfish hovering was evaluated on a biorobotic 

pectoral fin platform for the first time and dominant patterns of forces were identified in 

the thrust-lateral planes. The developed gait produced consistent forces that can be varied 

with kinematic and mechanical properties to produce patterns of force consistent with the 

biological behavior of hovering. This result opens pathways for further research in gait-

based closed loop force control of fins and expands the testable repertoire of motions and 

resulting forces for the pectoral fin robot. Future studies will utilize the hover motion 

with a multiple fin fish robot and with paired robotic pectoral fins to consider interactions 

between fins during the complex gait. Further analysis of the motion's effects on body 

movement will allow for further validation of the hover motion between robot and fish. 
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Lastly, a distributed fin-intrinsic pressure system was instrumented on a biorobotic 

pectoral fin and tested through varied fin kinematics and mechanical properties, showing 

direct relationships to the fin's propulsive forces. Expanding on experiments with single 

pressure measures [33], this study showed how individual sensors could be used to 

estimate instantaneous forces on the body and that multiple sensors could be used to 

estimate mean force magnitudes through an entire cycle. Trends observed showed 

promising results for the closed-loop control of fins as gaits, mechanical properties, and 

kinematics vary during swimming. Measuring distributed pressures on force producing 

surfaces is likely to be a valuable for force estimation in many other types of robotic 

systems and could be a possible link to understanding fish strategies of sensory input. On 

fin pressure sensors will be used in future studies with other known gaits (steady 

swimming, yaw turn maneuver) to more completely evaluate their potential to estimate 

propulsive forces. 
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6.3 Paper 6: Application of a micro-genetic algorithm for gait development on a 

bio-inspired robotic pectoral fin 

6.3.1 Abstract 

Biologically-inspired robotic (biorobotic) platforms have been successfully adapted for 

engineering use, but it is difficult to extend these platforms' locomotive gaits to meet 

optimization goals. The gait spaces of biorobotic platforms can be very large, with 

multiple local optima and intractable numerical models. Further, the time cost of 

empirical exploration is often prohibitive. Micro-genetic algorithms have been successful 

in developing inverse kinematics in simulation, optimizing in spaces with numerous local 

optima, and working quickly to optimize with low numbers of trials, but have not yet 

been evaluated for online robotic gait development. To address the problem of 

engineering gait development in a biorobotic space, a micro-genetic algorithm (µGA) is 

evaluated on a biorobotic pectoral fin platform. The µGA effectively optimizes in the gait 

space with low time costs, discovering new gaits that optimize thrust force production on 

the swimming fin. The µGA also reveals parameter tuning strategies for changing 

propulsive forces. Overall, the µGA framework is shown to be effective at online 

optimization in a large, complex biorobotic gait space. 

6.3.2 Introduction 

Researchers in biologically-inspired locomotion have successfully used robotic platforms 

to understand and approximate complex animal gaits [145, 146] [147-149]. Biorobotic 

platforms have also been adapted to meet specific engineering goals [150-152], but it is 

difficult to optimize these platforms for force production over their broad gait spaces (the 
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high dimensional spaces formed by the kinematic parameters). By design, most studies 

evaluate a small region of the space near the biological behavior of interest. Optimization 

over the broader gait space could extend the range of behavior possible with bio-inspired 

platforms. 

However, the gait spaces of bio-inspired robots are frequently large and complex 

due to many actuated degrees of freedom [153], compliant mechanisms[154], and non-

linear dynamics, making broad optimization challenging. Optimization can be even more 

difficult without a numerical system model, making simulation infeasible and local 

optima hard to identify. Even if a model exists, generalized numerical modeling is often 

infeasible beyond the gaits and behaviors of interest. These gait spaces are usually too 

large for empirical evaluation; new gait development strategies must be employed to 

optimize for engineering goals. 

Genetic algorithms, or heuristic approaches that “evolve” a population of solutions 

based on a fitness function, can successfully optimize in large parameter spaces without a 

numerical model, but fall short in online implementation. A few studies have evolved 

behaviors with the use of simulated robot teams [155, 156] and in simulated optimization 

of gait parameters [157, 158]. However, traditional genetic algorithms can converge too 

quickly to local optima [159], exploring small regions of the solution space with a depth-

first approach. Genetic algorithms can be time-consuming for online implementation in 

large spaces, where the evaluation of each solution requires an experimental trial. These 

factors make the basic genetic algorithm a good choice for simulated robotic gait 

development, but a poor choice for online biorobotic gait development where spaces are 

complex and fewer general models exist. 
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Micro-Genetic algorithms (µGAs) present a framework to optimize in large 

parameter spaces by identifying and evolving diverse local optima, but they have yet to 

be evaluated in online robotic platforms. Recent work by Hedrick et al. developed a 

micro genetic algorithm µGA for the inverse kinematic problem of hawkmoth flight 

[160], evolving simulated wing gaits to approximate force trajectories in live moths. 

Work by Doorly et al. used a general genetic algorithm in online framework to test the 

evolutionary principle of selection with robots [161]. Theoretical work developing µGAs 

demonstrates their effectiveness in finding near-optimal solutions in landscapes with 

multiple local optima [162]. These developments suggest that µGAs could be effective 

for generating optimized gaits for bio-inspired robots, though to the authors' knowledge 

µGAs have not been evaluated for this application. 
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Figure 58. In this study, a biologically-inspired pectoral fin platform was used to test the effectiveness of a micro-
genetic algorithm for developing gaits in large kinematic spaces. The biorobotic fin (A) matches the kinematics, 
mechanical properties, and hydrodynamics of the steady swimming gait of a bluegill sunfish (C). The fin is composed 
of 5 fin rays (B) connected by a flexible webbing (D) that is driven by a servo tendon system to produce forces 
underwater. The kinematics of the first DOF (“cupping'') were labeled FR1, FR4, FR7, FR10, and FR14; these indices 
refer to their biological counterparts. The kinematics of the second DOF (``sweeping'') were labeled FR1b, FR10b, and 
FR14b. The fin was functionally divided into segments. The long, flexible dorsal leading edge is formed by the fin rays 
and webbing of FR1 and FR4; the ventral leading edge formed by the shorter length FR10,FR14 and webbing; the 
medial area formed by FR7 and webbing. Sunfish image (C) used with permission of George V. Lauder. 

 

A biologically-inspired robotic model of a bluegill sunfish pectoral fin (Figure 

58A) is an excellent candidate for evaluation in the µGA framework. The platform was 

designed to study the mechanisms of pectoral fin force production during swimming. It 

approximates the kinematics, mechanical properties, forces, and hydrodynamics of the 

fish fin and has been used to study the gaits of steady forward swimming [17, 32], yaw 

turn maneuvers [5], and hovering in place[23]. Engineering (non-biological) gaits have 

been developed by modifying a steady swimming gait [163], though no broad gait 

optimization has been conducted. Researchers have developed low order numerical 

models of sunfish steady swimming [164] and yaw turn maneuvers [165] and validated 
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these models against robot performance. But given the variable fin stiffness, non-linear 

dynamics, and complex vorticity, a general numerical model of kinematics and forces is 

currently infeasible [70]. The lack of a numerical model, the complexity and size of the 

gait space, and the empirical nature of the platform make it appropriate for µGA 

evaluation. 

To address the problem of gait optimization in large biorobotic parameter spaces, a 

µGA is evaluated on the biorobotic pectoral fin platform. The µGA develops swimming 

gaits that optimize for thrust production. Contributions include the development of 

methods for implementing a µGA on a robotic platform, µGA discovery of engineered 

gaits for swimming fins, detailed understanding of the parameter space and outputs for 

fin gaits and propulsive forces, and the comparison of known fish swimming gaits with 

those found in the µGA framework. 

6.3.3 Methods 

To evaluate the effectiveness of a µGA in a large, complex parameter space, the µGA 

was applied to an existing biologically-inspired robotic (biorobotic) pectoral fin. The 

µGA was developed based on the methods described in [160] and included the genetic 

operators of roulette-wheel selection, bit-wise mutation, and crossover of parameters to 

evolve candidate gaits. Successive generations of candidate swimming gaits were tested 

with propulsive force measurement on the biorobotic platform. The fitness of a gait was 

determined experimentally by the average thrust produced through a stroke. 
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6.3.3.1 Micro-genetic algorithm 

A µGA works by testing a large population of random gaits, sampling quality gaits from 

the population to form a sub-population, and evolving multiple sub-populations with the 

use of genetic operators. The µGA first generated a random population (P) of candidate 

solutions of fixed size (N). This entire random population P was tested with force 

measurement and fitnesses were computed for each candidate gait. At each major 

iteration, a fixed number of gaits (i) were sampled from P, forming an sub-population iP  

(Figure 59). The sub-population was then evolved iteratively.  

