12 research outputs found

    Retinal vessel segmentation using textons

    Get PDF
    Segmenting vessels from retinal images, like segmentation in many other medical image domains, is a challenging task, as there is no unified way that can be adopted to extract the vessels accurately. However, it is the most critical stage in automatic assessment of various forms of diseases (e.g. Glaucoma, Age-related macular degeneration, diabetic retinopathy and cardiovascular diseases etc.). Our research aims to investigate retinal image segmentation approaches based on textons as they provide a compact description of texture that can be learnt from a training set. This thesis presents a brief review of those diseases and also includes their current situations, future trends and techniques used for their automatic diagnosis in routine clinical applications. The importance of retinal vessel segmentation is particularly emphasized in such applications. An extensive review of previous work on retinal vessel segmentation and salient texture analysis methods is presented. Five automatic retinal vessel segmentation methods are proposed in this thesis. The first method focuses on addressing the problem of removing pathological anomalies (Drusen, exudates) for retinal vessel segmentation, which have been identified by other researchers as a problem and a common source of error. The results show that the modified method shows some improvement compared to a previously published method. The second novel supervised segmentation method employs textons. We propose a new filter bank (MR11) that includes bar detectors for vascular feature extraction and other kernels to detect edges and photometric variations in the image. The k-means clustering algorithm is adopted for texton generation based on the vessel and non-vessel elements which are identified by ground truth. The third improved supervised method is developed based on the second one, in which textons are generated by k-means clustering and texton maps representing vessels are derived by back projecting pixel clusters onto hand labelled ground truth. A further step is implemented to ensure that the best combinations of textons are represented in the map and subsequently used to identify vessels in the test set. The experimental results on two benchmark datasets show that our proposed method performs well compared to other published work and the results of human experts. A further test of our system on an independent set of optical fundus images verified its consistent performance. The statistical analysis on experimental results also reveals that it is possible to train unified textons for retinal vessel segmentation. In the fourth method a novel scheme using Gabor filter bank for vessel feature extraction is proposed. The ii method is inspired by the human visual system. Machine learning is used to optimize the Gabor filter parameters. The experimental results demonstrate that our method significantly enhances the true positive rate while maintaining a level of specificity that is comparable with other approaches. Finally, we proposed a new unsupervised texton based retinal vessel segmentation method using derivative of SIFT and multi-scale Gabor filers. The lack of sufficient quantities of hand labelled ground truth and the high level of variability in ground truth labels amongst experts provides the motivation for this approach. The evaluation results reveal that our unsupervised segmentation method is comparable with the best other supervised methods and other best state of the art methods

    Advanced image processing techniques for detection and quantification of drusen

    Get PDF
    Dissertation presented to obtain the degree of Doctor of Philosophy in Electrical Engineering, speciality on Perceptional Systems, by the Universidade Nova de Lisboa, Faculty of Sciences and TechnologyDrusen are common features in the ageing macula, caused by accumulation of extracellular materials beneath the retinal surface, visible in retinal fundus images as yellow spots. In the ophthalmologists’ opinion, the evaluation of the total drusen area, in a sequence of images taken during a treatment, will help to understand the disease progression and effectiveness. However, this evaluation is fastidious and difficult to reproduce when performed manually. A literature review on automated drusen detection showed that the works already published were limited to techniques of either adaptive or global thresholds which showed a tendency to produce a significant number of false positives. The purpose for this work was to propose an alternative method to automatically quantify drusen using advanced digital image processing techniques. This methodology is based on a detection and modelling algorithm to automatically quantify drusen. It includes an image pre-processing step to correct the uneven illumination by using smoothing splines fitting and to normalize the contrast. To quantify drusen a detection and modelling algorithm is adopted. The detection uses a new gradient based segmentation algorithm that isolates drusen and provides basic drusen characterization to the modelling stage. These are then fitted by Gaussian functions, to produce a model of the image, which is used to compute the affected areas. To validate the methodology, two software applications, one for semi-automated (MD3RI) and other for automated detection of drusen (AD3RI), were implemented. The first was developed for Ophthalmologists to manually analyse and mark drusen deposits, while the other implemented algorithms for automatic drusen quantification.Four studies to assess the methodology accuracy involving twelve specialists have taken place. These compared the automated method to the specialists and evaluated its repeatability. The studies were analysed regarding several indicators, which were based on the total affected area and on a pixel-to-pixel analysis. Due to the high variability among the graders involved in the first study, a new evaluation method, the Weighed Matching Analysis, was developed to improve the pixel-to-pixel analysis by using the statistical significance of the observations to differentiate positive and negative pixels. From the results of these studies it was concluded that the methodology proposed is capable to automatically measure drusen in an accurate and reproducible process. Also, the thesis proposes new image processing algorithms, for image pre-processing, image segmentation,image modelling and images comparison, which are also applicable to other image processing fields

