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FOREWORD 

 

Today, medical imaging is an essential part of medicine. In clinics, signal processing and 

mathematical techniques are employed to build up an artificial vision system to distinguish 

pathological from normal biological tissue. Therefore, the physician can monitor the 

damaged tissue in a non-invasive manner, and finally determine the appropriate medical 

treatment. Typically, the role of the artificial vision system is to complement rather than 

replace the physician; in particular to assist the biomedical decision making. 
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RÉSUMÉ 

 
La détection automatique exacte des pathologies dans les images numériques de la rétine 
offre une approche prometteuse dans les applications cliniques. Cette étude emploie la 
technique de la transformée discrète en ondelette  et la décomposition en modes empiriques 
pour extraire six caractéristiques statistiques de la texture de la rétine à partir d’images 
numériques. Les caractéristiques statistiques sont la moyenne, l'écart-type, l'aspect lisse, le 
troisième moment, l'uniformité et l'entropie. Le but est de classifier les images normales 
versus anormales. Cinq différentes pathologies sont considérées. Ils sont le fourreau d'Artère 
(la maladie de Manteau), tache d'hémorragie, la dégénérescence rétinienne (circinates), la 
dégénérescence maculaire liée à l'âge (drusens) et la rétinopathie diabétique 
(microanévrismes et exsudats). Quatre classificateurs sont employés; incluant des machines à 
supports de vecteur, l'analyse discriminant quadratique, le k plus proche voisin, et les réseaux 
neuronaux probabilistes. Pour chaque expérience, dix plis au hasard sont produits pour 
exécuter des épreuves de validation croisée. Pour évaluer la performance de chaque 
classificateur, la moyenne et l'écart-type du taux de reconnaissance correct, la sensibilité et la 
spécificité sont calculés pour chaque simulation. Les résultats expérimentaux font ressortir 
deux conclusions principales. D'abord, ils montrent la performance exceptionnelle des 
caractéristiques statistiques obtenues par la décomposition en modes empiriques (DME) 
quelque soit  le classificateur. Deuxièmement, ils montrent la supériorité des machines à 
supports de vecteurs (MSV) par rapport à  l'analyse discriminant quadratique, le k plus 
proche voisin, et les réseaux neuronaux probabilistes. Finalement, l’analyse en composante 
principale a été employée pour réduire le nombre de caractéristiques dans l'espoir d'améliorer 
l'exactitude des classificateurs. Nous constatons qu'il n'y a aucune amélioration générale et 
significative de la performance. En somme, le système DME-MSV fournit une approche 
prometteuse pour la détection de certaines pathologies dans la rétine à partir des  images 
numériques médicales.  
 
 
Mots clés: transformée discrète en ondelette, décomposition en modes empiriques, rétine, 
pathologies, classification. 





 

DETECTION OF PATHOLOGIES IN RETINA DIGITAL IMAGES: 
AN EMPIRICAL MODE DECOMPOSITION APPROACH 

 
Salim Lahmiri 

 
ABSTRACT 

 
Accurate automatic detection of pathologies in retina digital images offers a promising 
approach in clinical applications. This thesis employs the discrete wavelet transform (DWT) 
and empirical mode decomposition (EMD) to extract six statistical textural features from 
retina digital images. The statistical features are the mean, standard deviation, smoothness, 
third moment, uniformity, and entropy. The purpose is to classify normal and abnormal 
images. Five different pathologies are considered. They are Artery sheath (Coat’s disease), 
blot hemorrhage, retinal degeneration (circinates), age-related macular degeneration 
(drusens), and diabetic retinopathy (microaneurysms and exudates). Four classifiers are 
employed; including support vector machines (SVM), quadratic discriminant analysis 
(QDA), k-nearest neighbor algorithm (k-NN), and probabilistic neural networks (PNN). For 
each experiment, ten random folds are generated to perform cross-validation tests. In order to 
assess the performance of the classifiers, the average and standard deviation of the correct 
recognition rate, sensitivity and specificity are computed for each simulation. The 
experimental results highlight two main conclusions. First, they show the outstanding 
performance of EMD over DWT with all classifiers. Second, they demonstrate the 
superiority of the SVM classifier over QDA, k-NN, and PNN. Finally, principal component 
analysis (PCA) was employed to reduce the number of features in hope to improve the 
accuracy of classifiers. We find that there is no general and significant improvement of the 
performance, however. In sum, the EMD-SVM system provides a promising approach for the 
detection of pathologies in digital retina.  
 
 
Keywords: discrete wavelet transform, empirical mode decomposition, retina, pathologies, 
classification. 
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INTRODUCTION 

 

Medical image analysis plays an important role in eye disease identification in the field of 

ophthalmology. For instance, conventional retinal disease identification techniques are based 

on manual observation by physicians. Indeed, the conventional-based approach for retina 

diagnosis is time consuming. Therefore, the automatic analysis of medical images has 

received a large scientific attention with the purpose of providing computational and 

intelligent tools to assist quantification and/or visualization of pathologies in the texture of 

digitized medical images.  

 

The purpose of this work is to design an automatic screening system which aims to detect 

Artery sheath (Coat’s disease), blot hemorrhage, retinal degeneration (circinates), age-related 

macular degeneration (drusens), and diabetic retinopathy (microaneurysms and exudates).  

Coat’s disease (or Artery sheath, see Coat’s disease website given in references) is a very 

rare condition where there is abnormal development in the blood vessels behind the retina. It 

is characterized by abnormal retinal vascular development which results in massive intra-

retinal and sub-retinal lipid accumulation. Coats Disease progresses gradually and affects 

central vision. Complete loss of vision can occur if not treated until its later stages.  

 

Blot hemorrhage (see Digital Reference of Ophthalmology given in references) lies deeper in 

the retina. Usually blood accumulates in the outer plexiform or inner nuclear layers, or more 

easily seen at peripheral retina where the nerve fiber layer is thin.  

 

Circinate retinopathy (see Medical dictionary webpage given in references) is a retinal 

degeneration characterized by circle of white spots encircling the macula that causes 

complete foveal blindness. For instance, exudates often appear as large circinate structures 

surrounding clusters of microaneurysms (Sopharak et al., 2008).  

 

Drusens are the primary manifestation of age-related macular degeneration, the leading cause 

of late age blindness. Drusens are abnormal white-yellow deposits that appear on the retina. 
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They also appear as cloudy blobs, which exhibit no specific size or shape. In addition, they 

are heterogeneous and not as dense as exudates. The automatic detection of drusens was 

invesitaged by Brandon and Hoover (2003), Khademi and Krishnan (2007), Niemeijer et al., 

(2007), and Soliz et al., (2008).  

 

Finally, microaneurysms (MAs) are small reddish spots on the retina (Martins et al., 2009).  

Spots are also present in normal retinas but with less contrast compared to MAs (Martins et 

al., 2008). For instance, MAs are swellings of the capillaries caused by a weakening of the 

vessel wall (Martins et al., 2009). Thus, MAs are considered as the earliest sign of diabetic 

retinopathy. Therefore many papers were concerned with the detection of this category of 

lesions (Martins et al., 2008, 2009; Quellec et al., 2008).  

 

A large body of literature was concerned with the automatic detection of Age-related macular 

degeneration (drusens) and diabetic retinopathy (microaneurysms and exudates) in retina 

digital images. Therefore, the automatic detection of other pathologies such as Coat’s 

disease, blot hemorrhage and circinate is considered in our study.  

 

In order to extract texture features from normal and pathological retina images two 

approaches are considered in this work. The first approach is based on the discrete wavelet 

transform (DWT), and the second approach is based on the empirical mode decomposition 

(EMD). Indeed, the DWT was largely employed for retina processing in the literature. 

However, to the best of our knowledge at this time; no previous work has considered the 

EMD to extract retina features.  

 

The EMD is a multi-resolution decomposition technique introduced by Huang et al., (1998) 

to perform a joint space-spatial frequency representation of the signal. The EMD is adaptive 

– fully data driven method- and is suitable for non-linear, non-stationary data analysis (Nunes 

et al., 2003). In addition, the EMD does not use any pre-determined filter or wavelet 

functions (Liu et al., 2007; Chen et al., 2009). The major advantage of EMD is that the basis 

functions are derived directly from the signal itself. On the other hand, DWT has two major 
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drawbacks (Chen et al., 2009). First, ‘’the extracted features are only limited to the energy of 

the textures on the moving and scaling of a single function’’ (Chen et al., 2009). Second, 

‘’the number and temporal resolution of each component is defined a priori’’ (McGonigle et 

al., 2010). For instance, Fourier and wavelet analysis use a pre-determined filter or basis 

functions (Liu et al., 2007). In other words, the selected basic wavelet is used to analyze the 

whole frequency range (Yuping et al., 2006).  

 

Finally, in order to classify normal versus pathological retina images, support vector 

machines are employed as the main classifier because of their scalability and ability to avoid 

local minima (Vapnik, 1995) and also because of their high classification performance shown 

in biomedical image recognition (Fu et al., 2005; Xu and Luo, 2009). The SVM performance 

has also been compared to those of quadratic discriminant analysis (QDA), k-nearest 

neighbor algorithm (k-NN), and probabilistic neural networks (PNN). Finally, the 

performance of the classifiers has been examined with regards to a reduced set of features 

obtained by applying principal component analysis to the original feature sets.  

 

The contribution of our study is the following: We compare the EMD performance versus 

that of the DWT in the detection of several pathologies in retina digital images using four 

classifiers. 

 

The thesis is organized as follow. The review of literature is presented in section 2. The 

methodology is given in section 3. The data and experimental results are shown in section 4. 

Finally, section 5 concludes. 

 

 





 

CHAPTER 1 
 
 

THE DISCRETE WAVELET TRANSFORM AND THE EMPIRICAL MODE 
DECOMPOSITION 

The purpose of this section is to introduce the discrete wavelet transform (DWT) and the 

empirical decomposition mode (EMD) respectively in sections 1.1 and 1.2; including the 

block diagram of the DWT and the algorithm behind the EMD. In addition, examples of 

analyzed signals will be provided for each multiresolution technique. 

 

1.1 The discrete wavelet transform 

The wavelet transform (Daubechies, 1988; Mallat, 1999) is a multi-resolution analysis of a 

signal that has the advantage of great ability to identify and extract signal details at several 

resolutions. For instance, the wavelet transform decomposes a signal into a number of 

frequency subbands. In the case of two dimensional (2D) signals –for example a digital 

image-, the series of wavelet subbands give a spatial view of the image details at various 

resolutions and orientations (horizontal, vertical, diagonal). The one-dimensional wavelet 

transform of a function f is defined by:  

 

( ) ( )=
ji

jiji xcxf
,

,, ψ  (1.1)

 

( ) ( )xxfc jiji ,, ψ
+∞

∞−
=  (1.2)

 

where ( )xji,ψ  stands for the   wavelet  functions  and ci,j are the corresponding coefficients for 

f(x). A mother wavelet ( )xψ  is used to generate the wavelet basis functions by using 

translation and dilation operations:  
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( ) ( )jxx ii

ji −= −−
22 2

, ψψ (1.3)

 

where j and i are the translation and dilation parameters, respectively. The one-dimensional 

wavelet decomposition can be extended to two-dimensional signals by separating the row 

and column decompositions. For instance, the 2D-DWT of a digital image is implemented by 

a low-pass filter which is convolved with the image rows, and a high pass filter which is 

convolved with the image columns. The convolutions are followed by down sampling by a 

factor of two. As a result, the 2D-DWT hierarchically decomposes a digital image into a 

series of successively lower resolution images and their associated detail images. For 

instance, the result of filtering process is four subbands: the approximation subband (LL), the 

horizontal detail subband (LH), the vertical detail subband (HL), and the diagonal detail 

subband (HH). The LL, LH, HL, and HH subband are respectively low frequencies for both 

directions, low frequencies for the horizontal direction and high frequencies for the vertical 

direction, high frequencies for the horizontal direction and low frequencies for the vertical 

direction, and high frequencies for both directions. Then, the obtained approximation images 

(LL) are decomposed again to obtain second-level detail and approximation images. This 

decomposition process can be represented in the common square scheme which is depicted 

as in Figure 1.1. 