 

 

Figure 59. A block diagram shows the steps of the live testing µGA - a genetic algorithm that tests small populations 
and allows for reinitialization of the evolving population. The fitness of candidate gaits was determined through testing 
when the random population was first generated, and at the generation of each new population (shaded blocks). The 
main program iterated (dotted line) and tested generations of initial populations until the convergence criterion was 
reached. Convergence was determined by number of generations per iteration. Diagram modified from [166]. 
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At each loop iteration, genetic operators were used to improve the fitness of gaits in 

the sub-population iP . For each generation, elitism was applied to iP , selecting the first 

non-dominated vector of the population, eliteP  . Elitism preserved the genetic information 

of the best solutions. Next, selection was applied, where 1i−  candidate solutions were 

sampled from a fitness-weighted distribution, forming the selected population 
,i sP . The 

probability of an individual candidate solution's selection ( )i ip X CG=  was given a 

normalized weight of its fitness as in (59). Following selection, crossover was applied 

between randomly generated pairs of candidate gaits, in which their genetic information 

was swapped at a random index, forming two offspring candidate gaits and creating 
,i cP . 

Crossover shares genetic information of high-fitness gaits, forming offspring of paired 

gaits. Bit-wise mutation was applied to the members of 
,i cP  with a fixed probability 

( )p m , forming 
,i mP . Mutation added randomness to the search by inverting bits of the 

candidate gait binary representation. The non-dominated solution eliteP  and the mutated 

solutions 
,i mP  were merged into a new population iP , completing one iteration of the 

µGA. The fitness of the new population iP  was established through force testing. 

Following testing, when the planned number of generations was reached, the loop 

terminated. 

 ( ) ,i fitness

i i

fitness

CG
p X CG

CG
= =

∑
  (59) 
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After loop termination, all elite candidate gaits from the evolved sub-population 

were saved to the growing portion of the random population. These filtered gaits could be 

re-sampled in future iterations during the sampling stage. The use of a growing random 

population is unique to µGAs and typically produces a diverse distribution of solutions 

along a near-optimal front [167]. 

6.3.3.2 Biorobotic fin implementation 

The biorobotic fin was developed to approximate the kinematics, mechanical properties, 

and hydrodynamics of a swimming sunfish pectoral fin (see [23, 32], Figure 58). The 

biorobotic fin was composed of multiple fin rays enclosed in a fabric webbing; a servo-

tendon system driving up to two degrees of freedom (DOF) on each fin ray to produce 

gaits (Figure 58A,B). The five fin rays independently execute kinematic patterns along a 

“cupping'' DOF (FR1,4,7,10,14), and three of them along an additional ``sweep'' DOF 

(FR1b,10b,14b). The fin is divided into dorsal, medial, and ventral regions for results 

discussion (Figure 58D). The outstroke of a kinematic pattern refers to the time duration 

when the gross movement of the fin is moving away from the body, the instroke when it 

is moving toward the body. 

To apply a µGA to the biorobotic fin, the components of a gait were parametrized 

and represented in a genetic algorithm framework. To parametrize kinematic trajectories 

for each actuated fin ray DOF, the underlying kinematic trajectory of steady swimming 

([32]) was used and the amplitude (A; degrees), phase offset (P; fraction of period T), and 

flapping frequency (F; Hz) were varied, forming the range of kinematic patterns (Table 

8). Changes in fin mechanical properties require time-consuming swaps of fin equipment 

so fin ray flexural rigidity was fixed at a stiffness with known strong thrust production 
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(EI = 800 times the biological rays; [17]). Parameter values were selected so as to avoid 

damage to the platform, by restricting phase lags between segments and limiting flapping 

frequency. The kinematics of an individual fin ray were represented by a binary array of 

18 elements, and thus the kinematics of an entire fin were represented using 144 binary 

elements, forming a “candidate gait'' for the genetic algorithm. The solution space 

specified by the kinematic parameters contains over 2 million possible fin trajectories, so 

brute force search of the space was not feasible. 

Each candidate gait was represented by a data cluster containing the kinematic 

parameters (see Table 8), the servo trajectories, the measured propulsive forces in thrust 

and lateral planes, and the fitness (or quantitative measure of solution quality). The 

kinematic parameters and servo trajectories were selected by the µGA, while forces and 

fitness were determined through testing. Average thrust (N) through a fin beat period was 

used as the fitness criterion to explore basic forward swimming. The fitness landscape 

was a 25-dimensional space, formed by the {Amplitude, Phase, Frequency} parameters 

of each of the candidate gaits and the fitness of their forces. 

 

Table 8. Parameter space of fin ray kinematics 
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6.3.3.3 Experiments 

Candidate gaits were tested in real time on the biorobotic platform with measurement of 

force and execution of µGA-specified kinematic patterns. All force and kinematic data 

were sampled at 100 Hz on analog input channels and stored in a single delimited log 

file. The trials were filmed at 60 frames per second (Exilim FX-1, Casio, JP) to observe 

gaits and fin bending underwater. Experiments were carried out through use of a custom 

robot graphical user interface in the LabVIEW programming environment (National 

Instruments, Austin, TX, U.S.A.) that drove servo kinematics on the robot (described in 

[32]). The robot was mounted onto a low-friction air bearing carriage (New Way Air 

Bearings, Aston, PA, USA) and propulsive forces were measured in the thrust and lateral 

directions (LSB200, Futek Advanced Sensor Technology, LLC., Irvine, CA, USA) in a 

standing water tank. 

µGA trial parameters were tuned to reduce trial time, obtain diverse elite gaits, and 

evaluate a simple fitness criteria. Each trial had a random population P of 50 candidate 

gaits, a total of 10 iterations of sub-populations iP , 5 generations per sub-population, and 

5 candidate gaits per generation, leading to a testing of 300 candidate gaits per trial. A 

total of 5 trials were conducted, each lasting approximately 50 minutes. Fitness was 

calculated as the average thrust force through the fin stroke. After each generation, elite 

candidate gait data were streamed to file, including parameters, force, and fitness 

measures. Each candidate gait took between 4 and 10 seconds to test and save, and 

genetic operator run-times were negligible. 

6.3.4 Results and Discussion 
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The µGA was effective at identifying diverse, locally-optimal gaits for the optimization 

of thrust in the large biorobotic parameter space. The µGA developed new gaits that 

extended existing strategies of thrust production on the biorobotic fin. The µGA 

identified a new non-biological gait for thrust production with comparable force 

production to the bio-inspired steady swimming gait. This gait, termed “µGA-bimodal” 

(see Figure 60), used a high-amplitude, early-deployment, rapid dorsal edge movement (

[ ]1,4 40,50FRA = o

,
1 , 4 0F RP T≅ , [ ]1,4 1.0,1.3FRF Hz= ) in combination with a high-amplitude, 

late-deployment, slow ventral edge movement (see Figure 60). These kinematics caused a 

thrust-producing instroke followed by a burst of thrust in the later outstroke, something 

not documented before in fish or the robotic platform. 
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Figure 60. The µGA evolved a new non-biological swimming gait for thrust production. Evolution of the “bimodal” 
candidate gait over fifty generations in a local optima region shows the improvement of thrust production (A). The 
evolution of kinematics (B) show an increase of amplitude on the dorsal leading edge fin rays, causing increase in 
thrust production through the outstroke (t=[0,0.25]s) and instroke (t=[0.75,1.25]s). “Bimodal” gaits evolved to employ 
a delayed movement of the ventral kinematics to produce slight thrust in the late instroke (t=[1.0,1.5]s). Data were low 
pass filtered at 7Hz for clarity. 
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Elite gaits (local optima) of the µGA approximated the kinematics and force 

production of known bio-inspired gaits of steady swimming and hovering. One elite 

solution generated matched closely the kinematic parameters of steady swimming (Figure 

61), following the typical pattern of: low or no amplitude along the second degree of 

freedom fin rays ( 7,10,14 0FRA → o
), high amplitudes along the dorsal leading edge (

1,4 60FRA → o
), and little phase lag between segments ( 0allP T≅ ). µGA solutions typically 

produced between 80 and 90% of the average thrust of a bio-inspired steady swimming 

gait.  

 

 

Figure 61. Elite gaits (local optima) of the µGA approximated the kinematics and force production of known bio-
inspired gaits of steady swimming and hovering (not shown). A comparison of an elite (i.e. locally optimal) candidate 

gait of the µGA (TOP) to a sunfish steady swimming gait (BOTTOM). Small phase differences in the µGA solution led 
to near-optimal performance of the gait. Steady swimming in both the evolved gait and the biology produces a strong 

thrust force using the dorsal leading edge segment of the fin with little phase lag between fin segments. µGA solutions 
typically produced between 80 and 90% of the average thrust of a biologically-inspired steady swimming gait. Steady 
swimming images modified from [5]. 

 

Another elite solution generated, “µGA-hover,” closely matched the kinematics 

used by the sunfish in hovering, typified by: early deployment of the dorsal leading edge 

(
1,4 0 .0F RP T≅ ), late deployment of the ventral leading edge (

7 ,1 0 ,1 4 0 .3F RP T→ ), and late, 

high-amplitude, deployment of the second DOF along the ventral leading edge (



211 

 

10 ,14 30FR b bA ≅ o
; “lift and drop” pattern detailed in [23]). Typical bio-inspired hover gaits 

produce nearly balanced lateral and thrust forces (Force Means 0N≅ ), but when hover 

was executed at high speeds ( 1.0F Hz≅ ) and with stiff fins ( 800EI x= ), it was a 

strong thrust producing mode [23].  

