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Advancing whisker based navigation through the implementation of
Bio-Inspired whisking strategies

Mohammed Salman1 and Martin J. Pearson1

Abstract— An active whisking tactile sensor array has been
successfully integrated with the RatSLAM algorithm and
demonstrated as capable of reducing error in pose estimates of
a mobile robot. A new metric for evaluating the performance
of RatSLAM is introduced in order to evaluate the impact
in performance of whisker-RatSLAM through the adoption
of a biomimetic active whisker control scheme and different
approaches to tactile sensory pre-processing. Improvements in
performance are presented and discussed with respect to how
whisker-RatSLAM could form the basis of a computationally
efficient and robust localisation and mapping algorithm to
adopt for tactile robotic exploration.

I. INTRODUCTION

The environment within burning or recently collapsed
buildings contains dense and irregular concentrations of
suspended particulates that limit the perceptual ability of
visual and laser based sensory systems. Further, the confined
and unstructured nature of such scenarios also confounds
active acoustic and near field radar sensing. Animals tend to
rely heavily on their sense of touch when navigating through
such environments [1] which serves as an intriguing exis-
tence proof for the development of artificial tactile sensory
solutions. We advocate the use of a whisker based sense of
touch due to the inherent fault tolerance and extended reach
compared to sub-cutaneous based tactile sensors modeled
on the human finger-tip. Previous work has demonstrated
that small scale regions of previously unexplored space can
be mapped and simultaneous improvements made to pose
estimates using whisker based sensors on mobile robots
[2], [3], however, large scale tactile mapping still presents
significant challenges due to scene ambiguity and memory
requirement for dense metric map representations. Here we
evaluate RatSLAM [4] as the computational basis for deriv-
ing best estimate of map and pose using an array of active
whiskers mounted as the end effector to a 6DoF manipulator.
RatSLAM was chosen due to its low computational cost
and potential for multi-modal sensory extension. Designed
originally to receive visual sensory input and based on
known principles of neural dynamics and anatomy, it has
been demonstrated robustly mapping large areas of urban
landscape [4]. Our ultimate ambition is to carry out 6D
SLAM with the whisker array being the primary sensor for
environmental perception. In this paper we describe how
an active tactile whisker array and robotic arm have been
successfully integrated with the RatSLAM algorithm and
how the performance of this system at building a map and
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Fig. 1: Whiskered head mounted on UR-10 arm and posi-
tioned above a maze used to evaluate the whisker-RatSLAM
algorithm. Inset) Individual whisker highlighting reference
frame for whisker deflection (x, y) and whisker rotation (θ)

maintaining an estimate of location can be quantified. The
robustness of the whisker-RatSLAM system was also tested
to evaluate its performance when faced with challenging
behavioral paradigms such as reverse tracking and kidnapped
robot. Finally, a metric is developed to quantify and compare
the system performance following the adoption of an active
whisker control strategy derived from direct ethological ob-
servation of rat whiskers. In summary the aim of this paper is
to show that whisker data may be integrated with RatSLAM
and that given the adoption of bio-inspired whisker strategies
the system is able to improve its SLAM performance.

II. BACKGROUND

A. RatSLAM

Given that a mobile agent is tasked with navigating an
unknown environment, there needs to be a process that
enables it to construct a map and locate itself within it. Such
a process is popularly known as Simultaneous Localization
and Mapping (SLAM) [5]. The process involves the fusion of
noisy sensory data from multiple sources in order to produce
a more precise estimate of the map and the agents pose. Most
commonly adopted SLAM algorithms are based on deriva-
tives of the Bayes filter whereby the belief of a given map and
pose are recursively updated in response to robot motion and



sensory observation (such as in Kalman and Particle filters).
In contrast to these purely probabilistic methods, RatSLAM
is based on a simplified rodent hippocampus model that
uses the principles of place, grid and head direction cells
in conjunction with visual and self motion feedback to
perform SLAM. By associating visual cues with the pose
at the time of obtaining said cues, a connection can be
made when the same visual cue is experienced. Thereby,
a correction to the current pose estimate is made possible
by recalling the pose of the previously associated visual
cue. To derive this best estimate of robot pose based on
motor command, visual cues and prior experience, RatSLAM
uses a substrate inspired by a continuous attractor model
of neural dynamics [4]. This is based on the well known
center surround pattern of neural connectivity reported in
many regions of the brain [6] which introduces an intriguing
opportunity for future exploration into how this algorithm
is physically implemented, particularly with regards to the
adoption of low powered neuromorphic computing platforms
[7].