 

 

 
Figure 1.1 Two level 2D-DWT decomposition of an image 
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Another detailed representation of the decomposition process can be shown in Figure 1.2 that 

illustrates the first-level 2D-DWT of an image F(x,y) based on filtering and down-sampling 

the row vectors of the image using one-dimensional low-pass filter L and one-dimensional 

high-pass filter H, whose respective impulse response components are the low and high-pass 

coefficients of a specific wavelet basis. Next, vertical filtering and down-sampling are 

performed again by L and H on each column of the obtained FL(x,y) and FH(x,y) results, 

yielding sub-images FLL1(x,y), FLH1(x,y), FHL1(x,y) and FHH1(x,y). Level two decomposition, 

repeats the process, starting from sub-image FLL1(x, y) to yields sub-images FLL2(x, y), FLH2(x, 

y), FHL2(x, y) and FHH2(x, y) which correspond respectively to LL2, LH2, HL2, and HH2 

images in Figure 1.1. An example of brain magnetic resonance image (MRI) decomposition 

by wavelet transform as shown in El-Dahshan et al., (2010) is given in Figure 1.3 where g(n) 

and h(n) are respectively low pass and high pass filters.  
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Figure 1.2 Block diagram of a 2D-DWT decomposition of an image 
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Figure 1.3 Block diagram of a 2D-DWT decomposition of a brain MRI 

 
 
 
1.2 The empirical mode decomposition 

The EMD is a general nonlinear, nonstationary signal processing method that was introduced 

by Huang et al., (1998). The major advantage of EMD is that the analysis is adaptive. In 

other words, the basis functions are derived directly from the signal itself. The key feature of 

the EMD is to decompose a signal into a sum of functions. Each of these functions (1) have 

the same numbers of zero crossings and extrema, and (2) is symmetric with respect to its 

local mean. These functions are called Intrinsic Mode Functions (IMF). The IMF are found at 

each scale going from fine to coarse by an iterative procedure called sifting algorithm. For a 

signal s(t), the EMD decomposition is performed as follows ( Liu, Xu, and Li,  2007): 

 

a) find all the local maxima, ,...,2,1, =iMi and minima, ,...,2,1, =kmk in s(t), 

b) compute by interpolation -for instance by cubic Spline- the upper and lower 

envelopes of the signal: ( ) ( )tMftM iM ,=  and ( ) ( )tmftm im ,= , 

c) compute the envelope mean e(t) as the average of the upper and lower envelopes: 

( ) ( ) ( )( ) 2tmtMte += , 
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d) compute the details as: ( ) ( ) ( )tetstd −= , 

e) check the properties of d(t): 

• If d(t) meets the above conditions (1) and (2) given previously,  compute the 

ith IMF as :  

     ( ) ( )tdtIMF = and replace s(t) with the residual ( ) ( ) ( )tIMFtstr −= , 

• If d(t) is not an IMF, then  replace s(t) with the detail: ( ) ( )tdts = , 

f) return to step (a) and iterate to step (e) until the residual r(t) satisfies a given stopping 

criteria. 

 

Finally, the signal s(t) can be expressed as follows: 

 

( ) ( ) ( )tr+tIMF=ts N

N

=j
j

1

(1.4)

 

where N is the number of IMF which are nearly orthogonal to each other, and all have nearly 

zero means; and rN(t) is the final residue which is the low frequency trend of the signal s(t).  

Usually, the standard deviation (SD) computed from two consecutive sifting results is used as 

criteria to stop sifting process by limiting the SD size (Nunes et al., 2003; Qin et al., 2008; 

McGonigle et al., 2010) as:  

 

( )
( ) ( )| |

( )
ε<

td

tdtd
=kSD T

=t
k

T

=t
kk





−

− −

0

2

1

0

2

1 (1.5)

 

where k is the index of the kth difference between the signal s(t) and  the envelope mean e(t). 

The term ε is a pre-determined stopping value. The 2D signal EMD follows the same process 

as 1D signal EMD and 2D IMF are defined in the same manner (Guangtao et al., 2008; 

Demir and Ertürk, 2009, 2010; Xu et al., 2011).  
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In this study, two examples of signals analyzed with empirical mode decomposition are 

presented. The first example is a random signal with mean one and standard deviation equals 

to two, and the second example is a sine wave signal -w(t)- generated as follows: 

 

( ) ( ) ( ) ( )ttttw 4000sin52000sin31000sin ++= (1.6)

 

where t∈[0,100] with 0.1 step. Figure 1.4 shows the simulated random signal s(t)  and its first 

seven intrinsic mode functions (IMF): IMF1 to IMF7.  

Figure 1.5 shows the original random signal s(t) and its intrinsic mode functions in the form 

of color scale 2D amplitude representation where s(t) and each IMF is depicted as a 

rectangular area in the image.  

 

One may notice how the low frequency component; for instance the seventh (last) IMF; looks 

like an almost uniform color channel. The image in Figure 1.5 is associated with its color 

map. Along y-axis, rectangle 1 is the random signal, rectangle 2, 3, 4, 5, 6, 7, and 8 are 

respectively the first, second, third, fourth, fifth, sixth, and seventh intrinsic mode functions. 

 

On the other hand, Figure 1.6 shows the simulated sine wave and all IMF, whilst Figure 1.7 

shows simultaneously the results of the decomposition process: the original sine wave and its 

IMF.  All these signals are shown in the form of color scale 2D amplitude representation 

where s(t) and each IMF is depicted as a rectangular area in the image in Figure 1.8. Along y-

axis, rectangle 1 is the original sine wave signal and rectangle 2, 3, 4, 5, 6, 7, and 8 are 

respectively the first, second, and third, fourth, fifth, sixth, and seventh intrinsic mode 

functions. One may notice how the low frequency component; for instance the seventh (last) 

IMF; looks like an almost uniform color channel. Finally, Figure 1.9 gives a real example of 

a biomedical image analyzed with empirical mode decomposition. It shows a red cell slice 

biomedical image, which was converted from true color format to gray format before 

decomposition (Liu, Xu, and Li, 2007).  
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Figure 1.4 Generated signal s(t) and its seven empirical mode functions 

 

 

 
Figure 1.5 Generated signal s(t) and its seven empirical mode functions as an image 
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Figure 1.6 Generated sine wave signal and its seven IMF 

w(t) = sin(1000.t) + 3.sin(2000.t) + 5.sin(4000.t) 
 

 

 

 
Figure 1.7 Generated sine wave signal w(t) and its seven IMF all togather 
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Figure 1.8 Generated sine wave w(t) and its seven empirical mode functions as an image 
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Figure 1.9 Red cell slice biomedical image decomposition by the EMD 

As shown in Liu, Xu, and Li (2007) where (a) is a red cell slice, (b) is the first IMF,  (c) is 
the second IMF, and  (d) is the third IMF 

 

 

 

 

 





 

CHAPTER 2 
 
 

HISTORICAL BACKGROUND 

In this paper, the applications of DWT and the EMD in biomedical signal processing are 

briefly reviewed. In addition, the results of other approaches used in the literature are 

presented. 

 

2.1 The discrete wavelet transform in retina photographs processing 

Lamard et al., (2007) introduced an algorithm based on the translation invariant wavelet 

transform and template matching to detect Retina microaneurisms. Then, they considered the 

horizontal and vertical sub-bands at several scales plus the approximation of the signal to 

extract features. Finally, specificity and sensitivity statistics are used to evaluate the 

classification system for different wavelet mothers and decomposition levels. The simulation 

results show that the best combination is obtained with the Haar wavelet and second level of 

decomposition with 96.18% specificity and 87.94% sensitivity. Khademi and Krishnan 

(2007) employed the 2-D version of Belkyns’s shift-invariant DWT (SIDWT) to classify 

normal against abnormal (exudates, large drusens, fine drusens, choroidal neovascularization, 

central vein and artery occlusion, arteriosclerotic retinopathy, histoplasmosis, hemi-central 

retinal vein occlusion) retina images. In order to capture texture directional features, 

normalized gray level co-occurrence matrices (GLCMs) are computed at 0◦ in HL, 90◦ in 

LH, 45◦, 135◦ in HH and 0◦, 45◦, 90◦ and 135◦ in the LL sub-band. Then, homogeneity and 

entropy statistics were computed from LH, HL, HH and LL sub-bands for each 

decomposition level. For instance, the decomposition level was set to four. Finally, linear 

discriminant analysis (LDA) is used as classifier in conjunction with the Leave One Out 

Method (LOOM). The obtained classification accuracy was 82.2%.  

 

In order to detect Microaneurysms in retina photographs, Quellec et al., (2008) employed 3-

level wavelet decomposition and used genetic algorithms to find the best discriminative 
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wavelet mother (Haar, biorthogonal, orthogonal) function and coefficients from HH, HL, and 

LH sub-bands.  

 

Color photographs, green filtered photographs, and angiographs were three image modalities 

used in the study, and template matching technique was employed for classification purpose. 

The simulation results showed that Microaneurysms were detected with sensitivities of 

89.62%, 90.24%, and 93.74% and positive predictive values of 89.50%, 89.75%, and 91.67% 

for color photographs, green filtered photographs, and angiographs respectively. They 

concluded that optimal sub-band combinations weakly depend on the wavelet filter. In 

addition, optimal wavelet sub-bands improved the results obtained by conventional wavelet 

filters. Yagmur et al., (2008) used discrete wavelet transform and back-propagation neural 

networks for automatic classification of diabetic retinopathy, hypertensive retinopathy, 

macular degeneration, vein branch oclusion, vitreus hemorrhage, and normal retina. All color 

images were transformed to grey scale and the extracted features that were fed to the neural 

networks were the coefficients of all wavelet sub-band decompositions at level one. The 

recognition rates were respectively 50%, 70%, 83%, 90%, 93% and 95% for testing five 

retinopathy cases and normal images. Xu and Luo (2009) combined features obtained from 

stationary discrete wavelet transform (SWT) and grey level co-occurrence matrix (GLCM) to 

characterize retina images with hard exudates. The mean and standard deviation were 

extracted from the approximate and detail regions of SWT decomposed images at scale one 

and two. Finally, support vector machines (SVM) with Gaussian radial basis function were 

employed to classify hard exudates images. Based on leave-one-out method (LOOM), the 

obtained classification accuracy, sensitivity, and specificity were 84%, 88% and 80% 

respectively. 
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2.2 Other approaches for retina digital image processing 

Baroni et al., (2007) suggested a computer approach based on co-occurrence matrices for the 

analysis of retinal texture and artificial neural networks (ANN) to classify single retinal 

layers. The obtained accuracy was 79%, specificity about 71% and sensibility was 87%. 