Local optima were quickly reached in µGA execution. The “µGA-bimodal” gait 

converged (less than 1% change in solution quality between generations) after 50 total 

gaits were tested (Figure 60), “µGA-hover” after 23 gaits, and “µGA-steady” after 10 

gaits (each in their respective trials). With trial times ranging on 4-10s, this meant that 

local optima convergence was obtained on the order of minutes. 

The µGA revealed fine-tuning strategies for improving the thrust production of the 

biorobotic fin. Changes to individual fin ray parameters affected the fitness of candidate 

solutions (Figure 62). Fitness was negatively affected by large differences in phase lag 

between fin rays, except in the case where the ventral rays and dorsal rays were deployed 

at similar lags respectively (i.e. 1 4FR FRP P≅  and 10 14FR FRP P≅ ), where fitness was 

positively affected by similar phase lags among segments. Fitness increased as phase lags 

approached zero (
1,4 ,7 ,1 0 ,1 4 0 .0F RP T→ ). Fitness increased as first DOF amplitudes (

1 , 7 ,1 0 ,1 4F RA ) increased, excepting fin ray 4, which produced high fitness at lower 

amplitudes ( [ ]10 10, 20FRA = o

). Increasing the flapping frequency of FR4 tended to 

increase fitness. Increasing the flapping frequency on other fin rays had no consistent 

effects on fitness. 
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Figure 62. The µGA revealed fine tuning strategies for fin ray degrees of freedom (DOF) in the biorobotic platform. 
The kinematic parameters of “Amplitude” and “Frequency” are varied along each of the DOF. “Phase” variations had 
unclear impacts on fitness and are excluded from these figures. Landscapes were constructed by meshing of 300 

candidate solution fitnesses over the broad range explored in one trial of the µGA. 

 

µGA parameters required tuning to determine trial conditions that would produce 

diverse, high-fitness gaits. Consistent with simulation results in [162], increasing the 

number of generations per iteration (beyond 5) did not significantly affect the quality of 

solutions found, and increasing the generation size resulted in a linear increase in testing 

time. Increasing the size of the starting random population ( P ) tested was the most 

effective way to improve the quality of solutions found without significantly adding to 

testing time. Increasing the number of iterations only improved quality of solutions when 

the random population was sufficiently large (above 50 solutions), but was a very costly 

linear operation. Increasing the number of iterations often resulted in exploration of the 

same solution spaces without adding to diversity. Increasing the bit-wise mutation rate 

beyond 5% did not have a significant impact on solution quality. 

6.3.5 Conclusions 
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Overall, this study demonstrated that a µGA framework is effective for optimizing in 

biorobotic gait spaces.  Several diverse gaits were developed for thrust production that 

were comparable in quality to previous bio-inspired gaits. The µGA discovered new gaits 

that extended the capabilities of the biorobotic platform in short numbers of experiments. 

The µGA identified gaits approximating the biological gaits of steady swimming and 

hovering, and both were local optima in the gait space. The µGA gait space also provided 

insight into the effects on fitness of tuning individual parameters in the robot degrees of 

freedom. µGA parameter tuning was straightforward. 

Future work can be done to improve the quality and diversity of gaits developed in 

the µGA framework. While regions of local optima were explored, precise local optima 

were not determined in this study. For future work, a simplex algorithm could be used to 

better explore the space of local optima with hill climbing, using methods from [168]. 

The µGA could be modified to produce better solution diversity without increasing trial 

time with the technique of “niching,” with methods from [169].  

The µGA framework will be used in future study with the biorobotic fin platform to 

develop new gaits that optimize for other useful engineering goals. Simple changes could 

optimize for balanced forces through the fin stroke, strong lateral forces to produce 

maneuver behaviors, or the inverse kinematics problem. For instance, the µGA 

framework could be used to search for gaits that minimize the mean square error between 

a desired force trajectory and the observed, developing inverse kinematics for force 

trajectories. In similar ways, the µGA can extend the effectiveness of biorobotic 

platforms. 
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6.4 Biologically-inspired control framework for closed-loop control of propulsive 

force using fin-intrinsic sensing 

6.4.1 Sensory feedback and control architecture 

Force is the control target. To control the body of an underwater vehicle, the forces of its 

propulsors must be controlled. When there is a simple relationship between propulsive 

force and propulsor inputs (e.g. multi-DOF propeller systems), an optimal force (and 

often an optimal force trajectory) can be computed, and an inverse relationship can be 

used to compute the input necessary to create that desired force. Controllability may still 

be an issue for underwater vehicles, with many unstable states and nonlinearities, but the 

relationships between forces and control inputs has been explored for many systems of 

this type [170-172]. 

The mapping from desired propulsive force to fin kinematics and mechanical 

properties is complex, and is not unique. Finned systems have many underactuated 

degrees of freedom, and have a very large space of input parameters to produce 

propulsive forces. The system is time varying and the mechanisms of force production 

are nonlinear. Given a desired force, or behavioral objective, there may be many sets of 

mechanical and kinematic parameters that optimize it. More specifically, given a desired 

force trajectory through a fin beat, there is not likely a unique set of fin kinematics to 

generate the trajectory. Thus the mapping from forces to kinematics is not one-to-one. 

The fluid environment locally and globally changes the propulsive forces 

produced by the fin. An underwater vehicle can be subject to many diverse perturbations 

from the surrounding fluid. The fins can be subject to local flow perturbations which 
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cause time-varying changes to the propulsive forces. Thus, the propulsive force of the fin 

is also highly dependent on the local flow conditions in addition to fin’s properties. 

Sensory input can modulate the fin’s kinematics in the middle of a stroke. Sunfish 

hovering involves updates to the kinematics in the middle of a fin stroke, suggesting that 

the kinematics can be modified after initial execution, depending on sensory input. For 

the robotic platform, there are a number of ways that force can be modulated 

Given a desired force, what kinematics and mechanical properties should be used? 

This is more of a motion planning problem where a solution could take the form of a set 

of kinematics and mechanical properties that produce a desired force trajectory, or a net 

force through a stroke. This problem is tractable as long as a number of solutions are 

known or can be estimated. To find a solution, the operator must define a cost functional 

and then search a known space of trajectories to identify the closest trajectory that best 

satisfies the cost functional.   

The approach taken by this work has two levels of control. At a high level, the 

gait and subset of kinematics is chosen through an optimization algorithm that decides 

which motions to make on a stroke-to-stroke basis. The high level controller takes a force 

trajectory, or net force, as an input, and the output is the kinematic patterns for the 

motors. The low level controller deals with updating the kinematics based on sensory 

inputs from the fin during the stroke. The low level controller has multiple inputs, 

including the desired force, and the sensory signals from the fin (position measures and 

intrinsic sensory measures). The output of the low level controller is a modulated set of 

desired kinematics for the fin.  
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 The fin-intrinsic sensory data is essential to multiple sections of this loop. It is 

used to predict the total propulsive force of the fin through time and to weight the force 

estimate in order to predict local forces. This inner loop that modulates the desired 

kinematics desx , allows for fast update of kinematics and tuning of the propulsive force 

that would not be achievable with other measures of force. Without sensory data, there is 

no direct way to modulate the local kinematics of the robot without significant modeling 

of the relationship between kinematics and force. At a high level, the planning and 

control operates in the following way: 

1. Initialize the fish body model 

a. Specify initial states 

b. Specify process and measurement error statistics 

c. Choose environmental input sequence 

2. Initialize the planner sequence 

a. Search for force-optimal strokes for first outstroke, transition, and instroke 

b. Concatenate outstroke, transition, instroke strokes 

3. Run the controller 

a. Compute desired force for the stroke based on body dynamics 

b. Compare desired stroke force to current plan.  

i. If plan exceeds error threshold, update plan with changes to future 

strokes.  

ii. If in outstroke and error threshold is exceeded, determine if adding 

a transition will decrease error. 
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c. Modulate stroke kinematics using sensory feedback in an inner local force 

control loop 

i. Compare plan force to estimated force 

ii. Update control signal based on error 

Learning can also be introduced by repeating a particular initialization of the fish 

body model and attempting small perturbations to the kinematics until a better solution is 

obtained. The perturbations can be associated to a particular DMP so that the database of 

gaits has DMPs that have general functions and each has been explored to give specific 

behaviors that modulate on the functions. This tree-like structure can be searched more 

efficiently. 

Control of propulsion begins with a set of desired body dynamics, which includes 

the position, velocity, and acceleration of the robot body ( , ,d d dX X X
v v v& && ; Figure 63). The 

actual body dynamics ( , ,a a aX X X
v v v& && ) arise as the result of a fluid structure interaction 

between the sunfish body and the fluid environment. The difference between desired and 

actual body dynamics is the error in body dynamics, xe
v

.  This error is fed into an inverse 

body model that maps errors in dynamics to a desired force 
dF
v  to act on the body from 

the propulsors. 

Stroke kinematics are selected or evolved by comparison of the desired forces 

with forces in a reference library of kinematic patterns and their associated forces. Kahn 

and Tangorra have detailed how to use a micro-genetic algorithm (µGA; c.f. Figure 63) to 

evolve gaits in order to optimize a desirable force criterion. A dynamics model that maps 

desired forces (
dF
v ) to stroke kinematics could be used in substitution of the selection and 
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evolution process for kinematics (dashed box, Figure 63), though a general dynamical 

model has not been developed for these types of flexible, multi-DOF, robotic fins.   