B. Whiskers

Many small mammals use their prominent array of facial
whiskers to explore their environment through the sense of
touch. They actively move their whiskers with a rhythmic
back and forth motion (known as whisking) in order to extend
their sensory range and to palpate the surface of objects that
they encounter [8]. The regular rhythmic pattern of whisking
observed as these animals explore free space is actively
perturbed when contacts are made with unexpected objects
[9]. Specifically, a whisker that makes contact will express
Rapid Cessation of Protraction (RCP), in other words, the
whisker will be prevented from moving further forwards into
the point of contact. In addition, the whiskers that have not
made contact, for example the whiskers on the side of the
array that are contra-lateral to the contacting whisker, will
be protracted further toward the point of contact. Together
these close coupled sensorimotor responses implement a
behavioral strategy known as minimal impingement, maximal
contact [9], which, it has been proposed, attempts to max-
imise the quantity and quality of information available from
an array of whisker sensors [10]. The quantity of information
from a whisker array is increased by maximizing the fre-
quency of whisker contacts with objects in the environment
and can be clearly observed and measured. The quality of
the sensory information however is less clearly defined and
is highly dependent on the context of the current task that
is being performed. It has been suggested that RCP may
improve the quality of sensory information by normalizing
the magnitude of deflection of the whisker shaft following
contact thereby constraining the range of sensory response to
a region best suited for signal processing, however, so far this
has not be empirically demonstrated. More pragmatically, the
introduction of an RCP-like mechanism for artificial active
whiskers is desirable as it leads to a significant improvement
in physical robustness of the array due to reduced whisker
damage. Research has also shown that the frequency of

vibration of whiskers may be used in the identification of
textural features [11], which makes low noise deflection data
desirable. Therefore, by implementing a control loop that
reproduces RCP in an artificial whisker array and deploying
that model in a real world task, such as mapping in this
case to increase robustness of the system, we also have
the opportunity to quantify task performance that may be
informative to biology.

III. METHOD

Initial runs were made to determine the outcome of fusing
the whisker’s contact images with RatSLAM. A RatSLAM
specific performance metric based on experience history,
henceforth referred to as Experience Metric (ExM), is vali-
dated and used to evaluate the following experiments. Exper-
iments were then conducted to gather data sets to evaluate
any improvement in the RatSLAM algorithm performance
through the application of the biologically inspired whisker
movement strategies and the method in which whisker im-
ages are generated.

A. The platform

The Platform consists of a 6DoF robotic manipulator
(Universal Robotics UR-10) and a whiskered head module
that was mounted as its end effector as shown in Figure
1. The head module, measuring 130 × 164 × 210 mm,
consists of 18 whiskers arranged into 3 concentric circles
of 6 (measuring 50 mm, 110 mm, 160 mm in length within
each circle) that are individually driven via DC motors. Each
whisker returns three sensor readings that include the whisker
rotation angle θ, and the deflection force felt at it’s shaft
in the x and y direction, as indicated in the inset panel of
Figure 1. The robotic manipulator returns regular reports of
the absolute position of the end effector which were used
to calculate the average velocity of the end effector between
each given interval.

B. System Integration

The subsystems were integrating using the framework pro-
vided by the Robot Operating System (ROS). The RatSLAM
algorithm was adapted to work with ROS by the authors of
OpenRatSLAM [12] and initiated the appropriate listener for
streaming in the odometry and ’visual’ data.
The head module was connected, via USB, to a custom
built PC to minimise data transfer latency. However, this
subsystem was not compatible with ROS, therefore the
sensory data needed to be transferred in the form of CSV files
via the local network to a second computer that would create
the whisker image topic that OpenRatSLAM is programmed
to listen to. A similar method of editing data files across the
local network could be used for dynamically changing the
whisking parameters although for the following experiments
this was not needed.
The UR-10 arm is compatible with ROS and the manipulator
specific plug-in, MoveIt. This plug-in provides the necessary
functions for trajectory planning and calculating end effector
position, the derivative of the latter used to compute the linear



and angular velocity of the head module required to drive the
OpenRatSLAM algorithm. The raw odometry data is also
streamed to its dedicated topic and was used to reconstruct
the ground truth of robot trajectory.

