3 research outputs found

    Diffusion methods for wind power ramp detection

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38679-4_9Proceedings of 12th International Work-Conference on Artificial Neural Networks, IWANN 2013, Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013, Part IThe prediction and management of wind power ramps is currently receiving large attention as it is a crucial issue for both system operators and wind farm managers. However, this is still an issue far from being solved and in this work we will address it as a classification problem working with delay vectors of the wind power time series and applying local Mahalanobis K-NN search with metrics derived from Anisotropic Diffusion methods. The resulting procedures clearly outperform a random baseline method and yield good sensitivity but more work is needed to improve on specificity and, hence, precision.With partial support from Spain's grant TIN2010-21575- C02-01 and the UAM-ADIC Chair for Machine Learning. The rst author is also supported by an FPI-UAM grant and kindly thanks the Applied Mathematics Department of Yale University for receiving her during her visits. The second author is supported by the FPU-MEC grant AP2008-00167

    Predicting software maintainability in object-oriented systems using ensemble techniques

    Get PDF
    Prediction of the maintainability of classes in object-oriented systems is a significant factor for software success, however it is a challenging task to achieve. To date, several machine learning models have been applied with variable results and no clear indication of which techniques are more appropriate. With the goal of achieving more consistent results, this paper presents the first set of results in an extensive empirical study designed to evaluate the capability of bagging models to increase accuracy prediction over individual models. The study compares two major machine learning based approaches for predicting software maintainability: individual models (regression tree, multilayer perceptron, k-nearest neighbors and m5rules), and an ensemble model (bagging) that are applied to the QUES data set. The results obtained from this study indicate that k-nearest neighbors model outperformed all other individual models. The bagging ensemble model improved accuracy prediction significantly over almost all individual models, and the bagging ensemble models with k-nearest neighbors as a base model achieved superior accurate prediction. This paper also provides a description of the planned programme of research which aims to investigate the performance over various datasets of advanced (ensemble-based) machine learning models

    Unifying interaction across distributed controls in a smart environment using anthropology-based computing to make human-computer interaction "Calm"

    Get PDF
    Rather than adapt human behavior to suit a life surrounded by computerized systems, is it possible to adapt the systems to suit humans? Mark Weiser called for this fundamental change to the design and engineering of computer systems nearly twenty years ago. We believe it is possible and offer a series of related theoretical developments and practical experiments designed in an attempt to build a system that can meet his challenge without resorting to black box design principles or Wizard of Oz protocols. This culminated in a trial involving 32 participants, each of whom used two different multimodal interactive techniques, based on our novel interaction paradigm, to intuitively control nine distributed devices in a smart home setting. The theoretical work and practical developments have led to our proposal of seven contributions to the state of the art
    corecore