 

 

Figure 63. Block diagram showing the mapping from desired robot body dynamics to optimized stroke kinematics. 
Stroke kinematics are selected from a reference library or evolved using a search algorithm in order to optimize forces 
to a reference criterion. 

 

Based on prior research, there are multiple ways to build up a control framework 

for closed loop control of forces for future work, all of which take advantage of the use of 

distributed, heterogeneous, fin-intrinsic sensing in the fins of a robotic fish. A few 

strategies are presented below, in order of increasing complexity. 

At a baseline, feedback control can be executed on the fin kinematics (Figure 64), 

where errors in kinematics 
, ,ix i r i me x x= −  are fed into a controller (e.g. PID or PD 

type) that sends commands to the motors in the robotic fin. This type of control is likely 

necessary to ensure that the desired kinematics match the measured kinematics. No fin-

intrinsic sensing is required for this strategy, as measurement of fin ray position is taken 
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at the motors. This strategy also does not control forces directly, but attempts to track the 

reference kinematics of a particular stroke. 

 

 

Figure 64. Block diagram of feedback control on fin ray kinematics. Measured kinematics are compared to reference 
kinematics and the error is fed into a controller which modulates the kinematics of the biorobotic fin. The fin produces 
forces which are compared to desired forces in order to determine the error in forces. The stroke selection/evolution 
block is detailed in Figure 63.  

 

Just as the fish will switch its kinematic patterns during a fin beat, a similar 

switching control strategy can be used to enable the robot to switch its desired kinematics 

multiple times within a fin beat (Figure 65). At a high level, the desired forces from 

multiple regions of the fin are compared to the estimated forces from multiple regions of 

the fin. If the error is sufficiently high, a stroke selection algorithm is used to select a new 

set of kinematics to execute that is expected to better match the desired forces. In this 

case, the fin-intrinsic sensors play a key role in estimating the local forces in different 

regions of the fin.  
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Figure 65. Block diagram of switching control of propulsive forces. The inner loop executes feedback control on fin ray 
kinematics (c.f. Figure 64) while the outer loop uses fin-intrinsic sensors to estimate forces from the top and bottom 
sections of the fin and compares force estimates to force reference signals. Inspired by the bluegill sunfish, the stroke 
kinematics can switch multiple times per fin beat in order to modulate forces. 

 

When the sunfish is hovering, for instance, there are sometimes significant variations in 

the kinematics in the middle of a stroke, which suggests closed-loop-control of the fin 

forces. This strategy can be adapted to the robotic fin by feeding the errors in local forces 

directly to a real time controller (Figure 66). In this case, the estimates of force from the 

fin-intrinsic sensors are used in real time to modulate the kinematics of the fin. 
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Figure 66. Block diagram of control updates within a swimming stroke. Errors in local force and kinematics are used to 
update the stiffness and kinematic control of the biorobotic fin using an inverse kinematic model that maps from force 
errors and current kinematics to modified kinematics mid-stroke. 

 

Lastly, a hybrid approach can be used to allow for both switching of strokes and 

modulation of kinematics within a stroke. This is consistent with sunfish behavior, and 

employs the force estimates from the fin-intrinsic sensors in two closed paths to control 

forces.  

Fin-intrinsic sensation can also be used directly in a feedback path to alter robot 

behavior by triggering events. An additional sensory path is used for detecting touch 

events during swimming. Study of the sensory signals associated with touch can allow for 

the triggering of a sensory event that could consist of a stereotyped motion or body-level 

response to the stimuli.  

 

Local force 
estimation

Fin-intrinsic 
sensors

Encoders

Controller (F,x)

Biorobotic finH2O

Stroke
selection/ 
evolution

Control updates 

within a stroke

Legend

F Propulsive force

x Fin kinematics

S Sensory data

e Error signal

r Reference

d Desired

m Measured

a Actual



223 

 

 

Figure 67. Block diagram of a hybrid control approach for controlling propulsive forces, including force control within 
a stroke, switching control of kinematics, and triggered sensory events based on fin-intrinsic sensory data. 

 

 



224 

 

Chapter 7. Conclusions  

Fin intrinsic sensing can be used in a MISO convolution framework to effectively predict 

the forces of a compliant, multiple DOF, robotic fin. Even with a basic linear MISO 

convolution model, small numbers of sensors with short time windows of data were used 

to predict forces of a single gait. Using linear models, good prediction performance was 

achieved when the stiffness and the speed of the fins were changed. This generalization 

of low-order models suggests that the sensory data captures the important aspects of the 

underlying sensory-force mapping. The fins tested had a four-fold range in stiffness, and 

a two-fold range in speed. The gaits tested were representative of two very different 

approaches to generating forces (steady, forward swimming and yaw turn maneuevering) 

in the output space. The fin tested had a high number of underactuated degrees of 

freedom and produced complex 3d propulsive forces. Prediction could be done in 

advance, such that forces could be predicted 60-70ms prior to their development in most 

cases. With this much lead time, real-time control approaches are likely feasible with low 

computational requirements.  

 Bending sensory data was generally more useful than pressure sensory data in 

forming models for force prediction with the fin tested. This could be seen in multiple 

ways in the data analysis and from a practical instrumentation perspective. Firstly, 

models formed using only bending data significantly outperformed those using only 

pressure data. This meant that instrumenting this fin with only bending sensors would 

yield better force predictions than using twice the amount of pressure sensors in these 

same locations. Secondly, when the number of available sensors was fixed (i.e. only N=3 

sensors are permitted), the best sensor subsets always included a bending sensor. This 
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was consistent regardless of the gait, stiffness, speed, and stroke phase being tested. This 

effect was also found to be statistically significant (P<0.001). Thirdly, the financial cost 

of instrumenting and amplifying a bending sensor was significantly less per sensor for a 

bending sensor relative to a pressure sensor ($440 vs. $1900), making it an obvious 

pragmatic choice for instrumentation. Bending sensors were also cheaply replaced when 

damaged compared to pressure sensors (unit cost to replace: $40 vs. $900).  

 Choosing good sensor placement locations was important for performance and 

these locations depend highly on the underlying dynamics of force production. Placing a 

sensor in the wrong location could result in very poor model performance. This was seen 

in that the pressure sensors on the inner (body-facing) side of the fins did not 

significantly contribute to prediction performance and adding their data to the model 

often degraded performance. In study of optimal sensor placement locations, clear trends 

emerged for the location of sensors based on which gait was being executed. For 

instance, during steady swimming, the best placement locations were along the dorsal 

leading edge and in areas of high bending (on dorsal proximal sensors). This was 

consistent with CFD analysis of the biological gait that indicates that at least 90% of the 

thrust forces arise from the dorsal tip of the pectoral fin. During maneuver, best sensors 

were on both dorsal and ventral leading edges and were generally more distributed over 

the surface of the fin. This was consistent with the use of both dorsal and ventral edges to 

produce forces during the gait.  

 The memory of the sensory-force system was small, such that short time windows 

of sensory data could be used to predict forces. In most cases, less than 100ms of sensory 

data was necessary for good predictions. Increasing the window size beyond 100ms 
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typically had little payoff for performance when linear models were used, and in the case 

of nonlinear models made the computation of weights cost-prohibitive. Using less than 

100ms of sensory data was effective as long as the right windows of data were selected, 

and these effects were most sensitive to gait. For nonlinear models, window lengths of 

50ms or less were often sufficient (5 or less samples) and gave best cost-performance 

tradeoffs. In some special cases, a single sample (at 100Hz) was sufficient to predict the 

forces from sensory data.  

 Nonlinear models of the sensory-force system had better performance and lower 

implementation cost than linear models and were better suited for force prediction from 

distributed sensors. By both performance metrics (%VAF, MSE) and cost functionals 

(MDL, AIC), nonlinear models outperformed linear models for the majority of tested 

cases. This effect was insensitive to gait, stroke phase, stiffness, and speed. However, 

changes to the target output, i.e. propulsive force component (thrust vs. lateral), led to 

changes in the performance. Linear models were slightly more cost effective than 

nonlinear models for predicting lateral forces during steady swimming gaits, for example.  

 Fin intrinsic strain sensors could be used to effectively discriminate between 

fluidic loading and contact loading during an underwater contact with a rigid obstacle. 

With data from a single strain sensor, or using simple arithmetic operations on multiple 

sensors’ data, it was possible to discriminate between fluidic loading and contact loading. 

At low speeds underwater, thresholding based on a constant value of strain worked well, 

but major changes to speed and stiffness made discrimination more difficult with basic 

strain and strain rate thresholding methods. At high speeds and high fin ray compliance, 

more sensors and strain differencing techniques were required to discriminate between 
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fluidic loading and contact loading. Taking the difference between proximal and distal 

sensors revealed the instants where tip loading (distal) exceeded base loading (proximal), 

a direct feature of contact with distal objects.  

