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ABSTRACT 

 

 

 

 

Assembly Sequence Planning (ASP) is known as a large-scale, time-

consuming combinatorial problem.  Therefore time is the main factor in production 

planning.  Recently, ASP in production planning had been studied widely especially 

to minimize the time and consequently reduce the cost.  The first objective of this 

research is to formulate and analyse a mathematical model of the ASP problem.  The 

second objective is to minimize the time of the ASP problem and hence reduce the 

product cost.  A case study of a product consists of 19 components have been used in 

this research, and the fitness function of the problem had been calculated using 

Binary Particle Swarm Optimization (BPSO), and hybrid algorithm of BPSO and 

Differential Evolution (DE).  The novel algorithm of BPSODE has been assessed 

with performance-evaluated criteria (performance measure).  The algorithm has been 

validated using 8 comprehensive benchmark problems from the literature.  The 

results show that the BPSO algorithm has an improved performance and can reduce 

further the time of assembly of the 19 parts of the ASP compared to the Simulated 

Annealing and Genetic Algorithm.  The novel hybrid BPSODE algorithm shows a 

superior performance when assessed via performance-evaluated criteria compared to 

BPSO.  The BPSODE algorithm also demonstrated a good generation of the 

recorded optimal value for the 8 standard benchmark problems.   
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ABSTRAK 

 

 

 

 

 Perancangan Jujukan Pemasangan (ASP) dikenali sebagai masalah 

kombinatorik berskala besar yang memakan masa.  Oleh itu masa adalah faktor 

utama dalam perancangan pengeluaran.  Baru-baru ini, ASP dalam perancangan 

pengeluaran telah dikaji secara meluas terutamanya untuk meminimumkan masa dan 

seterusnya mengurangkan kos.  Objektif pertama penyelidikan ini ialah merumus and 

menganalisa model matematik bagi masalah ASP. Objektif kedua ialah untuk 

meminimumkan masa bagi masalah ASP dan seterusnya mengurangkan kos produk.  

Satu kajian kes bagi satu produk yang terdiri dari 19 komponen telah digunakan di 

dalam penyelidikan ini, dan algoritma Particle Swarm Optimization (BPSO) serta 

algoritma hibrid yang terdiri dari BPSO dan Differential Evolution (DE) telah diguna 

untuk mengira fungsi kecergasan bagi masalah ASP tersebut. Algoritma baru 

BPSODE dinilai menggunakan kriteria ukuran prestasi. Algoritma BPSODE ini 

disahkan dengan menggunakan 8 masalah penanda aras yang komprehensif yang ada 

di dalam literatur.  Keputusan menunjukkan bahawa algoritma BPSO mempunyai 

prestasi yang lebih baik dan boleh mengurangkan lagi masa pemasangan bagi ASP 

dengan 19 bahagian berbanding dengan algoritma Simulated Annealing dan  Genetic 

Algorithm.  Algoritma hibrid baru BPSODE menunjukkan prestasi yang cemerlang 

berbanding dengan BPSO apabila dinilai menggunakan kriteria ukuran prestasi. 

Algoritma BPSODE juga menunjukkan penjanaan nilai rakaman optimum yang 

bagus bagi 8 masalah penanda aras piawai.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background  

 

 

Assembly Sequence Planning (ASP) is a very well known problem of 

scheduling of the production process, which has been identified in the field of 

Computational Complexity Theory as a strongly Nondeterministic Polynomial time 

problem, and it is considered among the researchers in the field of softcomputing 

field as a best example of a mathematically complex problem especially when the 

number of components of a product increased.  The essential characteristic of ASP is 

to find the best sequence of tasks in any assembly process in the assembly line, in 

order to reduce the time of putting the components together, or cut off the process 

cost (HongGuang, and Cong, 2010). 

 

 

The three words assembly sequence planning (ASP) determines the product’s 

parts sequence and the details of the process of the assembly operations that put 

together each and every individual part of the product into an assembly (Bourjault, 

1984; De Fazio and Whitney, 1987; Homen de Mello and Sanderson, 1990; 1991a).  

The plan of the assembly has a teremendous impact on the production process 
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efficiency and costs.  There are products consist of 13 components as illustrated in 

Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  An assembly product, which consist of 13 components. 
Source: (Hong and Cho, 1999) 

 

The scheduling of production is a complex not perfect process, such that 

multi-variety, low-batch flow-shop scheduling for makespan minimization become 

extreme complex and become progressively sophisticated as hundreds of 

components were engaged (Hejazi and Saghafian, 2005; Kemal et al., 2007).  The 

biggest part of manufacturing workload is assembly.  Incorporating design, planning, 

production, and procurement lead to improvement of product development process 

by cutoff the time and cost of the developed product.  The product order of assembly 

is the main focus of ASP to determine, which is subjected to a precedence constraint 

matrix (PM) that is to be strictly followed in the assembly line to shorten the 

assembly time and concequently minimizing the assembly cost. 

