1,300 research outputs found

    Security Investigation on Remote Access Methods of Virtual Private Network

    Get PDF
    Remote access is one of the prevalent business trends in today2019;s computing pervasive business environments. The ease of access to internal private networks over the internet by telecommuter devices has given birth too many security threats to the endpoint devices. The application client software and data at rest on the endpoint of remote access methods such as: Tunneling, Portal, Desktop Applications and Direct Access do not offer protection for the communication between the VPN gateway and internal resources. This paper, therefore investigate the security pitfalls of remote access for establishing virtual private network methods. To address these challenges, a remote access method to secure endpoint communication is proposed. The study adopted investigative research design by use of empirical review on the security aspect of the current state VPN Remote Access methods. This necessitates the review of the research article on the current state and related works which leads to critiques and offer proposed solution to remote access endpoint VPN. The scope of this study is limited to secure virtual private network endpoint data communication. In this paper, an investigation of these access technologies given

    A Novel Authentication and Key Agreement Scheme for Countering MITM and Impersonation Attack in Medical Facilities

    Get PDF
    Authentication is used to enfold the privacy of the patient to implement security onto the communication between patients and service providers. Several types of research have proposed support for anonymity for contextual privacy in medical systems that are still vulnerable to impersonation attack and Man-in-the-middle attack. By using powerful technology that is used in medical facilities, it can help in building an advanced system. However, the same powerful tools can also be used by the attackers to gain personal profits and to cause chaos. The proposed countermeasure that is to be taken to prevent this kind of attacks is by implementing mutual authentication between users, their devices/mobile devices, and the system’s cloud server, and also a key agreement scheme together with the help of Elliptic Curve Cryptography (ECC). A novel authentication scheme which consists of two phases, a signature generation, and authentication process. The ECC implementation is to ensure that the keys are thoroughly secured and is not copy- able, together with a Key generation scheme that shields the system against impersonation attacks. The usage of Elliptic Curve Digital Signature Algorithm (ECDSA), in a signature generation, on the other hand, provides users more secure way to hide the user private key and bring additional security layer before proceeding to authentication phase due to the existence of extra elements of domain parameters. Authentication is still considered as a crucial component in maintaining the security of any critical facilities that require the CIA tried and non- repudiation as a need to maintain their data. It does not only apply to medical centers, but any organizations that possess valuable data that is needed to be protected also requires strong authentication protocols. Thus, the trend for the need of novel authentication protocols will keep on rising as technology gets fancier and fancier

    A secure lightweight authentication mechanism for IoT devices in generic domain

    Get PDF
    The Internet of Things prompt deployment enhances the security concerns of these systems in recent years. The enormous exchange of sensory information between devices raises the necessity for a secure authentication scheme for Internet of Things devices. Despite many proposed schemes, providing authenticated and secure communication for Internet of Things devices is still an open issue. This research addresses challenges pertaining to the Internet of Things authentication, verification, and communication, and proposes a new secure lightweight mechanism for Internet of Things devices in the generic domain. The proposed authentication method utilizes environmental variables obtained by sensors to allow the system to identify genuine devices and reject anomalous connections

    Enhanced IoT Wi-Fi protocol standard’s security using secure remote password

    Get PDF
    In the Internet of Things (IoT) environment, a network of devices is connected to exchange information to perform a specific task. Wi-Fi technology plays a significant role in IoT based applications. Most of the Wi-Fi-based IoT devices are manufactured without proper security protocols. Consequently, the low-security model makes the IoT devices vulnerable to intermediate attacks. The attacker can quickly target a vulnerable IoT device and breaches that vulnerable device's connected network devices. So, this research suggests a password protection based security solution to enhance Wi-Fi-based IoT network security. This password protection approach utilizes the secure remote password protocol (SRPP) in Wi-Fi network protocols to avoid brute force attack and dictionary attack in Wi-Fi-based IoT applications. The performance of the IoT security solution is implemented and evaluated in the GNS3 simulator. The simulation analysis report shows that the suggested password protection approach supports scalability, integrity and data protection against intermediate attacks

    Security attacks taxonomy on bring your own devices (BYOD) model

    Get PDF
    Mobile devices, specifically smartphones, have become ubiquitous. For this reason, businesses are starting to develop “Bring Your Own Device” policies to allow their employees to use their owned devices in the workplace. BYOD offers many potential advantages: enhanced productivity, increased revenues, reduced mobile costs and IT efficiencies. However, due to emerging attacks and limitations on device resources, it is difficult to trust these devices with access to critical proprietary information. Therefore, in this paper, the potential attacks of BYOD and taxonomy of BYOD attacks are presented. Advanced persistent threat (APT) and malware attack are discussed in depth in this paper. Next, the proposed solution to mitigate the attacks of BYOD is discussed. Lastly, the evaluations of the proposed solutions based on the X. 800 security architecture are presented
    corecore