 Fluidic loading significantly affected the strain experienced by fins and beams 

during approach and contact with obstacles underwater. The experiments executed in this 

thesis highlighted the loading differences experienced by fins during different phases of 

the contact experiment. The phases identified, which can be used descriptively in future 

experiments and in those with more complexity, included acceleration, constant velocity, 

approach, contact, and relaxation. The constant velocity phase would likely vary 

depending on the kinematics of the robot and the characteristics of the fluidic 

environment. The phases of the contact experiment were affected by the structure-fluid-

structure-interaction (SFSI) where the fin and the object both interacted through the 

medium of the fluid. The loading experienced by the fin during early phases of the 

experiment affected the loading of later phases of the experiment. The initial acceleration 

phase typically caused the fin to bend prior to contact, which meant that it contacted the 

obstacle in a deformed state. This changed the dynamics of contact and created a strong 

effect during the relaxation phase after contact when the fin settled to a less deformed 

state. At low initial accelerations, or when fins are very stiff, this effect was less 

pronounced. Fluidic loading, and the variables that affect its presence, was an important 

consideration for the sensing of underwater contact, in contrast to most experiments in 

air.  

 Common techniques for contact detection in air were not as effective when used 

underwater due to the effects of fluidic loading through multiple stages of the contact 
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experiment. Thresholding, and often rate thresholding, are common methods of detecting 

contact in air and result in reliable estimation of the onset and duration of contact. In the 

underwater environment, analysis showed that detecting the onset and duration of contact 

was confounded by the multiple effects of fluidic loading during phases of the 

experiment. The first feature of the input data was the loading experience at the onset of 

the acceleration phase and during the constant velocity phase that made detection by 

thresholding difficult, delaying the predicted onset of contact or confusing the ramp in 

strain due to acceleration with the ramp in strain due to contact with an obstacle. Even at 

low speeds, a very flexible fin ray could deform sufficiently or oscillate enough to trigger 

many false positives of contact detection. The approach phase also tended to see a small 

magnitude, sharp increase in strain and strain rate that could be falsely detected as contact 

loading. 

 The technique of strain differencing was effective in the classification of onset 

and contact duration in the underwater environment, and required multiple, distributed 

sensors. While strain differencing may be unnecessary or even perform poorly for contact 

discrimination in the air, it was a simple and valuable technique to reliably discriminate 

between fluidic loading and contact loading underwater. This technique makes use of 

distributed sensors and exploits the spatial strain relationships across the surface of the 

flexible fin. Onset of contact was easily determined by the zero crossing of the difference 

in proximal and distal strain signals.   
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Chapter 8. Future work 

Distributed, intrinsic sensing could be of benefit to sensing in compliant, robotic systems. 

Unlike centralized multifunctional sensors, distributed intrinsic sensors can be used to 

assess the performance of multiple aspects of a joint or control surface. Local forces can 

be estimated, damage to the system can be localized, and failures can be inferred from 

data. Assessing failures and damage make compensatory control possible. Distributed, 

intrinsic sensors can also fail individually without compromising perception completely. 

For instance, the loss of a single bending sensor did not make predicting propulsive 

forces impossible, it merely degraded performance, often by less than 10%VAF. 

Compliant robots are also very hard to model, and as was demonstrated with the robotic 

fin, an a priori model was not necessary to predict forces across a variety of conditions 

using distributed sensors. As manufacturing techniques outstrip the development of 

mathematical models of soft and flexible robots, distributed sensors and simple 

convolutional algorithms can enable prediction and control of key outputs such as 

locomotive forces.  

Physics-based mathematical models of flexible, multi-DOF fins would be 

valuable to the underwater robotics community, and would widen the range of techniques 

usable for force control of these types of fins. Being able to model the kinematics and 

resulting forces of a general flexible, multipanel fin would enable optimization of force 

production through simulation to design robotic fins for specific control applications. 

Further, model-based control techniques for nonlinear systems could be employed given 

a kinematic-force model and its inverse. Distributed sensing and force prediction would 

still be necessary to verify that actual forces tracked desired forces, but the selection of 
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gaits and gait parameters could be executed with significantly less testing. Rather than 

rely on a library of gaits, where optimization is done empirically, it could be done ahead 

of time computationally. Further, if the operating envelope of the system was known, the 

nonlinear space could be simplified through parameterization, for example. 

In both touch and propulsive force prediction, more general methods are needed 

to determine best sensor placements for predicting forces and contact state. Until 

computationally-feasible CFD methods are developed that can simulate many fin 

geometries, more experimental studies with simplified, lower-DOF fins are needed to 

understand how to instrument a general fin based on its geometry and actuated degrees of 

freedom. This is an open question for symmetric and asymmetric fin shapes and a 

thoughtful study of geometry and sensing would be valuable. For contact prediction, 

multiple sensor placements along a symmetric fin and study of the resulting data would 

increase our understanding of what mechanosensory information develops during contact. 

Study of these data would also give clues as to how to interpret the information for 

perception of robot self and obstacles.   

Fin-intrinsic sensation may provide a useful input for feed-forward control of the 

propulsive force. For instance, if intrinsic strain data can be used to predict propulsive 

forces in advance (up to 100ms in our previous work [88]), a feed-forward controller 

could use the strain data to modulate kinematics in response to a disturbance. Feed-

forward control can also be viewed as system inversion [173], where a kinematic 

trajectory is desired as output, and a feed-forward controller takes the desired trajectory 

as input and computes the necessary inputs to the plant to produce the desired output. 
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Understanding how touch is perceived underwater is an open research area. 

Firstly, there are still major questions as to what should be measured to perceive touch 

underwater. The work in this thesis focused on strain along the axis of movement in a 

flexible fin, but there are many other biologically-relevant phenomena that can be 

measured. Even in the testing example where a flexible fin is rotated into contact with a 

rigid plate obstacle, strain could be measured in two directions perpendicular to the axis 

of rotation of the fin. The planar strain (i.e. stretch) can be measured in the webbing of 

fins. Vibration within the fins can be measured. Each of these mechanosensory 

phenomena are likely to differ between air and underwater environments in ways that 

have not been studied, quantified, and characterized. Understanding their characterization 

will yield a better understanding of how to use sensing for underwater touch. The 

structure of the probing system (e.g. fin or finger) can be varied. The fin in this thesis is 

non-jointed, but instrumentation of jointed robots may increase the complexity of sensory 

signals, and could introduce a need for measurement of additional sensory phenomena 

such as joint angle and “tendon” strain. The complexity of the SFSI could increase with a 

jointed platform such that a hand, for example, may interact with itself and the target 

object through the fluid forces.  

The manufacturing process of instrumented robotic fins could be refined through 

automatic processes that rely less on skilled hands and more on precise equipment. 

Instrumenting strain sensors, even when pre-wired, takes time, skill, and training to 

execute reliably and prevent sensor failure. Likewise, casting or sewing the robotic fins is 

time-consuming and subject to large variations in mechanical properties depending on 

manufacturing skill. Co-design of instrumentation and manufacturing would likely result 
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in more reliable prototypes from mechanical and sensory perspectives. Approaches in 

shape deposition manufacturing, where mechanisms and sensors are simultaneously 

fabricated and assembled, may prove useful in future designs of instrumented fins and 

rays. Additionally, approaches in layering techniques and pop-up MEMS may enable co-

manufacturing of sensory and performance layers of the fin structure. For instance, a 

rigid fin ray layer could be sandwiched between a flexible membrane layer that forms the 

fin panels, while a sensory layer is embedded with traces and strain sensing patterns on 

flexible printed circuit board. Design and experimental testing is needed with these 

technologies to advance the state of the art for robotic fins. In all of the mentioned cases, 

waterproofing all electrical components can be a significant but necessary challenge and 

design constraint.  

With an increase in sensors comes an increase in cabling for power and 

communications, which can change the mechanical properties and dynamics of flexible 

robots. There are several approaches to addressing the effects of cabling on flexible robot 

dynamics, either in manufacturing and design, or in software. In truly flexible or soft 

robots, it is undesirable to have cabling and sensors that are many orders of magnitude 

stiffer than the control surfaces of a limb or appendage. Increasing the flexibility of 

sensors and their cabling can be done by sensor design and development and use of 

different design choices. For instance, flexible strain sensors have been developed using 

fluidic conductive traces embedded in polymers. Approaches like this, while more 

sophisticated from a design and manufacturing perspective, only minimally affect the 

stiffness of flexible and soft robots. If the manufacturing approach is infeasible, it is 

possible to model the effects of adding sensors on the kinematics and dynamics of the 
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robot on which they are instrumented. For model-based control techniques, this may be 

especially necessary. In this case, approaches in nonlinear system identification may be 

appropriate. However, with low numbers of sensors, the effect of cabling may be 

negligible. 

Biologically-inspired gaits could be further optimized to track desirable force 

trajectories, especially through algorithmic techniques in search and machine learning. 

Micro-genetic algorithms provided a good solution to search a very large parameter 

space, but do not necessarily map out the full state space. Search techniques which 

simultaneously explore and parameterize the state space (e.g. affine linear meshes [174]) 

may be of great utility in obtaining precise control of propulsive forces. Techniques in 

reinforcement learning may also be used where output forces and measured and used as 

training data. If performance is more desirable than model clarity, neural networks with 

multiple hidden layers may be used to generate accurate mappings between kinematics 

and propulsive forces with high performance on large sets of training data. If physics-

based or intuitive models are sought, techniques in nonlinear system identification may 

be best for future work. 