    Accelerating precision ophthalmology: recent advances

    Get PDF
    Introduction: The future of ophthalmology is precision medicine. With a growing incidence of lifestyle-associated ophthalmic disease such as diabetic retinopathy, the use of technology has the potential to overcome the burden on clinical specialists. Advances in precision medicine will help improve diagnosis and better triage those with higher clinical need to the appropriate experts, as well as providing a more tailored approach to treatment that could help transform patient management. Areas covered: A detailed literature review was conducted using OVID Medline and PubMed databases to explore advances in precision medicine within the areas of retinal disease, glaucoma, cornea, cataracts and uveitis. Over the last three years [2019–2022] are explored, particularly discussing technological and genomic advances in screening, diagnosis, and management within these fields. Expert opinion: Artificial intelligence and its subspecialty deep learning provide the most substantial ways in which diagnosis and management of ocular diseases can be further developed within the advancing field of precision medicine. Future challenges include optimal training sets for algorithms and further developing pharmacogenetics in more specialized areas

    Detection of pathologies in retina digital images an empirical mode decomposition approach

    Get PDF
    Accurate automatic detection of pathologies in retina digital images offers a promising approach in clinicalapplications. This thesis employs the discrete wavelet transform (DWT) and empirical mode decomposition (EMD) to extract six statistical textural features from retina digital images. The statistical features are the mean, standard deviation, smoothness, third moment, uniformity, and entropy. The purpose is to classify normal and abnormal images. Five different pathologies are considered. They are Artery sheath (Coat’s disease), blot hemorrhage, retinal degeneration (circinates), age-related macular degeneration (drusens), and diabetic retinopathy (microaneurysms and exudates). Four classifiers are employed; including support vector machines (SVM), quadratic discriminant analysis (QDA), k-nearest neighbor algorithm (k-NN), and probabilistic neural networks (PNN). For each experiment, ten random folds are generated to perform cross-validation tests. In order to assess the performance of the classifiers, the average and standard deviation of the correct recognition rate, sensitivity and specificity are computed for each simulation. The experimental results highlight two main conclusions. First, they show the outstanding performance of EMD over DWT with all classifiers. Second, they demonstrate the superiority of the SVM classifier over QDA, k-NN, and PNN. Finally, principal component analysis (PCA) was employed to reduce the number of features in hope to improve the accuracy of classifiers. We find that there is no general and significant improvement of the performance, however. In sum, the EMD-SVM system provides a promising approach for the detection of pathologies in digital retina

    Accelerating precision ophthalmology: recent advances

    Get PDF
    Introduction The future of ophthalmology is precision medicine. With a growing incidence of lifestyle-associated ophthalmic disease such as diabetic retinopathy, the use of technology has the potential to overcome the burden on clinical specialists. Advances in precision medicine will help improve diagnosis and better triage those with higher clinical need to the appropriate experts, as well as providing a more tailored approach to treatment that could help transform patient management. Areas covered A detailed literature review was conducted using OVID Medline and PubMed databases to explore advances in precision medicine within the areas of retinal disease, glaucoma, cornea, cataracts and uveitis. Over the last three years [2019 – 2022] are explored, particularly discussing technological and genomic advances in screening, diagnosis, and management within these fields. Expert opinion Artificial intelligence and its subspecialty deep learning provide the most substantial ways in which diagnosis and management of ocular diseases can be further developed within the advancing field of precision medicine. Future challenges include optimal training sets for algorithms and further developing pharmacogenetics in more specialized areas