Meier et al., (2007) used four approaches to extract features from retina to automatically 

classify glaucoma images. The first set of features is obtained by taking the pixel intensities 

as input to principal component analysis. The second features are obtained from Gabor 

texture filter responses. The third set of features is computed from the coefficients of the Fast 

Fourier Transform. The fourth set of features is obtained from the histogram of the intensity 

distribution of the image. Finally, support vector machines were employed for classification 

purpose. The performance of the classifications using one feature set only was 73% with the 

histogram features, 76% with Fast Fourier Transform coefficients, 80% with the Gabor 

textures and 83% with the pixel intensities. Franzco et al., (2008) used Fourier transform to 

evaluate the optical degradation of a retinal image of a cataractous eye. The experimental 

results showed that Fourier analysis of retinal images is significantly correlated with LOCS 

III (R-squared = 0.59) in grading cataract severity. In addition, it is found that Fourier 

analysis shows a comparable correlation with visual acuity (R-squared = 0.39) as LOCS III 

(R-squared = 0.44). They concluded that Fourier analysis is a useful automated method in 

grading of cataract severity; but it cannot determine the anatomic type of cataract. Lee et al., 

(2008) employed probabilistic boosting algorithm for nonhomogenous texture 

discrimination. In particular, the main purpose was to detect drusen in retina texture. They 

used morphological scale space analysis and grey level co-occurrence matrices (GLCM) to 

extract texture features. Using four different test samples, the detection rate of normal images 

varied between 81.3% and 92.2%, and the detection rate of abnormal images varied between 

71.7% and 85.2%.  

 

In order to detect glaucoma in digital images, Nayak et al., (2009) used morphological 

measures such as the cup to disc ratio, ratio of the distance between optic disc center and 

optic nerve head to diameter of the optic disc, and ratio of blood vessels area in inferior-
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superior side to area of blood vessel in the nasal-temporal side; all as features to be fed to 

neural networks classifier. The system automatically classified glaucoma with a sensitivity 

and specificity of 100% and 80% respectively. The overall average classification rate was 

90%.  

 

2.3 The empirical mode decomposition in biomedical image processing 

The Empirical Mode Decomposition (EMD) technique has been successfully applied in 

biomedical engineering problems. In particular, it has been largely employed in 

cardiovascular signal processing; including classification of EEG (Tafreshi et al., 2008), 

ECG denoising (Pan et al., 2007), ECG, BCG, PPG, and IPG processing (Pinheiro et al., 

2011). The EMD has also been applied to two dimension signals. For instance, Nunes et al., 

(2003) applied the 2D-EMD to synthetic and brain magnetic resonance images to extract 

features at multiple spatial frequencies. The study showed the effectiveness of the EMD to 

represent images. They concluded that the 2D EMD offers a new and promising way to 

decompose images and extract texture features without parameter.  

 

In late 2000s, the EMD has been employed in medical image processing. For instance, Qin et 

al., (2008) employed 2D-EMD to enhance medical images. Experiments show that good 

results are obtained by using 2D-EMD than using linear gray-level, transformation, 

piecewise linear gray-level transformation, logarithmic transformation, exponential 

transformation, and histogram equalization transformation. In particular, details of medical 

images were more definite and distinct after enhancement. McGonigle et al., (2010) 

employed a Multi-EMD approach to analyze signals obtained from functional neuroimages.  

 

In particular, the purpose was to find which Intrinsic Mode Function (IMF) from each voxel 

should be used to represent the data at each scale. Finally, k-means clustering was performed 

on multi-EMD components to discover regions that behave synchronously at each temporal 

scale. They found that Multi-EMD based cluster analysis discriminate much better temporal 
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scales than wavelet-based cluster analysis (WCA). McGonigle et al., (2010) concluded that 

Multi-EMD based clustering is a promising approach to explore functional brain imagery.  

Liu et al., (2007) applied Bidimensional Empirical Mode Decomposition (BEMD) to the 

problem of biomedical images retrieval using k-means clustering. In other words, EMD was 

employed to analyze texture of images and the mean and standard deviation of the amplitude 

matrix, phase matrix and instantaneous frequency matrix of the Intrinsic Mode Functions 

(IMFs) and their Hilbert transformations. The experimental results show that retrieval results 

of Gabor features are higher than that of BEMD-based features. On the other hand, BEMD 

performs much better than wavelet-fractal based approach. Jai-Andaloussi et al., (2010) 

employed the BEMD to obtain characteristic signatures of images for Content Based Medical 

Image Retrieval (CBIR). Two approaches were considered. The first approach called BEMD-

GGD was based on the application of BEMD to medical images. Then, the distribution of 

coefficients derived from BIMF was characterized using Generalized Gaussian Density 

(GGD). In the second approach called BEMD-HHT, the Huang-Hilbert transform (HHT) was 

applied to each Bidimensional Empirical Mode Function (BIMF). Then, the mean and 

standard deviation were extracted from the amplitude matrix, phase matrix and instantaneous 

frequency matrix of each transformed (BIMF). Genetic algorithms were employed to 

generate adapted BIMF distance weights for each image in the database. The previous 

approaches were tested on the three databases including a diabetic retinopathy, a 

mammography and a faces database. The experimental results show that BEMD-GGD gives 

globally better results than BEMD-HHT. In addition, the retrieval efficiency is higher than 

95% for some cases.  

 

Finally, the EMD method was compared to the DWT approach in the problem of biomedical 

time series classification. For instance, Ai et al., (2011) used singular value decomposition 

(SVD) to extract the features of intrinsic mode functions (IMFs) and support vector machine 

(SVM) to classify two types of tremor, namely essential tremor (ET) and Parkinson’s disease 

(PD). Besides, they employed the singular value features of discrete wavelet transform 

(DWT) as input to the SVM. The results obtained from cross-validation tests show that the 
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EMD-SVD features outperform DWT-SVD features in terms of the accuracy (98%), 

sensitivity (97.5%), and specificity (98.33%). 

 

 



 

CHAPTER 3 
 
 

CONTRIBUTION AND METHODOLOGY 

3.1 The contribution of our study 

The discrete wavelet transform (DWT) was widely applied in the processing of retina digital 

images for pathologies detection (Khademi and Krishnan, 2007; Quellec et al., 2008; 

Yagmur et al., 2008;  Xu and Luo, 2009). This approach allowed obtaining an accuracy that 

varies from 50% to 96%. For instance, DWT perfomed much better than the Fourier 

transform that leads to 76% obtained by Meier et al., (2007) and 59% obtained by Franzco et 

al., (2008). However, to the best of our knowledge there no paper that considered the 

empirical mode decomposition (EMD) for retina digital image processing for features 

extraction and classification. Indeed, EMD was very successful in the processing of one 

dimension biomedical signals and in the context of biomedical images retrieval. For example, 

Ai et al., (2011) found that EMD features perform much better than DWT features in the 

analysis and classification of biological time series. Therefore, we contribute to the literature 

by exploring the performance of EMD and DWT in the case of two dimensional biological 

signals.  

 

The main purpose of our study is to compare the performance of the EMD and DWT in the 

problem of retina features extraction and classification. The main hypothesis is 

straightforward: since the EMD is an adaptive signal processing technique; in other word is a 

data-driven method, it could be more appropriate to analyze retina texture than the DWT 

which is not an adaptive procedure. As a result, the EMD-based statistical features are 

expected to outperform the DWT-based statistical features.  

 

Another hypothesis made in our study: the statistical features extracted from EMD and 

DWT-processed images are sufficient to describe the distribution of the pixels that 

characterize retina.  
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Finally, another contribution of our study is concerned with the comparison of a set of 

classifiers which are widely used in biomedical image processing to validate the 

outperformance of the EMD-based statistical features. In sum, our study is based on rigorous 

experiments to check the performance of the EMD over the DWT. 

 

 The next chapter deals with our methodology; including the choice of the wavelet mother, 

the description of the chosen empirical mode decomposition algorithm (Rato et al., 2008), 

statistical features to be extracted, the classifiers used to detect abnormal images, and the 

statistical measures considered to evaluate the performance of the classifiers. 

 

3.2 The proposed approach 

As stated in introduction, the purpose of our study is to compare the performance of the 

empirical mode decomposition (EMD) features with those obtained with discrete wavelet 

transform (DWT) in the problem of the classification of normal retina digital images versus 

abnormal retina photographs. The generic detection system contains four basic steps; namely 

image acquisition using appropriate ophthalmology equipment, gray scale conversion, pixels 

equalization, EMD or DWT processing, features extraction, principal component analysis 

(PCA) (optional), and classification. In our study, three detection systems (approach) are 

designed: the EMD, DWT, and EMD-PCA system. The latter approach is considered to 

check whether principal component analysis reduced (selected) features helps improving the 

accuracy of the EMD-based features. 

 

 In particular, PCA can be applied to EMD features via two routes: applying PCA jointly to 

first and second IMF obtained from retina images or applying PCA separately to them. 

Indeed, EMD features are extracted only from the first and the second IMF since the third 

IMF does not contain helpful information. For instance, the third IMD contains more low 

frequency component. We have already used its features to classify retina images and 

obtained low accuracy in comparison with features extracted from first and second intrinsic 

mode functions. The reader may look at Figure 4.5 to how the third IMF looks like. In our 
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study, PCA is not considered for DWT sub-images to reduce the number of experiments. For 

instance, DWT features are extracted from three sub-bands (LH, HL, HH) at three level of 

decomposition as in Quellec et al., (2008) study. LL sub-bands are ignored because they 

contain no discriminant information (Quellec et al., 2008). The EMD-based features 

approach and the DWT-based features approach are shown in Figures 3.1 and 3.2 

respectively. On the other hand, the EMD-PCA systems are shown in Figures 3.3 (joint PCA) 

and 3.4 (separate PCA). The pixels equalization technique, choice of the mother wavelet, 

EMD processing algorithm, extracted features, principal component analysis (PCA) 

technique, and the classifiers are described in the following sub-sections. 

 

 

 

 
 

Figure 3.1 The EMD approach 
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Figure 3.2 The DWT approach 

 
 

 

 
Figure 3.3 The EMD-PCA approach 
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Figure 3.4 The EMD-PCA approach (joint PCA) 

 

 

3.3 Details of the proposed approach 

In this section, we expose in details our methodology; including image pre-processing, the 

mother wavelet, the empirical mode decomposition algorithm, features extraction, the 
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technique for eliminating the luminosity and contrast variations in retinal images. The 
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Miri and Mahloojifar (2009) used the inverse of the second generation of Curvelet transform 

to obtain enhanced retina image. In comparison with standard contrast enhancement 

techniques, the results showed the improvement in visualization, contrast enhancement and 

performance. Anzalone et al., (2008) used the adaptive histogram equalization technique to 

minimize the non-uniform lighting. As in the paper of Anzalone et al., (2008), the adaptive 

histogram equalization technique is employed to pre-process retina images to minimize the 

non-uniform lighting. Indeed, our choice of the adaptive histogram equalization technique is 

based on its simplicity and a very low time processing needed to perform it. Moreover, this 

technique does not require a tuning parameters step.  

 

The adaptive histogram equalization technique takes into account local image information, 

and does not cause contrast losses in small regions. This method adapts each pixel to its 

neighboring region. Thus, the high contrast can be obtained for all locations in the image. 

The three major steps for image enhancement using adaptive histogram equalization 

technique (Pizer et al.,1987; Zimmerman et al., 1988; Zhiming and Jianhua, 2006) are given 

as follows:  

 

a) the image is partitioned N by N sub-regions,  

b) apply equalization based on the local region surrounding each pixel,  

c) each pixel is mapped to intensity proportional to its rank within the surrounding 

neighbourhood. 

 

3.3.2 The mother wavelet 

The Daubechies wavelet transform has better frequency properties (Daubechies, 1988). 

Indeed, the Daubechies wavelet gives remarkable results in image analysis and synthesis 

because it has a compact support interval and continuous derivatives.  

