50 research outputs found

    Data-based melody generation through multi-objective evolutionary computation

    Get PDF
    Genetic-based composition algorithms are able to explore an immense space of possibilities, but the main difficulty has always been the implementation of the selection process. In this work, sets of melodies are utilized for training a machine learning approach to compute fitness, based on different metrics. The fitness of a candidate is provided by combining the metrics, but their values can range through different orders of magnitude and evolve in different ways, which makes it hard to combine these criteria. In order to solve this problem, a multi-objective fitness approach is proposed, in which the best individuals are those in the Pareto front of the multi-dimensional fitness space. Melodic trees are also proposed as a data structure for chromosomic representation of melodies and genetic operators are adapted to them. Some experiments have been carried out using a graphical interface prototype that allows one to explore the creative capabilities of the proposed system. An Online Supplement is provided and can be accessed at http://dx.doi.org/10.1080/17459737.2016.1188171, where the reader can find some technical details, information about the data used, generated melodies, and additional information about the developed prototype and its performance.This work was supported by the Spanish Ministerio de Educación, Cultura y Deporte [FPU fellowship AP2012-0939]; and the Spanish Ministerio de Economía y Competitividad project TIMuL supported by UE FEDER funds [No. TIN2013–48152–C2–1–R]

    Enhanced face detection framework based on skin color and false alarm rejection

    Get PDF
    Fast and precise face detection is a challenging task in computer vision. Human face detection plays an essential role in the first stage of face processing applications such as recognition tracking, and image database management. In the applications, face objects often come from an inconsequential part of images that contain variations namely different illumination, pose, and occlusion. These variations can decrease face detection rate noticeably. Besides that, detection time is an important factor, especially in real time systems. Most existing face detection approaches are not accurate as they have not been able to resolve unstructured images due to large appearance variations and can only detect human face under one particular variation. Existing frameworks of face detection need enhancement to detect human face under the stated variations to improve detection rate and reduce detection time. In this study, an enhanced face detection framework was proposed to improve detection rate based on skin color and provide a validity process. A preliminary segmentation of input images based on skin color can significantly reduce search space and accelerate the procedure of human face detection. The main detection process is based on Haar-like features and Adaboost algorithm. A validity process is introduced to reject non-face objects, which may be selected during a face detection process. The validity process is based on a two-stage Extended Local Binary Patterns. Experimental results on CMU-MIT and Caltech 10000 datasets over a wide range of facial variations in different colors, positions, scales, and lighting conditions indicated a successful face detection rate. As a conclusion, the proposed enhanced face detection framework in color images with the presence of varying lighting conditions and under different poses has resulted in high detection rate and reducing overall detection time

    Assembly sequence planning using hybrid binary particle swarm optimization

    Get PDF
    Assembly Sequence Planning (ASP) is known as a large-scale, timeconsuming combinatorial problem. Therefore time is the main factor in production planning. Recently, ASP in production planning had been studied widely especially to minimize the time and consequently reduce the cost. The first objective of this research is to formulate and analyse a mathematical model of the ASP problem. The second objective is to minimize the time of the ASP problem and hence reduce the product cost. A case study of a product consists of 19 components have been used in this research, and the fitness function of the problem had been calculated using Binary Particle Swarm Optimization (BPSO), and hybrid algorithm of BPSO and Differential Evolution (DE). The novel algorithm of BPSODE has been assessed with performance-evaluated criteria (performance measure). The algorithm has been validated using 8 comprehensive benchmark problems from the literature. The results show that the BPSO algorithm has an improved performance and can reduce further the time of assembly of the 19 parts of the ASP compared to the Simulated Annealing and Genetic Algorithm. The novel hybrid BPSODE algorithm shows a superior performance when assessed via performance-evaluated criteria compared to BPSO. The BPSODE algorithm also demonstrated a good generation of the recorded optimal value for the 8 standard benchmark problems

    A survey of qualitative spatial representations

    Get PDF
    Representation and reasoning with qualitative spatial relations is an important problem in artificial intelligence and has wide applications in the fields of geographic information system, computer vision, autonomous robot navigation, natural language understanding, spatial databases and so on. The reasons for this interest in using qualitative spatial relations include cognitive comprehensibility, efficiency and computational facility. This paper summarizes progress in qualitative spatial representation by describing key calculi representing different types of spatial relationships. The paper concludes with a discussion of current research and glimpse of future work

    An Analysis on the Applicability of Meta-Heuristic Searching Techniques for Automated Test Data Generation in Automatic Programming Assessment