C. Experimental Setup

The whiskered robot was positioned above a 1.35×1m re-
configurable maze composed of plastic walls and posts that
conform to the rules of the micromouse competition [13].
The height of the whiskered head module was fixed 7.7 cm
above the maze such that the whiskers would only make
contact with the walls during active whisking and not the
maze floor. The head module was then translated around a
maze, according to a predetermined path (shown in Figure 2)
whilst the whiskers were actively whisked at approximately
1 Hz (i.e., 1 whisk cycle per second). Following a number
of preliminary runs to tune the parameters of the RatSLAM
algorithm, a series of data sets were gathered as the head
module was moved along the predetermined path in 3 clock-
wise circuits, followed by 3 anti-clockwise circuits, and then
2 alternating clockwise, anti-clockwise circuits. Therefore,
a group of ten such circuits constituted a complete data
set; of which three were gathered with the whisking control
in open loop and three whilst the whisking was modulated
using a biomimetic model of RCP (described below). The
whisker angle (θ) and deflection vector (x, y) from each of
the 18 whiskers on the head module were sampled at 2 kHz
throughout each 10 circuit run along with the odometry from
the UR-10 arm sampled at 1 Hz. The whisker data was
processed using 2 different approaches (described below) in
order to generate a “visual” representation of the tactile scene
required by OpenRatSLAM. The odometry from the UR-
10 was converted into 2 average velocities (translation and
rotation) again required as input to the RatSLAM algorithm.
The effect of integrating the low sampled odometry resulted
in a perceived pose that was erroneous. The characterization
of this noise was calculated to have a normal distribution for
the error in linear displacement N (0, 8.2) in mm and a nor-
mal distribution for the angular displacement N (0, 1.03e−1)
in radians. The impact of this error is highlighted in the
deviation of path estimate from the ground truth shown in
Figure 2.

D. Whisker tactile to image transform

The problem of tactile representation is non trivial and
has been studied by others [14]. For our purposes we
opted to represent the tactile information as single point
contacts occurring at the tip of each whisker. The whisker
sensory data was transformed into equivalent visual images
for the RatSLAM algorithm by representing each whisker
as a pixel in a 3 × 6 pixel image. The intensity of each
pixel was proportional to the approximate vertical height of
any obstacle detected using a measure of whisker angle,
θ, at point of contact and the forward kinematics of the
specific whisker. The angle of contact was derived at the
end of each whisk cycle using 2 approaches; the first,
which we called max angle, was taken as the maximum

whisker angle reported during the cycle; the second, known
as contact angle measured when the magnitude of the first
derivative of the whisker deflection crossed a threshold as
the time of contact incidence. The angle of the whisker
at that time in the whisk cycle was then passed through
the forward kinematics to determine depth. We found that
max angle, was robust to sensor noise, however, it did reduce
the frequency of positive wall detection as the whisker must
remain in contact with the wall for the duration of the whisk
cycle. By contrast contact angle generated a larger number
of contact measurements, however, was susceptible to sensor
noise and therefore spurious observations.

E. Whisker motion control

The two modes of whisker control that were used between
the different data sets were called open-loop and RCP. Open-
loop mode consisted of simple trajectory tracking of each
whisker angle following a sinusoidal 1 Hz pattern of fixed
magnitude. RCP mode received the same desired trajectory,
however, the actual whisk angle of each whisker could also
be perturbed by local feedback from the whisker deflection
sensors themselves.The magnitude of the perturbation was
defined as the absolute average deflection, in the y direction,
that exceeded the contact threshold. The contact threshold
was calculated at time of calibration as ± twenty times the
standard deviation of the recorded noise from the mean of the
deflection data during free-whisking, i.e., whilst the whiskers
were whisking at 1 Hz in absence of any obstacles. An
increase in perturbation resulted in a decrease of whisking
amplitude, while keeping the initial whisking angle at the
start of each cycle constant. Keeping the initial whisk angle
constant is desirable as it meant the whiskers average angle
was kept slightly higher than the tallest obstacle and thus
reduced the chances of any whiskers getting trapped within
the maze’s walls.