 

In addition, they are real and continuous in nature and have least root-mean-square (RMS) 

error compared to other wavelets (Gonzalo and De La Cruz, 2004; Ma and Liu, 2005). 
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Moreover, the Daubechies wavelet exhibits a good trade-off between parsimony and 

information richness. Therefore, it has been largely used in signal and image processing with 

applications to biomedical signal analysis (Ayres and Rangayyan, 2005; Quellec et al., 2008; 

Buciu and Gacsadi, 2009). As a result, the Daubechies wavelet is considered in our study. In 

particular, the Daubechies wavelet of order four is adopted as the mother wavelet. For 

instance, the degree of the Daubechies wavelet smoothness increases with the order. Figure 

3.5 exhibits the Daubechies wavelet of order 4. As mentioned in the previous section, the 

level of decomposition is set to three and DWT features are extracted from three sub-bands 

(LH, HL, HH) as in Quellec et al., (2008) study. 

 

 

 

 
 

Figure 3.5 Zooming in a Daubechies 4 
as in Amara’s Wavelet Page (see references) 
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3.3.3 The empirical mode decomposition algorithm 

The empirical mode decomposition (EMD) is simple and generally gives good time-

frequency decomposition of the signal (Rato et al., 2008). However, the empirical mode 

decomposition technique is mainly a computational algorithm; thus it does not have an 

analytical formulation. As a result, for a given signal different EMD implementations lead to 

different intrinsic mode functions. But, the main problems with the EMD concern the 

extrema locations, extrema interpolation, end effects, sifting stopping criterion, and intrinsic 

mode function (IMF) removal (Rato et al., 2008). They proposed an algorithm to deal with 

these problems; in particular the goal was to determine correctly the extrema, to efficiently 

interpolate extremities, and to minimize computational errors. In our study, the EMD 

algorithm proposed by Rato et al., (2008) is adopted. This algorithm is designed for one 

dimensional signal. To analyze a digital retina image which is a two dimensional signal with 

Rato et al., (2008), the image is transformed to a one dimensional signal. For instance, let an 

image I be a two-dimensional n × n array of pixels. The corresponding image Inew is viewed 

as a vector with n2 coordinates that results from a concatenation of successive rows of the 

image. Then, the alforithm of Rato et al., (2008) is applied to Inew. The improvements of the 

EMD that were proposed by Rato et al., (2008) are described in the following sub-sections. 

 

3.3.3.1 Extrema location 

In calculus, extrema definition is based on a continuous neighbourhood; thus with a discrete-

time signal the location of an extremum may be obtained with error. Therefore, Rato et al., 

(2008) defined a classificatory function based on the relation of the actual signal and its left 

and right neighbours to assert whether it is an extremum or not. For instance, given a sample 

x[n], they defined the classificatory function as follows:  

 

If ((x[n] > x[n − 1]) AND (x[n] ≥ x[n + 1])) 

 

OR ((x[n] ≥ x[n − 1]) AND (x[n] > x[n + 1]) Then Return (‘‘Is a Maximum’’) 
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Else if ((x[n] < x[n − 1]) AND (x[n] ≤ x[n + 1])) 

 

       OR ((x[n] ≤ x[n − 1]) AND (x[n] ≤ x[n + 1])) Then Return (‘‘Is a Minimum’’) 

 

Else Return (‘‘Not an extrema’’); 

 

3.3.3.2 Extrema interpolation 

According to Rato et al., (2008), the sinc function is widely used as the interpolation kernel 

to interpolate limited signal; however it is computationally demanding and needs a lot of 

samples on the right and on the left. Therefore, they used parabolic interpolation to better 

locate the extremas. For instance, ‘’…parabolic interpolation comes into sight as a practical 

compromise between no interpolations at all and sinc based interpolations…’’ (Rato et al., 

2008). The interpolating parabola function is defined as follows:  

 

( ) cxbxaxf ++= 2 (3.1)

 

The sign of the parameter a determines the kind of extremum. For instance, if a > 0, a 

minimum is obtained; if a < 0, a maximum is obtained. If a = 0; the extremum is not found. 

 

3.3.3.3 End effects 

The end effect is about the decision to make regarding the first and last samples. According 

to Rato et al., (2008), first and last samples can be considered as (a) maxima and minima 

simultaneously, (b) as maxima or minima according to the nearest extremum, or (c) leave 

them free. The final decomposition result depends on the decisions (a), (b), and (c). In their 

paper, they adopted decision (a) and extrapolated the maxima and the minima. For instance, 

Rato et al., (2008) proposed the following algorithm to perform the extrapolation of the 

extrema: 
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a) find the first maximum, M1, and minimum, m1, and their time locations, T1 and t1. 
Assume, for example, that T1 > t1, 

 

b) insert a new maximum, M0 = M1, located at T0 = −t1, and a new minimum, m0 = m1, 
located at t0 =−T1. 

 

Rato et al., (2008) performed a similar extrapolation algorithm to the end of the signal.  

 

3.3.3.4 Mean envelop removal 

In order to avoid the problem of adding a non-existing component that can distort the actual 

IMF and at least will appear in one of the following IMF, Rato et al., (2008) introduced a 

step size α in the step (d) of the empirical mode decomposition algorithm (See section 1.2) in 

order to make the algorithm more reliable; but more time consuming. The modified step (d) 

is given by: 

 

( ) ( ) ( ) 10: <<−= αα wheretetstd (3.2)

 

The value of the parameter α is chosen such that the energy of the resulting signal is 

minimized. For instance, the value of α is set equal to the correlation coefficient between x(t) 

and e(t). 

 

3.3.3.5 Stopping criterion 

In order to stop sifting procedure, Rato et al., (2008) defined a resolution factor by the ratio 

between the energy of the signal at the beginning of the sifting, x(t), and the energy of 

average of the envelopes, e(t). For instance, the resolution factor is set as follows: 

 

( )[ ]
( )[ ] resolution
teEnergy

txEnergy ≤
(3.3)
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As a result, the intrinsic mode functions computation stops when the ratio is higher than the 

predetermined resolution. It is interesting to notice that the number of obtained intrinsic 

mode functions increases with the resolution factor. In our study, the resolution was 

arbitrarily set to 50 as proposed by Rato et al., (2008).  

 

3.3.4 Features extraction 

The statistical parameters used to describe the processed images are the mean, standard 

deviation (std.dev), smoothness, third (3th) moment, uniformity, and entropy. They are 

chosen since they are widely used in pattern recognition and biomedical image processing 

(Sheshadri and Kandaswamy, 2005). The statistics are expressed as follows:   
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where z is a random variable indicating intensity, p is the probability density of the ith pixel 

in the histogram, and L is the total number of intensity levels. Finally, these characteristics 

will be fed to the classifiers presented in the coming section.  
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3.3.5 The classifiers 

In order to check the stability of the results over different classifiers, four widely employed 

classifiers in the area of biomedical image classification are considered. They are support 

vector machines (SVM), quadratic discriminant analysis (QDA), k-nearest neighbor 

algorithm (k-NN), and probabilistic neural networks (PNN). They are presented in the 

following sub-sections. 

 

3.3.5.1 Support vector machines 

Support Vector Machines (SVM) is a supervised statistical learning technique introduced by 

Vapnik (1995). The support vector machine was developed from the theory of Structural 

Risk Minimization and was originally formulated for binary classification. The SVM seeks to 

implement an optimal marginal classifier that minimizes the structural risk in two steps. First, 

SVM transform the input to a higher dimensional space with a kernel (mapping) function. 

Second, SVM linearly combine them with a weight vector to obtain the output. As result, 

SVM provide very interesting advantages. The SVM avoid local minima in the optimization 

process. In addition, they offer scalability and generalization capabilities. For instance, to 

solve a binary classification problem in which the output y∈{-1,+1} SVM seek for a hyper-

plane w.Φ(x)+b = 0 to separate the data from classes +1 and −1 with a maximal margin. 

Here, x denotes the input feature vector, w is a weight vector, Φ is the mapping function to a 

higher dimension, and b is the bias used for classification of samples. The maximization of 

the margin is equivalent to minimizing the norm of w (Cristianini and Taylor, 2000).  

Following the notation of Lorena and Carvalho (2009), the value of w and b are found by 

solving the following optimization problem: 

 


=

+
n

i
iCwMinimize

1

2
: ξ

(3.10)
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Such that, 

 

( )( ) nibxwy iiii ,,101 =≥−≥+Φ⋅ ξξ (3.11)

 

where C is a user-defined strictly positive parameter that determines the tradeoff between the 

maximum margin and the minimum classification error. For instance, a larger C means a 

higher penalty is assigned to empirical errors.  

 

The value of the parameter C is set to its default value in Matlab ©; for example C = 1. The 

number n is the total number of samples, and generalization and ξ is the error magnitude of 

the classification. In other words, ξ is a measure of misclassification errors. The conditions 

above ensure that no training example should be within the margins. The number of training 

errors and examples within the margins is controlled by the minimization of the term: 

 


=

n

i
i

1

ξ
(3.12)

 

The solution to the previous minimization problem gives the decision frontier: 

 

( ) ( ) ( ) bxxyxf
ix

iii +Φ⋅Φ= α (3.13)

 

where each αi is a Lagrange coefficient. As mentioned before, the role of the kernel function 

is to implicitly map the input vector into a high-dimensional feature space to achieve better 

separability. Finally, the classification is obtained as follows: 

 

If f(x) > 0 then the predicted class (y) is + 1,

If f(x) < 0 then the predicted class (y) is − 1,

(3.14)

(3.15)
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In this study the polynomial kernel is used since it is a global kernel. For instance, global 

kernels allow data points that are far away from each other to have an influence on the kernel 

values as well (Sun et al., 2009):  

 

( ) ( ) ( ) ( )( )d
iii xxxxxxK 1, +⋅=ΦΦ= (3.16)

 

where the kernel parameter d is the degree of the polynomial to be used. In this study, d is set 

arbitrarily to 2.  Finally, the optimal decision separating function can be obtained as follows:  

 

( ) 
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i
iii

1
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(3.17)

 

Figure 3.6 illustrated a binary linearly separable classification problem. There are two classes 

denoted by y = 1 (white dots) and y= −1 (black dots). H1 and H2 are parallel hyper-plane 

passing through the dots that are closest to the boundary. The distance between H1 and H2 is 

the margin. As mentioned before, the solution to the minimization problem (minimizing the 

norm of w) is about finding an optimal decision hyper-plane that maximizes the margin 

between the two classes y = 1 and y = −1. In this case, classes can be linearly separated by a 

linear kernel. For, non-linearly separated data, a non-linear kernel function should be 

introduced to map the data into higher dimensional space and thus allows their separation. In 

general, the kernel function can have different forms, including polynomial function and 

radial basis function and sigmoid function. In our experiments, the SVM with an order two 

polynomial kernel is chosen as mentioned before. Figure 3.7 shows the optimal hyper-plan 

using unsupervised SVM linear separation (top) and unsupervised SVM polynomial kernel of 

order 2 (down) of real retina data we have used in our study using STARE database which is 

presented in next chapter. In unsupervised learning, the machine (classifier) is given 

examples (patters and their correspondent outputs/classes). The machine learns the examples 

and classifies them. On the other hand, in supervised classification the machine learns to 

produce the correct output given a new input. All experiments in our study (See 

Methodology and Results) are conducted using supervised scheme.  
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Figure 3.6 The optimal hyper-plan 
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Figure 3.7 The optimal hyper-plan of a real retina data 
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3.3.5.2 Quadratic discriminant analysis 

Discriminant analysis (Douda et al., 2000) is a parametric procedure that finds a set of 

optimal linear projections by simultaneously maximizing the between- class dissimilarity and 

minimizing the within-class dissimilarity. In other words, within-class and between-class 

scatter matrices are used to formulate the criteria of class separability. Unlike the linear 

discriminant analysis (LDA), the quadratic discriminant analysis (QDA) fits multivariate 

normal densities with covariance estimates stratified by group. Therefore, QDA is more 

suitable than LDA when the two classes have very different variance structures. In addition, 

unlike LDA; the boundary produced by QDA is a quadratic curve that may contain two 

separate sections of the boundary lines (Hastie et al., 2001). Now, let X be the vector of 

features which is supposed to be multivariate normally distributed with mean vector μ i and 

group specific covariance matrix i. Let πi be the prior probability of class i, ƒi(X) is the 

conditional density of X in class i, gi(X) is the classification function.  