    Psychiatric Case Record

    Get PDF
    Bipolar Disorder-Mania: Patient was apparently normal one-month back, Then all of a sudden he developed sleep disturbances –mainly difficult in initiation of sleep. He also started abusing his family members for unwanted things. Subsequently, he started talking excessively and irritable. Sometimes he sings film songs and dances. He used to say that God Supreme exists in himself and so he has all the powers of Almighty. With that superior power he says that he can solve all the problems in this world. He also says that he has invented herbs to keep people young. For the past one week, he talks excessively without having an hour of sleep & wanders here and there & found excessively smoking. He becomes excessively spiritual and goes to near by villages for offering prayers to God. He takes only a little food everyday and he is very much keen in personal cleanliness. Paranoid Schizophrenia: She was apparently normal 8 months back, then she developed sleep disturbances in the form of difficult in falling asleep. She was found talking & smiling to herself at night & day with mirror gazing. She started saying that her neighbour & relatives are planning to kill herself by poisoning. In this context she had frequent quarrels with them and she refused to take food prepared by her mother in law. She left the home at night without informing any one and started wandering in the road side near her home. She was complaining that she hears voices as if her neighbour & relatives were talking about her among themselves She was not doing house hold activities for past 6 months and she was not taking care of her child. Her personal hygiene was very much deteriorated slowly as she used to take bath & brush, only if she was asked to do so. She started abusing & assaulting the strangers and family members. Generalised Anxiety Disorder: Six months back he was apparently normal. He is working as a system analyst in a private bank . He had once, made a mistake in his bank work for which he was given charges by his employer, followed this event he becomes very tense and afraid whenever his boss called him. He is very cautious that he should not commit any mistakes. Even though he is not doing so, he fears that he may commit some mistake in his work. At that moment he develops palpitation, giddiness, breathlessness, excessive sweating over palms and soles. Slowly these symptoms present through out the day even when he was not in his office, and he could not control his fearfulness. For the past 6 months he didn’t sleep well. His sleep is disturbed by bad dreams. Recurrent Depressive Disorder: Patient was apparently alright 2 months back. Then she developed sleep disturbances particularly early morning awakening, she use to wake up by 3.00 am and use to brood about herself and started crying. She was not doing her domestic work as before, as she felt excess tiredness and use to take frequent rests. She developed poor communication. She had lost her interest in pleasurable activities and was not interested in watching TV, and attending family gatherings. She stayed aloof most of the time & calm, quiet and withdrawn. She was expressing her helplessness and hopelessness about the future. She started to have decline in maintaining self care. 15 days back, she frequently expressed suicidal ideas and she had attempted suicide by hanging herself and was rescued by neighbours. 5 days back, she started talking in an irrelevant manner. She was smiling to self. She was assaulting her family members. She was suspicious that her neighbour had done black magic on her and also saying that people are talking about her. She reported hearing the voice of her neighbour scolding and threatening her. Organic Brain Syndrome – Dementia: Ten months back he was apparently alright. Then his relatives noticed himself frequently misplaces things inside his home. Then he started behaving aggressively. He was beating his wife without reason. He was roaming here and there, running out of home and wandering aimlessly. He was not able to come back home when he goes out. He was brought back to home by his relatives. Slowly he developed fearfulness and tremulousness while he was staying alone. He also started saying that his family members & neighbours were talking about himself, in this context he would make frequent quarrels with them. He also started hearing voices of known male voices abusing himself in third person. He sleeps for few hour only. He is passing urine and motion inside the house. He is asking about his brother and mother-in-law who were expired long back. He behaves abnormally such as pouring water in the plate while eating. And his relatives found the symptoms were worsened by evening. All these symptoms started insidiously, increased in severity through time and attained the present state. No history of loss of appetite / crying spells / suicidal tendencies / convulsions / fever / head injury

    NON-INVASIVE IMAGE ENHANCEMENT OF COLOUR RETINAL FUNDUS IMAGES FOR A COMPUTERISED DIABETIC RETINOPATHY MONITORING AND GRADING SYSTEM

    Get PDF
    Diabetic Retinopathy (DR) is a sight threatening complication due to diabetes mellitus affecting the retina. The pathologies of DR can be monitored by analysing colour fundus images. However, the low and varied contrast between retinal vessels and the background in colour fundus images remains an impediment to visual analysis in particular in analysing tiny retinal vessels and capillary networks. To circumvent this problem, fundus fluorescein angiography (FF A) that improves the image contrast is used. Unfortunately, it is an invasive procedure (injection of contrast dyes) that leads to other physiological problems and in the worst case may cause death. The objective of this research is to develop a non-invasive digital Image enhancement scheme that can overcome the problem of the varied and low contrast colour fundus images in order that the contrast produced is comparable to the invasive fluorescein method, and without introducing noise or artefacts. The developed image enhancement algorithm (called RETICA) is incorporated into a newly developed computerised DR system (called RETINO) that is capable to monitor and grade DR severity using colour fundus images. RETINO grades DR severity into five stages, namely No DR, Mild Non Proliferative DR (NPDR), Moderate NPDR, Severe NPDR and Proliferative DR (PDR) by enhancing the quality of digital colour fundus image using RETICA in the macular region and analysing the enlargement of the foveal avascular zone (F AZ), a region devoid of retinal vessels in the macular region. The importance of this research is to improve image quality in order to increase the accuracy, sensitivity and specificity of DR diagnosis, and to enable DR grading through either direct observation or computer assisted diagnosis system

