41,603 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    An overview on the obsolescence of physical assets for the defence facing the challenges of industry 4.0 and the new operating environments

    Get PDF
    Libro en Open AccessThis contribution is intended to observe special features presented in physical assets for defence. Particularly, the management of defence assets has to consider not only the reliability, availability, maintainability and other factors frequently used in asset management. On the contrary, such systems should also take into account their adaptation to changing operating environments as well as their capability to changes on the technological context. This study approaches to the current real situation where, due to the diversity of conflicts in our international context, the same type of defence systems must be able to provide services under different boundary conditions in different areas of the globe. At the same time, new concepts from the Industry 4.0 provide quick changes that should be considered along the life cycle of a defence asset. As a finding or consequence, these variations in operating conditions and in technology may accelerate asset degradation by modifying its reliability, its up-to-date status and, in general terms, its end-of-life estimation, depending of course on a diversity of factors. This accelerated deterioration of the asset is often known as “obsolescence” and its implications are often evaluated (when possible), in terms of costs from different natures. The originality of this contribution is the introduction of a discussion on how a proper analysis may help to reduce errors and mistakes in the decision-making process regarding the suitability or not of repairing, replacing, or modernizing the asset or system under study. In other words, the obsolescence analysis, from a reliability and technological point of view, could be used to determine the conservation or not of a specific asset fleet, in order to understand the effects of operational and technology factors variation over the functionality and life cycle cost of physical assets for defence

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    A Proposal for Supply Chain Management Research That Matters: Sixteen High Priority Research Projects for the Future

    Get PDF
    On May 4th, 2016 in Milton, Ontario, the World Class Supply Chain 2016 Summit was held in partnership between CN Rail and Wilfrid Laurier University’s Lazaridis School of Business & Economics to realize an ambitious goal: raise knowledge of contemporary supply chain management (SCM) issues through genuine peer-­‐to-­‐peer dialogue among practitioners and scholars. A principal element of that knowledge is an answer to the question: to gain valid and reliable insights for attaining SCM excellence, what issues must be researched further? This White Paper—which is the second of the summit’s two White Papers—addresses the question by proposing a research agenda comprising 16 research projects. This research agenda covers the following: The current state of research knowledge on issues that are of the highest priority to today’s SCM professionals Important gaps in current research knowledge and, consequently, the major questions that should be answered in sixteen future research projects aimed at addressing those gaps Ways in which the research projects can be incorporated into student training and be supported by Canada’s major research funding agencies That content comes from using the summit’s deliberations to guide systematic reviews of both the SCM research literature and Canadian institutional mechanisms that are geared towards building knowledge through research. The major conclusions from those reviews can be summarized as follows: While the research literature to date has yielded useful insights to inform the pursuit of SCM excellence, several research questions of immense practical importance remain unanswered or, at best, inadequately answered The body of research required to answer those questions will have to focus on what the summit’s first White Paper presented as four highly impactful levers that SCM executives must expertly handle to attain excellence: collaboration; information; technology; and talent The proposed research agenda can be pursued in ways that achieve the two inter-­‐related goals of creating new actionable knowledge and building the capacity of today’s students to become tomorrow’s practitioners and contributors to ongoing knowledge growth in the SCM field This White Paper’s details underlying these conclusions build on the information presented in the summit’s first White Paper. That is, while the first White Paper (White Paper 1) identified general SCM themes for which the research needs are most urgent, this White Paper goes further along the path of industry-academia knowledge co-creation. It does so by examining and articulating those needs against the backdrop of available research findings, translating the needs into specific research projects that should be pursued, and providing guidelines for how those projects can be carried out

    From supply chains to demand networks. Agents in retailing: the electrical bazaar

    Get PDF
    A paradigm shift is taking place in logistics. The focus is changing from operational effectiveness to adaptation. Supply Chains will develop into networks that will adapt to consumer demand in almost real time. Time to market, capacity of adaptation and enrichment of customer experience seem to be the key elements of this new paradigm. In this environment emerging technologies like RFID (Radio Frequency ID), Intelligent Products and the Internet, are triggering a reconsideration of methods, procedures and goals. We present a Multiagent System framework specialized in retail that addresses these changes with the use of rational agents and takes advantages of the new market opportunities. Like in an old bazaar, agents able to learn, cooperate, take advantage of gossip and distinguish between collaborators and competitors, have the ability to adapt, learn and react to a changing environment better than any other structure. Keywords: Supply Chains, Distributed Artificial Intelligence, Multiagent System.Postprint (published version

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: ñ€ƓHow should we plan and execute logistics in supply chains that aim to meet todayñ€ℱs requirements, and how can we support such planning and execution using IT?ñ€ Todayñ€ℱs requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting todayñ€ℱs requirements in supply chain planning and execution.supply chain;MAS;multi agent systems
    • 

    corecore