80 research outputs found

    Electromagnetic Interference and Compatibility

    Get PDF
    Recent progress in the fields of Electrical and Electronic Engineering has created new application scenarios and new Electromagnetic Compatibility (EMC) challenges, along with novel tools and methodologies to address them. This volume, which collects the contributions published in the “Electromagnetic Interference and Compatibility” Special Issue of MDPI Electronics, provides a vivid picture of current research trends and new developments in the rapidly evolving, broad area of EMC, including contributions on EMC issues in digital communications, power electronics, and analog integrated circuits and sensors, along with signal and power integrity and electromagnetic interference (EMI) suppression properties of materials

    On low frequency conducted EMI: interference mitigation with focus on the DC switching harmonic in the time and frequency domains

    Get PDF
    The recent increase of interconnected electrical systems such as power supplies and communication links are creating problems associated with electromagnetic fields generated at different voltage levels and frequencies. Semiconductor switches used in for example Switched Mode Power Supplies are constantly increasing in power rating and frequency limits. In addition, wired communication links are also increasing the working bandwidth and channel capability to transfer more information in less time. Smart grids are receiving much attention from companies and researchers all over the world. Two concerns that drive the research carried out on smart grids are Power Quality and Signal Integrity. This work presents an analysis of conducted emissions with two aims. Firstly, an analysis is made of the simulated and measured data when a DC system generates electromagnetic interference and how to improve or mitigate it with certain frequency modulation techniques by spreading the spectrum of the switching frequency in agreement to an established standard. Secondly, a demonstration of the coupling effects as one of the major concerns when dealing with Electromagnetic Interference sources is presented experimentally. Statistical analyses for these tests are performed to understand the main causes and possible actions to suppress interference and to address Electromagnetic Compatibility between devices. The work presents the following findings. An understanding of the important parameters for frequency modulation techniques called as Spread Spectrum. These parameters are the rate of change for the modulating signal and the modulation index that controls the switching frequency of a modulated DC-DC converter to mitigate the interference measured. The importance of an auxiliary time domain (Bit Error Rate) analysis to measure the interference of a DC-DC converter modulated by Spread Spectrum to understand the main drawback in the emissions measured from a different point of view by means of a Crosstalk environment. The conclusion that Bit Error Rate measurement of a communication signal cannot be decreased using Spread Spectrum Modulation for the power converter as the EMI source. The results obtained use data measured using an EMI receiver and where possible a simulation describing the most important parameters. This work provides interesting and useful points to analyse the Spread Spectrum technique applied to DC power converters and the main advantages and disadvantages

    On low frequency conducted EMI: interference mitigation with focus on the DC switching harmonic in the time and frequency domains

    Get PDF
    The recent increase of interconnected electrical systems such as power supplies and communication links are creating problems associated with electromagnetic fields generated at different voltage levels and frequencies. Semiconductor switches used in for example Switched Mode Power Supplies are constantly increasing in power rating and frequency limits. In addition, wired communication links are also increasing the working bandwidth and channel capability to transfer more information in less time. Smart grids are receiving much attention from companies and researchers all over the world. Two concerns that drive the research carried out on smart grids are Power Quality and Signal Integrity. This work presents an analysis of conducted emissions with two aims. Firstly, an analysis is made of the simulated and measured data when a DC system generates electromagnetic interference and how to improve or mitigate it with certain frequency modulation techniques by spreading the spectrum of the switching frequency in agreement to an established standard. Secondly, a demonstration of the coupling effects as one of the major concerns when dealing with Electromagnetic Interference sources is presented experimentally. Statistical analyses for these tests are performed to understand the main causes and possible actions to suppress interference and to address Electromagnetic Compatibility between devices. The work presents the following findings. An understanding of the important parameters for frequency modulation techniques called as Spread Spectrum. These parameters are the rate of change for the modulating signal and the modulation index that controls the switching frequency of a modulated DC-DC converter to mitigate the interference measured. The importance of an auxiliary time domain (Bit Error Rate) analysis to measure the interference of a DC-DC converter modulated by Spread Spectrum to understand the main drawback in the emissions measured from a different point of view by means of a Crosstalk environment. The conclusion that Bit Error Rate measurement of a communication signal cannot be decreased using Spread Spectrum Modulation for the power converter as the EMI source. The results obtained use data measured using an EMI receiver and where possible a simulation describing the most important parameters. This work provides interesting and useful points to analyse the Spread Spectrum technique applied to DC power converters and the main advantages and disadvantages

    Applications of Power Electronics:Volume 2

    Get PDF

    Economically sustainable public security and emergency network exploiting a broadband communications satellite

    Get PDF
    The research contributes to work in Rapid Deployment of a National Public Security and Emergency Communications Network using Communication Satellite Broadband. Although studies in Public Security Communication networks have examined the use of communications satellite as an integral part of the Communication Infrastructure, there has not been an in-depth design analysis of an optimized regional broadband-based communication satellite in relation to the envisaged service coverage area, with little or no terrestrial last-mile telecommunications infrastructure for delivery of satellite solutions, applications and services. As such, the research provides a case study of a Nigerian Public Safety Security Communications Pilot project deployed in regions of the African continent with inadequate terrestrial last mile infrastructure and thus requiring a robust regional Communications Satellite complemented with variants of terrestrial wireless technologies to bridge the digital hiatus as a short and medium term measure apart from other strategic needs. The research not only addresses the pivotal role of a secured integrated communications Public safety network for security agencies and emergency service organizations with its potential to foster efficient information symmetry amongst their operations including during emergency and crisis management in a timely manner but demonstrates a working model of how analogue spectrum meant for Push-to-Talk (PTT) services can be re-farmed and digitalized as a “dedicated” broadband-based public communications system. The network’s sustainability can be secured by using excess capacity for the strategic commercial telecommunication needs of the state and its citizens. Utilization of scarce spectrum has been deployed for Nigeria’s Cashless policy pilot project for financial and digital inclusion. This effectively drives the universal access goals, without exclusivity, in a continent, which still remains the least wired in the world

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    CMOS Power Amplifiers for Multi-Hop Communication Systems

    Get PDF
    • …
    corecore