    Novel methods in retinal vessel calibre feature extraction for systemic disease assessment

    Get PDF
    Retina and its vascular network have unique branching characteristics morphology of which will change as a result of some systemic diseases, including hypertension, stroke and diabetes. Therefore, retinal image has been used as non-invasive screening window for risk assessment and prediction of such disease condition especially at the baseline. The assessment is based on a number of features among which vessel diameter (both individual and summary) and fractal dimension (FD) are the ones mostly associated with risk of diabetes and stroke. The association is linked to the higher risk of diabetes and stroke in people with narrower retinal arteriole diameter or change in overall fractal dimension independent of any risk factor (i.e. blood pressure, cardiovascular risk factors). Diameter measurement requires vessel edges to be located and tracked however; accurate edge perception is subject to image contrast, shadows, lighting condition and even presence of retinopathy legions close to vessel boundaries. This will lead to imprecision and inconsistencies between different automatic measurement techniques and may affect the significance of its association with disease condition in risk-assessment studies. As accuracy and success of diameter measurement is subject to large variations due to image artifacts it may not be suitable for fully automatic applications. In order to compensate for such error, at first two novel automatic vessel diameter measurement techniques were proposed and validated which were more robust in the presence of such image artifacts compared to similar methods. However, sometimes the exact edge location and actual diameter value is not of interest. In most case-control studies, it is of importance to comparatively evaluate the variations in retinal vessel diameter as a sign of retinopathy such as arteriolar nicking as an example of hypertensive retinopathy. Vessel diameter is often required to be compared with a reference value in many analytical assessments for diagnostic purpose. This includes monitoring the diameter variations of a specific vessel segment within single subject overtime or across multiple subjects. This helps ophthalmologists to understand whether it has undergone any significant change and perhaps associate it with a disease abnormality. A technique that can effectively quantify that change without being impaired by image artifacts is of more importance and one of the rationales of this study. This research hypothesized an edge independent solution for quantifying diameter variations when the actual diameter value is not required and proposed a new feature based on fractal analysis of vessel cross-section profile as a time series signal. This feature provides a link between FD as a global measure of the complexity and diameter variation as local property of a specific vessel segment. The clinical application of this feature has been validated on two population studies which showed promising result for assessment of mild non-proliferative diabetic retinopathy and 10-year stroke. This research work has also investigated whether the FD of retinal microvasculature would be affected by cyclic pulsations of retinal vessels and whether ECG synchronization is required prior to taking fundus images to compensate for this potential source of variations

    NON-INVASIVE IMAGE ENHANCEMENT OF COLOUR RETINAL FUNDUS IMAGES FOR A COMPUTERISED DIABETIC RETINOPATHY MONITORING AND GRADING SYSTEM

    Get PDF
    Diabetic Retinopathy (DR) is a sight threatening complication due to diabetes mellitus affecting the retina. The pathologies of DR can be monitored by analysing colour fundus images. However, the low and varied contrast between retinal vessels and the background in colour fundus images remains an impediment to visual analysis in particular in analysing tiny retinal vessels and capillary networks. To circumvent this problem, fundus fluorescein angiography (FF A) that improves the image contrast is used. Unfortunately, it is an invasive procedure (injection of contrast dyes) that leads to other physiological problems and in the worst case may cause death. The objective of this research is to develop a non-invasive digital Image enhancement scheme that can overcome the problem of the varied and low contrast colour fundus images in order that the contrast produced is comparable to the invasive fluorescein method, and without introducing noise or artefacts. The developed image enhancement algorithm (called RETICA) is incorporated into a newly developed computerised DR system (called RETINO) that is capable to monitor and grade DR severity using colour fundus images. RETINO grades DR severity into five stages, namely No DR, Mild Non Proliferative DR (NPDR), Moderate NPDR, Severe NPDR and Proliferative DR (PDR) by enhancing the quality of digital colour fundus image using RETICA in the macular region and analysing the enlargement of the foveal avascular zone (F AZ), a region devoid of retinal vessels in the macular region. The importance of this research is to improve image quality in order to increase the accuracy, sensitivity and specificity of DR diagnosis, and to enable DR grading through either direct observation or computer assisted diagnosis system

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis
    corecore