It is supposed that gi(X)>gj(X) for i≠j. Then, the conditional density of X and the 

classification function are computed as follows: 

 

( ) ( ) ( ) ( ){ }iiii
p

i xxxf μμπ −′−−= −−− 15.02 5.0exp2 (3.18)

 

( ) ( ) ( ) ( )ii
i

iii XXxg πμμ loglog5.05.0
1

+−−′−−= 
− (3.19)

 

where p=2 is a dimension factor in the case of quadratic discriminant analysis. Figure 3.8 

shows the unsupervised classification of real retina data using QDA.  
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Figure 3.8 Unsupervised classification of normal and abnormal real retina data using QDA 

 

 

3.3.5.3 The k-nearest neighbour algorithm 

The k-nearest neighbor algorithm (Cover and Hart, 1967) is a nonparametric method that 

assigns query data to the class that the majority of its k-nearest neighbors belong to. For 

instance, the k-NN algorithm uses the data directly for classification without the need of an 

explicit model. The performance of k-NN depends on the number of the nearest neighbor k. 

In general, there is no solution to find the optimal k. However, trial and error approach is 

usually used to find its optimal value. The main objective is to find the value of k that 

maximizes the classification accuracy. The main advantage of k-NN algorithm is the ability 

to explain the classification results. On the other hand, its major drawback is the need to find 

the optimal k and to define the appropriate metric to measure the distance between the query 

instance and the training samples. In this paper, the distance metric chosen is the Euclidean 

distance and k was arbitrarily set to 1.  
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Let S be a given set of n annotated images, each image is a training example (x,y), where x is 

the image feature vector and y the class vector that specifies the class of the image. For 

instance, a set of training data ( ) ( ) ( ) ( ){ }nnii yxyxyxyx ,,,,,,,,, 2211   and the test data x, 

where x is the feature vector, and yi is the class of data xi. The distance measure is defined 

as: 

 

( ) ( ) =
−= d

j ijji xxxxD
1

2,
(3.20)

 

where d is the dimension of the feature vector. Finally, the nearest neighbor rule is defined as 

follows:  

 

( ) ( )iik xxDkwhereyxNN ,minarg==  (3.21)

 

Since our classification problem is a binary one (normal versus abnormal images), each of 

the k nearest neighbors votes equally for its predicted class label, and x is assigned the class 

label with the majority of votes. The major steps of k-NN procedure are given as follows:  

 

a)  calculate Euclidean distances between an unknown features vector (x) and all the feature vectors in 

the training set, 

b)  select k feature vectors from the training set most similar to feature vector (x), according to the 

calculated distances, 

c)  classify feature vector (x) with the group to which a majority of the K feature vectors belongs.  

 

Figure 3.9 shows the unsupervised classification of real retina data using the k nearest 

neighbors machine.  
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Figure 3.9 Unsupervised classification of normal and abnormal real retina data using k-NN 

 

 

3.3.5.4 The probabilistic neural network 

Unlike the standard backpropagation neural networks (Haykin, 2008), the probabilistic neural 

network (Specht, 1988; Poggio and Girossi, 1990) requires only a single presentation of each 

pattern. The PNN employs an exponential activation function rather than the sigmoid 

function that is commonly used in the standard backpropagation neural networks. Then, a 

PNN can identify nonlinear decision boundaries that approach the Bayes optimal (Specht, 

1990). The basic network topology consists of four layers. The first layer is the inputs layer. 

In the second layer, the neurons are divided to A groups and the probability density function 

(PDF) of each group (a) of patterns is directly estimated from the set of training samples 

using (Parzen, 1962) window approximation method. The third layer performs the 

summation of all PDF. Finally, the Bayesian decision is made in the fourth layer. The PDF is 

assumed to follow a Gaussian distribution. Then, the PDF for a feature vector X to be of a 

certain category a, 1 ≤ a ≤ A, is given by: 
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Where, p is the number of patterns in X, m is the number of the training patterns of category 

a, i is the pattern number, and σ is the smoothing factor of the Gaussian curves used to 

construct the PDF. The value of σ is optimized during training based on the clearest 

separation of classes with the highest classification rate (Chen et al., 2007; Wang and Wen, 

2008; Sert and Kalenderli, 2009). In the summation layer, the network computes the 

approximation of the conditional class probability functions by combining the previously 

computed PDFs as follows: 

 

( ) ( )
=

=
kn

i
iakia XfwXS

1
,

(3.23)

 

where kn is the number of pattern neurons of category k, ikw , are coefficients that satisfy both 

conditions:  

 

1
1

, =
=

kn

i
ikw , and ikw ik ∀∀≥ ,,0,

(3.24)

 

Finally, the feature vector X is associated to the class that corresponds to the summation layer 

with the maximum output according to: 

 

( ) ( )( )XSXC a
Aa≤≤

=
1

maxarg (3.25)

 

The topology of the probabilistic neural networks is shown in Figure 3.10. Figure 3.11 shows 

the unsupervised classification of real retina data using the probabilistic neural networks.  
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Figure 3.10 Topology of the PNN 
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Figure 3.11 Unsupervised classification of normal and abnormal real retina data using PNN 

 

 

3.3.6 The principal component analysis 

Principal component analysis (Jolliffe, 2002) is one of the most popular linear projection 

statistical techniques for dimensionality reduction. It is also widely used for features 

selection in classification and detection problems (Malhi and Gao, 2004; Le and Satoh, 2005; 

Park and Choi, 2009). PCA produces a lower dimensional representation of the original data 

such that the correlation structure between the variables is preserved. Therefore, most of the 

information contained in the original data set is stored in the reduced data set. In other words, 

the original data set is reduced to a new small dimension set with low information loss. In 

sum, PCA performs a linear projection of the original data by finding linear combinations of 

the original variables which are uncorrelated and have maximum variance. The projected 

vectors capture the most expressive features of the original data. The transformation from the 

original set of features to principal components is carried out through the following process.  

The covariance matrix of the original features set is computed. Then, its eigenvectors are 

extracted to represent the principal components. For instance, the eigenvectors specify a 
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linear mapping from the original space of to the new space of that contains uncorrelated 

features.  

 

As a result, the principal components of the original features set are uncorrelated in the 

projected space. The obtained eigenvectors are ranked according to the level of variation in 

the original data that they account for. In particular, the first few eigenvectors account for 

most of the variation in the data set and; therefore; are kept. In particular, principal 

components which correspond to smaller eigenvalues are deleted based on a predetermined 

percentage of total cumulative variation.  

 

Technically, the algorithm of principal component is described in our study as in Zhao and 

Lu (2007). Let M be an N×N matrix of real numbers. The first step of PCA is to calculate the 

covariance matrix V of M, which is defined as: 

 

( ) ( )Ri

tN

i
Ri MMMMV −−=

=1

(3.26)

 

where Mi is the ith row vector in M, t denotes transpose operator, and iM is a 1×N average 

vector of the row vectors in M given by: 
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1
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Then, eigenvalue decomposition is applied to V:  

 

1−= ULUV (3.28)

 

where U-1 denotes the inverse matrix of U. L is a diagonal matrix with eigenvalues of V as its 

diagonal elements λ1, λ2,…, λN, and the columns of U, u1, u2,…, uN, are the eigenvectors of 

V. Then, based on the theory of linear algebra; most of the information of V is in the larger 
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eigenvalues and corresponding eigenvectors (Zhao and Lu, 2007). For instance, the diagonal 

elements in L are sorted in descending order λ1≥ λ2≥…≥λN (Zhao and Lu, 2007).  

 

Then, the ratio of each of the eigen value (λ) to the total sum of all the eigen values indicates 

the proportion of variation explained by the corresponding principal component (u). As a 

result, the first principal component explains the maximum variance; the second principal 

component explains the second largest variance, etc. Therefore, using the eigenvectors 

corresponding to the largest eigenvalues would give the smallest error in representation 

(Malhi and Gao, 2004). In other words, only a subset of eigenvectors (principal vectors) is 

used as basis vectors of a feature space S. The coordination, Zi, of the original data in the 

feature space S is obtained as follows:  

 

( ) [ ] NiuuuMMZ mRii ,,2,1,21  =⋅−= (3.29)

 

where Zi  are; in fact; principal components that can distinguish the original data. Finally, the 

first components that maximize the cumulative variance proportion (account for most of the 

variation in the data set) up to 80% are selected to be fed to the classifiers.  
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3.3.7 Performance measures 

The performance of each classifier is measured using the following statistics: 

 

samplesclassified

samplesclassifiedcorrectly
ratetionclassificacorrect = (3.30)

 

samplesclassifiedtrue

samplespositiveclassifiedcorrectly
ysensitivit = (3.31)

 

samplesnegativetrue

samplesnegativeclassifiedcorrectly
yspecificit = (3.32)

 

 



 

CHAPTER 4 
 
 

DATA AND RESULTS 

In this chapter, the database is presented along with examples of retina images before and 

after pre-processing in the first section. The experimental results obtained with discrete 

wavelet transform, empirical mode decomposition, and principal analysis features selection 

are all given in the second section. 

 

4.1 Database 

A set of 133 color retina images from STARE (se references) database were employed to test 

EMD-based processing approach and DWT-based processing approach. The dataset includes 

23 normal images, 20 images with drusens, 24 with microaneurysms (MA), and 22 with 

circinate, 21 artery sheath, and 23 small or medium blot hemmorhage. The mother wavelet 

used in the study is the Daubechies wavelet of order 4 at three level decomposition as in 

Quellec et al., (2008).  

 

In each case, the classifiers (SVM, QDA, k-NN, PNN) were trained and test based on their 

ability to classify normal retina image and abnormal one. It is a one against one classification 

problem. All simulations were performed with ten folds cross-validations. For instance, the 

image data was split into ten random partitions of equal size; then, during each fold, one 

partition was kept out from training, and the correct classification rate (hit ratio), sensitivity 

and specificity were computed. Finally, then average and standard deviation of correct 

classification rate, sensitivity and specificity are computed. The Matlab (see references) 

Wavelet Toolbox © is used for wavelet analysis. The Matlab Bioinformatics Toolbox © is 

employed to train and test SVM, QDA, and k-NN. Besides, the Matlab Neural Networks 

Toolbox © is used to perform PNN simulations.  
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Finally, we used the EMD Matlab codes of Rato et al. (2008) to process retina digital images. 

Figure 4.1 exhibits examples of retina digital images used in the study. Grey scale images 

before adaptive histogram equalization are shown in Figure 4.2, grey scale images after 

adaptive histogram equalization are given in Figure 4.3, DWT sub-band images are shown in 

Figure 4.4, and first, second and third IMF obtained from EMD are given in Figure 4.5.  
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Figure 4.1 Examples of true color retina images 
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Normal retina 
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Figure 4.2 gray scale images before applying adaptive histogram  

Equalization 
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Figure 4.3 gray scale images after applying adaptive histogram equalization 
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Figure 4.4 DWT sub-images of a normal retina 

 
 
 
 

   

 
 

Figure 4.5 First (left), second (middle), and third IMF (right) obtain from EMD 
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4.2 Experimental results 

Tests have been conducted with discrete wavelet transform and empirical mode 

decomposition for the support vector machines (SVM), quadratic discriminant analysis 

(QDA), k-nearest neighbor (k-NN), and probabilistic neural network (PNN) classifiers. These 

experiments were performed with and without principal component analysis selected 

features. The obtained results are given hereafter. 