 

 

 

1.2 Problem Statement  

 

 

Sequence planning is an important problem in designing an assembly line.  It 

is to determine an order of assembly tasks to be performed sequencially.  The time 
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incurred due to the assembly of the product, play a very important factor in the 

product cost.  The main contribution of this thesis is to minimize the time of 

assembly, which concequently will lead to a reduction of the product cost. 

 

 

In assembly planning many parameters must be taken in consideration 

(Bourjault, 1984; De Fazio and Whitney, 1987; Homen de Mello and Sanderson, 

1990; 1991a; 1991b).  These parameters are important in the manufacturing process 

such as the physical geometric design of an assembly must be examined in prior to 

confirm a sequence that is feasible for assembly; that is the parts does not collide 

with each other or parts stacking.  The assembly process would not be successful 

without modification to be done to the assembly process.   

 

 

Assembly sequences for the components in a product that can create the 

complete product in practice; are those named feasible assembly sequences.  Out of 

all feasible assembly sequences, plan for sequencing assembly is frequently reduced 

to search for the optimal, or a sub optimal sequence of assembly.  The optimum or 

sub optimum sequence is the sequence with the optimum or a partial optimum for 

total assembly time, used resources, or combinations of these properties. 

 

 

A detailed information related to the assembly process during the 

manufacturing operation is required in order to find the precedence relation between 

components, that is usually may not be available in the product model.  Mainly 

computer tools are used to gather the relation between components, even though 

sometimes it could be done through interrogating a human assembly planner.  The 

physical shape description of the assemblage will constitute the inputs to the 

computer tools, with some times simple interconnections amongst units.  The parts 

interconnections are classified whether these matings are fixed or not and whether 

components mate with each other (Gottschlich et al., 1994) provided an overview of 

techniques in assembly sequence planning. 
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A good assembly sequence can be achieved by considering few parameters 

such as tool changing and tool complexity, reorientation, directionality, stability, 

manipulability, and parallelism of assembly operations.  Those factors certified a 

high quality sequence relating to efficient of sequence, costing, assembly safety, and 

safety of workers in regards to the operations (Homen de Mello and Sanderson, 

1991a; Waarts et al., 1992; Ben-Arieh and Kramer, 1994; Xu et al., 1994; Dini and 

Santochi, 1992; Lee and Ko, 1987; Lin and Chang, 1991).  The production engineers 

target is to make the assembly process more easy, and that objective can be achieved 

by automating the generation of the assembly process (Ben-Arieh, 1994; Shpitalni et 

al., 1989; Lee and Shin, 1988; Bullinger and Ammer, 1984; Wolter, 1990; De 

Floriani, 1989;).  The sequence of the assembly is the spine of any assembly process, 

in that sense, generating sequencing automatically is the main target of this research. 

 

 

In this thesis, the differences between the two terms parts and components 

will be explained to avoid confusion, as both terms will be frequently used.  A part 

constitues the smallest unit within a product; it cannot be subdivided into smaller 

units.  The set of parts constitues a component is stable, i.e. it does not fall into 

pieces during assembly process.  The part is also considered as component because it 

is always stable.   

 
 

 

 

1.3 Research Objectives 

 
 

The objectives of this research can be summarized as follows: 

 

1. To formulate and analyse the Assembly Sequence Planning (ASP) model. 

2. To minimize the time of assembly sequence using hybrid Binary Particle Swarm 

Optimization (BPSO) and Differential Evolution (DE) algorithms.   

3. The algorithm will be assessed using performance-evaluated criteria, and 

validated via 8 standard benchmark problems from the literature. 
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1.4 Research methodology 

 

 

To date various methods have been developed and introduced to solve the 

problem of assembly sequence planning (ASP), by minimizing the time of assembly 

and consequently reducing the cost of manufacturing.  It was decided that the best 

method to adopt for this investigation was to hybrid a two well-known algorithms 

that are Binary Particle Swarm Optimization (BPSO) and Differential Evolution 

(DE). 