Hand-tracking of points on biological systems is extremely time consuming and 

laborious, but these data have immense value in the analysis of biological systems. 

Automating tracking would significantly increase the speed of data harvesting from 

biological gaits to develop robotic gaits. Automation could be enhanced by improving 

software and hardware design. On software, local feature detection in complex and 

repetitive body patterns is a major challenge. Estimating points in the presence of 

temporary occlusions (self or environment) is also necessary for many videos of animals.  
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 More development is needed to advance the perception of underwater touch, and 

research in air can serve as a roadmap for advancement. Strain differencing should be 

studied under a variety of testing conditions where the duration and location of contact 

are varied to better understand the limitations of the technique. Obstacles of different 

shapes and compliances should be presented to the platform and the effects on sensing 

should be studied. Following an active touch sensing approach, the kinematics of fins and 

beams should be optimized to understand how to probe obstacles to infer properties such 

as geometry, compliance, and dynamics. Or, in an obstacle avoidance framework, 

predictive methods could be studied to anticipate contact and respond reflexively to the 

approach strain prior to contact.  

Propulsive forces created by fins vary in magnitude and in 3d direction through 

time. Local regions of the fin also create local forces that then interact nonlinearly with 

one another and sum to create the total force of the fin. Propulsive force is thus a function 

of multiple fluid structure interactions, kinematics of multiple fin rays, dynamics of the 

webbing and fluid, etc. A useful model that relates sensory data to propulsive forces 

should be able to relate local sensors to local estimates of force. Using these local 

estimates, an estimate of total force can be obtained. If the total force is estimated, there 

is no natural way to understand how to modulate local kinematics to control the total 

force. However, if local force is estimated along with total force, it is easy to understand 

how to change local kinematics to change local force, and in turn change total force. 

Thus, models are mapped to local sensory measures to local forces, and a further model 

that maps local force to total force. 
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Appendix A Supplemental Written Materials 

 

 

8.1 Scope of the Thesis 

There are many ways in which distributed, heterogeneous, fin-intrinsic sensing 

could be used in robotic fins, including: 

a) For sensory mediated control of high speed propulsion.  

b) For characterization of the fluid environment. 

c) For sensory mediated control of low speed maneuvers and hovering. 

d) For touch sensing and interaction with obstacles. 

However, to address all four would be beyond the scope of a single thesis as these areas 

straddle multiple disciplines in engineering and several research programs in biology. All 

four of these areas have some relevance to biological systems and have implications for 

engineering applications. Two of the four identified areas were selected for the 

dissertation work and were deemed appropriate for the scope of the core research 

question. 

 There were three primary criteria that were used to evaluate whether a particular 

use of fin-intrinsic sensing was appropriate for inclusion in this thesis. The first criterion 

was that the use of fin-intrinsic sensing requires a distributed and heterogeneous sensor 

pool. A primary feature of intrinsic sensing in the fish is that the sensors are distributed 

throughout tissue, and in many other biological systems, a diverse set of sensory cell 

bodies are used to measure mechanical phenomena. In cases where a single sensor could 

do the job of a set of sensors, engineers will continue to use a single sensor rather than 
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consider multiple distributed sensors. Thus, if a use of fin-intrinsic sensing could rely on 

a single sensor or one sensor type, it was eliminated from consideration. The uses for fin-

intrinsic sensation should only be evaluated if there is not an existing engineering 

approach. The second criterion was that the use of fin-intrinsic sensing be biologically 

relevant to the fish, either behaviorally or neurologically. The goal of biologically-

inspired engineering should be to actually learn from nature before adapting it to human 

applications. If features of biological systems are adapted to engineering systems before 

being well understood, the role of these features may be misinterpreted and then the 

engineering research has no utility for biologists seeking deeper knowledge. Thus, if a 

use of fin-intrinsic sensing was not directly relevant to the fish, it was eliminated from 

consideration. The last criterion was that the use of fin-intrinsic sensation be novel, 

without significant research being pursued in the area. In this way, the research pursued 

in this thesis can make novel contributions to the state of the art in biologically-inspired 

robotics and underwater sensing. 

8.1.1 For sensory mediated control of high speed propulsion.  

It has been shown that the degree of bending in a flexible fin significantly affects its force 

production, and therefore intrinsic bending sensation can provide feedback for force 

control of fins. A recent engineering study by the author's colleagues showed that 

bending feedback could enable a flexible foil to drive at its mechanical resonance, 

maximizing the thrust force of the foil [62]. Distributed bending sensation may be enable 

further optimization of propulsive forces, as a recent study identified that bending at the 

distal tips of fins/wings of multiple animal taxa seems to occur at the same location and 

to the same magnitude when the animal is engaged in steady state locomotion [8]. Recent 
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work with robotic, compliant caudal fins suggests that maintaining a fixed phase 

difference between the base and tip of a fin may maximize its thrust production [175], 

which provides a strong argument for monitoring bending during steady state propulsion.  

Thus, fin intrinsic sensation of the base and the tips of propulsors may be of significant 

benefit for control of high speed propulsion.  

However, even though some distributed measurement may be important to 

characterize forces in high speed locomotion, the kinematic modes of high speed motions 

are relatively simple and do not require many sensors to characterize. For instance, in 

work by the author, it was shown that steady swimming forces could be predicted 

accurately (>80% accuracy) using only two bending sensors. Pressure sensors (a second 

sensing modality) were not often even required to predict propulsive force in these cases. 

Complex motions that involved the movement of multiple fin regions (such as yaw turn 

maneuvers and customized swimming gaits) required high sensor counts and multiple 

sensor types. However, high speed propulsion does not rely on multiple fin regions or 

complex kinematic patterns, so it is unlikely that the use of fin-intrinsic sensing during 

high speed propulsion would require distributed or heterogeneous sensors.  

Therefore, fin intrinsic sensation in high speed propulsion is not of primary 

importance to this thesis because it may not require a significantly distributed or 

heterogeneous sensor pool. Further, this area is not of major focus to this thesis because it 

is currently being addressed by colleagues in other funded research that focuses on the 

closed-loop control of high-speed propulsion [62]. 

8.1.2 For characterization of the fluid environment.  
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Many researchers examine the role of sensors to characterize properties of the fluid 

environment. Fluidic properties of interest have included flow speed [176], direction of 

flow [42], wakes of upstream objects [177], and properties of vortex streets [178]. During 

swimming, fluidic properties have been estimated such as vortex wake from a foil [179]. 

It has been demonstrated that flow characterization is sensitive to sensor orientation, 

spatial distributions of sensors, and the spectral sensitivities of the set of sensors [41, 

180]. 

Much of what is known about characterizing the underwater environment with 

sensors is from research into the fish lateral line sensory system. Engineers and biologists 

have investigated the role of the lateral line of fish, a sensory system comprised of 

spatially distributed flow sensors on their bodies [78]. Research of the biological lateral 

line has shown that the lateral line responds to low frequency stimuli in water, which 

include near-field moving objects, the animal’s own movements, and movements of 

surrounding fluid [180]. To characterize flows, researchers have constructed artificial 

lateral line arrays [41]. Research with artificial, engineered, lateral lines has shown that 

these sensory systems can be used to localize a fluidic dipole source [181], and even a 

crayfish’s natural vibrations [137].  

However, there is no strong biological evidence that fin intrinsic sensation in the 

sunfish is being used to sense fluidic phenomena in the environment. In the same way 

that researchers have said that a fish’s lateral line may provide a sense of “distant touch” 

to objects through their wakes [181], it could be that fin-intrinsic sensation is useful in 

mediating schooling behavior, detecting the wakes of prey or predators, or identifying 

flow properties, but there is currently little behavioral or neurobiological evidence to 
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support these assertions. It is presumable that fin intrinsic sensation could be used to 

measure and characterize coherent structures in flow, but the lack of biological evidence 

and the presence of strong existing approaches to this type of sensing (with artificial 

lateral lines) led the author to focus on more biologically-relevant, less-explored uses of 

fin intrinsic sensation in robotic fins. 

8.1.3 For sensory mediated control of low speed maneuvers and hovering.  

We expect that fin-intrinsic sensation should be most useful when trying to precisely 

control the 3d propulsive force at low speeds. The author has shown that prediction of 

propulsive forces of multiple gaits requires distributed bending and pressure sensors, and 

the complexity of kinematics increases, the number of sensors and types of sensors must 

increase to predict forces well. This is strong evidence that fin intrinsic sensing should be 

distributed and heterogeneous especially during low speed maneuvers and hovering, 

where kinematics are complex and varied. 

For the bluegill sunfish, fin kinematics must be more complex and varied at lower 

swimming speeds than at higher speeds. Sunfish are statically unstable due to their 

body’s center of buoyancy being located below its center of gravity [9]. This means that 

at low swimming speeds, or when the fish is hovering in place, it must create and control 

its 3d propulsive force through time to avoid rolling or pitching over. This requires 

complex pectoral fin kinematics, and the author has shown that the sunfish executes 

multiple (10-12) distinct kinematic patterns during hovering [23]. Further, the sunfish 

pectoral fin kinematics are frequently updated mid stroke, such that the fin will start a 

stroke by executing one pattern and then switch to another pattern before completing the 

fin beat. These complex behaviors seen during hovering suggest that local fin regions are 
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under closed-loop control and this control occurs at an update rate faster than one fin 

beat. 