 

4.2.1 Discrete wavelet transform simulation results 

As show in Figure 4.6, the average recognition (classification or detection) rates obtained 

with DWT-based features are 71.95% with SVM, 63.32% with QDA, 62.07% with k-NN, 

and 54.15% with PNN. Therefore, the simulations demonstrate the high effectiveness of 

SVM over the other classifiers.  

 

The obtained average sensitivity are 99.08%, 70%, 67.58%, and 63.1% using PNN, SVM, 

QDA, and k-NN respectively (Figure 4.7). Therefore, the probabilistic neural network is 

much capable to correctly detect pathologies than the other classifiers with DWT-based 

features.  

 

The overall average specificity with extracted features from DWT processed images are 

74.28% using SVM, 60.73% using k-NN, 57.65% using QDA, and 1.57% using PNN (Figure 

4.8). As a result, the SVM performs the best in the recognition of normal retina images with 

DWT-based features.  

 

Tables 4.1 to 4.4 provide detailed results obtained with SVM, QDA, k-NN, and PNN.  

Based on DWT features, the SVM is highly accurate in the detection of MA (92.9%) and 

circinate (89.91%). However, it fails to detect drusen (49.36%).  
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The QDA is highly accurate in the detection of MA (89.41%) and circinate (80.78%); and 

fails to detect drusen (32.45%) and blot (52.60%).  

 

The k-NN is highly accurate in the detection of MA (89.41%) and circinate (80.78%); and 

fails to detect drusen (32.45%) and blot (52.60%).  

 

Finally, the performance of PNN is very low in comparison with previous classifiers.  

The best obtained correct classification rate is 60.24% (detection of artery) and the lowest 

classification arte is 48.72% (detection of blot) blot.   

 

 

 

 
 

Figure 4.6 Average correct classification rate with DWT features 
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Figure 4.7 Average sensitivity with DWT features 
 

 

 

 

 
 

Figure 4.8 Average specificity with DWT features 
 

 
Table 4.1 SVM classification results using DWT features 

 

 Artery Artery Blot Blot Circinate Circinate Drusen Drusen MA MA 

 average std. dev. average std. dev. average std. dev. average std. dev. average std. dev. 

           

C.C.R 0.6718 0.0667 0.6041 0.1093 0.8991 0.0385 0.4936 0.1106 0.9290 0.0156 

Sensitivity 0.8769 0.0675 0.5244 0.1796 0.8460 0.0724 0.3748 0.0674 0.8781 0.0234 

Specificity 0.4539 0.1618 0.6915 0.1279 0.9691 0.0342 0.6174 0.2193 0.9821 0.0328 
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Table 4.2 QDA classification results using DWT features 
 

 Artery Artery Blot Blot Circinate Circinate Drusen Drusen MA MA 

 average std. dev. average std. dev. average std. dev. average std. dev. average std. dev. 

           

C.C.R 0.6135 0.0315 0.5260 0.0752 0.8078 0.0628 0.3245 0.1267 0.8941 0.0406 

Sensitivity 0.5162 0.2032 0.6641 0.0595 0.8440 0.0636 0.3874 0.1526 0.9673 0.0293 

Specificity 0.6910 0.1289 0.3853 0.1400 0.7570 0.1521 0.2526 0.1079 0.7965 0.1307 

 

 

Table 4.3 k-NN classification results using DWT features 
 

 Artery Artery Blot Blot Circinate Circinate Drusen Drusen MA MA 

 average std. dev. average std. dev. average std. dev. average std. dev. average std. dev. 

           

C.C.R 0.5302 0.1237 0.4328 0.0693 0.9013 0.0465 0.4036 0.1614 0.8354 0.0502 

Sensitivity 0.4928 0.2212 0.4479 0.0772 0.8771 0.0638 0.4493 0.1873 0.8879 0.0763 

Specificity 0.5619 0.0636 0.4235 0.1305 0.9333 0.0498 0.3513 0.1393 0.7666 0.1130 

 

 

Table 4.4 PNN classification results using DWT features 
 

 Artery Artery Blot Blot Circinate Circinate Drusen Drusen MA MA 

 average std. dev. average std. dev. average std. dev. average std. dev. average std. dev. 

           

C.C.R 0.6024 0.0139 0.4872 0.0169 0.5511 0.0317 0.5636 0.0239 0.5031 0.0188 

Sensitivity 1.0000 0.0000 0.9540 0.0375 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 

Specificity 0.0783 0.0566 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

4.2.2 Empirical mode decomposition simulation results 

As shown in Figure 4.9, the average recognition (classification or detection) rate obtained 

with EMD-based features is 83.34% with SVM, 76.39% with PNN, 75.27% with QDA, and 

73.18% with k-NN. Therefore, the simulations demonstrate the high effectiveness of SVM 

over the other classifiers based on EMD features. Detailed results are shown in Tables 4.5 to 

4.8 for SVM, QDA, k-NN, and PNN respectively.  
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The obtained average sensitivities are 86.83%, 82.93%, 76.66%, and 74.46% using SVM, 

PNN, k-NN, and QDA respectively (Figure 4.10). Therefore, the support vector machine is 

on average is much capable to correctly detect pathologies than the other classifiers with 

EMD-based features. Finally, the overall average specificities (Figure 4.11) given extracted 

features from DWT processed images are respectively 79.57% with SVM, 76.67% with 

QDA, 69.74% with k-NN, and 69.62% with PNN (Figure 4.8). As a result, the SVM perform 

the best in the recognition of normal retina images with EMD-based features. 

 

 

 

 
 

Figure 4.9 Average classification rate with EMD features 
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Figure 4.10 Average sensitivity with EMD features 
 

 

 

 

 
 

Figure 4.11 Average specificity with EMD features 
 
 

The EMD-SVM system is highly accurate in the detection of MA (96.11% as recognition 

rate, 97.98% as sensitivity, and 94.27% as specificity) and circinate (95.11% as recognition 

rate, 97.31% as sensibility, and 92.56% as specificity). On the other hand, the EMD-SVM 

system on average detects artery, blot, and drusen with 73.33%, 73.45%, and 78.69% 

respectively.  

 

The EMD-QDA system is highly accurate in the detection of circinate (93.84% as 

recognition rate, 92.09% as sensitivity, and 96.10% as specificity) and MA (92.84% as 

recognition rate, 100% as sensibility, and 85.59% as specificity). On the other hand, the 
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EMD-QDA system on average detects artery, blot, and drusen with 66.24%, 69.02%, and 

54.39% respectively.  

 

The EMD-k-NN system is highly accurate in the detection of circinate (95.08% as 

recognition rate, 100% as sensitivity, and 89.61% as specificity) and MA (91.13% as 

recognition rate, 92.69% as sensibility, and 89.56% as specificity). On the other hand, the 

EMD-k-NN system on average detects artery, blot, and drusen with 59.01%, 50.61%, and 

70.05% respectively.  

 

The EMD-PNN system is highly accurate in the detection of circinate (93.60% as recognition 

rate, 100% as sensitivity, and 88.10% as specificity) and MA (84.10% as recognition rate, 

89.68% as sensibility, and 78.44% as specificity). On the other hand, the EMD-PNN system 

on average detects artery, blot, and drusen with 62.18%, 65.30%, and 76.75% respectively.  

 

In summary, the experimental results show that in the EMD approach all classifiers obtain 

their highest accuracy to classify normal-versus-MA or normal-versus-circinate images using 

EMD-based features. In addition, they achieve interesting detection rate of images with 

drusen; except for the EMD-QDA system (54.39%). Indeed, the obtained average recognition 

rate of normal-versus-drusen digital images is 78.69% with EMD-SVM system, 70.05% with 

EMD-k-NN system, and 76.75% with the EMD-PNN system. Finally, they all obtain very 

moderate average recognition rate of artery and blot images.  

 

 

Table 4.5 SVM classification results using EMD features 
 

 Artery Artery Blot Blot Circinate Circinate Drusen Drusen MA MA 

 average std. dev. average std. dev. average std. dev. average std. dev. average std. dev. 

           

C.C.R 0.7333 0.0904 0.7345 0.1231 0.9511 0.0363 0.7869 0.0918 0.9611 0.0299 

Sensitivity 0.7616 0.0504 0.7810 0.1352 0.9731 0.0290 0.8461 0.0717 0.9798 0.0264 

Specificity 0.7070 0.1881 0.6815 0.1361 0.9256 0.0538 0.7217 0.1248 0.9427 0.0419 
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Table 4.6 QDA classification results using EMD features 
 

 Artery Artery Blot Blot Circinate Circinate Drusen Drusen MA MA 

 average std. dev. average std. dev. average std. dev. average std. dev. average std. dev. 

           

C.C.R 0.6624 0.0375 0.6902 0.0416 0.9384 0.0295 0.5439 0.1286 0.9284 0.0441 

Sensitivity 0.5625 0.1102 0.6717 0.0697 0.9209 0.0542 0.5678 0.2262 1.0000 0.0000 

Specificity 0.7849 0.1303 0.7080 0.1124 0.9610 0.0369 0.5235 0.0963 0.8559 0.0888 

 

 

Table 4.7 k-NN classification results using EMD features 
 

 Artery Artery Blot Blot Circinate Circinate Drusen Drusen MA MA 

 average std. dev. average std. dev. average std. dev. average std. dev. average std. dev. 

           

C.C.R 0.5901 0.0369 0.5061 0.1372 0.9508 0.0402 0.7005 0.0371 0.9113 0.0712 

Sensitivity 0.5974 0.2226 0.5875 0.0647 1.0000 0.0000 0.7214 0.1114 0.9269 0.0554 

Specificity 0.5746 0.1738 0.4398 0.1961 0.8961 0.0860 0.6807 0.0795 0.8956 0.0967 

 

 

Table 4.8 PNN classification results using EMD features 
 

 Artery Artery Blot Blot Circinate Circinate Drusen Drusen MA MA 

 average std. dev. average std. dev. average std. dev. average std. dev. average std. dev. 

           

C.C.R 0.6218 0.0703 0.6530 0.0588 0.9360 0.0543 0.7675 0.0989 0.8410 0.0545 

Sensitivity 0.6306 0.0697 0.7137 0.0564 1.0000 0.0000 0.9056 0.0584 0.8968 0.0624 

Specificity 0.6074 0.1627 0.5904 0.1008 0.8810 0.0880 0.6178 0.2303 0.7844 0.1236 

 

 

4.2.3 Principal component analysis based features results 

In an attempt to improve the accuracy of the classifiers using EMD-based features, principal 

component analysis (PCA) was applied to the features set in order to reduce its 

dimensionality. Table 4.9 provides the selected features when principal component analysis 

is applied separately to intrinsic mode function one (IMF2) and to intrinsic mode function 

two (IMF2).  On the other hand, Table 4.10 provide the selected features when principal 
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component analysis is applied jointly to intrinsic mode function one (IMF2) and to intrinsic 

mode function two (IMF2).  

 

Table 4.9 shows that uniformity and entropy are the most dominant features that characterize 

IMF1 and IMF2 for all pathologies. Table 4.10 confirms the importance of these features 

since they are again selected by principal component analysis when it is applied jointly to 

IMF1 and IMF2; except for circinate pathology which characterized by the average statistic 

of its IMF1.  