 

A case study approach which consist of a product consist of 19 components, 

at which each part of the product assembly was labelled by a number from 1 to 19 

without going into the physical diagram details of the product.  The table of 

constraints that restrict the assembly of the parts will ensure the production of 

feasible sequences.  At first a thorough analysis to the formulated ASP model will be 

performed and the formula would be modified in order to use it in the algorithms of 

optimization to search for the minimum time of sequences assembly of the product.  

Any sequences that did not follow strictly the rules of the assembly constraints will 

be considered as infeasible sequences and should be discarded.  The search for 

feasible sequences will be attchieved by implementing a meta-heuristic algorithm 

known as binary particle swarm optimization (BPSO).  The global best optimum 

value obtained by the BPSO algorithm will be used as an input to the differential 

evolution algorithm (DE) to obtain the best minimum value of time. 

 

 

 A standard performance measures from literature will be used to evaluate the 

efficiency and performance of the hyprid algorithm (BPSODE) compared to 

Simulated Annealing (SA) and Genetic algorithm (GA) that been used to solve the 

ASP problem.  The algorithm will be validated by using the hybrid algorithm 

(BPSODE) to solve eight standard problems from the literature. 
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1.5 Research scope and limitation 

 

 

1. The investigation is performed on an assembly product from industry that its 

components to be assembled were labelled by numbers instead of real 

pictures of the product (Motavalli, S. Islam, A. 1997; Choi et al., 2009). 

2. Optimization of the time of total assembly sequences and the total number of 

tool changing will be considered. 

3. The constraints of the assembly design are the precedence relationships 

between the components subjected to the assembly process. 

4. Eight Benchmark functions widely used in the literature will be implemented 

to validate the algorithm. 

5. The programming language implemented is Matlab and Delfi. 

 

 

1.6 Thesis organization 

 

 

 Chapter 1 provides a brief overview of the assembly sequence planning 

problem and the previous work done to solve it.  The importance of the assembly 

part of the manufacturing was highlighted, as well the factors that have to be taken 

strictly into consideration in order to obtain a feasible sequences.  Good feasible 

sequences leads to a minimum value of time of assembly and accordingly reduction 

of the cost of the manufacturing process.  The research scope and limitation were 

introduced to bring a clear idea about the strength and weaknesses of the research. 

 

 

Chapter 2 introduced the nature of the ASP problem and the different 

techniques that have been used by different researchers to tackle the problem.  It 

clarify how the assembly sequences is more difficult than finding disassembly 

sequences.  It introduced briefly the assembly modeling, using CAD and the 

functional precedence constraints amongst the connections, the exact method used 

after that, and then provides an overview of the stochastic techniques used, and the 

meta-heurastic methods implemented to solve ASP. 
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 Chapter 3 explained in more details the methodology implemented in order to 

solve the ASP problem.  First the ASP problem was formulated and analysed 

mathematically, and the strategies implemented to diversify the feasible sequences 

obtained by the searching algorithms.  The case study used, that consist of 19 

components and the parameters that considered, such as the precedence constraints 

and the coefficient table data implemented.  A detailed overview of the particle 

swarm optimization (PSO), the binary PSO, the differential evolution (DE) and the 

proposed hybrid method that labelled as (BPOSDE). 

 
 
 Chapter 4 discussed in details the obtained results by the research, and 

demonstrates the simulation graphs in conjunction with thorough analysis.  The 

results generated by the first to implement (in this thesis); algorithm Binary PSO to 

solve Assembly Sequence Planning (ASP) is demonstrated, analysed thoroughly, and 

compared with another algorithm of Genetic Algorithm (GA) and Simulated 

Annealing (SA), which shows a better optimal time.  The result of the novel hybrid 

algorithm BPSODE is is introduced, and its performance-evaluated criteria are 

justified, and the algorithm validation is proven through the implementation of 

standard well known 8 benchmark problems from the literature.  The novel algorithm 

managed to generate the benchmark problems optimum values as recorded in the 

literature. 

 
 
 Chapter 5 discussed the formula modification of the fitness function of the 

ASP problem by analysing the actual assembly time of a number of feasible 

sequences from the literature.  It is also discussed the results obtained by Binary PSO 

in a comparison with genetic algorithm and simulated annealing algorithm in solving 

the ASP.  This chapter discussed the investigation of the effects of the control 

parameter of PSO algorithm.  It summarizes and reflects the major contributions of 

the proposed approaches BPSO and BPSODE in solving ASP.  A discussion was 

given related to the hybrid algorithm (BPSODE) assessment using performance-

evaluated criteria (performance measure), and discussed the algorithm validation by 

testing the BPSODE via 8 standard benchmark problems from the literature. 
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