19,244 research outputs found

    A Multi-layer Routing Protocol for Mobility Management in Wireless Mesh Networks

    Get PDF
    AbstractIn the recent trends, Wireless Mesh networks are proven to be one of the emerging fields in the wireless networks. WMNs comprises of Gateways (GWs), Mesh Clients (MCs) and Mesh Routers (MRs). However, it is challenging job to provide seamless connectivity when MC moves around the network. The recent advances in the field of wireless technology created a chance to overwhelmed the disadvantages of wired and wireless networks. The mobility management in the WMNs motivated the researchers to concentrate. In this paper, we are proposing a model called as multi-layer routing protocol for WMNs. This protocol works with the data link layer and network layer for data frame transmission. The proposed algorithm is implemented with intra domain for experimental evaluation. The experimental results show the effectiveness of the routing protocol

    Design of Ad Hoc Wireless Mesh Networks Formed by Unmanned Aerial Vehicles with Advanced Mechanical Automation

    Get PDF
    Ad hoc wireless mesh networks formed by unmanned aerial vehicles (UAVs) equipped with wireless transceivers (access points (APs)) are increasingly being touted as being able to provide a flexible "on-the-fly" communications infrastructure that can collect and transmit sensor data from sensors in remote, wilderness, or disaster-hit areas. Recent advances in the mechanical automation of UAVs have resulted in separable APs and replaceable batteries that can be carried by UAVs and placed at arbitrary locations in the field. These advanced mechanized UAV mesh networks pose interesting questions in terms of the design of the network architecture and the optimal UAV scheduling algorithms. This paper studies a range of network architectures that depend on the mechanized automation (AP separation and battery replacement) capabilities of UAVs and proposes heuristic UAV scheduling algorithms for each network architecture, which are benchmarked against optimal designs.Comment: 12 page

    Distributed optimal congestion control and channel assignment in wireless mesh networks

    Get PDF
    Wireless mesh networks have numerous advantages in terms of connectivity as well as reliability. Traditionally the nodes in wireless mesh networks are equipped with single radio, but the limitations are lower throughput and limited use of the available wireless channel. In order to overcome this, the recent advances in wireless mesh networks are based on multi-channel multi-radio approach. Channel assignment is a technique that selects the best channel for a node or to the entire network just to increase the network capacity. To maximize the throughput and the capacity of the network, multiple channels with multiple radios were introduced in these networks. In the proposed system, algorithms are developed to improve throughput, minimise delay, reduce average energy consumption and increase the residual energy for multi radio multi-channel wireless mesh networks. In literature, the existing channel assignment algorithms fail to consider both interflow and intra flow interferences. The limitations are inaccurate bandwidth estimation, throughput degradation under heavy traffic and unwanted energy consumption during low traffic and increase in delay. In order to improve the performance of the network distributed optimal congestion control and channel assignment algorithm (DOCCA) is proposed. In this algorithm, if congestion is identified, the information is given to previous node. According to the congestion level, the node adjusts itself to minimise congestion

    Supporting Internet Access and Quality of Service in Distributed Wireless Ad Hoc Networks

    Get PDF
    In this era of wireless hysteria, with continuous technological advances in wireless communication and new wireless technologies becoming standardized at a fast rate, we can expect an increased interest for wireless networks, such as ad hoc and mesh networks. These networks operate in a distributed manner, independent of any centralized device. In order to realize the practical benefits of ad hoc networks, two challenges (among others) need to be considered: distributed QoS guarantees and multi-hop Internet access. In this thesis we present conceivable solutions to both of these problems. An autonomous, stand-alone ad hoc network is useful in many cases, such as search and rescue operations and meetings where participants wish to quickly share information. However, an ad hoc network connected to the Internet is even more desirable. This is because Internet plays an important role in the daily life of many people by offering a broad range of services. In this thesis we present AODV+, which is our solution to achieve this network interconnection between a wireless ad hoc network and the wired Internet. Providing QoS in distributed wireless networks is another challenging, but yet important, task mainly because there is no central device controlling the medium access. In this thesis we propose EDCA with Resource Reservation (EDCA/RR), which is a fully distributed MAC scheme that provides QoS guarantees by allowing applications with strict QoS requirements to reserve transmission time for contention-free medium access. Our scheme is compatible with existing standards and provides both parameterized and prioritized QoS. In addition, we present the Distributed Deterministic Channel Access (DDCA) scheme, which is a multi-hop extension of EDCA/RR and can be used in wireless mesh networks. Finally, we have complemented our simulation studies with real-world ad hoc and mesh network experiments. With the experience from these experiments, we obtained a clear insight into the limitations of wireless channels. We could conclude that a wise design of the network architecture that limits the number of consecutive wireless hops may result in a wireless mesh network that is able to satisfy users’ needs. Moreover, by using QoS mechanisms like EDCA/RR or DDCA we are able to provide different priorities to traffic flows and reserve resources for the most time-critical applications

    FastM: Design and Evaluation of a Fast Mobility Mechanism for Wireless Mesh Networks

    Get PDF
    Although there is a large volume of work in the literature in terms of mobility approaches for Wireless Mesh Networks, usually these approaches introduce high latency in the handover process and do not support realtime services and applications. Moreover, mobility is decoupled from routing, which leads to inefficiency to both mobility and routing approaches with respect to mobility. In this paper we present a new extension to proactive routing protocols using a fast mobility extension, FastM, with the purpose of increasing handover performance in Wireless Mesh Networks. With this new extension, a new concept is created to integrate information between neighbor wireless mesh routers, managing locations of clients associated to wireless mesh routers in a certain neighborhood, and avoiding packet loss during handover. The proposed mobility approach is able to optimize the handover process without imposing any modifications to the current IEE 802.11 MAC protocol and use unmodified clients. Results show the improved efficiency of the proposed scheme: metrics such as disconnection time, throughput, packet loss and control overhead are largely improved when compared to previous approaches. Moreover, these conclusions apply to mobility scenarios, although mobility decreases the performance of the handover approach, as expected

    Performance evaluation of WMN-GA for different mutation and crossover rates considering number of covered users parameter

    Get PDF
    Node placement problems have been long investigated in the optimization field due to numerous applications in location science and classification. Facility location problems are showing their usefulness to communication networks, and more especially from Wireless Mesh Networks (WMNs) field. Recently, such problems are showing their usefulness to communication networks, where facilities could be servers or routers offering connectivity services to clients. In this paper, we deal with the effect of mutation and crossover operators in GA for node placement problem. We evaluate the performance of the proposed system using different selection operators and different distributions of router nodes considering number of covered users parameter. The simulation results show that for Linear and Exponential ranking methods, the system has a good performance for all rates of crossover and mutation.Peer ReviewedPostprint (published version

    Performance evaluation considering iterations per phase and SA temperature in WMN-SA system

    Get PDF
    One of the key advantages of Wireless Mesh Networks (WMNs) is their importance for providing cost-efficient broadband connectivity. There are issues for achieving the network connectivity and user coverage, which are related with the node placement problem. In this work, we consider Simulated Annealing Algorithm (SA) temperature and Iteration per phase for the router node placement problem in WMNs. We want to find the optimal distribution of router nodes in order to provide the best network connectivity and provide the best coverage in a set of Normal distributed clients. From simulation results, we found how to optimize both the size of Giant Component and number of covered mesh clients. When the number of iterations per phase is big, the performance is better in WMN-SA System. From for SA temperature, when SA temperature is 0 and 1, the performance is almost same. When SA temperature is 2 and 3 or more, the performance decrease because there are many kick ups.Peer ReviewedPostprint (published version

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157
    • 

    corecore