 

 

Table 4.9 PCA applied to IMF1 and IMF2 separately 
 

 Selected features Cumulative variance proportion 

Artery   

PCA to IMF1 Uniformity, Entropy 0.9917 

PCA to IMF2 Uniformity, Entropy 0.9916 

   

Blot   

PCA to IMF1 Uniformity, Entropy 0.9877 

PCA to IMF2 Uniformity, Entropy 0.9908 

   

Circinate   

PCA to IMF1 Uniformity, Entropy 0.9895 

PCA to IMF2 Uniformity, Entropy 0.9906 

   

Drusen   

PCA to IMF1 Uniformity, Entropy 0.9844 

PCA to IMF2 Uniformity, Entropy 0.9898 

   

MA   

PCA to IMF1 Uniformity, Entropy 0.9878 

PCA to IMF2 Uniformity, Entropy 0.9896 
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Table 4.10 PCA applied to IMF1 and IMF2 jointly 
 

 Selected features Cumulative variance proportion 

Artery Entropy (IMF1), Uniformity (IMF2) 0.9769 

Blot Entropy (IMF1), Uniformity (IMF2) 0.9670 

Circinate  Mean (IMF1), Entropy (IMF2), 0.9752 

Drusen Entropy (IMF1), Uniformity (IMF2) 0.9580 

MA Entropy (IMF1), Uniformity (IMF2) 0.9654 

 

 
Figure 4.12 exhibits the overall recognition rate for each classifier using empirical mode 

decomposition features that were selected by principal component analysis technique  

Detailed results for each classifier are given in tables 4.11 to 4.14. Figure 4.12 shows that 

principal analysis selected features do not help improving both the accuracy of support vector 

machines and the k-nearest neighbor algorithm. However, they do so for quadratic 

discriminant analysis; for instance the accuracy goes from 75.3% to 81.1%.  

 

Although, PCA improves significantly the overall average detection rate of the k-nearest 

neighbor algorithm (81.1%) it still remains below the overall average accuracy of support 

vector machines (83.3%) before employing PCA selected inputs.  

 

On the other hand, the effect of principal component analysis selected features is very limited 

on the performance of the probabilistic neural networks. Therefore, we may conclude, that 

principal component analysis reduced features set does not improve the performance of the 

classifiers in general, and may even worsen it. In other words, to classify normal versus 

abnormal retina digital images it is more suitable to employ an EMD-SVM system with 

twelve features (six from intrinsic mode function one and six from intrinsic mode function 

two) without using principal component analysis at all. On average, this approach leads to the 

highest detection rate of pathologies in retina photographs.  
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Figure 4.12 Average correct classification rate over all pathologies for each classifier 
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Table 4.11 SVM classification results 

 

SVM No PCA Joint PCA Separate CPA 

    

 Artery Artery Artery 

C.C.R 0.7333 0.7837 0.7471 

Sensitivity 0.7616 0.92 0.7616 

Specificity 0.707 0.6382 0.7364 

    

 Blot Blot Blot 

C.C.R 0.7345 0.6966 0.5628 

Sensitivity 0.781 0.7384 0.4538 

Specificity 0.6815 0.6548 0.6803 

    

 Circinate Circinate Circinate 

DR 0.9511 0.9136 0.935 

Sensitivity 0.9731 0.8824 1 

Specificity 0.9256 0.9481 0.8604 

    

 Drusen Drusen Drusen 

C.C.R 0.7869 0.7494 0.7312 

Sensitivity 0.8461 0.872 0.7705 

Specificity 0.7217 0.6098 0.6853 

    

 MA MA MA 

C.C.R 0.9611 0.9076 0.8803 

Sensitivity 0.9797 0.8143 0.7796 

Specificity 0.9424 1 1 
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Table 4.12 QDA classification results 
 

QDA No PCA Joint PCA Separate CPA 

    

 Artery  Artery  Artery  

C.C.R 0.6624 0.7547 0.6619 

Sensitivity 0.5625 0.7888 0.6003 

Specificity 0.7849 0.7168 0.7282 

    

 Blot Blot Blot 

C.C.R 0.6902 0.7011 0.7623 

Sensitivity 0.6717 0.8054 0.8135 

Specificity 0.708 0.5847 0.7133 

    

 Circinate Circinate  Circinate  

C.C.R 0.9384 0.8703 1 

Sensitivity 0.9209 0.8356 1 

Specificity 0.961 0.9051 1 

    

 Drusen  Drusen  Drusen  

C.C.R 0.5439 0.5826 0.7331 

Sensitivity 0.5678 0.6676 0.6629 

Specificity 0.5235 0.4987 0.8062 

    

 MA  MA  MA  

C.C.R 0.9284 0.9336 0.9001 

Sensitivity 1 0.9524 0.9381 

Specificity 0.8559 0.9106 0.862 
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Table 4.13 k-NN classification results 
 

kNN No PCA Joint PCA Separate CPA 

    

 Artery  Artery  Artery  

C.C.R 0.5901 0.701 0.7176 

Sensitivity 0.5974 0.6819 0.7009 

Specificity 0.5746 0.7264 0.7425 

    

 Blot Blot Blot 

C.C.R 0.5061 0.5212 0.46384 

Sensitivity 0.5875 0.34262 0.5039 

Specificity 0.4398 0.70483 0.43548 

    

 Circinate Circinate  Circinate  

C.C.R 0.9508 0.8201 0.9182 

Sensitivity 1 0.8762 0.9798 

Specificity 0.8961 0.7446 0.8548 

    

 Drusen  Drusen  Drusen  

C.C.R 0.7005 0.725 0.6176 

Sensitivity 0.7214 0.8299 0.5745 

Specificity 0.6807 0.6042 0.6599 

    

 MA  MA  MA  

C.C.R 0.9113 0.9063 0.8388 

Sensitivity 0.9269 0.8845 0.8159 

Specificity 0.8956 0.928 0.864 
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Table 4.14 PNN classification results 
 

PNN No PCA Joint PCA Separate CPA 

    

 Artery  Artery  Artery  

C.C.R 0.6218 0.7679 0.7765 

Sensitivity 0.6306 0.802 0.7132 

Specificity 0.6074 0.7297 0.843 

    

 Blot Blot Blot 

C.C.R 0.653 0.7133 0.6964 

Sensitivity 0.7137 0.8482 0.662 

Specificity 0.5904 0.5719 0.7351 

    

 Circinate Circinate  Circinate  

C.C.R 0.936 0.9143 0.9196 

Sensitivity 1 0.8858 0.9784 

Specificity 0.881 0.9463 0.86 

    

 Drusen  Drusen  Drusen  

C.C.R 0.7675 0.6484 0.6489 

Sensitivity 0.9056 0.9632 0.9687 

Specificity 0.6178 0.305 0.2709 

    

 MA  MA  MA  

C.C.R 0.841 0.7903 0.8177 

Sensitivity 0.8968 0.7265 0.8109 

Specificity 0.7844 0.872 0.821 
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4.2.4 Comparison of simulation results 

This section compares the experimental results obtained with DWT and EMD. The average 

correct classification rate, average sensitivity, and average specificity of DWT and EMD 

based features are given respectively in Figure 4.13, 4.14, and 4.15.  

 

We found that the experimental results show strong evidence of the superiority of EMD-

based features over DWT extracted features in terms of correct classification rate (Figure 

4.13). For instance, the average recognition (classification or detection) rate (Figure 4.6) 

obtained with EMD-based features is 83.34% with SVM, 75.27% with QDA, 73.18% with k-

NN, and 76.39% with PNN. On the other hand, the average recognition (classification or 

detection) rate obtained with DWT-based features is 71.95% with SVM, 63.32% with QDA, 

62.07% with k-NN, and 54.15% with PNN. In addition, the simulations demonstrate the high 

effectiveness of SVM over the other classifiers. Indeed, whether using EMD-based features 

or DWT-based features; the SVM outperforms QDA, k-NN, and PNN. In terms of 

sensitivity, the EMD-based features outperform features extracted from DWT processed 

images when the classifiers SVM, k-NN, and QDA are employed; except for PNN (Figure 

4.14). For instance, the maximum average value over all experiments is obtained with the 

DWT-based features using PNN classifier (99.08%).  

 

Finally, in terms of specificity, the simulations show evidence that EMD-based features 

achieve higher average specificity over all experiments than DWT-based features (Figure 

4.15). For instance, overall average specificity obtained with EMD features is 79.57%, with 

SVM, 76.67% with QDA, 69.74% with k-NN, and 69.62% with PNN. On the other hand, 

overall average specificity with extracted features from DWT processed images is 74.28% 

using SVM, 57.65% using QDA, 60.73% using k-NN, and 1.57% using PNN. 

 

In summary, EMD-based features are strongly superior to DWT-based features in the 

diagnosis of retina digital images. In addition, we have found that the SVM outperforms 

QDA, k-NN, and PNN for both EMD-based features and DWT-based features.  
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Figure 4.13 Average correct classification rate over all experiments 

 

 

 

 

 
 

Figure 4.14 Average sensitivity rate over all experiments 
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Figure 4.15 Average specificity rate over all experiments 
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CHAPTER 5 
 
 

DISCUSSION OF THE OBTAINED RESULTS 

Our main results could be summarized as follows: 

a) empirical mode decomposition based features are strongly superior to DWT extracted 

features for all classifiers employed in our study; 

b) support vector machines outperform quadratic discriminant analysis, k-NN, and 

probabilistic neural networks. Thus, SVM confirms its superiority mentioned in 

previous papers;  

c) all classifiers obtain their highest accuracy to classify normal-versus-MA or normal-

versus-circinate images using EMD-based features;  

d) principal component analysis reduced features set does not improve the performance 

of the classifiers in general, and may even worsen it.  

 

The EMD-based approach suggested in our study appears to compares favorably with 

previous results in terms of correct recognition rate.  For instance, Yagmur et al., (2008) 

achieved 85% as maximum detection rate with and DWT-based processing approach and 

back-propagation neural networks (BPNN) as main classifier. Table 5.1 situates our study 

with previously reported researches. It is a non exhaustive summary of previous works.  
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Table 5.1 Some results reported in the literature 
 

Authors Image processing Classifier Performance 

Lamard et al., (2007) Haar wavelet Template matching Specificity: 96.18% 

Sensitivity: 87.94% 

Khademi and Krishnan 

(2007) 

Belkyns’s shift-invariant 

DWT (SIDWT) 

+ 

Gray level co-occurrence 

matrices (GLCM) 

LDA 

 

Leave One Out Method 

(LOOM) 

Accuracy: 82.2% 

Quellec et al., (2008) DWT  Template matching Sensitivity: 93.74% 

Yagmur et al. (2008) DWT Back-propagation 

neural networks 

(BPNN) 

Accuracy:   

50% -95%  

Xu and Luo (2009) Stationary discrete wavelet 

transform (SWT) and GLCM 

SVM  Accuracy: 84% 

Sensitivity:84% Specificity: 

80%  

Baroni et al., (2007) GLCM BPNN Accuracy: 79% 

Sensitivity:71% specificity: 

87%  

Meier et al., (2007) Gabor filter  

Fourier Transform 

Histogram of the intensity  

Pixel intensities. 

SVM Accuracy 

Gabor: 80% 

Fourier Transform: 76% 

Histogram: 73% 

Pixel intensities: 83%  

Anmar et al., (2008) Fourier transform Regression analysis R-squared = 0.59 

Lee et al., (2008) Morphological scale space 

analysis + GLCM 

Probabilistic boosting 

algorithm 

Accuracy 

Normal images  

(81.3% - 92.2%) 

Abnormal images  

(71.7% - 85.2%) 

Jagadish Nayak et al., 

(2009) 

Morphological measures BPNN Accuracy: 90%  

 

Our study (2011) EMD  SVM + 10 folds cross 

validation 

Accuracy: 

 73% - 96% 

Sensitivity:  

86.83%-74.46% 

Specificity: 

79.57%-69.62% 
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The performance of the EMD over the DWT may be explained as follows. The EMD is 

adaptive time-frequency decomposition (Oonincx , 2002; Flandrin et al., 2004; Demir and 

Ertürk, 2010). In other words, the EMD is like an adaptive filter banks. Therefore, it contains 

relevant information after the end of the sifting process.  

