212 research outputs found

    Exploration of robotic-wheel technology for enhanced urban mobility and city scale omni-directional personal transportation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.Includes bibliographical references (leaves 50-52).Mobility is traditionally thought of as freedom to access more goods and services. However, in my view, mobility is also largely about personal freedom, i.e., the ability to exceed one's physical limitations, in essence, to become "more than human" in physical capabilities. This thesis explores novel designs for omni-directional motion in a mobility scooter, car and bus with the aim of increasing personal mobility and freedom. What links these designs is the use of split active caster wheel robot technology. In the first section, societal and technological impacts of omni-directional motion in the city are examined. The second section of the thesis presents built and rendered prototypes of these three designs. The third and final section, evaluates implementation issues including robotic controls and an algorithm necessary for real world omni-directional mobility.by Raul-David Valdivia Poblano.S.M

    Breaking new ground in mapping human settlements from space -The Global Urban Footprint-

    Full text link
    Today 7.2 billion people inhabit the Earth and by 2050 this number will have risen to around nine billion, of which about 70 percent will be living in cities. Hence, it is essential to understand drivers, dynamics, and impacts of the human settlements development. A key component in this context is the availability of an up-to-date and spatially consistent map of the location and distribution of human settlements. It is here that the Global Urban Footprint (GUF) raster map can make a valuable contribution. The new global GUF binary settlement mask shows a so far unprecedented spatial resolution of 0.4 arcsec (12m\sim12 m) that provides - for the first time - a complete picture of the entirety of urban and rural settlements. The GUF has been derived by means of a fully automated processing framework - the Urban Footprint Processor (UFP) - that was used to analyze a global coverage of more than 180,000 TanDEM-X and TerraSAR-X radar images with 3m ground resolution collected in 2011-2012. Various quality assessment studies to determine the absolute GUF accuracy based on ground truth data on the one hand and the relative accuracies compared to established settlements maps on the other hand, clearly indicate the added value of the new global GUF layer, in particular with respect to the representation of rural settlement patterns. Generally, the GUF layer achieves an overall absolute accuracy of about 85\%, with observed minima around 65\% and maxima around 98 \%. The GUF will be provided open and free for any scientific use in the full resolution and for any non-profit (but also non-scientific) use in a generalized version of 2.8 arcsec (84m\sim84m). Therewith, the new GUF layer can be expected to break new ground with respect to the analysis of global urbanization and peri-urbanization patterns, population estimation or vulnerability assessment

    The polarimetric and helioseismic imager on solar orbiter

    Get PDF
    This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, as well as hosting the potential of a rich return in further science. SO/PHI measures the Zeeman effect and the Doppler shift in the FeI 617.3nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO_3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders (LCVRs). The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2kx2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope (FDT), covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope (HRT), can resolve structures as small as 200km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line

    A vision-based hole quality assessment technique for robotic drilling of composite materials using a hybrid classification model

    Get PDF
    peer reviewedRobotic drilling has advantages over traditional computer numerical control machines due to its flexibility, dexterity and the potential for rapid production and process automation. The dexterity and reach of the robotic drill end effector enables the efficient drilling of large composite components, such as aircraft wing structures. Due to the anisotropy and inhomogeneity of fibre reinforced polymer composite materials, drilling remains a challenging task. Inspection of the drilled hole is required at the end of the process to ensure the final product is free from defects. Typically, such inspections require the parts to be transferred to a dedicated inspection station, which is a time-consuming non-value-added task and impractical for large components. In the interest of an efficient and sustainable manufacturing process, this work proposes a hybrid classification model implemented with a robotic drilling system to investigate the quality of drilled holes in-situ. The classifier is trained and tested with a random selection of drilled holes and the most accurate classifier is implemented. The selected classifier returns 90% overall prediction accuracy on unseen drilled holes. This machine learning based approach, using a convolutional neural network and support vector machine classifier, can significantly improve inspection reliability while reducing production time for drilled composite components. This is the first study that demonstrates a hole quality assessment technique for robotic drilling of composite material in-situ at scale

    An Energy-Efficient and Reliable Data Transmission Scheme for Transmitter-based Energy Harvesting Networks

    Get PDF
    Energy harvesting technology has been studied to overcome a limited power resource problem for a sensor network. This paper proposes a new data transmission period control and reliable data transmission algorithm for energy harvesting based sensor networks. Although previous studies proposed a communication protocol for energy harvesting based sensor networks, it still needs additional discussion. Proposed algorithm control a data transmission period and the number of data transmission dynamically based on environment information. Through this, energy consumption is reduced and transmission reliability is improved. The simulation result shows that the proposed algorithm is more efficient when compared with previous energy harvesting based communication standard, Enocean in terms of transmission success rate and residual energy.This research was supported by Basic Science Research Program through the National Research Foundation by Korea (NRF) funded by the Ministry of Education, Science and Technology(2012R1A1A3012227)
    corecore