Hovering is a task where fin intrinsic sensation could be very useful. If multiple 

regions of the fin are executing 3d kinematics, then the propulsive forces are the result of 

a complex, nonlinear interaction between those fin regions and the fluid. We expect that 

in order to control the forces coming from each region, it could be helpful to have 

mechanical measures from these fin regions. An extrinsic measure, such as an inertial 

sensor in the fish body, or a reaction force measure at the fin base, cannot recover the 

local forces created by the fin. For example, if multiple regions of the fin can produce 

thrust, and an extrinsic sensor sees that thrust force is low during a behavior, there is no 

immediate way to know which region of the fin is responsible, or how to update the 

kinematics to correct this issue. But with distributed bending sensors, the fin can observe 

when the bending of a particular fin region is incorrect and the control can provide a 

feedback to the fin region to increase the thrust force. In this way, having local measures 

of bending, pressure, stretch, or curvature of the fin can inform the control of the many 

degrees of freedom the fin has.  

Therefore, the primary focus of the thesis is to understand the use of fin intrinsic 

sensation during low speed maneuvers and hovering, because the application likely 

requires a distributed and heterogeneous sensor pool, and due the biological evidence of 

tighter closed-loop control during these modes of swimming. 

8.1.4 For touch sensing and interaction with obstacles. 

It is expected that fin-intrinsic sensation could be useful in sensing contact with obstacles 

in the underwater environment.  
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 Since fluidic loading affects the dynamics of fins and the dynamics of obstacles, it 

is expected that heterogeneity and distribution of sensors are both important 

characteristics for this use of fin-intrinsic sensing. In work with terrestrial whisker 

sensors, it has been shown that torque measurements from a cantilever beam can used to 

estimate the shape of a target object by striking that object multiple times at different 

points [182]. However, unlike whisker sensing, where in most cases the probe is less 

rigid than the target object [183], fins are generally more rigid than the fluid medium and 

could be more or less rigid than the objects they contact. In order to estimate the 

propulsive forces of complex fins, distributed and heterogeneous sensors are needed, and 

thus multiple sensors are required for understanding contact before the fin strikes its 

target object. Unlike a whisker sensor, multiple parts of a fin may contact an object at the 

same time and so data from a distribution of sensors could help resolve the shape of an 

object, whereas data from a single sensor may not be sufficient. Heterogeneous sensors 

may also be necessary in order to distinguish between fluidic loading and contact forces, 

which arise from different physical phenomena.  

 Since obstacle contact with pectoral fins is a behavior observed in the sunfish and 

it likely requires distributed and heterogeneous sensing, the secondary research area of 

this thesis is to understand the use of fin-intrinsic sensing during obstacle contact to 

discriminate contact loading from fluidic loading. Fish use their pectoral fins to contact 

obstacles so this behavior (and the use of fin-intrinsic sensing) has direct biological 

relevance. Additionally, very little attention has been devoted to this topic in engineering 

research, so it has significant potential for advancing the state of the art of contact sensing 

in underwater environments using robots. 
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8.2 Tracking of fins 

The analysis of sunfish fins typically begins with calibrated high speed video of 

the sunfish executing a behavior of interest. The fins of sunfish are very thin, highly 

deformable, and highly flexible and reliable marker-based tracking methods have not 

been developed. The goal from an engineering standpoint is to use high speed video to 

obtain an accurate representation of the kinematics of the pectoral fin and sunfish body. 

The video is planar, whereas the kinematics of fins are three dimensional, so transform 

techniques have been developed to map from the image coordinates to the object 

coordinates. One of the most popular methods in biological systems analysis is the direct 

linear transform (DLT). The equations of the DLT are typically given by (as in [184]): 
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where (x,y) are the coordinates of the point in the image, (δx,δy) are the errors associated 

with the coordinates, (X,Y,Z) are the coordinates of the object in space, and 

(L1,L2,…,L11) are unknown the DLT parameters of each camera. The errors (δx,δy) are 

typically optical errors with the camera and are often nonlinear functions of the lens 

distortion. 

 The unknown DLT parameters are desired in order to map from image 

coordinates to object coordinates. In this application, they are obtained using camera 

calibration methods and least-squares regression. 
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Figure 68. Interface of DLTdv5 tracking program during tracking of points on sunfish pectoral fin. Points 
along the pectoral fins were assigned by subdividing major fin rays into ten equal components. Tracking 

was performed by hand based on visual features in the fins. 

 

8.2.1 Implementation of kinematics on biorobotic fin  

The tracked 3D points were shifted from the global image frame to a local coordinate 

frame with the origin on a rigid segment of the body of the fish (Figure 69). Thus, fin 

kinematics were computed relative to a moving body frame on the fish. 
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Figure 69. Tracking points along fictive rays A through G and the local coordinate frame on body of the bluegill 
sunfish. 

 

Points along the fin are grouped into fictive rays (labeled ray A through ray F), where 

each ray starts at the proximal base of the pectoral fin and terminates at the distal tip of 

the fin. This tracking convention is typical in similar work [18, 69, 164, 185, 186] 

because it is not feasible to precisely track all 14 fin rays with current methods [143].  

Each fictive ray (A-F) is then mapped to a ray on the biorobotic fin. Details of 

this process can be found in prior work [17], but the methods are summarized here. First, 

the fin points are rotated such that the most proximal points on ray A and ray F lie in the 

yz-plane. Then the fin points are rotated to minimize the mean-square distance between 

all other points and the yz-plane at the first time instant.  

After rotations of the fin points, the center of rotation is determined for each fin 

ray about both the z- and x-axes. This is done by first projecting the ray points through 
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time onto each of the yz- and xy-planes. At each time instant, the three proximal-most 

points are fit by a linear regrtession and this process is repeated to generate a series of 

lines. A best-fit intersection point is identified (by MSE) and the center of rotation is 

identified. This process is repeated to identify a center of rotation for both z- and x-axis 

rotations, which correspond to the flap and sweep degrees of freedom of the robotic fin 

rays. A center of rotation is identified for all rays A-G, and is used to compute rotation 

vectors through time for each of the fin rays. These rotation vectors are then mapped to 

the degrees of freedom of the robot in the flap and sweep directions of actuation. 

8.2.2 Kinematic Analysis of fish fins with POD/PCA 

Point tracking is a very labor-intensive process that produces a high order representation 

of the kinematics of the sunfish pectoral fin. In prior work, as many as 63 [23] or over 

100 points [70] are tracked by hand over several dozen image frames per point in order to 

describe the kinematics of the fin membrane. The combination of several, lower-order 

processes may be sufficient to capture the important aspects of the kinematics without 

requiring perfect fidelity to the biological system. The goal of this section is to explain 

how to obtain lower order representations of the kinematics that can be evaluated to 

identify the mechanisms of force production in the pectoral fins. 

Principle component analysis (PCA) is a data analysis technique that seeks to 

obtain a reduced-dimensional representation of a high-dimensional process or dataset. 

This technique falls under the category of proper orthogonal decomposition (POD) 

methods including Karhunen-Loève decomposition and singular value decomposition 

(SVD) [187]. The fundamental idea of these methods is to find a set of orthonormal basis 

vectors such that data can be expressed sub-optimally using a reduced number of basis 
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vectors. Mean squared error (MSE) is frequently used as an optimality metric for PCA, 

such that: 

 ( ) ( )2 2
ˆE x x l E x x l   − ≤ −      

 (62) 

Where E is the expected value function, x(l) approximates a random vector x using the 

first l orthonormal basis vectors of x and GH(I) approximates x using arbitrary l basis 

vectors. In short, the mean squared error of the space spanned by l ordered basis vectors 

should be less than that of the MSE for l arbitrary basis vectors. These orthonormal basis 

vectors are often referred to as the modes of the data. 