F. OpenRatSLAM Parameters

Before assessing the performance of the algorithm with a
given data set, the OpenRatSLAM parameters need to be
tuned in order to achieve the best performance possible.
This tuning process mainly deals with two parameters, which
are the visual template matching threshold and the pose
cell inject energy. The visual template matching threshold
parameter refers to the threshold used to define whether two
separate visual templates are similar. Due to the coarseness of
the whisker image (compared to visual images) a low value
must be selected in order to prevent false matches. When
a visual template is matched, the activity in the associated
pose cell is increased (see [4] for detail). The pose cell inject
energy parameter, therefore, affects how much this activity is
increased, which in turn controls frequency of re-localisation
of the algorithm. RatSLAM tuning was achieved by reducing
the pose cell injection energy parameter to a low value
(half of what’s implemented in the iRat data set [12]) and
steadily increasing the visual template matching threshold
until RatSLAM is able to close the first loop without any
incorrect re-localizations.



Fig. 2: Actual path taken by the whisker module (circular
dashes) and the path derived from integrated odometry data
(rectangular dashes), the latter of which was cropped to only
include the first three clockwise loops. Each loop increases
in color saturation in order to show their progression in time
additionally a large circle marks the start/end of a loop.
The image highlights the effects that accumulating small
odometry error has on the estimation of robot pose and thus
a need for an adequate SLAM technique.

G. Performance Metrics

Two metrics were used to quantitatively asses the perfor-
mance of the RatSLAM algorithm. The first metric, which
we called the Experience Metric (ExM), is novel and was
designed specifically for use with the RatSLAM algorithm
while the second, Energy Metric (EM), was derived from
[15] as is a more general metric for evaluating SLAM algo-
rithms. The reasons for introducing the Experience Metric is
revealed in the results and described further in the discussion
section of this paper, here we simply describe the principles
of the new metric and the existing Energy Metric.
A bench mark visual data set was taken from an online
repository [16] (and described here [17]), to serve as a sanity
check for discussion of the more general performance of
whisker based SLAM. The iRat data set was selected because
it was derived from a similarly sized environment to the maze
used here, as well as containing ground truth pose data.

1) Experience Metric (ExM): Figure 3 shows the dynam-
ics of experiences throughout the entire run of the iRat
data set, with each experience given a unique ID number.
A dip in experience is defined as a re-localization as the
agent perceives a return to a previous pose. In order to asses
the correctness of the re-localization, a series of experiences
that define the main loop closure must be selected. This is
needed as future re-localizations return to these base set of
experiences (The experience IDs preceding the vertical line
in Figure 3). A re-localization is thus defined as being correct

Fig. 3: RatSLAM Metric Labeling. The image shows how
RatSLAM associates the agents current position and observa-
tions with an experience ID. An experience ID that is visited
more than once signifies a re-localization and is considered
correct or incorrect based on the specifications of the user
regarding their desired accuracy in pose. Novel experiences
following an incorrect re-localization are deemed invalid
as their accuracy can’t be validated until a correct re-
localization occurs.

provided the difference between its perceived and actual
position and angle are below a threshold. In order to take
into account for future trajectories through areas that have
not yet been visited, the new experiences are placed within a
set of valid experiences provided that they are preceded by a
correct re-localization. If an incorrect re-localization occurs,
experiences following it are considered invalid and future
re-localizations to this set are also considered incorrect.

ExM returns two values, the Average Rate of Re-
localization (ARR) and the Average Rate of Correct Re-
localization (ARCR). ARR is defined as the average number
of re-localizations over the total number of experiences not
including the original base set. ARCR is defined as the
average number of correct re-localizations over the total
number of re-localizations. A number close to one for both
these metrics indicates that the agent has high confidence
in its pose estimate. For the proceeding results, the thresh-
olds for position and angular accuracy were 0.1m and 25◦

respectively. The outputs are derived using Algorithm 1.
2) Energy Metric (EM): The Energy metric was derived

from [15]. The authors measured the performance of a
SLAM algorithm by defining the energy that it takes to
transform the trajectory of the agent according to the SLAM
algorithm to, ideally, the true trajectory of the agent. The
Energy Metric is defined by Equation 1 where N is the
number of relative relations (an experience point in the
RatSLAM experience map and its corresponding sample
point from the set of collected pose data). The variable δi,j is
defined in Equation 2 and is the relative transformation from
node xi to node xj . The functions trans(·) and rot(·) refer
to translation and rotation respectively. The Energy Metric
indicates a good performance by returning a low value, with
zero being a run that resulted in no error at all.