 

In particular, the results suggest that high frequency signals (first and second intrinsic mode 

functions) characterize much better normal and abnormal retina digital images than DWT. 

On the other hand, the DWT requires a predetermined wavelet function and level of 

decomposition (Dunn et al., 1994; Livens and Van de Wouwer, 1997; Janusauskas et al., 

2005). It would be more effective if the choice of the wavelet mother and the decomposition 

level was optimal.  

 

If we hypothesize that high frequency components are able to detect pathologies in retina, 

then DWT could perform better if HH sub-band features are kept and LH and HL sub-bands 

features are omitted.  

 

The extraction of features is based on statistical measures; including the mean, standard 

deviation, third moment, smoothness, uniformity and entropy. Based on these statistics, we 

made an assumption that they are sufficient to characterize the distribution of texture in retina 

digital images. They were considered because they are widely employed in biomedical image 

classification. However, other statistics were omitted such as the energy, and kurtosis.  

 

The high performance of SVM may be associated with its theoretical foundations. Indeed, 

SVM are based on the theory of Structural Risk Minimization and usage of kernel function 

for data mapping (Vapnik, 1995). In addition, the SVM was originally designed for binary 

classification; which is the case of our problem (normal versus one abnormal category). SVM 

confirms its superiority in the classification of one dimensional and two dimensional 

biomedical signals (Gil-Pita et al., 2007; Melgani and Bazi, 2008; Ai et al., 2011; Salas-

Gonzalez et al., 2011).  
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It is important to notice that we have used support vector machines with polynomial kernel of 

order two. A Gaussian kernel could be also employed and may give better results. However, 

it requires finding the optimal values of the Gaussian distribution used to model the data; for 

example the mean and the standard deviation. This is a difficult task and many researches 

were written on this subject (Friedrichs and Igel, 2005; Sullivan and Luke, 2007; Diosan et 

al., 1011). We have also used polynomial kernels with orders three and four.  

 

The results are not reported here since in many case the SVM take a long time to converge or 

do not converge because of limited memory of the computer. For example, it is required to 

create an optimization options structure using Matlab Optimization Toolbox © to solve the 

problem of limited memory for each classification problem. Thus, the polynomial kernel of 

order three and four are omitted in our study.  

 

It should be noted that both QDA and PNN are based on strong statistical assumptions. 

Indeed, the QDA vector of features is supposed to be multivariate normally distributed; 

which is not always true in real life problems. Besides, PNN is based on Bayesian decision 

and the probability density function (PDF) of each group of patterns is assumed to follow a 

Gaussian distribution; which is also not always true in real life problems. Moreover, PNN 

requires a large training set to obtain appropriate estimates of the mean and variance that 

characterize its Gaussian function (PDF) used to perform the classification task. Finally, the 

performance of k-NN depends on the number of the nearest neighbor k which was not 

optimized. For instance, a larger k makes k-NN less sensitive to noise; whilst a small k allows 

capturing finer structure of space. In our study, we made the assumption that there is no 

potential noise in the data; thus the parameter k was set arbitrarily to 1 to guarantee a better 

characterization of the structure space.  

 

Furthermore, the performance of k-NN depends also on the choice of the distance used for 

learning and classification; which is often a difficult decision to make. In our study, the 

Euclidean distance was chosen because it is the most commonly employed type of distance, 

and is less sensitive to outliers.  
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In particular, the distance between two objects is not affected by the addition of new objects 

to the learning database. However, it is very sensitive to scale.  

 

Metric distances other than the Euclidean distance do exist and may be considered for future 

researches. For instance, we may mention cityblock (Sum of absolute differences), cosine 

(one minus the cosine of the included angle between points), correlation (one minus the 

sample correlation between points), and hamming (percentage of bits that differ).  

 

In an attempt to improve the accuracy of the classifiers, principal component analysis (PCA) 

was used to select the features that capture more of the variability in the initial features space.  

The most representative features selected by PCA are uniformity and entropy for all 

pathologies (See Tables 4.9 and 4.10), except the mean and entropy for circinate. However, 

we found that in general the reduced features set do not improve significantly the detection 

rate. The main problem of PCA is that it is a transformation which performs a linear 

projection; thus it fails to capture nonlinear relationships in the original features space. In our 

experimental results, we found that in general PCA does not improve the accuracy of the 

classifiers. This could be explained by the fact that feature extraction by PCA does not 

consider the class information of the data (Park and Choi, 2009). The PCA technique could 

be replaced by artificial neural networks that can perform a kind of non-linear PCA (Markey 

et al., 2003; Faro et al., 2005; Maiorana, 2008). The ANN are very strong to capture 

nonlinear dynamics in the data and very robust to noise. However, the obtained results from 

ANN could not be explained in a statistical sense. For instance, ANN acts as a black-box.  

 

In our study, we have employed a feature transformation method to transform data from the 

original high-dimensional feature space to a new space with small dimension using principal 

component analysis. This approach does not necessarily consider relevant features that may 

help improving the accuracy of the detection system. Then, statistical feature selection 

algorithms that select a subset of features from the original feature set may be considered; 

namely filter methods, wrapper methods, and ranking feature approach (Saeys et al., 2007).  
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Both filter and wrapper methods use characteristics of the data to evaluate and to select the 

feature subsets. However, filter approach does not involve the chosen learning algorithm; 

whilst the wrapper approach does. Unlike filter and wrapper methods, the ranking features 

procedure considers interaction between features.  

 

The main problems with our methodology can be summarized as follows.  

 

First, our database is small. A larger database would be preferable to make strong 

conclusions. However, 10 folds cross validation approach was adopted in our study to 

encounter the problem of the limited database. Moreover, five pathologies were considered to 

make robust conclusion. The second problem is related to the image time processing using 

the empirical mode decomposition (EMD). 

 

 Indeed, EMD algorithm of Rato et al. (2008) that we employed is highly time consuming 

(340 seconds to 5100 seconds), versus a very fast processing of the images by the discrete 

wavelet transform (DWT). Therefore, it could not be appropriate to use this approach for real 

time applications unless a solution to reduce time processing of the EMD is found.  

 

 



 

CONCLUSION 

 

Conventional retinal disease identification techniques based on manual observation by 

physicians for retina diagnosis is time consuming. Therefore, the automatic analysis of retina 

images has received a large scientific attention with the purpose of providing computational 

and intelligent tools to detect pathologies in the texture of digitized medical images. The 

main purpose of our study is to design an automatic screening system which aims to detect 

Artery sheath (Coat’s disease), blot hemorrhage, retinal degeneration (circinates), age-related 

macular degeneration (drusens), and diabetic retinopathy (microaneurysms and exudates). 

The system is based on features extractions from retina digital images my means of empirical 

mode decomposition (EMD) technique in introduced by Huang et al., (1998). Unlike the 

discrete wavelet transform (DWT), this technique is an adaptive time-frequency analysis 

approach that requires no assumption about the underlying data and requires no choice about 

the wavelet mother and level of decomposition. The extraction of features is based on 

statistical measures; including the mean, standard deviation, third moment, smoothness, 

uniformity and entropy. Based on these statistics, we made an assumption that they are 

sufficient to characterize the distribution of texture in retina digital images. They were 

considered because they are widely employed in biomedical image classification. These 

statistical features were extracted from the first and the second intrinsic mode functions for 

the EMD approach, and from LH, LH, and HL for the DWT approach at levels of 

decomposition one, two and three as done in the literature. In order to classify (detect) 

normal images versus abnormal ones, four classifiers were considered; including support 

vector machines, quadratic discriminant analysis (QDA), k-nearest neighbor algorithm (k-

NN), and probabilistic neural networks (PNN). These classifiers were chosen because they 

are widely used in pattern recognition.  

 

The performance measures were the correct classification rate, sensitivity and specificity. All 

the experiments were performed using ten folds cross-validation technique.  
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Then, average values of correct classification rate, sensitivity and specificity are computed to 

make performance comparisons.  

 

There experimental results show strong evidence of the superiority of EMD-based features 

over DWT extracted features for all classifiers employed in our study. In addition, the 

simulations show that support vector machines with a polynomial of order two as kernel 

function outperform quadratic discriminant analysis, k-NN, and probabilistic neural 

networks. Thus, SVM confirms its superiority mentioned in previous papers. The high 

performance of SVM may be associated with its theoretical foundations. Indeed, SVM are 

based on the theory of Structural Risk Minimization and usage of kernel function for data 

mapping. On the other hand, both QDA and PNN are based on strong statistical assumptions. 

Finally, the performance of k-NN depends on the number of the nearest neighbor k which 

was not optimized.  

 

Furthermore, the experimental results show that all classifiers obtain their highest accuracy to 

classify normal-versus-MA or normal-versus-circinate images using EMD-based features.  

In subsequent experiments, principal component analysis was performed to select most 

representative features. They were uniformity and entropy for all pathologies, except the 

mean and entropy for circinate. We found that although principal component analysis 

reduced features set it does not improve the performance of the classifiers in general, and 

may even worsen it. Indeed, the main problem of PCA is it is a transformation that performs 

a linear projection; thus it fails to capture nonlinear relationships in the original features 

space. 

 

In comparison with the literature, the EMDA-based approach suggested in our study 

achieved higher accuracy – in terms of recognition rate – than what have been obtained with 

previous papers. For example, Yagmur et al., (2008) achieved 85% as maximum detection 

rate with and DWT-based processing approach and back-propagation neural networks 

(BPNN) as main classifier.  
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Our approach based on EMD features and support vector machines achieved as much as 

96%. Finally, our study confirms the superiority of the EMD extracted features over the 

DWT method.  

 

For instance, in the problem of context of one dimensional biomedical signal processing and 

classification; Ai et al., (2011) found that the EMD outperform the DWT using SVM as 

classifier to distinguish essential tremor (ET) and Parkinson’s disease (PD).  

 

For future work, several routes can be considered. First, it is important to gather a larger 

database of retina images. The only way to do so is to employ private databases which are 

usually very expensive. Second, the empirical mode decomposition should be applied to 

other types of biomedical images such as brain magnetic resonance images, mammograms, 

skin, and prostate digital images in order to check the superiority of the EMD. Third, original 

and fast EMD algorithm should be considered for retina image processing and high 

frequency signal extraction. Thus, we may reduce the processing time while probably 

extracting very accurate high frequency signal. Fourth, features may be obtained from HH 

sub-bands of the DWT. Fifth, one may investigate classification power of each feature using 

statistical feature selection approaches such filter, wrapper, and rank method. The purpose of 

the search algorithm is to find a subset of predictors that optimally model measured 

responses, subject to constraints such as required or excluded features and the size of the 

subset. The artificial neural networks may be also considered since they are very strong to 

capture nonlinear dynamics in the data and very robust to noise. Sixth, other statistical 

features could be taken into account such as energy of the signal and its kurtosis (fourth 

moment).  

 

In sum, our study has shown strong evidence; as mentioned previously; of the superiority of 

the empirical mode decomposition over the discrete wavelet transform in the automatic 

recognition of certain pathologies in retina digital images. 
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 For future work, many avenues may be explored to improve the performance of the EMD. 

Finally, other types of biomedical images should be investigated to validate the effectiveness 

of this very promising adaptive time-frequency analysis method. 
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