 The method, as applied to the pectoral fin data, is carried out using the following 

procedure: 

1. Construct a matrix of displacements from the x,y,z triples of the tracking data, 

using (63) 

2. Compute the SVD of the displacement matrix and obtain singular values, using 

(64) 

3. Arrange the singular values of the SVD by magnitude from largest to smallest 

4. Determine the kinematic modes associated with largest singular values and their 

combinations 

In summary, after multiple points (x,y,z triples) are tracked on the fin, a displacement 

matrix (63) is analyzed for each kinematic pattern observed.   
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A singular value decomposition (SVD) of the above displacement matrix is given by: 

 3 3 3 3

T

n m n n n m m mX U V× × × ×∆ = Σ  (64) 

where U and V are orthogonal unitary matrices; n is the number of time steps in the 

flapping cycle, and m is the number of surface points on the pectoral fin. The singular 

values identified in the Σ matrix can be compared between kinematic patterns. This 

analysis is used to determine a reduced order (modal) description of the kinematics seen 

in swimming gaits and which features may be common among gaits.  
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Appendix B Equipment datasheets 

 

 

8.3 Major Equipment 

8.4 Actuators 

B1. Touch fin motor gearhead 



265 

 

 

  

208

RE 13 57/59 35.4 39.3 43.1 47.0 50.8

RE 13, 0.75 W 59 MR 255-257 42.5 46.4 50.2 54.1 57.9

RE 13, 0.75 W 59 MEnc 13 274 43.2 47.1 50.9 54.8 58.6

RE 13 61/63 47.6 51.5 55.3 59.2 63.0

RE 13, 2 W 63 MR 255-257 54.7 58.6 62.4 66.3 70.1

RE 13, 2 W 63 MEnc 13 274 55.4 59.3 63.1 67.0 70.8

RE 13, 1.5 W 65/67 38.5 42.4 46.2 50.1 53.9

RE 13, 1.5 W 67 MR 255-257 44.6 48.5 52.3 56.2 60.0

RE 13, 1.5 W 67 MEnc 13 274 46.5 50.4 54.2 58.1 61.9

RE 13, 3 W 69/71 50.7 54.6 58.4 62.3 66.1

RE 13, 3 W 71 MR 255-257 56.8 60.7 64.5 68.4 72.2

RE 13, 3 W 71 MEnc 13 274 58.7 62.6 66.4 70.3 74.1

A-max 12 87/88 37.6 41.5 45.3 49.2 53.0

A-max 12, 0.5 W 88 MR 255-257 41.7 45.6 49.4 53.3 57.1

RE-max 13 115/116 36.9 40.8 44.6 48.5 52.3

RE-max 13, 0.75 W 116 MR 255-257 41.6 45.5 49.3 53.2 57.0

RE-max 13 117/118 47.9 51.8 55.6 59.5 63.3

RE-max 13, 2 W 118 MR 255-257 52.6 56.5 60.3 64.2 68.0

EC 13, 6 W 141 37.4 41.3 45.1 49.0 52.8

EC 13, 12 W 142 49.6 53.5 57.3 61.2 65.0

M 1:1

110313 110314 110315 110316 110317

4.1 : 1 17 : 1 67 : 1 275 : 1 1119 : 1
57/14

3249/196
185193/2744

10556001/38416
601692057/537824

1.5 1.5 1.5 1.5 1.5

352365 352366 352367 352368 352369

5.1 : 1 26 : 1 131 : 1 664 : 1 3373 : 1
66/13

4356/169
287496/2197

18974736/28561
1252332576/371293

1.5 1.5 1.5 1.5 1.5

1 2 3 4 5

0.20 0.20 0.30 0.30 0.35

0.30 0.30 0.45 0.45 0.53

91 83 75 69 62

11 14 17 20 23

1.0 1.2 1.5 1.8 2.0

0.025 0.015 0.015 0.015 0.015

16.0 19.9 23.7 27.6 31.4

4.1 : 1 144300  131 : 1 352393

 5.1 : 1 352391  275 : 1 144303

 17 : 1 144301  664 : 1 352394

 26 : 1 352392  1119 : 1 144304

 67 : 1 144302  3373 : 1 352395

m
a
x
o

n
 g

e
a
r

maxon gear May 2011 edition / subject to change

Stock program

Standard program

Special program (on request)

overall length overall length

maxon Modular  System
+ Motor Page + Sensor / Brake Page Overall length [mm] = Motor length + gearhead length + (sensor / brake) + assembly parts

Planetary Gearhead GP 13 A 13 mm, 0.2 - 0.35 Nm

Technical Data

Planetary Gearhead straight teeth
Output shaft stainless steel, hardened
Bearing at output sleeve bearing
Radial play, 6 mm from 

�
ange max. 0.055 mm

Axial play 0.02 - 0.10 mm
Max. permissible axial load 8 N
Max. permissible force for press � ts 100 N
Sense of rotation, drive to output =
Recommended input speed < 8000 rpm
Recommended temperature range -40 ... +100°C
Number of stages 1 2 3 4 5
Max. radial load,
6 mm from � ange 8 N 12 N 16 N 20 N 20 N

Opt ion Bal l  Bear ing Or der  Num ber Technical Data

Planetary Gearhead straight teeth
Output shaft stainless steel, hardened
Bearing at output preloaded ball bearings
Radial play, 6 mm from 

�
ange max. 0.04 mm

Axial play at axial load < 5 N 0 mm
 > 5 N max. 0.04 mm
Max. permissible axial load 8 N
Max. permissible force for press � ts 25 N
Sense of rotation, drive to output =
Recommended input speed < 8000 rpm
Recommended temperature range -15 ... +100°C
 Extended range as option -35 ... +100°C
Number of stages 1 2 3 4 5
Max. radial load,
6 mm from 

�
ange 10 N 15 N 20 N 20 N 20 N

Gearhead values according to sleeve bearing version
Gearhead length: L1 + 0.2 mm

Order  Number

Gearhead Data
1 Reduction

 2 Reduction absolute

 3 Max. motor shaft diameter mm

Order  Number

1 Reduction

 2 Reduction absolute

 3 Max. motor shaft diameter mm

 4 Number of stages

 5 Max. continuous torque Nm

 6 Intermittently permissible torque at gear output Nm

 7 Max. ef � ciency %

 8 Weight g

 9 Average backlash no load °

 10 Mass inertia gcm2

11 Gearhead length L1* mm
* for A-max 12 and RE-max 13 L1 is + 0.3 mm
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B2. Touch fin motor 

 

  

Operat ing Range Comments

Continuous operation
In observation of above listed thermal resistance
(lines 17 and 18) the maximum permissible winding
temperature will be reached during continuous
operation at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

n [rpm]

m
a
x
o

n
D

C
m

o
to

r

Specif icat ions

Stock program

Standard program

Special program (on request)

Order  Number

May 2011 edition / subject to change maxon DC motor 71

maxon Modular  System Overview on page 16 - 21

RE 13 Æ13 mm, Graphite Brushes, 3 Watt

Thermal data
17 Thermal resistance housing-ambient 33 K / W
18 Thermal resistance winding-housing 7.0 K / W
19 Thermal time constant winding 4.85 s
20 Thermal time constant motor 380 s
21 Ambient temperature -20 ... +65°C
22 Max. permissible winding temperature +85°C

Mechanical data (sleeve bearings)
23 Max. permissible speed 16000 rpm
24 Axial play 0.05 - 0.15 mm
25 Radial play 0.014 mm
26 Max. axial load (dynamic) 0.8 N
27 Max. force for press fits (static) 15 N

(static, shaft supported) 80 N
28 Max. radial loading, 5 mm from flange 1.4 N

Other specifications
29 Number of pole pairs 1
30 Number of commutator segments 7
31 Weight of motor 23 g

Values listed in the table are nominal.
Explanation of the figures on page 49.

En
Æ
16
Pa

En
16
2 
Pa

En
64
2 
Pa

Recommended Electronics:
LSC 30/2 Page 282
EPOS2 Module 36/2 304
Notes 18
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B3. Touch fin motor general specifications and encoder settings 

 

Combination data

Nominal voltage V 9

No load speed min-
¹

104

Max. continuous torque Nm 0.3

Stall torque mNm 0.45

Motor data

Article No. 118635

Program

RE 13 Ø 13 mm,

Graphite Brushes, 3

Watt

Assigned power rating W 3

Nominal voltage V 9

No load speed min-
¹

13500

Stall torque mNm 10.2

Max. continuous torque mNm 2.22

Speed / torque gradient min-
¹
 / mNm-

¹
1390

No load current mA 62.5

Starting current A 1.69

Terminal resistance Ohm 5.32

Max. permissible speed min-
¹

16000

Nominal current (max. continuous current) A 0.424

Max. efficiency % 63.5

Torque constant mNm / A- ¹ 6.06

Speed constant min-
¹
 / V-

¹
1580

Mechanical time constant ms 7.66

Rotor inertia gcm
²

0.528

Terminal inductance mH 0.164

Thermal resistance housing-ambient KW-
¹

7

Thermal resistance winding-housing KW-
¹

33

Thermal time constant winding s 4.76

Motor lenght mm 34.5

Weight g 27

Gear data

Article No. 352393

Program

Planetary Gearhead

GP 13 A Ø 13 mm,

0.2 - 0.35 Nm, Metal

Version, Ball

Bearing

Reduction 131:1

No. of stages 3

Max. continuous torque Nm 0.3

I
ntermittently permissible torque at gear output Nm 0.45

Sense of rotation, drive to output =

Max. efficiency
%

75

Average backlash no load ° 1.5

Mass inertia gcm
²

0.015

Gearhead length L1 mm 23.88

Weight g 17

Max. motor shaft diameter mm 1.5

Sensor data

Article No. 323054

Program

Encoder MR, Type

S, 64 - 256 CPT, 2

Channels, with Line

Driver

Counts per turn 256

Number of channels 2

Max. operating frequency kH z 2.8125

Operating temperature range °C -25...

Weight g 0

Shaft diameter mm 0
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B4. Servomotor for pectoral fin 
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8.5 Sensors 

8.5.1 Strain gages for instrumented pectoral fin 



272 

 

 



273 

 

 

  



274 

 

8.5.2 Pressure sensors for instrumented pectoral fin 
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8.5.3 Pressure sensor amplifier 
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