Algorithm 1: Experience Metric

1 function ExperienceMetric (E,P, ibase, δp, δθ)
Input : Experience Log E = (e1e2 . . . en)

Ground Truth Log P = (pθ,px,py)
ibase = final index of base set in E
δp = position error threshold
δθ = angular error threshold

Output: Average rate of correct relocalization ψc
Average rate of relocalization ψr

2 C = unique(E[1 : ibase]) // Remove duplicates

3 ηc, η = 0
4 rc = True
5 for i = ibase + 1 to n do
6 ei−1 = E[i− 1]
7 ei = E[i]
8 Epast = (e1 . . . ei−1)
9 κr1 = ei ∈ Epast

10 κr2 = (ei = ei−1) ∧ (ei−1 /∈ R)
11 if κr1 and not κr2 then
12 R[η] = ei // Relocalization

13 η++
14 end
15 if ei ∈ R then
16 ptrue = (px[i],py[i]) // Ground Truth

17 θtrue = (pθ[i])
18 ipast = for e in Epast[j = 1 . . . i− 1] return last

j where e = ei // Perceived

19 pperceived = (px[ipast],py[ipast])
20 θperceived = (pθ[ipast])
21 εp = norm(ptrue − pperceived) // Euclidean

22 εθ = abs(θtrue − θperceived) // Absolute

23 κc1 = (ei ∈ C) ∧ ((εp < δp) ∧ (εθ < δθ))
24 κc2 = (ei = ei−1) ∧ (ei−1 ∈ Rc)
25 if κc1 and κc2 then
26 Rc[ηc] = ei // Correct relocalization

27 ηc++
28 rc = True
29 else
30 rc = False
31 end
32 end
33 if rc then
34 if ei−1 /∈ C then
35 append C with ei−1

36 end
37 end
38 end
39 ηexp = length(E)− ibase
40 ψr = η/ηexp // ARR

41 ψc = ηc/η // ARCR

Fig. 4: Performance Metric Validation. The results show that
for a manipulated data set designed to reduce the perfor-
mance of the RatSLAM algorithm, ExM does indeed show
a reduction in performance via a reduction in the frequency
of re-localizations (ARR). This reduction of performance is
also observed by the increase in Energy Metric [15].

ε(δ) =
1

N

∑
i,j

trans
(
δi,j 	 δ∗i,j

)2
+ rot

(
δi,j 	 δ∗i,j

)2
(1)

δi,j = xj 	 xi (2)

IV. RESULTS

A. Performance Metric Evaluation

ExM was evaluated using the iRat data set. The data set
was replicated and modified by “kidnapping” the agent, i.e.,
skipping it forward to a future position, thereby creating
two data sets for comparison, the latter set should result
in a reduction of performance to confirm the correctness of
the metric. EM was also used to measure the reduction in
performance of the algorithm for comparison. The results
of this test is shown in Figure 4, which by the decrease
in ARR from the ExM and increase in EM, indicates the
expected drop in performance. The decrease in ARR may be
attributed to the fact that the chain of “visual” scenes that
leads to a re-localization was disrupted by the kidnapping
and thus temporarily prevented any re-localization. In the
case of EM, RatSLAM was penalized for not detecting the
kidnapping immediately, which led to the increase in error.
ARCR remained relatively constant, which indicated that the
RatSLAM parameters were appropriately tuned to correctly
associate “visual” templates. With confirmation of a valid
metric behavior, it was then be used for a quantitative eval-
uation of the impact on performance of whisker-RatSLAM
through the adoption of the different whisker tactile to image
transforms and whisker motion control schemes.

B. Vanilla Whisker-RatSLAM Performance

Using the simple open-loop mode of whisker control and
the max angle scheme for whisker tactile to image transform,
Whisker-RatSLAM was proven capable of accommodating



Fig. 5: Plots showing trajectory estimates derived from
whisker-RatSLAM following multiple runs of alternate robot
loop directions (clockwise in red and anticlockwise in green).
The Left) plot emphasizes how the different directions
of travel generate significantly different estimates of path
trajectory. However, this difference reduces in Right) panel
following repeated iterations of loop closure in both direc-
tions. This was due to links being made between points
of similarity in the maze leading to re-localization through
shared experiences, which was particularly apparent at the
turning points in the trajectory

the relatively sparse sensory information from the whisker
“tactile images” by demonstrating loop closure and express-
ing only a limited number of incorrect re-localizations, as in-
dicated by the transition from the erroneous path in Figure 2
to the corrected path in Figure 5. An impressive feat given the
ambiguity in the features present in the maze environment.
When faced with changes to path direction, it was observed
that for all data sets, experiences created when driven in
an anti-clockwise direction were not associated with their
clockwise counterparts, instead they were treated as unique
locations. By alternating the path direction multiple times,
the separate loops from the clockwise and anticlockwise runs
began to overlap as the agent observed similar tactile images
when rotating at corners. This scenario of overlap can be seen
in Figure 5.