    Get PDF
    حظي تقييم البرمجة التلقائي (APA) بالكثير من الاهتمام بين الباحثين بشكل أساسي لدعم الدرجات الآلية ووضع علامات على المهامالمكلف بادائها الطلاب أو التدريبات بشكل منهجي. يتم تعريف APA بشكل شائع كطريقة يمكن أن تعزز الدقة والكفاءة والاتساق وكذلك تقديمملاحظات فورية لحلول للطلاب. في تحقيق APA ، تعد عملية إنشاء بيانات الاختبار مهمة للغاية وذلك لإجراء اختبار ديناميكي لمهمةالطلاب. في مجال اختبار البرمجيات ، أوضحت العديد من الأبحاث التي تركز على توليد بيانات الاختبار نجاح اعتماد تقنيات البحث الفوقية(MHST) من أجل تعزيز إجراءات استنباط بيانات الاختبار المناسبة للاختبار الفعال. ومع ذلك، فإن الأبحاث التي أجريت على APA حتىالآن لم تستغل بعد التقنيات المفيدة لتشمل تغطية اختبار جودة برنامج أفضل. لذلك ، أجرت هذه الدراسة تقييماً مقارنا لتحديد أي تقنية بحثفوقي قابلة للتطبيق لدعم كفاءة توليد بيانات الاختبار الآلي (ATDG) في تنفيذ اختبار وظيفي ديناميكي. في تقييم البرمجة التلقائي يتم تضمينالعديد من تقنيات البحث الفوقية الحديثة في التقييم المقارن الذي يجمع بين كل من خوارزميات البحث المحلية والعالمية من عام 2000 حتىعام 2018 .تشير نتيجة هذه الدراسة إلى أن تهجين Cuckoo Search مع Tabu Search و lévy flight كواحدة من طرق البحث الفوقية الواعدةليتم تطبيقها ، حيث أنه يتفوق على الطرق الفوقية الأخرى فيما يتعلق بعدد التكرارات ونطاق المدخلات.Automatic Programming Assessment (APA) has been gaining lots of attention among researchers mainly to support automated grading and marking of students’ programming assignments or exercises systematically. APA is commonly identified as a method that can enhance accuracy, efficiency and consistency as well as providing instant feedback on students’ programming solutions. In achieving APA, test data generation process is very important so as to perform a dynamic testing on students’ assignment. In software testing field, many researches that focus on test data generation have demonstrated the successful of adoption of Meta-Heuristic Search Techniques (MHST) so as to enhance the procedure of deriving adequate test data for efficient testing. Nonetheless, thus far the researches on APA have not yet usefully exploited the techniques accordingly to include a better quality program testing coverage. Therefore, this study has conducted a comparative evaluation to identify any applicable MHST to support efficient Automated Test Data Generation (ATDG) in executing a dynamic-functional testing in APA. Several recent MHST are included in the comparative evaluation combining both the local and global search algorithms ranging from the year of 2000 until 2018. Result of this study suggests that the hybridization of Cuckoo Search with Tabu Search and lévy flight as one of promising MHST to be applied, as it’s outperforms other MHST with regards to number of iterations and range of inputs

    Human face detection techniques: A comprehensive review and future research directions

    Get PDF
    Face detection which is an effortless task for humans are complex to perform on machines. Recent veer proliferation of computational resources are paving the way for a frantic advancement of face detection technology. Many astutely developed algorithms have been proposed to detect faces. However, there is a little heed paid in making a comprehensive survey of the available algorithms. This paper aims at providing fourfold discussions on face detection algorithms. At first, we explore a wide variety of available face detection algorithms in five steps including history, working procedure, advantages, limitations, and use in other fields alongside face detection. Secondly, we include a comparative evaluation among different algorithms in each single method. Thirdly, we provide detailed comparisons among the algorithms epitomized to have an all inclusive outlook. Lastly, we conclude this study with several promising research directions to pursue. Earlier survey papers on face detection algorithms are limited to just technical details and popularly used algorithms. In our study, however, we cover detailed technical explanations of face detection algorithms and various recent sub-branches of neural network. We present detailed comparisons among the algorithms in all-inclusive and also under sub-branches. We provide strengths and limitations of these algorithms and a novel literature survey including their use besides face detection

    Agent-Based Modeling of Host-Pathogen Systems: The Successes and Challenges

    Full text link
    Agent-based models have been employed to describe numerous processes in immunology. Simulations based on these types of models have been used to enhance our understanding of immunology and disease pathology. We review various agent-based models relevant to host-pathogen systems and discuss their contributions to our understanding of biological processes. We then point out some limitations and challenges of agent-based models and encourage efforts towards reproducibility and model validation.Comment: LaTeX, 12 pages, 1 EPS figure, uses document class REVTeX 4, and packages hyperref, xspace, graphics, amsmath, verbatim, and SIunit
    corecore