C. Whisker Control

The following set of results compare the performance of
the robot when its whiskers are controlled using the open-
loop and RCP schemes described earlier.

Figure 6 shows that the adoption of RCP whisker control
improves the performance of the whiskered robot by making
frequent correct re-localizations as indicated by the increase
in ARR values from 0.1765 to 0.2257. ARCR on the other
hand remained constant regardless of the whisker control
scheme. The improvement in performance through the adop-
tion of RCP based whisker control was also measured using
EM as a decreased average measure of 0.1916 to 0.1568
across all data sets.

D. Whisker Contact Angle

The previous runs were processed such that the whisker
image was constructed based on the max angle method,

Fig. 6: RatSLAM Performance comparison between Open
Loop and RCP whisker control. Increasing ARCR and ARR
and decreasing EM indicate improvement in performance.

Fig. 7: RatSLAM Performance Results Using contact angle
- Increasing ARCR and ARR and decreasing EM indicate
improvement in performance.

the following results are however the results of the second
method contact angle.

ExM shows a clear improvement in performance with in-
creasing ARR values for both open-loop and RCP variations
as shown in Figure 7. Open-loop ARR value is also observed
to be greatly increased following the use of contact angle.
EM performance shows slight improvement in the case of
open-loop, unlike RCP, which shows a very small reduction
in performance. The visual template matching threshold was
increased during the use of contact angle, which suggested
a reduction in ’image’ ambiguity.

V. DISCUSSION

This paper reports three novel contributions; first, the
fusion of active whisker tactile data with the vision based
RatSLAM by transforming contact height detected by the
whiskers into pixel intensity; secondly, the introduction of
a RatSLAM specific performance evaluation algorithm, the
validity of which has been confirmed using the Energy



Metric from [15]; and third, an empirical evaluation of a
biomimetic whisker control strategy.

The ultimate ambition of this research is to develop a
system that is capable of building a map of its environ-
ment and maintaining an accurate estimate of its location
through whisker based touch using minimal computational
resources. Through the adoption of the RatSLAM algorithm
we have demonstrated that this light weight algorithm has
the potential for further investigation as a substrate for
efficient tactile mapping and localisation. Further, we can
now empirically evaluate the change in performance of Rat-
SLAM in response to different sensory placement strategies
and pre-processing schemes by measuring the dynamics of
experience association within the algorithm. Theoretically,
if RatSLAM were to map the environment completely it
would create no further experiences, instead associating each
new visual/tactile image with a previous experience and
therefore re-localising confidently. This condition would be
indicated by the ExM metric returning a ARR value of
1 and would be visualised in Figure 3 as an absence of
new experiences following the establishment of the initial
base set (as indicated by the red dotted line). In addition if
the algorithm were performing perfectly all re-localisations
would be deemed correct and therefore the ExM ARCR
would also be 1. This ability to decompose the performance
of the RatSLAM algorithm highlights the advantage of using
the Experience Metric over the more generic Energy Metric.

Future work includes the investigation of RatSLAM’s per-
formance given perturbations in path trajectory for multiple
loops. In the case of visual data sets, slight variations in pose
at a given location was dealt with by calculating the visual
template threshold for a set of translated images. Application
of such a strategy in regards to the whisker image needs
to be investigated in hopes of improving system robustness
for the purpose of tackling the problems associated with
navigating complex three dimensional environments. One
method includes the extraction of contact features such as
surface texture which maybe derived through analysis of
the frequency of whisker vibration following contact. A
complex undulating terrain is to be constructed in order to
conduct these investigations as well as provide an alterna-
tive scenario that can corroberate the results of this paper.
Additional whisker control strategies that have yet to be
implemented include Spread Reduction [18], which should
allow for the increase of whisking rate and thus sampling
rate of the odometry. A higher sampling rate would result in
additional contacts being made and more precise odometry
measurements, thus theoretically improving the performance
of the system. The aim of these investigations is to achieve a
performance level that satisfies the requirements for carrying
out 6D SLAM with the whisker array as the primary sensor
for environmental perception.
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